
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
John_Assalone_GCIH.doc ...2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting the GDI+ JPEG COM Marker Integer Underflow Vulnerability

GIAC Certified Incident Handler
Practical Assignment v4

John Assalone
January 20th 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Abstract
This paper examines a functional exploit of the vulnerability described in Microsoft
Security Bulletin MS04-028 and its use in a minor attack on a fictional startup
company. A brief comparison between stack-based and heap-based buffer overflows is
provided, followed by a discussion on how this exploit executes a shellcode payload.
The exploit is then employed for a minor attack following the stages of the attack
process. The incident handling process is then presented, providing structure for the
narrative of the company’s response. The full source code of the exploit tool and
shellcode are provided in appendices.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Contents

Part I: Statement of Purpose 3
Part II: The Exploit 4
Part III: Stages of the Attack Process 15
Part IV: The Incident Handling Process 30
Works Cited 46
Appendix A: gcih-jod.c 49
Appendix B: win32_reverse.asm 54

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part I: Statement of Purpose
An exploit based on JpegOfDeath will be used to attack a small startup apparel
company named Urban Hemp Wear, referred to as UHW throughout the paper. The
primary characters are:

NiC: The attacker, a wannabe whose skills are slightly better than the average
script kiddy. He is friends with James, who works at UHW.

James: The marketing person at UHW, and friend of NiC. James is somewhat
computer literate.

Cliff: UHW’s systems administrator. He is responsible for managing UHW’s
single Linux server and handling users’ workstations. Most of his time is spent
on pet projects to improve his programming skills.

Mary: UHW’s proprietor, and Cliff’s boss. Her focus is on the business, turning
her attention to IT only if a problem occurs. Mary is only referenced briefly when

As a practical joke, NiC will send James a malicious JPEG (generated with
JpegOfDeath) containing a reverse shell payload. When James tries to open the
image, a reverse shell connection will be made to NiC’s computer, after which NiC will
reboot James’s computer using the Windows shutdown command.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

1 Internet Explorer 6 on Windows XP SP1 does not load gdiplus.dll. It was not affected by any malicious JPEG files
during testing. The cited comment by PatriotB6007 mentions the same behavior.

Part II: The Exploit
Name
This paper examines the GDI+ Buffer Overflow. The vulnerability is identified by its
Microsoft Security Bulletin ID, MS04-028.

Major advisories:
Microsoft: http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx1)
CERT: http://www.us-cert.gov/cas/techalerts/TA04-260A.html2)
CVE: http://cvf.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-02003)
BUGTRAQ: http://www.securityfocus.com/bid/111734)

An identical flaw in Netscape browsers was discovered and reported by Solar Designer
in July 2000.

This section traces the construction of an exploit based on perplexy’s ms04-028.sh
proof-of-concept, using reverse shellcode from the Metasploit Project’s shellcode
repository as the payload. JpegOfDeath.c by John Bissell is stripped and used as a
skeleton for assembling the crafted JPEG.

The aforementioned code was modified to some extent for the final exploit. In each
case, the full source of the modified code is provided in the appendix, along with links
to the original author’s source.

MS04-028 is a local vulnerability – the user must be induced to open a crafted JPEG
file with an application that uses the GDI+ library. Internet Explorer does not use GDI+
to display JPEG images, and so is not vulnerable to remote exploit (PatriotB6007)1.

A similar vulnerability is described in MS04-032, pertaining to handling of Windows
Metafile (WMF/EMF) images. The library functions do not validate the image size
specified in the metafile header before copying the image to memory, resulting in a
heap overflow and exposing the system to the same exploit techniques used for MS04-
028. This vulnerability is a greater threat because it is remotely exploitable through
Internet Explorer.

Operating System
Windows Server 2003 and all versions of Windows XP prior to SP2 are vulnerable.
GDI+ is a redistributable library and is included in other Microsoft and third-party
applications, potentially exposing many other systems. This exploit targets Windows
XP SP1.

Protocols/Services/Applications
MS04-028 exposes the system to a buffer overflow, which causes an exception in
Windows. The exploit takes advantage of heap management code to alter the
Structured Exception Handling behavior in Windows XP (“Structured Exception

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Handling”), allowing arbitrary code execution when the process crashes (Koziol, 179-
184).

A buffer overflow occurs when an application fails to check the size of input data before
copying it to memory (Aleph One, par. 23). Within this general class of vulnerability are
two distinct types: stack overflows and heap overflows. The stack and heap are
memory regions used by a process for storing various types of data (Koziol, 167). This
exploit causes a heap overflow; an overview of stack overflows is provided below for
comparison.

The stack is structured such that data is pushed on and popped off. It functions as a
last-in, first-out (LIFO) buffer, in which the last piece of data pushed on is the first piece
popped off (Aleph One, par. 9). It has many different uses, including temporary storage
of local variables, such as function call parameters. When a process makes a function
call, the address of the next instruction, known as the return pointer, or RET, is pushed
onto the stack. Function call parameters are pushed on after RET. Execution then
jumps to the address of the called function (Koziol, 16).

When the function completes, RET is popped from the stack to a CPU register called
the instruction pointer, or EIP. The CPU continues execution at the address contained
in EIP (Koziol, 16).

The goal of a stack overflow is to overwrite RET with the address of the exploit code
(Aleph One, par 26). When RET is popped from the stack, the address of the exploit
code is moved to EIP and execution continues at that address.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

* The names flink and blink are defined in winnt.h as members of a generic structure named LIST_ENTRY
3 These statements are based on observations of memory updates using OllyDebug. It is also stated in (Litchfield, slide
8) and (Koziol, 169).

The heap is a region of memory used by a process for accommodating data of sizes
unknown at compile time. The heap is created within a process’s virtual address
space, and is accessible only by that process. The process can only access heap
memory within its own virtual address space (“Scope of Allocated Memory”). The
operating system is responsible for heap management, including low-level allocation
and freeing of memory blocks, and tracking the locations of available blocks (Wilson,
1).

An application uses system calls such as malloc() or HeapAlloc() to request
memory blocks from the heap. On each call, the OS returns a pointer to a memory
block, and updates the data structures used to track free blocks.

The standard heap contains an array called the free list, used to track the locations of
free heap blocks. Each array entry contains a structure with two pointers. The first entry
points to the next free block. The other entries are used to store the addresses of
previously allocated blocks that have been freed. Free blocks on the heap are marked
with two pointers pointing back to the free list entry that point to the block (Litchfield,
slides 6-8).

Figure 1: Free List and free block pointers2

With a call to HeapAlloc(), the two free block pointers are copied to the region of
memory following the just-allocated block. The address of that region is then copied to
flink3.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

4 These statements are based on personal observations of memory in Windows XP following the opening of a
malicious JPEG crafted to exploit MS04-028.

Figure 2: Heap pointer updates

A heap overflow occurs when data is copied to an allocated heap block without first
checking that the data will fit in the target block. The system will write to memory at the
start of the target block and continue until there is no more source data4 – overwriting
the block’s metadata and whatever follows the block, including the free block pointers
(Litchfield, slide 9).

Figure 3: Heap overflow

A heap overflow overwrites the free block pointers with user-supplied data – flink
thus points to an address containing arbitrary data. On the next call to HeapAlloc(),
that data is used during the heap pointer updates instead of valid pointer addresses
(Flake, slides 22-24).

The pointer update routine uses CPU registers to move addresses around. The data at
the memory locations of the free block pointers are copied to the EAX and ECX
registers. The value in EAX is copied to the address contained in ECX. The value of
ECX is then copied to the address immediately following the address in EAX.
Normally, the free block pointers both contain the address of flink, so this routine
would simply update flink and blink to point to the new free block address, and the
free block pointers to point to flink. However, if the overflow data supplies a writable
memory address to ECX, the data at that address is overwritten by whatever is
supplied to EAX (Koziol, 169-172).

Figure 4: Free block pointers moved to CPU registers; disassembly of pointer update routine

The Unhandled Exception Filter is a catch-all exception handler in Windows XP, used
when no handler is present for a given exception. The default behavior results in the
Windows Error Reporting dialog, allowing the user to debug crash dump data, or

mov [ecx], eax
mov [eax+4], ecx

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

submit it to Microsoft for analysis (“UnhandledExceptionFilter”). The Unhandled
Exception Filter is defined by a pointer, located at a static, version-specific address
(Flake, slides 40-43). If an exception falls through to the Unhandled Exception Filter,
the system jumps to the location pointed to by that pointer, and continues execution at
that address (Koziol, 179).

The exploit hijacks the heap pointer operations to change the Unhandled Exception
Filter pointer by supplying the address of the pointer to ECX. The address of
executable code is supplied to EAX. The Unhandled Exception Filter can thus be set to
point to user-supplied code.

This is not reliable, though, because the address of the code is not known beforehand.
Instead, the exploit provides the address of code that jumps back into the heap –
where the location of exploit code can be reliably known through relative addresses.
The address of the jump code is not writable, so this has the added benefit of causing
an exception immediately after the Unhandled Exception Filter pointer is changed.

Description
The JPEG format defines a number of headers that identify basic image properties
(type, file size, resolution) and other metadata, such as comments, color tables, and
compression information (“JPEG Non-Image Data Structure”). The vulnerability
described in MS04-028 lies in how GDI+ handles the comment header.

Each header segment begins with a 2-byte ID called a marker, followed by the relevant
header information. The comment header consists of the COM marker (0xFFFE), a 2-
byte length field, and the comment data itself. The length field is the total length in
bytes of the comment, including the two bytes of the length field itself (Weeks). GDI+
calculates the comment length by subtracting 2 (the size of the length field) from the
value of the length field (Solar Designer).

The GDI+ routine for copying the comment data to the heap disassembles to the
instruction in the box below. REP is an instruction modifier, directing the CPU to repeat

the instruction MOVS until a counter reaches zero. The
ECX register is used as the counter. After each
iteration, the value of ECX is decremented by one and

the instruction is executed again. This instruction copies the byte located at the
address in ESI (a pointer to the comment data) to the address in EDI (a pointer to the
heap), while the value of ECX (the byte length of the comment field) is not zero (“IA-
32..Vol 1”, 183).

The comment length calculated by GDI+ is put into ECX, and the system proceeds to
copy bytes from the JPEG file to the heap until ECX is zero. However, if the length field
specifies a comment length of 0 or 1, the GDI+ calculation results in a negative
number. An unsigned integer variable is used to store this result, so it is instead
interpreted as a positive integer in excess of 4 billion. This is because of how negative
integers are represented in binary – a signed integer with a value of -1 has the same

rep movs [edi], [esi]

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

binary representation as an unsigned integer with a value of 4,294,967,295 (Carter, 27-
29).

GDI+ does not check the value of the length field before calculating the number of
bytes to copy, allowing the excessively large counter value for the REP MOVS
instruction. The CPU will copy bytes from the JPEG file to the heap until it tries to write
past the end of the heap, causing an access violation. During this operation, data from
the JPEG is written to parts of the heap that would ordinarily contain the free block
pointers. The flink and blink pointers in the free list point to these locations,
identifying them as free blocks to be used for future heap allocations.

GDI+ handles the access violation by requesting additional heap space to continue the
REP MOVS instruction. The HeapAlloc() calls return pointers to heap locations
containing the JPEG data. The heap management routines interpret parts of that data
as pointer addresses, allowing arbitrary memory writes. The exploit takes advantage of
this to overwrite the Unhandled Exception Filter (UEF) pointer.

Figure 5: Disassembly before UEF overwrite

Figure 5 shows disassembly at the execution point just before the UEF pointer is
overwritten. Addresses 0x77f52a72, 0x77f52a7B, 0x77f52a84, and 0x77f52a86 contain
the pointer update instructions, responsible for the UEF pointer overwrite.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 6: Flink and blink pointers to heap blocks

Figure 7: Free block pointers containing user-supplied data

Figure 6 shows the flink and blink pointers containing the address of the next free
block. Figure 7 shows that these addresses actually contain data from the JPEG file,
as well as the registers they are loaded to during the pointer update routine.

The box below shows the disassembly of the pointer update routine, and the value of
ESI (see fig. 5), used to calculate the addresses of the free block pointers. Note that
the value of ESI here is not a static address and will change between executions.

Line 1 copies the address of code in user32.dll
(0x77d92a34) from heap address 0x00d1bd80 to the
EAX register. Line 2 copies the address of the UEF
pointer (0x77ed73b4) from heap address 0x00d1bd84
to the ECX register. The UEF pointer is modified in
line 3. The value at that address is changed from the
address of the default handler to the value contained
in EAX, which is the address of an instruction in
user32.dll that jumps back into the heap (Koziol, 179-

180).

The memory pointed to by EAX+4 is not writable, so line 4 causes an exception. The
system immediately drops into the Windows exception handling routines, falling
through to the UEF and eventually reaching the exploit code. The location of the actual
shellcode is not precisely known, so a series of jumps is used to reach it.

esi = 0x00d1bd78

1: mov eax, [esi+8]
…
2: mov ecx, [esi+c]
…
3: mov [ecx], eax
4: mov [eax+4], ecx

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The first jump is an instruction found in user32.dll, located at a known address, making
it a reliable target for the UEF pointer. EDI contains an
address on the stack; the value at the stack location
referenced in the code (EDI+0x74) is an address in the heap,
shown in figure 8.

Figure 8: Stack entry at EDI+0x74 pointing to the second jump

Execution continues at a heap address containing the JPEG header. There are only 8
bytes available for hex opcodes at this location, forcing a second jump further into the
heap, where the shellcode address can be reliably determined. The opcodes used for
this jump cannot be “FF, which signals GDI+ that the next byte contains a JPEG
header marker (Weeks). If that byte is not a valid marker code, the image will not load
and the exploit will fail.

Both of the above requirements are satisfied with a JMP SHORT instruction (IA-
32…Vol. 2A, 424-425), which is passed a one-byte signed integer value, 0x7F, used to

calculate the target address relative to the next instruction. This
instruction jumps ahead 127 bytes, landing EIP right in the
middle of the JPEG image data in the heap.

Figure 9: Disassembly of the second jump

The next set of instructions is in the JPEG image data, so there are no restrictions on
opcode values, and there is room to specify the shellcode location as an offset. The

value at stack address EDI+0x74 is loaded into the EAX
register. A value of 0x54B0 is then loaded into the lower
half of the EAX register, referred to as AX. The resultant
value in EAX, 0x00BB54B0, is the address of a NOP
slide into the shellcode (figure 10).

call [edi+0x74]

jmp short 0x7f

mov eax, [edi+0x74]
mov ax, 54b0
call eax

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 10: call eax lands in a NOP slide to the shellcode

Figure 11 shows execution paused at the first instruction of the shellcode, and the
preceding NOP slide.

Figure 11: NOP slide to shellcode

Shellcode is a set of instructions to perform a given action on a target system, in this
case, opening a reverse shell connection to a remote host. It is not a complete
standalone application, but instead contains only the minimum required code to
complete its intended function successfully. Shellcode consists of hex opcodes
generated from assembly language; the routines themselves are typically coded in
assembly for efficiency (Koziol, 35).

This exploit uses a modified form of the win32_reverse shellcode from the Metasploit
Project shellcode repository. The full win32_reverse assembly code is available in the
appendix. A full explanation of the shellcode is beyond the scope of this paper, but a
brief description of its major functions is provided.

The first thing win32_reverse does is resolve the address of the LoadLibraryA()
system call, relative to the base address of the kernel32.dll system library. It then
resolves the addresses of the other system calls needed for a reverse shell connection.
It essentially searches memory for the known function symbol hashes, storing their
addresses in the stack. The functions can then be called using stack offsets (skape, 11-

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

13).
Once the symbol addresses are known, ws2_32.dll is loaded and a TCP/IP socket
connection is opened to a remote host using the WSASocketA() and Connect()
library functions (skape, 14-21).

The CreateProcess() function is used to execute cmd.exe. The STARTUPINFO
structure is defined such that the STDIN, STDOUT, and STDERR file handles are
attached to the socket. The first modification to the code, highlighted in the box, sets
the STARTF_USESHOWWINDOW flag, which instructs CreateProcess() to honor the
ShowWindow argument (STARTUPINFO). This ensures that a window is not displayed

when cmd.exe is
executed.

The original code
waits for the newly
created process
(cmd.exe) to exit,
and closes the

socket before it calls ExitProcess(). These instructions were commented out so
ExitProcess() is called immediately, without closing the socket. The result is a
successful reverse shell connection, the crashed process closing with no visible sign
that another process was created.

Signature
In order to exploit this vulnerability, the length field of
the JPEG comment header must be set to 0 or 1,
which is invalid – the minimum length of this field is
2, as it must include the 2 bytes of the field itself.
This is a relatively simple signature to spot, and most
antivirus vendors released definitions to catch it.
Symantec’s signature is called
“Bloodhound.Exploit.13.” Network IDS systems can
catch it in a byte stream: CheckPoint Software’s

SmartDefense product catches it with the “Malformed JPEG” signature; Snort catches
it with SID 2705.

Depending on the shellcode used, any number of traces may be left after successfully
exploiting the vulnerability. The exploit described in this paper, with its simple reverse
shell connection, is discoverable with standard Windows utilities – netstat shows the
socket connection, and the new process is visible in Task Manager. Finally, since the
result of the overflow is an exception, the Windows Error Reporting dialog should pop
up. Instead, the process (explorer.exe) dies and restarts.

inc byte [esp + 61] ; si.dwFlags = 0x100
inc byte [esp + 0x3c] ; si.dwFlags = 0x101

; socket handles
mov [esp + 16 + 56], ebx

LWaitForSingleObject:
; push 0xFFFFFFFF
; push dword [ecx]
; call [ebp + 36]

LCloseSocket:
; push edi
; call [ebp + 12]

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part III: Stages of the Attack Process
Reconnaissance
During this stage, the attacker identifies the target’s accessible resources, such as
people, locations, and network information. Much of this information is available as a
matter of record and easily attained online through general search engines or from
specialized databases. Additionally, the target itself may post seemingly innocuous
details that an attacker might find invaluable (Skoudis, Track 4 Day 2 slide 19).

Contact information and physical addresses can be used for later social engineering
and “dumpster diving” operations. Depending on the attack, this information may be all
an attacker needs for success, or used to discern procedures that may affect the
attack.

The target’s network information defines its perimeter, and typically is the most
actionable data that is collected. Primarily addressing information, it becomes the
object of the next stage, Scanning. Using DNS queries and searches against network
information databases, the attacker can develop a rough sketch of the target network
(Skoudis, Track 4 Day 2 slides 20-47).

Recon can be very involved or nearly non-existent, requiring extensive searching and
profiling, or simply working exclusively with already-known information. The level of
involvement is ultimately determined by the scope of the attack, as well as the
competency and knowledge of the attacker.

NiC’s attack does not require deep information to be successful; his recon stage is
light, utilizing inference and non-technical means to clarify his knowledge of UHW.
With a set of prerequisites and a list of details learned previously from James, NiC’s
sketch of UHW helps define the points in need of refinement during Scanning.

The attack requires that James:
Is running Windows XP SP1 or earlier;1)
Is not using any virus scanning utilities;2)
Has internet access;3)
Is not made suspicious by the attack’s effects4)

NiC lists what he already knows about UHW that is relevant to the attack:
UHW is only 10 months old1)
UHW does not have a lot of money for IT2)
James can browse the internet from his workstation3)
James uses his company email account to send NiC pictures4)

NiC can make a few educated guesses based on this information. First, as a young
company, UHW is probably using relatively new machines, ordered with Windows XP
preinstalled. Second, with IT already an afterthought, security, including virus
protection, is not likely to be high on their list of expenditures, if it’s even a concern at
all. His scanning stage will reveal details on these two important pieces of information.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The only things NiC can be certain of are that James can browse the web and the
company allows images as email attachments. Web browsing implies port 80 being
allowed outbound from the internal network, so NiC will use that for his reverse shell
connection. He will use email to send James the crafted JPEG image containing the
exploit.

Scanning
Scanning involves drilling down into the initial recon data to locate entry points in the
target’s perimeter (Skoudis, Track 4 Day 2 slide 53). Network blocks discovered during
Recon are scanned for reachable nodes. These are then scanned for open ports. The
results constitute a map of the target network.

The nmap utility fulfills this purpose, providing both network and port scanning
functions. Nmap’s advanced scanning modes and stealth options provide the capability
to discover nodes in a variety of environments while minimizing suspicion. It can also
identify the operating system of a target node (Skoudis, Track 4 Day 2 slides 87-104).

Figure 12: Using nmap to scan a range of IP addresses. The -n flag disables name resolving; -sS
selects a SYN scan.

Figure 13: Using nmap to detect the OS of a remote system. The -n flag disables name resolving; -O
performs OS detection.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

5http://www.securityfocus.com/archive/1

Figure 14: Using decoys with nmap. The -n flag disables name resolving; -sP selects a ping scan; -PE
selects an ICMP Echo ping; -D followed by the comma-separated list of decoy IPs (taken from the output
of dig) enables decoys. The dig flags are: +short, for minimal output; ‘a’ to query for A records.

An attacker would then check each of the discovered nodes to learn the platform and
software in use, and check online databases, such as bugtraq5, for any known
vulnerabilities. Trial and error show what exploits can successfully be used against a
given node. The nessus utility automates this process, outputting a list of exploits to
which a given node is vulnerable (Skoudis, Track 4 Day 2 slides 144-151).

Figure 15: Selecting vulnerability plugins in Nessus

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 16: A Nessus scan in progress

Figure 17: Nessus scan results. This scan detected the vulnerability found in Microsoft Security Bulletin
MS03-043

Social engineering is also relevant – scanning should be viewed as examining the
target system as a whole, including people, for potential entry points (Delio). Just as
with network and service vulnerability scans, an attacker can “scan” people for their
exploit potential.

This abstracted approach is taken by NiC in his effort to gain access to James’s
workstation. By sending James a crafted JPEG with no payload and gauging his
reaction to it, NiC can determine whether James is vulnerable.

NiC’s probe hinges on how Windows XP is affected by the exploit. The JPEG is
opened by default using the Windows Picture & Fax Viewer, which is a DLL extension
to explorer.exe. When an exploit JPEG is loaded, explorer.exe crashes, taking the
whole desktop with it. Since the explorer.exe process is the Windows shell, it is
automatically restarted if it crashes, giving the appearance of everything “disappearing”
and then “reappearing”. If this happens as a result of his probe, NiC will know whether
James is vulnerable. The probe is generated with a proof-of-concept script released by

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

6http://www.k-otik.com/exploits/09222004.ms04-28.sh.php

perplexy6.

Figure 18: NiC generating his probe. The ms04-028.sh script outputs hex bytes to form a JPEG file.

Figure 19: James telling NiC of the explorer.exe crash

From their conversation, it’s clear James is vulnerable. However, he thinks something
is wrong with his machine and wants to get Cliff, the system administrator, to check it
out. NiC quickly objects, and offers his own diagnosis. James is able to open the
subsequent image without any issue, accepting the explanation that a corrupted file
could cause that behavior. Satisfied that each of the requirements is met, NiC can
proceed to the attack itself.

Network Diagram

Figure 20: UHW's network and NiC's computer

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting the System
Vulnerable systems are attacked by effecting operational changes that allow the
attacker to access the system. A system can be a network, a node, an application, or a
combination thereof. People can be targeted as well, through social engineering
attacks. Common attacks seek to alter a system’s normal behavior or simply
overwhelm it.

Network attacks exploit fundamental network processes to mask an attacker’s source
or redirect traffic flows. IP address spoofing allows an attacker’s packets to appear as
coming from a legitimate system on a network, used to defeat address filters and
exploit UNIX trust relationships (Skoudis, Track 4 Day 3 slide 6). ARP and DNS cache
poisoning exploit address resolution processes to redirect traffic to a machine
controlled by the attacker (Skoudis, Track 4 Day 3 slides 30, 64-70).

Denial of service attacks are flood or complexity attacks aiming to knock out a given
service, or the network itself (Skoudis, Track 4 Day 4 slides 155-156). Floods, such as
the Smurf attack (“Smurf”), involve sending large amounts of traffic, overwhelming a
server or saturating the underlying network. Complexity attacks peg a device’s CPU at
or near 100% as it tries to process malicious input (Crosby). DoS attacks are often
used to improve the effectiveness of network attacks by knocking out a legitimate
system that would otherwise interfere with the attack.

Programming errors, such as buffer overflows and misused format strings, are
exploited in application attacks. Buffer overflows are described in Part II. Format string
attacks allow an attacker to write integer values to arbitrary memory locations, used for
privilege escalation or altering program flow (Skoudis, Track 4 Day 3 slide 178). In
addition to these, poorly implemented web-based applications are subject to cross-site
scripting and SQL injection attacks. By not validating and filtering user input, malicious
script or SQL code can be entered into a site’s input forms and subsequently executed
(Skoudis, Track 4 Day 4 slides 110-111, 122-124).

Attacks are rapidly being pushed into the application space. Application vulnerabilities
are usually discovered and published by security researchers, with working exploit
code following close behind. The exploits are readily available and easy to use, putting
the same tools in the hands of experts and novices alike (Skoudis, Track 4 Day 2 slide
11).

NiC falls somewhere close to the novice side of the spectrum. Though he does aspire
to better capabilities, he is a pretender, a script kiddy who often does not truly
understand what is going on. He is using a published exploit in this attack, without any
understanding of buffer overflows or shellcode.

NiC found a quirky image online to send to James later on in the attack. With that set
aside, he proceeds to generate an exploit JPEG file for the attack. He used an
innocuous proof-of-concept for his probe; for this run, an actual exploit generator,
JpegOfDeath7, is used.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

7

After downloading the source from Security Focus, NiC compiles the exploit generator with
GCC in Cygwin. The –o flag instructs gcc to name the output file triami.exe. The –l flag
instructs the linker to include code from the ws2_32 library when building the
executable. NiC also generates a JPEG, using the flags –r to select the reverse shell
payload to connect back to his IP address, and -p to specify port 80. The JPEG file is
named “kitty.jpg”.

Figure 21: NiC compiles JpegOfDeath and creates his exploit JPEG

NiC gets netcat running, emails the crafted JPEG to James, and shoots an IM over to
him to check his email. A few moments later, NiC sits back and laughs, as James
complains of another corrupted file.

Figure 22: netcat running on NiC's computer. The arguments to nc make netcat listen for connections on
port 80. The reverse shell connection from James's computer is also shown.

The two friends then share a laugh over the real JPEG.

