
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 

 - 1- 

 

 

DETECTING HYDAN 

STATISTICAL METHODS FOR CLASSIFYING THE USE OF HYDAN 

BASED STEGONOGRAPHY IN EXECUTABLE FILES 

 

GIAC Certified Incident Handler (GCIH) Gold 

 

 

 

 

Author: Craig S. Wright, CraigSWright@acm.org 

Adviser: Carlos Frederico Cid   

 

 

Accepted: 22 June 2008



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 2 - 

 

Index 

i.   Abstract ...................................................................................................... 3 
Executive Summary........................................................................................... 4 
What is Steganography?............................................................................... 5 
HYDAN ....................................................................................................................... 6 
How HYDAN Functions .................................................................................. 6 
The Embedding Function....................................................................... 8 
The Decode Function ............................................................................ 11 
Encrypting and Decrypting the Message................................. 11 
Instructions for using HYDAN ...................................................... 12 

Attacking HYDAN ......................................................................................... 13 
Overwriting ............................................................................................... 13 
Detection .................................................................................................... 14 
Decryption ................................................................................................. 15 

What is HYDAN and how is it used? .............................................. 17 
Installing HYDAN ................................................................................... 17 
Running HYDAN .......................................................................................... 17 

HYDAN Detection ............................................................................................. 22 
Method 1 - Checksums ............................................................................. 22 
Method 2 – Statistics ........................................................................... 22 
R (a Statistical Programming Language) .............................. 23 

Reading in the data ................................................................................ 24 
Disassembling the binary ................................................................ 26 

Detecting HYDAN ......................................................................................... 27 
The Distribution ................................................................................... 29 
Finding Where the Data Encoding Starts .............................. 32 

What this means for HYDAN (or Future Lessons) ................. 34 
Plausible Deniability ....................................................................... 36 

Conclusion and Future Research ......................................................... 37 
Bibliography..................................................................................................... 38 
Websites .......................................................................................................... 40 
Statistical References......................................................................... 40 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 3 - 

i.  Abstract 

It is known that HYDAN changes the statistical distribution 

of Sub and Add calls in the assembly code to embed the "hidden 

data". Before this paper, there were no publicly released 

tools or methods available to detect HYDAN. The methods 

previously used to detect HYDAN have been inefficient and 

involved extensive manual processes that could not be easily 

automated. This paper presents a method to take the assembly 

code (using a disassembler) and to feed this into R, a 

statistical language, in order to detect if the file has been 

altered steganographically. 

The method uses a set of statistical tests to determine 

both the use of HYDAN and the extent of use in a file. 

 

 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 4 - 

Executive Summary 

Steganography is the art and science of hiding text 

messages in other data (Provos, 2003). This is commonly 

graphics files, audio files and video files. HYDAN is a 

steganographic tool that is designed to hide data inside of a 

binary executable file.  

Steganography when used with multimedia based files can 

impair the quality of the output or display. This is usually 

managed such that the degradation remains unnoticed to the 

casual viewer/listener. Computers can display many more colors 

than the human visual system can process and hence a reduced 

color map in an image may be unnoticeable to simple visual or 

audit analysis. Changing data within an executable code 

segment is more problematic. The alteration of a single byte 

of binary code can result in an irreparable corruption of the 

code destroying the functionality of the code segment. 

HYDAN is a method of encapsulating data 

steganographically within an executable code segment without 

either altering the function of the code or varying the file 

size of the executable.  

This paper presents a method that can be used to detect 

HYDAN based steganography. This is simply an initial means and 

should be improved if it is to be used in any serious 

endeavor. To do this, the code could be compiled into a single 

program1 that incorporates the disassembly and comparison in a 

                                                

1 A means of compiling R code into a standalone executable is presented in “Compiling R: A 

Preliminary Report” by Luke Tierney (2001). The paper is available from: 

http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/Tierney.pdf  

An R compiler called RCC that takes the R interpreted code and compiles it in C++/R format is 

available from:  http://hipersoft.cs.rice.edu/rcc/index.html  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 5 - 

single binary. This would then return a value for those 

segments that have embedded data.  

What is Steganography? 

Provos and Honeyman (2003) define steganography (aka 

stego) as “the art and science of hiding communication; a 

steganographic system thus embeds hidden content in 

unremarkable cover media so as not to arouse an eavesdropper’s 

suspicion”.  

The majority of modern steganographic systems begin with 

discovering the redundant bits within the host media or data. 

The goal is to be able to modify the host data in a manner 

that does not obliterate the integrity of the source data. 

Another objective of steganography is to not be detected in 

the host file. It is in effect, a means of hiding data within 

other data. 

Although contemporary steganography through the use of 

computers is a relatively recent field, both Richmond (1998) 

as well as Johnson & Jajodia (1998) make mention of an ancient 

example. In their paper they note the example of an early 

steganographic system. Richmond notes the practices of the 

ancient Athenians where the head of a messenger was shaved and 

subsequently tattooed with a message that would be covered 

with hair rendering it unseen if the messenger was captured. 

Johnson & Jajodia mention how this same system was adopted by 

a Roman general who shaved a slave’s head and tattooed a 

message on it sending the messenger on the errant after the 

hair grew back. 

The majority of steganographic methods (Provos, 2001) 

that have been developed in modern times have been centered on 

hiding a message within images and audio files (such as BMP, 

GIF, JPEG, WAV and MP3 file formats). A number of other 

methods include hiding messages within Word documents or even 

within embedded macros and Metadata (Provos & Honeyman, 2003). 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 6 - 

The secret to effective steganography is that it needs to 

be difficult to detect (McGill, 2005).  

HYDAN 

Rakan El-Khalil designed a novel steganographic technique 

called HYDAN. The name selected, HYDAN [hI-dn] is erudite and 

holds a message in itself. The word actually means to hide or 

conceal. First developed in 2003, HYDAN hides data or messages 

in Binary Executables. 

The main website for HYDAN 

(http://www.crazyboy.com/HYDAN/) offers a number of uses for 

HYDAN: 

• Covert Communication: embedding data into binaries 

creates a covert channel that can be used to 

exchange secret messages. 

• Signing: a program's cryptographic signature can be 

embedded into itself. The recipient of the binary 

can then verify that it has not been tampered with 

(virus or trojan), and is really from who it claims 

to be from. This check can be built into the OS for 

user transparency. 

• Watermarking: a watermark can be embedded to 

uniquely identify binaries for copyright purposes, 

or as part of a DRM scheme. Note: this usage is not 

recommended as HYDAN implements fragile watermarks. 

How HYDAN Functions 

HYDAN steganographically secretes a message into 

an executable. It is a method of encapsulating data 

steganographically within an executable code segment without 

either altering the function of the code or varying the file 

size of the executable. HYDAN is designed to make use of a 

number of redundancies that exist within X86 binary 

instruction code or assembly language. The X86 assembly 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 7 - 

language set has instances where two instructions are 

fundamentally the same. In addition, certain combinations of 

this code are rarely if ever used. HYDAN uses this anomaly to 

replace a standard format used commonly in code with an 

unusual code combination (i.e. replacing an “ADD 1” function 

with a “SUB -1”).  

 

These code anomalies are not extremely common. As such, 

HYDAN is limited to being able to embed only one byte of a 

hidden message for approximately each 110 bytes of executable 

code. This is far less efficient than other steganographic 

applications. Many of these can hide as much as one byte 

within 17 bytes of a .jpeg file. This gives HYDAN a far lower 

rate of embedding than other methods, but this does not remove 

its functionality. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 8 - 

HYDAN is open source and includes the capability to 

encrypt the messages with the blowfish algorithm. To do this a 

passphrase needs to be included. This makes it difficult to 

determine what the message stored within the executable is, 

but a method to attempt to brute force it could be developed 

from the detection method presented in this paper.  

Steganography, and in particular HYDAN can also be used 

to embed an executable file with a watermark or a digital 

signature. This allows the file to be marked and possibly 

tracked. 

The Embedding Function 

HYDAN processes the byte code of an executable 

application sequentially. In this process it is searching for 

instructions with functional equivalents (as noted above). 

Each time that such an instruction is found, it is replaced 

(substituted) with the alternate (and equivalent) instruction 

that corresponds to the data being embedded by HYDAN. This 

process is repeated bit by bit for the data.  

For instance, the table below documents the changes made 

to embed the binary 1001101: 

 Original code HYDAN Embedded Message 

1 ADD %eax, 10 SUB %eax, -10 

0 ADD %eax, 25 ADD %eax, 25 

0 ADD %eax, 09 ADD %eax, 09 

1 ADD %eax, 20 SUB %eax, -20 

1 ADD %eax, 50 SUB %eax, -50 

0 ADD %eax, 50 ADD %eax, 50 

1 ADD %eax, 35 SUB %eax, -35 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 9 - 

The substitution set is: {"ADD %reg, $imm", "SUB %reg, 

$imm"}.  

Each time an instruction is passed by HYDAN that has the 

form "ADD %register, $imm" a single bit of hidden message can 

be encoded. Where the bit value in the message equals “0”; the 

code is unchanged. Where the bit value in the message equals 

“1”, HYDAN substitutes the assembly “ADD” function with a 

“SUB” function of the form: "SUB % register, -$imm". To do 

this, it simply subtracts the negative of the value that 

originally was to be added.  

For a detailed explanation of Assembly coding, see Hyde 

(2004); Irvine (2007); Duntemann (2000). For a specific focus 

on reversing see Eilam (2005). 

Other equivalent instructions do exist. HYDAN does not 

make use of these; however, a variant on the theme could be 

created using these additional functions. El-Khalil and 

Keromytis (2003) provide a detailed list of equivalent 

functions in the appendix to their paper for Open BSD(see 

figure below).  

 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 10 - 

The inclusion of a greater number of equivalent functions 

would make a greater subset of data to test. This would make 

detection more difficult due to a great cost in computer 

cycles. HYDAN does not use these other functions. 

Prior to embedding the encrypted message and header HYDAN 

follows a random walk that skips a random number of useable 

byte code instructions. This is designed to amplify the amount 

of exertion required by a detection procedure in the hope that 

it will make it infeasible. The random walk is seeded using 

the user-supplied passphrase. 

The random walk is seeded by the user-supplied passphrase 

to increase the detection workload. Supposedly the method 

proposed by Neils Provos (Provos, 2001) is utilized. This 

technique requires that the embedded data is distributed 

homogeneously throughout the original file (the cover-text). 

In HYDAN (El-Khalil & Keromytis, 2003), the number of bits 

skipped is stated to lie in a distribution of range [0, 

]. This is defined with the value  being the number of 

bits remaining in the original file, and  being defined as 

the remaining length of the message to be encoded. It is 

stated that the aforementioned interval is recalculated for 

every 8 bits of message that are embedded by HYDAN. 

In the version of HYDAN tested (0.11) the initial 

embedding of the data jumped a number of instructions on the 

Windows XP host and did not follow the prior stated 

distribution. This is displayed in the section of the paper 

“Finding Where the Data Encoding Starts”. 

Version 0.13 of HYDAN was compiled on Linux and the 

random jump was not tested for this version as it is not 

essential for the detection the HYDAN to do this test. Even if 

the random walk function did correctly, it would not change 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 11 - 

the results of the test as these are based on an analysis of 

the entire code set and not an extraction. 

The Decode Function 

To reverse the function and extract a hidden message with 

HYDAN, the embedded data in the byte code is read. When either 

an “ADD” function or “SUB” function is read, the message is 

reconstructed bit by bit as follows: 

ADD % register, $imm Is read as a binary digit 0. 

SUB % register, -$imm Is read as a binary digit 1. 

When the message entire byte code has been read, the 

message length has been extracted. If the message was 

encrypted first, it may now pass to be decrypted using the 

passphrase that was originally used to encrypt the message. To 

extract the hidden message, HYDAN employs the user-supplied 

passphrase to again seed the random-walk algorithm. With this, 

it first extracts the length of the embedded data.  

When the message has been extracted to the required 

length, the remaining binary stream is decrypted.  

Encrypting and Decrypting the Message  

HYDAN requests that a passphrase is entered to both 

encrypt and decrypt the message it is to embed or decode 

within an executable. 

The process to create an encrypted message with HYDAN 

occurs using the following process: 

1. HYDAN calculates the length of the message to be 

encoded. 

2. HYDAN appends the message length as a header at the 

start of the message to be encoded. 

3. The message and length header are encrypted using 

the CBC mode of the Blowfish algorithm. The message 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 12 - 

length is encrypted with the data. The passphrase 

supplied from the user is used to secure the 

encrypted message and acts as a key.  

4. The data is embedded into the application using the 

embedding method listed previously. 

The process to decrypt the message works in the following 

manner: 

1. The decode function (as defined above) is run to 

extract all of the bits that could be a part of a 

message from the data.  

2. As the message length is unknown prior to the data 

being extracted, the entire stream needs to be 

processed. 

3. The message is decrypted using the key that was 

supplied to encrypt the message. As the Blowfish 

algorithm is run in CBC mode (a stream cipher mode), 

it does not need to know the total length of the 

message and header before starting to decrypt it. 

4. When the header is decrypted, HYDAN can then use 

this information to truncate the message size and 

only return the original message. 

The process used by HYDAN is not really efficient. It 

does make the guessing of the message body more difficult. 

Instructions for using HYDAN 

The file, “hdn_insns.c” that was distributed in earlier 

versions of HYDAN has a complete list of instructions. The 

operation will be covered in detail later in the paper, but 

the main functions are embedding or decoding a hidden message. 

The commands to do this are: 

Embedding the hidden message 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 13 - 

To hide the message, <message> with the file “/bin/ls” 

where the output file is “ls.steg.HYDAN” in the local drive, 

the following command is issued: 

./HYDAN /bin/ls <message> ls.steg.HYDAN 

Decoding the hidden message 

To reveal the message that was hidden within the file 

“ls.steg.HYDAN” which will display to STD_OUT (usually the 

screen), the following command is issued: 

./HYDAN-decode ls.steg.HYDAN 

Attacking HYDAN 

The process used by HYDAN can be attacked and broken. The 

ease to which the steganographic function can be subverted 

limits HYDAN’s effectiveness as a watermarking tool. There are 

a number of primary attack vectors that render HYDAN 

ineffective that range from overwriting the data (such as 

using HYDAN again with an alternate message) to detecting its 

use. It is not necessary to detect that HYDAN has been used on 

a file to render it ineffective using the overwrite method. 

The detection of HYDAN is discussed below. Once the use 

of HYDAN has been detected, the message could be extracted. A 

brute force attack could be run against the data that has been 

extracted, but this is unlikely to prove effective. For HYDAN 

to be truly effective as a steganographic tool, an analyst 

should not be able to detect if a message has been 

incorporated into an executable (let alone be able to decrypt 

it). The method discussed later in the paper limits the 

effectiveness of HYDAN for steganographic purposes. 

Overwriting 

HYDAN has no defense against overwriting other than 

volume. Until now there has been no simple method to detect if 

HYDAN has been used and overwriting all executables on a 

system is problematic to say the least.  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 14 - 

By simply running HYDAN over an executable with another 

message, the original message will be irretrievably lost. The 

intended recipient would than not be able to retrieve the 

message (assuming that this was the only version of the 

executable and message).  

It has been noted (Slashdot, 2004) that the addition of 

an error correcting code to the encoding of the message 

coupled with an addition of an algorithm that distributes the 

message in a seemingly random manner throughout the binary 

based on the specific passphrase could correct this flaw. More 

effectively would be to also reduce the amount of the message 

and insert it multiple times. 

Parts of the original message could be overwritten while 

still enabling the original message to be reconstructed. This 

of course also has flaws. By ensuring that the length of a new 

message is greater than the encoding fraction will allow, the 

message can be still be overwritten rendering this new method 

ineffective as well. 

As noted above, the sheer volume of binary files that 

exist makes this problematic. To be effective, this method 

also needs to be used when a steganographic message is 

detected and not on all files. Again, detection becomes the 

critical component. 

Detection 

The main focus of this paper is on detecting the presence 

of HYDAN. The goal of HYDAN (like all steganographic tools) 

was to not exhibit any obvious patterns that could be easily 

detected. Additionally, the header (length) information is 

encrypted and embedded in a manner that does not produce an 

easily recognizable marker or token. Encrypting the data helps 

to make the distribution of the data more random.  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 15 - 

HYDAN fails at the assembly code level. HYDAN is 

vulnerable to the simple statistical analysis techniques 

presented later in this paper, as it does not imitate the 

distribution of instructions normally found in a binary 

executable. The instructions that HYDAN replaces are 

functionally equivalent, but they form a pattern that seldom 

occurs naturally in assembly code. 

Both global statistical distributions from the patterns 

of assembly code across programs as a whole as well as local 

statistical distributions as they occur in hosts or even 

individual software packages need to have a level of 

conformity after the application of HYDAN if it is to be 

successful. 

When modifying byte code instructions it is necessary to 

create a method that embeds data consistently across 

procedures. HYDAN has not achieved this. Hence the statistical 

methods presented below manage to detect even the smallest 

HYDAN derived steganography. 

Decryption 

HYDAN embeds the data using a method that is not 

efficient, but that makes the retrieval of the data difficult. 

HYDAN accomplishes this through the use of the Blowfish 

algorithm in CBC mode. The data (which consists of the message 

length plus the message) is encrypted using a user-specified 

passphrase that acts as the key. HYDAN encrypts the entirety 

of the information including the message length.  

This could make decryption far more difficult, except 

that it is possible to guess the message length. HYDAN inserts 

the message sequentially into the executable beginning from a 

random position at an arbitrary function within the executable 

and works to the end of the message.  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 16 - 

HYDAN uses the Blowfish algorithm in a stream-cipher mode 

to encrypt and decrypt data using the passphrase supplied by 

the user as the key. If no passphrase is supplied, a null key 

is used to encrypt and hence decrypt the data. 

HYDAN uses the Blowfish block cipher in cipher-block-

chaining (CBC) mode. In CBC mode (Goldreich, 2004, Pp 404-408) 

the existing plaintext block is combined with the preceding 

cipher-text block using the XOR function previous to running 

the encryption function. 

This allows the use of a block cipher (which is designed 

to operate on small fixed-size blocks of plaintext or 

ciphertext that are generally in the order of 64 or 128 bits 

in length) to encrypt longer messages (Goldreich, Pp 408-416, 

2004). 

The functions used by HYDAN to encrypt and decrypt data 

are included in the following table: 

Encryption Decryption 

Ci = EK(Pi Ci-1) Pi = DK(Ci) Ci-1 

Here, the elements of the equation are (Goldreich, Pp 

404-418, 2004): 

• Ci  Ci is the ciphertext block at position “i” (from 

C1,..., Cn) that is  obtained after applying the block-

cipher to each block of the plaintext. 

• Ci-1 Ci-1 is the ciphertext block at position “i-1”. 

• EK EK is the function that takes block B of size b as an 

input and returns the encrypted block (which will also 

happen to be of size b). 

• Pi The plaintext is partitioned into n blocks P1,..., Pn 

of size b. Pi is the ith block. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 17 - 

• DK is the function that describes the decryption 

operation. It is in effect the reverse of EK.  

Mathematically, a block-cipher can be seen as pair of two 

functions EK and DK that depend on a key K (). 

A detailed process to capture the encrypted header length 

and use this as both a means to Brute force the data and also 

to simply determine the message length will be expounded in a 

follow-up paper to this one. 

What is HYDAN and how is it used? 

The following section acts as a tutorial on how HYDAN is 

installed and used. 

Installing HYDAN 

The source code for HYDAN may be downloaded from: 

http://www.crazyboy.com/HYDAN.  

To install HYDAN on Linux/Unix, simply extract the source 

code and then compile it. The following example demonstrates 

this process: 

$ cd /usr/local/bin 

$ tar -xvfz HYDAN-0.13.tar.gz 

$ cd /usr/local/bin/HYDAN 

$ make  

The system will compile and install the HYDAN binary. The 

process is more complex on Windows and will require a 

different methodology based on the compiler used.  

I have used Turbo C++ Explorer to compile HYDAN in 

Windows. This can be downloaded free from: 

http://cc.codegear.com/free/turbo.  

Running HYDAN 

Once HYDAN is installed, running it is simple. The 

command is: 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 18 - 

/usr/local/bin/HYDAN/HYDAN  /path/binary  /path/message_to_add 

> /path/updated_binary  

In this instance, HYDAN has been installed in the 

directory, /usr/local/bin/HYDAN. The file, /path/binary is the 

binary to be encoded. The message is contained in 

message_to_add. The output binary with the encoded message is 

now /path/updated_binary. The program will prompt the user for 

a password and then proceed to encode the message.  

The newly created binary will not have the same 

permissions and the new binary with the encoded message needs 

to have the execute permission set.  

chmod  u+x  /path/updated_binary 

The timestamp of the file will have changed. With 

sufficient privileges, a skilled UNIX or Windows used can 

change the timestamp to match that of the former file. 

 

Comparing the newly created binary 

The new binary will perform precisely as the previous 

command without the encoding. It will fail to meet an 

integrity check if a hashing program (such as AIDES or 

Tripwire) has been used. For some selected binaries on 

platforms such as Redhat Linux, the hash is saved for use with 

the pkgadd command. This will also detect the change.  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 19 - 

The 

file has not changed in size. 

 

Overwriting the old binary with the new 

In many cases it will be necessary to have root 

privileges to be able to overwrite the old binary.  In the 

case above, the shell was already running as root, but this 

may not be the situation for an attacker or user in general. 

In the example given in the previous section, the 

following commands also need to be used to move the binary 

into its original directory and to set the permissions to 

match that of the original. 

mv ./umount.steg /bin/umount 

chown root:root /bin/umount 

chmod 755 /bin/umount 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 20 - 

The timestamp of the resultant binary will not be the 

same as the original. In UNIX/Linux, the touch command can be 

used to change the timestamp of the newly created binary so 

that it matches that of the former binary without encoding.  

The command:  ls –al /path/binary  can be used 

to obtain the timestamp of the original binary before 

encoding. 

 

The command, touch, can then be used to update the 

timestamp so that it matches the original binary as closely as 

possible. 

Decoding the message 

As long as you know which file the message is in and have 

the password, decoding it is simple. The command below and the 

image demonstrate this process. 

/usr/local/bin/HYDAN/HYDAN-decode  /path/binary_with_message 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 21 - 

HYDAN will prompt for the password that was used to 

encode the message. 

 

The hidden message may also be extracted to a file rather 

than being sent to STD-OUT (as stated – usually the screen). 

This is demonstrated in the image below: 

 

The hidden message when recovered is identical to the 

original. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 22 - 

HYDAN Detection 

There are a few means to discovering HYDAN. The simplest 

involves having either the original file or a checksum of the 

file. The issue comes in discovering steganographic 

information in files that have not been imaged or otherwise 

where the investigator has no recourse to checking the 

original file. 

Method 1 - Checksums 

The checksum of the original binary does not match with 

the resultant HYDAN produced binary. This allows the 

investigator to determine that the file has been altered, but 

not that it was altered using HYDAN. As such this provides no 

evidence that HYDAN has been used on the file.  

An attempt can be made to attempt to extract text from 

these altered files using HYDAN and a guessed pass phrase. It 

is unlikely that this method would result in the detection of 

HYDAN. 

Method 2 – Statistics 

The primary focus of this research was to create a method 

to detect steganographically encoded messages that have been 

created using HYDAN. This was achieved using existing 

disassembly tools and the powerful “R” statistical language. 

R has the functionality to call external programs. Using 

this capability, R can call an external disassembler, capture 

the byte code instructions (the de-compiled assembly language 

of the executable) that the disassembler outputs and feed 

these values into an array.  

This information is then sorted to select a subset that 

contains only the instructions of interest. In the case of 

HYDAN, these are limited to: 

ADD % register, $imm and 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 23 - 

SUB % register, -$imm  

Each ADD command is recorded into a separate variable as 

a value “0” and the SUB command where the value being 

subtracted is negative is encoded in the variable as a “1”. 

Any SUB commands that have a positive value that is to be 

subtracted are discarded. 

A baseline of the local and global distributions was 

estimated. To do this, a random selection of 500 binary 

executable files was selected using the rnorm() random normal 

function from R and a list of files from the systems tested 

was saved into an array. 

The following systems where tested: 

• Windows XP SP2 

• Linux. 

The details of the resulting distributions are included 

in the following sections. 

A random selection of 10 files was encoded on both 

systems under test. These files were encoded using HYDAN to 

embed a message into each of the binary files. The processes 

listed above where used to embed the message and to extract 

it. Each message was successfully extracted from the 

steganographically encoded file. 

The distribution of byte code instructions in the HYDAN 

encoded files was compared to both the local (the system it 

was created on) and global (the concatenation of both systems) 

distributions. The results of this experiment are included 

below with the R function that was used and a number of 

statistical visualizations. 

R (a Statistical Programming Language) 

The analysis of the data was conducted using the R 

statistical language. The functions have been left in an 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 24 - 

interpretive mode for this paper, but there are compilers that 

support the R language. In addition, RServe is a precompiled 

engine that can be used to run the interpreted language as a 

batch script. It is available from 

http://www.rforge.net/Rserve/faq.html.  

What is R and where do I get it? 

As is noted on the primary website (http://www.r-

project.org/), “R is a free software environment for 

statistical computing and graphics. It compiles and runs on a 

wide variety of UNIX platforms, Windows and MacOS”. 

R is available from of the many mirrors listed at 

http://cran.r-project.org/mirrors.html. It may be downloaded 

and installed freely. A number of graphical front-ends (such 

as Rattle from http://rattle.togaware.com/) exist to simplify 

the process of using and deploying R. 

Reading in the data 

R has the capability to make remote system calls. This 

can be used to call other programs from within R. An example 

would be using R system calls to open a URL with Mozilla: 

system(paste('"c:/Program Files/Mozilla Firefox/firefox.exe"', 

             '-url www.sans.org/rr), wait = FALSE) 

In this case, the command to be run should be loaded as a 

batch file in Windows or a Shell script in Unix. The windows 

script below is designed for a single file.  

"c:\data\dis.exe c:\windows\system32\cacls.exe > 

c:\data\calcs.asm” 

Using variable input this can be increased to test 

multiple files or to take the output of a file listing as the 

input feed. The command lists the disassembled program code. 

The output format seems difficult to understand and interpret, 

but the secret lies in understanding that only a limited set 

of data from this output is needed for the statistical tests. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 25 - 

All that is needed is a small component of the code. 

ADD % register, $imm  becomes ADD,$imm 

SUB % register, -$imm becomes SUB, -$imm 

In fact, all that is finally needed is the “-“ sign. 

Actually, a simple command such as the one below can be used 

to read the data into R. This results in a lower detection 

rate as non-tested commands are also loaded: 

Test.HYDAN <- read.csv("c:/data/calcs.asm", header=FALSE) 

The loss of information is minimal as the function is 

actually simple to detect (as will be demonstrated below). The 

better option would be to use a call to Perl to run a REGEX 

call (regular expressions).  

 

Example of the disassembled output from cacls.exe 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 26 - 

This reduces the output in the data file to be tested and 

adds a table such as the one below: 

> Test.HYDAN <- read.csv("c:/data/example.csv", 
header=FALSE) 

> Test.HYDAN 

     V1       V2 

1   sub       10 

2   add      eax 

3   add      eax 

4   sub       10 

5   add      eax 

6   add        8 

7   sub       14 

8   add      esi 

… 

Disassembling the binary  

The Windows XP version of the code is displayed. For this 

exercise the following disassemblers were tested: 

• Windows XP: Win32 Program disassembler 

http://www.geocities.com/~sangcho/disasm.html 

• Linux:  Perl x86 Disassembler description 

http://linux.softpedia.com/get/Programming/Disassemb

lers/Perl-x86-Disassembler-1155.shtml  

The Linux option is the simplest to port as it runs in 

Perl. It is simple to change the R code below to run this 

function. The R code to call an application is included below. 

Alternatively, the Win32 Disassembler is portable to Linux and 

the source file has details on this process. This disassembler 

had periodic problems with Windows XP running with SP2 +. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 27 - 

 

Detecting HYDAN 

HYDAN is surprisingly simple to detect when the extra 

data is removed. All that is sought in the data is the 

negative sign. In all cases where the assembly language 

equivalent function; “SUB, -value” or “Add, -value”; is found 

in the code, the encoded binary is likely to be an indicator 

of the use of HYDAN. The proof of this assertion is included 

below. As such, any significant increase in the equivalent 

function is an indicator of the use of HYDAN. 

By simply examining the table (Test.HYDAN), any negative 

value that is found in column V2 demonstrates significant 

evidence at the alpha=0.1 level that HYDAN has been used. The 

ordinary distribution of negative values, or for that matter, 

equivalent assembly language functions is so low as to produce 

statistically significant results for even the smallest 

message. 

(alpha=0.1% is far in excess of normal scientific or even 

legal requirements of proof that generally look at alpha = 5%. 

For further details on statistical significance, see 

http://www.statsoft.com/textbook/stathome.html. A number of 

other statistical references have been included at the end of 

the paper). 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 28 - 

A simple plot of the data that demonstrates any 

significant level of difference is all that is required to 

determine the use of HYDAN visually and a simple t-test can be 

coded to automatically determine the use of HYDAN. 

Before HYDAN After HYDAN 

  

These plots are made as simply as with the commands: 

> plot(Test.HYDAN2) 

> plot(Test.HYDAN) 

In this instance, the dataset, “Test.HYDAN” is the set of 

data from the file where HYDAN has not been used. The dataset, 

“Test.HYDAN2” is the output from the file where HYDAN was used 

to hide a small (1kb) message. 

Even at the low encoding rate of  (or 1 in every 110 

bits) stated by El-Khalil and Keromytis (2003), HYDAN is 

easily detected. Further testing did demonstrate that HYDAN 

was extremely difficult to conclusively detect at the alpha =5 

level for an encoding rate of around . The problem with 

this is that this makes the use of HYDAN ineffective as a 

means of encoding steganographic data as a file of about 15Mb 

is needed to encode a 1Kb hidden message. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 29 - 

The Distribution 

To create a distribution, 500 files on both Windows and 

Linux where tested. These where combined to form a global 

dataset. 

The summary results of the Global datasets  

> summary(Global) # The files that have not had HYDAN used on 
them 

     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  

0.0001041 0.0038660 0.0050950 0.0050350 0.0061710 0.0123800  

> summary(Global.test)# HYDAN used on these files 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

0.08021 0.13560 0.15580 0.15140 0.17120 0.20910  

> 

A simple z or t-test will statistically determine even 

the simplest datasets. To run a simple t-test in R we use the 

following command: 

> t.test(Global.test-Global) 

        One Sample t-test 

 

data:  Global.test - Global  

t = 140.8821, df = 999, p-value < 2.2e-16 

alternative hypothesis: true mean is not equal to 0  

95 percent confidence interval: 

 0.1443012 0.1483779  

sample estimates: 

mean of x  

0.1463395  

> 

In the above example, we have tested the Global set 

against the test data. “Global.test” is the set of files where 

HYDAN was used. “Global” is the set of files that occurred 

naturally on the system. The bloxplot below demonstrates the 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 30 - 

distribution of data with HYDAN encoding and naturally 

occurring binary distributions. 

 
 

Finding the starting point of HYDAN (with a measure) for 

error is simple. By converting all negatives (those register 

values that have been switched by HYDAN) to be represented by 

a “1” and letting the other values be a “0” we can plot the 

dataset (“plot(HYDAN.data)”) . From this on a single program 

we can visually see the presence of HYDAN in the code as well 

as having a good starting point to determine where the random 

walk function started adding the data. 

Once the data is loaded, a simple test is required to see 

if the mean value of the distribution is zero. The testing 

process is simple. We take the extracted dataset and test 

whether this equals the natural distribution. Alternatively, 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 31 - 

we could test against a means of “0”, but for the exercise we 

shall test the natural distribution. 

> t.test(linux.test.1, mu=mean(linux1), conf.level=0.001) 

 

        One Sample t-test 

 

data:  linux.test.1  

t = 25.0016, df = 9, p-value = 1.258e-09 

alternative hypothesis: true mean is not equal to 0.0052126  

0.1 percent confidence interval: 

 0.1741266 0.1741441  

sample estimates: 

mean of x  

0.1741354  

 

> t.test(XP.test.1, mu=mean(XP1), conf.level=0.001) 

 

        One Sample t-test 

 

data:  XP.test.1  

t = 14.1112, df = 9, p-value = 1.915e-07 

alternative hypothesis: true mean is not equal to 0.004856961  

0.1 percent confidence interval: 

 0.1286020 0.1286246  

sample estimates: 

mean of x  

0.1286133  

 

> 

As can be seen in either case (p=1.258e-09 and p=1.915e-

07 respectively for Linux and XP) the chances of finding HYDAN 

encoding are overwhelming. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 32 - 

All tests demonstrate that the distributions of values 

that represent “negatives” or those values that have been 

reversed by HYDAN are significantly different than those that 

occur naturally. 

Even if the testing was to be set with a mean larger than 

that of the expected range, the embedding of even small 

amounts of data is detectable. 

> t.test(linux.test.1, mu=mean(0.01), conf.level=0.001) 

 

        One Sample t-test 

 

data:  linux.test.1  

t = 24.2931, df = 9, p-value = 1.624e-09 

alternative hypothesis: true mean is not equal to 0.01  

0.1 percent confidence interval: 

 0.1741266 0.1741441  

sample estimates: 

mean of x  

0.1741354  

 

> 

Finding Where the Data Encoding Starts 

Even finding the start of the data is simple. From the 

plots below, we can see the probable position of where the 

data has started to be encoded. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 33 - 

 

As can be seen from the plot, we can visually deduce that 

HYDAN has started adding data between command 15 and 17 with a 

reasonable level of confidence. 

 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 34 - 

A close-up demonstrates this better. The sample of 10 

files was again plotted as before. Again the start of the 

HYDAN encoding is visually available. 

 

The start location of the HYDAN data does vary, but it is 

simple to determine the likely start location visually. The 

random walk algorithm described by El-Khalil and Keromytis 

(2003) does not describe the distribution actually found. It 

is uncertain if this would be a consequence of the platform 

used for this section of testing (Windows XP) or if there was 

some other flaw. 

What this means for HYDAN (or Future Lessons) 

El-Khalil & Keromytis (2003) state that the methodology 

used in HYDAN is based on the work of Provos (2001) stating 

that the method proposed by Provos is used to increase the 

entropy of the embedding process. 

HYDAN creates a noticeable distortion in the natural 

distribution of instructions. If HYDAN or another tool was to 

change the instruction sets used or to even use multiple 

equivalent instruction sets simultaneously, this would do 

little to significantly reduce the ease to which HYDAN can be 

discovered. 

Provos (2001) however stated that: 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 35 - 

“Detectability is also used as a bias in the selection 

process. The selector does not try to reduce only the number 

of changed bits but also the overall detectability. 

Whenever a bit has to be modified, its detectability will 

be added to a global bias. A higher accumulated bias reduces 

the likelihood that this specific embedding will be used”. 

Zollner et al. (1998) advocate that there are two 

essential stipulations that are required to produce a secure 

steganographic function: 

• The secret key used to embed the hidden message is 

unknown to the adversary. 

• The adversary does not know the cover medium. 

The issue with HYDAN is the latter of these requirements. 

The distributions of alternative assembly instructions are low 

enough in the wild to ensure that any use of HYDAN will be 

easily detected. This makes the use of HYDAN for any 

operational purpose infeasible. 

Even the proposed enhancements to HYDAN (El-Khalil & 

Keromytis, 2003, Pp. 7-8) fail to offer any improvement. The 

set of possible alternative and equivalent instructions is too 

unevenly distributed. The methods presented in this paper can 

be simply changed to incorporate the testing of all equivalent 

instructions with little if any overhead.   

In creating a steganographic process, the developer needs 

to find a model where the distribution of the original medium 

is unknown to the adversary. HYDAN has not achieved this. 

Unlike image based steganography, any preprocessing step 

designed to introduce randomness into a cover medium based on 

binary code significantly alters the natural distribution of 

the instruction sets.  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 36 - 

This makes the process of deducing the existence of an 

embedded message trivial as it is not possible to embed a 

message of any significant size while preserving the natural 

distribution of the cover medium. 

Plausible Deniability 

The methods of “Plausible Deniability” proposed by Provos 

(2001, p. 7) could be incorporated into HYDAN to make the 

detection of a “true” message more difficult. The addition of 

capability to embed additional messages would allow the person 

who created a message to hand over the pass-phrase of an 

innocuous message and claim that only a single message was 

embedded into the covertext. 

However, even this is problematic. If the passphrase for 

the innocuous message is handed over, the process of comparing 

the sample with a single message and the captured message is 

simple. To do this, the analyst could simply recreate the 

message as follows: 

1. Using an original copy of the binary, the passphrase 

that has been handed over and the message that has 

been recovered, re-run the embedding process with 

the captured message. 

2. Compare the binary that was originally captured with 

the newly created one. 

3. If there is any difference, the existence of a 

second (or further) message would be determined. 

Being that HYDAN uses the user supplied pass-phrase as 

the seed for its random walk, the repeated use of HYDAN with 

the same message, passphrase and binary will always result in 

an identical output. That is, there is no randomness between 

use of the program. 

As Zöllner et al. (1998) state, “An advanced solution to 

this problem is to have an indeterministic embedding 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 37 - 

operation. An indeterministic operation or process gives 

different results (within a certain range) every time it is 

computed. In other words, it contains randomness”. 

This could be incorporated to create a detectable program 

that still allowed for plausible denial. 

Conclusion and Future Research 

HYDAN is not particularly difficult to detect 

statistically. This paper presented a preliminary method that 

could be further refined into a production level tool if the 

need to detect HYDAN or a future variant was required. The R 

detection function could be compiled using an R code compiler 

rather than leaving it running in an interpreted mode as was 

done in this paper. 

Statistical tools such as R provide an excellent tool for 

the analysis of data from computer systems and networks. These 

statistical tests could be expanded to uncover other forms of 

steganography. The methods in this paper have demonstrated 

that it is not necessary to analyze the entire binary 

executable as was supposed by the author of HYDAN.  The 

distribution of functionally equivalent but uncommon byte code 

instructions becomes statistically significant well before the 

entirety of these functions have been analyzed. 

Future research efforts have started to detail the 

process required to capture the encrypted header length and 

use this as both a means to Brute force the data and determine 

the message length.  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 38 - 

Bibliography 

Duntemann, Jeff (2000) “Assembly Language Step-by-Step” Wiley 

Press USA 

Eilam, Eldad (2005) “Reversing, the Secrets of Reverse 

Engineering” Wiley Press USA 

El-Khalil, Rakan & Keromytis, Angelos D. (2003) “HYDAN: Hiding 

Information in Program Binaries” Department of Computer 

Science, Columbia University in the City of New York, 

http://www1.cs.columbia.edu/~angelos/Papers/HYDAN.pdf  

Hyde, Randall (2004) “Write Great Code. Volume 1: 

Understanding the Machine”, No Starch Press. 

Goldreich, Oded (2001) “Foundations of Cryptography I”, 

Cambridge University Press, UK  

Goldreich, Oded (2004) “Foundations of Cryptography II”, 

Cambridge University Press, UK 

Irvine, Kip R. (2007) “Assembly Language for Intel-Based 

Computers” 5th Ed. Pearson, Prentice Hall USA 

Johnson, N.F. & Jajodia, S. (1998) “Exploring Steganography: 

Seeing the Unseen” Computer, vol. 31, no. 2, 1998, pp. 26–34. 

Kuhnert, Petra & Venables, Bill (2005) “An Introduction to R: 

Software for Statistical Modelling & Computing”. Cleveland, 

Australia. http://www.csiro.au/resources/Rcoursenotes.html 

Maindonald, J. H. (2004) “Using R for Data Analysis and 

Graphics: Introduction, Code and Commentary”. Centre for 

Bioinformation Science, Australian National University. 

http://wwwmaths.anu.edu.au/~johnm/ & 

http://www.maths.anu.edu.au/~johnm/r/usingR.pdf  

 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 39 - 

McGill, L. (2005) “Steganography: The Right Way” SANS Reading 

Room, 

https://www2.sans.org/reading_room/whitepapers/stenganography/

1584.php  

Paradis, Emmanuel, (2004) “R for Beginners”, http://cran.r-

project.org/doc/contrib/Paradis-rdebuts_en.pdf. 

Provos, Neils, & Honeyman, Peter. (2003), “Hide and Seek: An 

Introduction to Steganography” IEEE Security and Privacy, 

May/June 2003; IEEE Computer Society. 

Provos, Neils (2001) “Defending Against Statistical 

Steganalysis”. In: Proceedings of the 10th USENIX Security 

Symposium. 

Richmond, J. A. (1998) “Spies in Ancient Greece” Greece & 

Rome, Second Series, Vol. 45, No. 1 (Apr., 1998), pp. 1-18, 

Cambridge University Press on behalf of The Classical 

Association. 

SANS (2007) “SEC 504” SANS USA Courseware  

Slashdot, (2004) “HYDAN: Steganography in Executables” Thu. 

Aug 12, 2004 

http://slashdot.org/article.pl?sid=04/08/12/2051219  

Wand, Matt., (2004) “Fundamentals of R. A “Hands-On” 

Tutorial”, Department of Statistics, University of New South 

Wales http://web.maths.unsw.edu.au/~wand/web232/r-tut.txt & 

http://web.maths.unsw.edu.au/~wand/binf3001.html  

Zollner, J., Federrath, H., Klimant, H., Ptzmann, A., 

Piotraschke, R., Westfeld, A., Wicke, G. & Wolf. G. (1998) 

“Modelling the Security of Steganographic Systems”. In 

Proceedings of Information Hiding - Second International 

Workshop. Springer-Verlag, April 1998. 



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 40 - 

Websites 

HYDAN - http://www.crazyboy.com/HYDAN/ 

Matt Wand’s Bioinformatics course web page - 

http://web.maths.unsw.edu.au/~wand/binf3001.html  

Null Hypothesis (Wikipedia) 

http://en.wikipedia.org/wiki/Null_hypothesis  

R Windows release download - http://cran.r-

project.org/bin/windows/base/release.htm  

R graph library - 

http://addictedtor.free.fr/graphiques/allgraph.php  

The R Project- http://www.r-project.org/  

Significance Tests and The Null and the Alternative Hypothesis 

http://www.bized.co.uk/timeweb/crunching/crunch_experiment_exp

l.htm  

Statistical hypothesis testing (Wikipedia) 

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing  

Wikipedia, article on box plot - 

http://en.wikipedia.org/wiki/Box_plot  

Statistical References 

Carlin, B.P. & Louis T.A. (2000) “Bayes and Empirical Bayes 

Methods for Data Analysis”, Chapman and Hall. 

Casella, George & Berger, Roger L (2002) “Statistical 

Inference” Duxbury Advanced Series 

Congdon, P (2001). “Bayesian Statistical Modelling”, Wiley 

Dobson, Annette J. (2002) “An Introduction to Generalized 

Linear Models” 2nd Ed. CHAPMAN & HALL/CRC 

Gelman, Andrew et al., (2003) “Bayesian Data Analysis”, 2nd 

Edition; Chapman & Hall/CRC, London  



© SANS Institute 2008, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

   
   

   
   

   
   

   
   

   
   

   
 

   
   

   
   

   
   

   
   

   
   

   
 8

, A
ut

ho
r r

et
ai

ns
 fu

ll 
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

DETECTING HYDAN: STATISTICAL METHODS FOR CLASSIFYING THE USE 
OF HYDAN BASED STEGONOGRAPHY IN EXECUTABLE FILES 

Craig Wright  - 41 - 

Gilks, W.G., Richardson, S. & Spiegelhalter, D.J. (1995) 

“Markov Chain Monte Carlo in Practice”, CRC Press. 

Givens, Geof H. & Hoeting, Jennifer A. (2005) “Computational 

Statistics” Wiley  

Madigan, David (2006) {Course notes to - BAYESIAN DATA 

ANALYSIS} http://www.stat.rutgers.edu/~madigan/bayes06/  

Maindonald, John & Braun, John (2004) “Data Analysis and 

Graphics Using R, An example based approach” Cambridge 

University Press 

Rice, John A. (1999) “Mathematical Statistics and Data 

Analysis” Duxbury Press 

 

 

 


