GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Using GUPI to Create A Null Box
GIAC (GCIH) Gold Certification

Author: Robert “Gremlin” Comella, Gremlinscs@aol.com
Advisor: Rick Wanner

Accepted: July 24th 2010

Abstract

This whitepaper introduces GUP]I, a tool that helps administrators recognize
removable packages. They can use it to create the Null Box, a Linux server
administrators can use as a base for secure servers.

The most efficient and secure Linux machines only run the software necessary to
fulfill their assigned task, no more. Therefore, the goal of a security-minded
administrator is to build machines to that standard. While it is easy to understand
this concept, it is difficult to realize it. Unfortunately, the normal Linux distribution
is a “rat’s nest” of interdependencies, making it difficult to determine which
packages to remove. This paper introduces “Gremlin’s Unnecessary Package
Identifier”, or GUP], to solve this problem. GUPI identifies packages upon which no
other packages depend, and designates these “removable”. GUPI then allows the
user to mark these packages “Remove” or “Keep”. Given the user’s input, it
recalculates the new list of removable packages and presents it to the user. This
tool allows the administrator to create the “Null Box”, a Linux-based server that has
only enough software to boot and install additional packages as necessary. This
machine provides a base from which administrators can build secure machines for
their networks.

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

1. Introduction

1.1. Servers with less do more

When an administrator builds a Linux server, they make many decisions. One of
the most difficult is deciding which packages to install. Linux distributions, upon
installation, try to pass package selection off as an easy choice. The administrator must
simply choose a function from the list and the installation program will automatically
install all the necessary software to provide that service. The installation usually works
and the resulting machine performs the desired task. Administrators focused only on

functionality consider themselves finished and move on to the next task.

While it is impressive that Linux distribution masters can make this process as
easy as it is, it is not possible for them to customize the system to the exact needs of
every organization. The systems that result from these default installations, while
completely functional, usually contain more software than is necessary for the assigned
task to be completed. Since each software package is a potential source of
vulnerabilities, the more installed packages there are the more vulnerable the machine is.
Secondly, unnecessary services and software take up precious resources, which leave
fewer resources for the server’s assigned tasks. Finally, servers with more packages than
necessary are more complex, which makes them more difficult to maintain. (Pomeranz,

2009)

Clearly, then, it is desirable to create servers with only the software necessary to
perform their assigned task. Unfortunately, that is difficult to accomplish. Linux
packages all are interrelated in different ways, which makes it difficult to figure out
which packages administrators can remove without causing damage to the system. If an
administrator is to build a server containing only task-specific software, they must start

from a machine that has only the minimum of what is essential for the server to function.

The focus of this paper is to create a system that has only what is required to boot
and install more packages. An administrator can use this “Null Box™ as a base from

which he may build other machines. Please note the Null Box is not itself secure. The

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

system architect must add security packages to secure the server properly but the specific

packages chosen will depend on the environment in which the server resides.

To aid in the construction of such a lean system this paper introduces a tool called
GUPI (Gremlin’s Unnecessary Package Identifier). GUPI scans the computer’s installed
packages, identifies which are removable, and displays them in a list. The user can then
decide, for each package, whether to keep or remove it. The program takes the user-
supplied information and uses it to identify the next set of removable packages that the
user may investigate. This iterative process continues until there are no removable

packages remaining.

2. Where to Begin...

2.1. About the test machine

GUPI should work on any Linux-based system that uses the apt package
manager, but its author built it using Ubuntu for Ubuntu—based systems. This paper
provides an example based on Ubuntu 10.04 Server to show how to use GUPI and create

a null box.

2.2. Getting the Installation Media
The installation media is available to the public in several different ways.

Administrators can request free CDs from Ubuntu by going to https://shipit.ubuntu.com/

and filling out the appropriate web forms. It is clear from the website that this method is
somewhat discouraged and it does take up to ten weeks to get the CD to the one who
requests it. The second option is to purchase the media from Ubuntu themselves or from
one of their worldwide distributors. The cost is between five and ten dollars (depending
on the conversion rate) and shipping is far quicker. The website

http://www.ubuntu.com/desktop/get-ubuntu/cds has more details.

Most administrators, however, have the ability to download all of the different
Ubuntu versions free from the internet. Each one is a little less than 700MB. Download
the .iso file, calculate its MD5 and SHA1 hashes, and compare them to the hashes

calculated by Ubuntu at http://releases.ubuntu.com. If they match, the administrator can

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

be reasonably certain that they obtained the .iso file free of both intentional and
unintentional corruption. Those using Linux to download the file can use md5sum and
shalsum programs provided by most Linux distributions. Windows users must download
and install another package in order to check hashes. One decent one called hashcalc is
available free. Once the administrator had obtained good images, they can burn them to
CD. Ubuntu CDs offer the opportunity to check the cd for defects upon boot-up. This
check is highly recommended as it can save administrators a great deal of time

troubleshooting errors caused by a faulty CD.

VMware can be an excellent tool for experimenting with which packages to keep
and remove. It allows a user to create “snapshots” of the system by copying the directory
where the virtual machine resides. When something occurs that puts the system in an
unusable state, the administrator can copy the files back to the working directory from the
backup and keep going. This takes far less time than re-installing a system. VMware

Player® is freely available at www.vmware.com.

VMware Player® has a feature that is detrimental to this experiment. If the user
chooses to use an .iso image to install the operating system and they select it when
VMware player asks for details of the CD-ROM, VMware will “help” the user by
implementing a tool called “Easy Install”. This tool will automatically install the
operation system, choosing options it thinks are best. Easy install prevents administrators
from customizing the installation to their needs. To work around this, users must choose

“I will install the operating system later” when creating a virtual machine.

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

2.3. Exact choices used for the example

When creating the VMware Player test servers choose the following settings:

1. Click “Create a New Virtual Machine”

lr—
Welcome to VMware Player

@ XP-No-Patch
@ NullBox32 Create a New Virtual Machine
A eate a new virtual machine, which will thet&
(51 vbuntviceo added to the Top of your forary
@ Knoppix-STD
Open a Virtual Machine
(51 vbuntiviceo
Open an existing virtual machine, which wil then be
@ BackTrack4-Final added to the top of your library.
(1 nutsoxss

record/replay, teams, developer tool integraton,
and more.

Help
View VMware Player's help contents.

Upgrade to VMware Workstation
Get advanced features such as snapshots,
o

2. Choose “I will install the operation system later.”

Welcome to the New Virtual Machine Wizard

A virtual machine is like a physical computer; it needs an operating
system. How will you install the guest operating system?

Install from:

() Installer disc:

<L DVD RW Drive (D:)

() Installer disc image file (iso):

C:\Users\Gremlin\Documents\Null Box Gold Paper\ubur v: ‘ Browse...

@ I will install the operating system later.
The virtual machine will be created with a blank hard disk.

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

3. Choose an operating system of “Linux” with the version “Ubuntu”

Select a Guest Operating System
Which operating system will be installed on this virtual machine?

Guest operating system
(©) Microsoft Windows
@) Linux

() Novell Netware

() Sun Solaris

(©) Other

Version

[ubuntu

4. Name the virtual machine

New Virtual Machine Wizard

w Name the Virtual Machine
What name would you like to use for this virtual machine?

Virtual machine name:
NulBox32_Test

Location:

C:\Users\Gremlin\Documents\Virtual Machines\NulBox32_Test Browse...

Author Name, email@address

© 2010 The SANS Institute

Using GUPI to create the Null Box | 6

Author retains full rights.

Using GUPI to create the Null Box | 7

5. Choose a hard drive size (30 gig was used)

Specify Disk Capacity | Ready to Create Virtual Machine
How large do you want this disk to be? Click Finish to create the virtual machine. Then you can install Ubuntu.
The virtual machine's hard disk is stored as one or more files on the host The virtual machine will be created with the following settings:
computer's physical disk. These file(s) start small and become larger as you
add applications, files, and data to your virtual machine. Name: NulBox32 Test N
Maximum disk size (GB): 30 =] 1 Location: C:\Users\Gremlin\Documents\Virtual Machines\NuIi
Version: Workstation 6.5-7.x

Recommended size for Ubuntu: 20 GB

Operating Syst... Ubuntu
(@) Store virtual disk as a single file
©) split virtual disk into multiple files i Hard Disk: 0GB

splitting the disk makes it easier to move the virtual machine to another Memory: 512 MB o
computer but may reduce performance with very large disks. < m 3

Customize Hardware...

<5) (o>) (oo]

6. On the “Customize Hardware” screen:

a. Set the memory to 1024MB if possible, but do not exceed the amount of

)stem. The machine will be forced to use

Memory

s mmsvistuakem e n¥oryEswapspace), which is much slower than physical RAM.

@ Processors 1
(5)New CO/DVD (... Auto detect Memory for this virtual machine: 10245 MB
9 Floppy Auto detect

T Network Adapter NAT 26
St o st b. Set the CD/DVD to use the

@) sound Card Auto detect
Sprinter Present sce
BHisplay Auto detect 4ee
S created CD or the downloaded
1ee 3524M8
sizme

@ Maximum recommended memory

3618 5 Recommended memory

e o .1so file.

eame
2M8
1618

c. Remove the Floppy Drive,

4Me

0 Guest OS recommended minimum
256 MB

Sound Card, and printer.

d. Set the network adapter to NAT

but be sure to uncheck “Attached” and “Attach at power on”.

7. Start the machine.

2.4. Preparing the Server
When repurposing a server it is possible to use the desktop version of Ubuntu to

wipe the data from the hard drives. It is easy to do but it takes a long time for large hard

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 8

drives. Before starting, be certain to unplug all network cables from the machine. Insert
the Ubuntu Desktop liveCD and boot from the CD-ROM. If everything is successful, the

computer displays the screen below.

Choose the desired language and then choose to “Try Ubuntu 10.04”. The computer will

continue to load from this point until you have the normal Ubuntu desktop as seen again

below.
English + Welcome
Espariol You can try Ubuntu 10.04 LTS from this CD without
Esperanto making any changes to your system
Euskara
Frangais \ELLOE 1003 TS,
Gaeilge
Galego Ready to install? Once you answer a few questions, the
Hrvatski contents of the be CD can be installed on this computer . .
italiano S0 you can run Ubuntu 10.04 LTS at full speed without NOW ChOOSe Appllcathl’lS a

the CD.
Kurdi

Latviski Answering the questions should only take a few minutes

Accessories = Terminal to open a

Lietuviskai

Install Ubuntu 10.04 LTS

Magyar . . .
Nederands terminal window. Type the following
Norsk bokmal

Norsk nynorsk . COl’l’ll’l’lal’le

sudo fdisk -1

sudo Program to give temporary root privileges to a user

fdisk Partition table manipulator for Linux

-1 Lists the partition tables for the devices on the system

ubuntu@ubuntu: ~

A list for each device on the system
will appear as in the screen shown on the

left. For each physical drive that needs to

© 2010 The SA Author retains full rights.

Using GUPI to create the Null Box | 9

be blanked, enter the following command, substituting the name of the drive in the “of="

option.

sudo dd if=/dev/zero of=/dev/sda bs=36824

sudo Program to give temporary root privileges to a user
dd Program that copies data at a bit level

dd parameter “input file” being set to a special device that give a
if=/dev/zero never ending line of zeros (can also use /dev/random but it is much
slower)

of=/dev/sda dd parameter “output file” set to an example of a hard disk device

dd parameter “block size” set to an even number of sectors to help

bs=36824
speed the process.

You can repeat this for each open command window. Unfortunately, the version
of dd that comes on the Desktop disk is an older version that has no progress reports.
©©@ ubuntu@ubuntu: ~ The program gives no indication that

File Edit View Terminal Help . . .
ubuntu@ubuntu:~$ sudo dd if=/dev/zero of=/dev/sda bs=36824 anythmg 1S happenlng, however, the hard

dd: writing "/dev/sda': No space left on device . . .
R e e P drive access light on the computer will be
1874762+0 records out

32212254720 bytes (32 GB) copied, 126.634 s, 256 MB/s
ubuntu@ubuntu:~$

ubuntu@ubuntu:~$ i

on steadily. This process may take many

hours to complete, so for now find
something else to do for a while. When it is finished, the screen should look like the
picture. Close the window and use the circle button in the upper right part of the screen

to shut the machine down.

3. Building the Null Box
3.1. First Steps

With a clean server, it is time to
Language ’
Amharic Gaeilge Nederlands Wolof
frabic | Galezo Norsk boknal ST E) install the base operating system. This will
Asturianu Gujarati Norsk nynarsk T (EE)
Benapyckas 1y Punjabi (Gurmukhi) . .
Bunrcpo | Hindi Polski , be a working server. It may take some time
Bengali Hrvatski Portugués do Brasil
Bosanski Magyar PumAu%ués . L. .
Cotals | Behasa Indonesia | Ronéné and trial and error before an administrator is
estina Italiano Pycckun
Cymraeg BAE Sémegi}%ii . . .
o oovencie, satisfied with the particular set of packages
Dzongkha shaip
0 Br=20
furc Sveraia on a Null Box.
Esperanto Lietuviskai Tamil
Espafiol Latviski Thai
Eesti MakeaoHcKn Tagalog
Euskara Malayalam Tirkce
Suomi Marathi YKpaiHCcbKa
Francais Nepali Tiéng Viét

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

To start the process the administrator needs to place the Ubuntu Server disk in the
CD-ROM and again set the computer to boot from the CD-ROM. The network cables
should remain unplugged. If the system boots successfully from the CD it will display

the screen on the left where the user may select their language.

The welcome screen gives the
administrator many options. This is where
ubuntu® he may choose to check the disk for defects

as mentioned above. If the user presses the

Install Ubunt rver

F4 button, a few more options appear. To
minimize the normal install as much as
possible the user should select “Install a

minimal system” from this list and then

choose the “Install Ubuntu Server” option.

Normal

. The installati ins. Th
0EM install (for manufacturers) ¢ installation process begins ©

I Install a minimal system first choice is the language then the country

Install a minimal virtual machine in which the user is located. After asking
about the user’s location, it asks if it should
detect the keyboard layout. English speaking persons with no special needs can select no,
as the default is a North American keyboard. If the administrator answers yes, the
installer package will ask a series of questions to try to determine the layout of the

keyboard, which takes longer than just selecting the correct choice.

After the system loads some common files, it attempts to detect the network using
DHCP. This will fail, because the network cables are unplugged. When the automatic
detection fails, the installer may choose to configure the network automatically.
Individual screens will appear asking for the IP address, net mask, gateway, and name
server. The administrator can set the values as necessary for the network. (An aside for
those using VMware player on Windows: During the installation of VMware, it will
automatically select IP address ranges. Administrators can use the command ipconfig to
ascertain what these settings are. The entry for VMnet8 has the appropriate settings for
the NAT network. Also note that the gateway and DNS is 192.168.XXX.2)

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

The next screen asks the user to enter the host name for the system. The
following one asks for the domain name. Administrators should enter the values
appropriate to the network. Next, the system will try to get time from a timeserver. This
action, like the DHCP attempt, will also fail, but it will not display any sort of message.

It will then ask for the time zone of the user.

3.2. Hard Disk Partitioning

The administrator will need to make some decisions here based on the function of
the machine. To facilitate a more secure file system, it is important that at least partitions
for “/”, “/usr”, “/var” are created. (Pomeranz, 2009) You will also need a partition for
swap, which in general should be two times the size of the installed RAM. (Koconis,
Murry, Purvis, & Wassom, 2004) Depending on the server, other partitions may be
necessary. A “/home” directory will always be created when installing Ubuntu 10.04.
Placing it on a separate partition will prevent users from filling the file system to cause a
DOS. The /tmp directory can have its own partition or it can be mounted in memory on
/dev/shm. Doing so may be faster on machines with enough memory to handle it. It is
also possible to partition off subdirectories. For example, administrators can create a

“/usr/local” partition to store third party applications.

Size of each of these will vary greatly depending on need. Hard drives are
generally rather large and the installation on most servers does not take much space.
Remember that logs will generally go to /var, the operating system will be placed mostly

in /usr, and everything not given a specific partition will end up in the ““/ partition.

/ Sgig Ext4 | Primary No matter the partition scheme chosen, the

. . administrator must choose the Manual option in the
/usr 10gig Ext4 | Primary

partition disks dialog box. Use the on-screen prompts

Swap | 2048Mb | - Primary o _
to set up the necessary partitions. In this example, the

/var Sgi Ext4 | Extended .. .
\ S h h partitions were set up according to the table at the left.

fmp | 2gig | Ext4 | Extended | Be gyre 1 set the bootable flag on the “/”” partition or

/home | 10.2gig | Ext4 | Extended | the system will be unable to boot.

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

3.3. Finishing the install process

After creating the partitions, the installer program will load most of the files to the
hard disk. After a few moments, it will ask for the name of the main user. Ubuntu, by
default, sets the root password to make it impossible to log on a root. This user is set to
be “administrator” of the machine. This user does not have root privileges but can use
sudo to gain root status for any command. Choose carefully the name and password for
this account over the next few dialog boxes. Once the installer creates the user, it asks if
it should encrypt the user’s directory. This is up to the administrator. The example

computer did not encrypt the user’s directory.

One of the final dialog boxes shown asks about proxy information. Fill in this
dialog box appropriately for the network. Leave it blank if there is none. The computer
will attempt to download several files from the internet. This, like the other network-
related activities, will fail. The system will look as though it has hung for a little while

but it will eventually move on.

Next, it will ask how to manage package updates on the system. The three
options are “No automatic updates”, “Install security updates automatically”, or “Manage
system with Landscape”. Landscape is a paid tool that may be interesting but it is outside
the scope of this document. Many administrators do not trust others to install updates on

production machines without testing them first so they choose “no automatic updates”.

Finally, the installer asks what software the administrator wishes to install on the
system. Any option chosen here will direct the installer program to install all the
software necessary for a generic but functional system. In order to obtain the most basic
system, the administrator should skip this altogether by pressing tab without selecting any

extra packages.

With that, the installer program installs several hundred files, does some
configuration, and cleanup. When it is finished, it will ask if the user wishes to install
grub-pc to the master boot record. Choosing no to this question will leave the computer
in an unusable state. Finally, the installer program instructs the administrator to remove
the disk and reboot the machine. Once the machine boots it is running a minimal version

of Ubuntu.

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

The Ubuntu server installer does rather well with the minimal install. For not
knowing people’s exact needs, the Ubuntu team produced a tight package. There are no
listening ports (an nmap scan confirms this). Only seventeen processes run in memory.

Finally, three hundred six installed packages take up about 1075 MB of disk space.

If the administrator watches closely, they may notice some boot messages flying

by. To view them at a more leisurely pace, run:
cat /var/log/boot.log

If the installation completed successfully the administrator should see several
messages about clean partitions, several init messages that terminated with status 4, and
one message about AppArmor. While the status 4 messages look like errors, they are not.
Here is a quote from the developer:
Status 4 (usually ureadahead-other exits with this) means that you had a mountpoint
in your fstab that didn't have any files on it needed during boot. Probably that drive
with all those MP3s and movie files on it.

It still reads everything needed during boot, the status is just there for me to debug
other issues. (keybuk, 2010)

4. Removing Unnecessary Packages

4.1. Which Packages are Unnecessary?

A package whose removal does not prevent the system from booting nor prevent
it from downloading and installing packages is unnecessary. The question becomes,
“How does one identify packages that are not necessary?” Linux is like an onion. Most
installed packages depend on others. Just as someone can peel the layers off an onion,
revealing the layers below, administrators can peel the packages on the outside off,
revealing other removable packages. So what programs are on the outside of the onion?
They are the packages upon which no other packages rely. To find them, an
administrator must take note of the dependencies of all the packages installed on the
system then compare the list of dependencies to the list of the ones installed. Any
installed packages not on the dependency list are not necessary, and therefore, removable.
It is up to the administrator to decide if the package, when removed, breaks the ability of

the machine to boot, download, and install new packages (Or any other criteria the

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

administrator may have in mind). If removing it does not interfere with the desired
function of the machine then the administrator can remove it and its dependencies from
the dependency list. If it does prevent the system from fulfilling its function, the
administrator must keep the package. Once the user evaluates all the packages on the
generated list of removable packages as legitimately removable or not, it is time to

recalculate the dependency list and again compare it to the list of installed packages.

The administrator repeats the process of marking then recalculating until all
removable are marked as must keep. At that time, the administrator cannot remove
another package without breaking the criterion set. The system has only the packages
necessary to fulfill its duty. The administrator can do this process manually (which takes

forever) or they can use GUPL

4.2. Installing and Running GUPI

Robert “Gremlin” Comella wrote Gremlin’s Unnecessary Package Identifier, or
GUPI, for short, to automate the identification of nonessential packages discussed in the
prior section. When run, GUPI creates a list of all installed software. Then it creates a
list of all the packages upon which they depend. Finally, it compares the lists and
displays the packages it finds on the installed packages list but not on the dependency list.
The user can then mark the packages “remove” or “keep”. When the user is finished with
the list, GUPI will recalculate the package list and display a new list. Eventually, when
nothing appears on the removable list the user can ask GUPI to produce a script that will

remove all the packages indicated while running the software.

Installing GUPI is easy. GUPI consists of four script files. The user must create
these four files on the machine or copy them to it. All the files must be in the same
directory. The only prerequisites known are apt-cache, dpkg, and grep. Running the
software is also simple. The user must cd to the directory where all the files reside and
run the gupi.sh script.

./gupi.sh

Or if the executable bit is not set for the package,

bash gupi.sh

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

For a moment, the program shows
the title screen. Next, it displays the main
menu. Before the program creates the

package list, the main menu is very limited.

— Main Menu —

Update the package lists from Internet
Build working databases from Scratch (slow)
Load Saved Data (fast)

Quit the program

JPlease enter the value next to your choice: _

Option one will run sudo apt-get
update to get the latest package
information. Two will build the database

of packages. This process takes longer, as

the number of packages on the system
increases. On slow computers with many packages, this process may take up to 15
minutes. In the test environment, however, it should only take a minute or two. Since it
takes so long to create the list of packages, option three exists to load a previous database.
The saved file must reside in the same directory as GUPIL. This is in case the user needs
to shut the machine down while in the middle of an investigation. They can save their
work and begin again, where they left off. The final option will of course end the

program.

When the user selects option two,

- Main Menu ——

Update the package lists from Internet GUPI’S Current process and ﬁle Wlll

Build working databases from Scratch (slow)
Load Saved Data (fast)
Review Removeable Packages

Revieu Kept. Packages appear on the screen as it builds its

Review Removed Packages
Review Necessary Packages
Review All Packages

) Create apt Comand database. When it completes, GUPI

Save Current Progress
Quit the program

[Please enter the value next to your choice: _ displays the entire main menu. “ReVieW
Removable Packages” shows the list of
packages it considers removable. “Kept”

packages are packages that the user

marked as necessary even though they can

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

remove them. “Removed Packages” are packages that the user tagged to remove.
“Necessary” packages are those that the user cannot remove because another package

depends on them. “All” displays all the packages.

Option eight creates a script and places it in the directory with the apt files. The
script contains an apt-get command that will remove all the packages in the “removed
package” list. Option nine saves the current databases so that work may continue at a

later point.

Choosing any of the options to

review packages will display a package list

pletion . .
connand-not-found .

screen. This package list screen displays
information about the state of each

mnber to its left: package. At this time, “Current state” is

To move forward to the (n)ext
To move (black to the previous

T “I”, for “installed”. Future state refers to

To cancel changes (quitd type:.

Please enter your choice: _

the state of the package after running

GUPI’s generated script. “I” stands for
“installed”, and “U”, for “uninstalled”. The next column is “Required state” of the
package. Its possible values are “YES” or “NO!” Finally, the “Keep” column tracks
packages the user marked keep. Its possible values are also “YES” or “NO!”. GUPI will
show, at maximum, ten packages at a time. It is common, however, to have many more
than ten packages in a particular list. The user can use “n” to see the next group of ten

and “b” to go back to the previous list.

Enter the number beside the package

Cur i Fut i

name to look at that package individually.
W grep, egrep and fyrep The program does not save changes

immediately. As the user modifies package

To toggle (fluture state type:
To toggle (k)eep state type:
To shou the package’s (m)an p

To eoave and- return tupe Lo states, the program logs the changes. The

To cancel changes and (@uit) typei.

[Please enter your choice: _

functions “Save” and “Return” will write the
changes to disk as well as calculate the new

package lists. This avoids a lengthy pause

between each change as the system writes

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

changes to the database. “Q” will return the user to the main menu, canceling any of the

changes made since the last save.

Choosing any of the numbers next

StateiStateiReqd?

to the listed packages will open the
Description: Utilities for controlling AppArmor package mOdiﬁcation screen. From thlS

screen, the user is able to control the

To toggle (k)eep state type: . . .
To shou the package’s (m)an page t

To (sdave and return type: R R various states of the package if permitted.

To cancel changes and (quit) type:.

Please enter your choice: _

The screen shows the package’s current
states at the top. “f” will toggle the future
state of the package and “k” will toggle the

keep state of the package. “m” will attempt
to display the man page for the package. If there is no man page, it will display a

message telling the user. When the user is finished making changes, “s” will accept the

[}

changes and return the user to the package list screen while “q” will return the user to the

package list without saving changes.

Two special cases of the package

Package .

modification screen exist. The first occurs

when a package provides another package. iy progrers

libapt-inst-1ibc6.10-6-1.1 is necessary. Future state may not be changed?

Currently there is no way for the program To oggle. (oeep state topet - - L

To show the package's (m)an page type:

to discern, while it creates the list of - -
“removable packages”, that one package
may not be removable because it provides

another. The workaround for this issue for

now is to check, on this screen, if the package displayed provides another necessary

package. If it does, GUPI will disable the “f” option.

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

The other special case is when a
choice is available. In some cases, a

single package may list several packages

that will fulfill its dependency. The Toggling Puture <

To toggle (K)eep
To show the package
To (s)ave and returr

system still treats these packages as
necessary, but the user may choose to use .
any of the packages shown to fulfill the

dependency. Another option may be

smaller or more specific to your

environment.

An administrator can use GUPI on a system at any time to point out packages that
he may remove. Allow it to create a list of packages to remove. Choose to remove or
keep each then allow GUPI to recalculate. Look at the next set of packages decide to
keep or remove. Rinse and repeat until finished. Once the user marks all removable
packages as keep, they reached the end. He may not remove any other package without

disturbing the ones that are necessary to fulfill the machine’s function.

GUPI is not a perfect tool. There is one situation where GUPI fails. In some
cases, two or more packages will rely on each other circuitously. For example, tasksel
depends on tasksel-data and tasksel-data relies on tasksel. Even though both
packages are removable, due to GUPI’s algorithm, it always sees them as necessary.

This does occur on a few occasions but the user must identify it.

4.3. Applying GUPI to the Null Box
The gory detail of which packages an administrator can remove and which ones

he must keep is in appendix “B”, but here are the highlights.

While some packages are technically removable, their absence will cause issues
on the system. Removing apt-utils prevents apt-get from setting up packages. In some
cases, this is not a problem because the packages are very simple. The dhcp3-client
package obtains IP address information during the boot process. Assigning a static IP
address before removing this package will avoid any problems. It is possible to remove

grub-pc. Doing so prevents the system from updating the boot files. If during the

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 1

uninstallation the administrator chooses to remove the files from the /boot directory the
computer will be unable to boot. Removing iptabies will prevent the user from
modifying the kernel side of the firewall. This action effectively disables the firewall.
The program that builds the message of the day file (MODT) uses 1sb-release package.
The administrator can fix the non-critical error removing its removal creates by
modifying /etc/update-motd.d/00-header file. Certain packages require ncurses-base to

install correctly. Removing it prevents the installation of those packages.

Due to GUPI’s current configuration, it cannot discover packages with circular
dependencies. There are six packages with circular dependencies installed in the normal
command line system install. The packages tasksel and tasksel-data, perl and perl-
modules, and kbd and console-setup each have such a relationship. The administrator can

remove all of these packages as long as they do so in pairs.

Of the original 306 packages installed by the Ubuntu install process, only 98 are
necessary to boot the machine and allow an administrator to install other packages. Some
packages must be marked as keep in order to allow the server to fulfill its function of
booting and installing packages. Removing apt, tar, Oor whiptail prevents the installation
of new packages. apt downloads new packages, tar opens the tarball (the form in which
they are stored), and whiptail is a hidden dependency of debconf. The package vash
provides the command shell. The user can replace it with alternative if they so desire.
debconf-118n 18 necessary but debconf-english can replace it. debconf-english 1S
slightly smaller because it contains only support for English-speaking users.
Administrators can remove e2fsprogs but when they do the boot scripts that check the
drives fail. The package gpgv validates the packages in the Ubuntu package store. If the
user removes it, the server complains that the package store is untrusted. gzip unzips
packages retrieved form the package store without it most packages cannot be installed.
The administrator can also remove hostname but doing so will cause errors to occur each
time he runs a command in the shell. The command usually works but the server takes
10 to 15 seconds to time out in finding the name of the host before continuing. The

linux-image-2.6.xx-xx-generic-pae 18 the kernel. Removing this package prevents the

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

computer from functioning. 1ogin provides the ability for users to log into the computer,

removing it stops users from logging on.

The sudo package is a little different. In the Ubuntu distribution, the creators have
decided that no one should ever log on as root. The Ubuntu designers gave the root
account a password that users cannot enter, effectively disabling it. It is possible to
remove sudo, but the administrator must take two actions first. First, he must set the root
account’s password to something known. The second step is to export the
SUDO FORCE REMOVE system variable by typing “export SUDO_FORCE REMOVE=yes’ .

Then it is possible to remove sudo and retain an operational system.

The final appendix of this paper contains a quick script that will remove all the
possible packages from the experimental server built in this paper. It also performs

minor changes to bolster the security of the machine.

5. Conclusions

If the administrator removes all the software possible, the null box is rather bare.
It will serve no purpose except for eating electricity and holding down papers. The null
box is secure only in the fact that there is very little to exploit. Further modification can

improve its security.

Further actions that can be taken include adding a firewall, disabling unnecessary
user accounts, setting password rules, setting the default umask, tuning the kernel, setting
warning banners, and adjusting file system security. What actions the user takes and to
what extent the user locks down the machine depends greatly on the environment in

which a server operates as well as the server's final function.

Starting with a null box allows the administrator to install only what is necessary
to make the server perform the duty assigned to it. Even if it is not possible to start with
the null box and build up to the desired server, the GUPI program will help

administrators identify removable packages.

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

6. References
keybuk. (2010, March 20). All about ureadahead. Retrieved July 4, 2010, from
Ubuntuforums.org: Http://ubuntuforums.org/showthread.php?t=1434502

Koconis, D., Murry, |., Purvis, J., & Wassom, D. (2004). SANS Step-by-Step Series:
Securing Linux A Survival Guied for Linux Security Version 2.0. Washington DC:
SANS.

Matthew, N., & Stones, R. (2008). Beginning Linux Programming 4th Edition.
Indianapolis: Wiley Publishing, Inc.

Pomeranz, H. (2009). Sans 506.2 Unix Hardening, Part 1. Washington DC: SANS.

Williams, C. (1999). Professional Visueal Basic 6 Databases With VM, ADO SQL and
MTS. Acock's Green: Wrox Press LTD.

Special thanks to Paul Kern and Rick Wanner who helped with the editing of this
paper

7. Appendix A GUPI Source Code

7.1. Overview
The next four sections are the source code for the GUPI program. To create a

useable version:
1. Create four text files, each named after the sections below.

2. Using a text editor (like notepad, notepad++, Kate, or gedit) cut and paste the

code from each section into each of the files.
3. Save all the files into one directory.

4. Make them executable.

7.2. gupi.sh

#!/bin/bash

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

HH oH o H S H H

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor Boston, MA 02110-1301, USA

HH H o o H H

#**

Overall Description
#**

This is the main controlling script for GUPI. It will call the other

B

Scripts necessary to get work done.

GUPI or Gremlins' Unnecessary Package Identifier is a simple script that
will search through the packages installed on a computer and as the name
suggests identify the ones that can be removed. I will continuously
update the list as packages are either added or removed virtually.
The final action the program will take is to create another script that
will both install and uninstall the packages requested during the
running of the program.

HH H H = H H

Note to all you decent hackers out there. Please be kind to me this is
My first script of any consequence. If you have any constructive
criticism you can contact me @ GremlinscsJunk@aol.com. Please also note
that this is just a temporary program: I would like to release this as
open source tool but I think I will re-code it in C++ to speed it up and

HH H o o H H

to make it more extensable.

B

I know of no lions burned by this code. Let me know if do.

Finally I wrote this in the Kate text editor. If you open it in that
program it will look nice.

#**

Included Script for the use of this script.

#**

We need the database builder
./gupi_db builder.sh
./gupi_packages.sh

#**

Global Variables

#**

This variable adjusts menu choices based on actions
pkglstbuilt=0

#**

Functions
#‘k‘k‘k*********‘k‘k**********‘k‘k*********‘k‘k**********‘k‘k*****************************

get_main menu_choice() {

clear

echo "-- Main Menu --"

echo

These Choices are always available

echo " 1) Update the package lists from Internet"

echo " 2) Build working databases from Scratch (slow)"
echo " 3) Load Saved Data (fast)"

These will only appear after package lists are created

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

if ["$pkglstbuilt"™ = "1"]; then
echo " 4) Review Removeable Packages"
echo " 5) Review Kept Packages"
echo " 6) Review Removed Packages"
echo " 7) Review Necessary Packages"
echo " a) Review All Packages"
echo " 8) Create apt Command"
echo " 9) Save Current Progress"
fi
echo " g) Quit the program"
echo
echo -e "Please enter the value next to your choice: \c"
read -n 1 main menu choice
echo
return

#**

Main Script
#**

Display Main Menu
Clear the screen and display the title of the program

clear
echo
echo
echo
echo \

" "

echo \
" / /N /_/\ / /N "
echo \
" /i AR AN /o /N / /N "
echo \
" / /) /N ANEERAEAN /o //N\:N / /) "
echo \
L A VAN AR AN N\ AN /)~ / /N "
echo \
"/ i/ N/\:N / /N N\ /) N VACA N
echo \
"N N\ /) NN/ /) NERAVAY, A A VAN
echo \
"N N\ /) NN\ /e A N \::/0 "
echo \
" ANERAVAY ANERAVAY, ANEEAAN /_ /)"
echo \
" NN/ NN/ AN AN _\/ "
echo \
" _\/ N \/ \\/ "
sleep 2

while ["$quit™ != "1"];
do
get main menu choice
case "$main menu choice" in

1)
echo "Update Package lists from the Internet"
sudo apt-get update
sleep 1;;

2)

echo "Creating Database..."

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

Get The list of all the packages
get pkgInfo
BuildDatabase
pkglstbuilt=1;;
3)
if [-e ./Depend List] || [-e ./Package List]; then
CopyDatabase
pkglstbuilt=1
echo "Save File Loaded."
sleep 1
else
echo "No save data found. Please build files."
sleep 1
fi;;
4)
echo $pkglstbuilt
if ["S$pkglstbuilt™ = "1"]; then
DisplayRemovableList
else
echo "You must load the packages first!!"
sleep 1
fi;;
5)
if ["S$pkglstbuilt"™ = "1"]; then
DisplayKeptList
else
echo "You must load the packages first!!"
sleep 1
fi;;
6)
if ["S$pkglstbuilt™ = "1"]; then
DisplayRemovedList
else
echo "You must load the packages first!!"
sleep 1
fi;;
7)
if ["S$pkglstbuilt"™ = "1"]; then
DisplayNecessaryList
else
echo "You must load the packages first!!"
sleep 1
fi;;
a)
if ["S$pkglstbuilt™ = "1"]; then
DisplayAllList
else
echo "You must load the packages first!!"
sleep 1
fi;;
8)
if ["S$pkglstbuilt"™ = "1"]; then
CreateCommand
else
echo "You must load the packages first!!"
sleep 1
fi;;
9)
if ["S$pkglstbuilt"™ = "1"]; then
SaveDatabase
echo "Database saved"
sleep 1
else

echo "You must load the packages first!!"

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

sleep 1

fi;;

q)
Cleanup
quit=1;;

*)
echo -e "That was not a valid choice. Choose a value or press \n"
echo "\"g\"to quit"
sleep 2;;

esac
done

7.3. gupi_db_builder.sh

#!/bin/bash

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor Boston, MA 02110-1301, USA

o o o o o o o o W

#**

Overall Description
#**

This script will handle all the database creation and upkeep issues

Related to gupi. In the fastest manner possible it will create an update
two files. The First file will be the package file. It will contain:

Package Name: [STR] Self Explanatory

State: [BOL] Installed now or not

Future State: [BOL] To be installed or not installed

Necessary: [BOL] Necessary dependency for another package

Keep: [BOL] Not Specifically Necessary but User desires to
keep this package

Dirty: [BOL] If the package need to be checked for dependency
The Second file will be the relation file. It will contain:

Package Name: Self Explanatory

Related package: Self Explanatory

Relationship type: Pre-Depends

Depends

Recommends

Suggests

Enhances

Breaks

Conflicts

Replaces

Provides

We can keep track of what is going on

#**#

#**#

Global Variables -- Not really necessary but I like to do this for clarity

#**#

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

Associate with the objects script
./objects.sh

Associate with the gupi common script
#. ./gupi common.sh

#**#

#**#

Internal Functions
#**#

IntPkgScrub () #string to scrub relation type
This function will remove the extra stuff from entries in the table
{
Check if Internal go is set
if [$bol rel int go -eg "0"]; then
echo "intCreatePath is an internal function only"
return Serr internal go not set
fi
Check to see if necessary values were passed
if [-z "$1™] || [-z "$2"™]; then
Exit with an error
return Serr argument mismatch
fi
Set input to meaningful names for clarity

local str pkgname=$1
local str relation=$2

Remove the relation label (e.g. Depends: or Pre-Depends:)
local str pkgname=${str pkgname#$str relation:}

Remove the space before the package name
local str pkgname=${str pkgname#" "}

Remove the space after the package name
local str pkgname=${str pkgname%" "}

Remove any version information
local str pkgname=${str pkgname% (*)}

Return final string by reference
str pkgscrub_ ret=$str pkgname
}

#
GetRelationships () #package name relationship
Send this internal function the package and the relationship and it will
Create an array that has all the packages names are related to the
target package in that way.
{
i # Check if Internal go is set
if [$bol rel int go -eg "0"]; then
echo "intCreatePath is an internal function only"
return Serr internal go not set
fi
initialize the array
unset array related pkgs ret
Check to see if necessary values were passed
if [-z "$1™ 1 || [-z "$2"]; then

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

Exit with an error
return Serr_ argument mismatch
fi

Set the inputs to names that have meaning
local str pkgname=$1

local str relationship=$2

local str relationship path=$3

Make note of the original IFS
local ifsold="$IFS"

Set the IFS to "," -- the separator in the file
IFS="',"
Set the index number for the array

local int index=0

If we loop through the apt-cache output with the current IFS we get each
package in that line along with all the other information between
the comas.

int_index=0

for str in $(apt-cache show $str pkgname | grep -m 1 “$str relationship:)

do
If the file contains a | symbol then we need to split the value
IFS="]"
set $str

local str tempstringl="$1"

Reset the IFS for next round
IFsS="',"
We can start the output with the first value

IntPkgScrub $str tempstringl S$str relationship
local str_final value="$str pkgscrub_ret"

If we came across a more than one part this loop will take care of

it and any others

while ["s$2" != ""]; do
Scrub the second part and concatenate it with the first
IntPkgScrub $2 $str_relationship
local str final value="$str final value"'|'"$str pkgscrub ret"
shift

done
place the final value into the array

echo "S$str pkgnameeS$str final valueeS$str relationship” >> \
$str_relationship path
#array related pkgs ret[$int index]=$str final value
let local "int_index += 1"
done

Set IFS back to its original value.
IFS=$ifsold

#**

#**

Functions that are public -- These should be accessed by external users
#**

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

PrePkgBuild()

This function will take no arguments. It will build the list of all

packages available in the repository. It sets preliminary values for
state, future state, keep, and necessary fields

{

Create a package object
ObjCreate Package List

apt-cache pkgnames will give a list of all the packages available on the
system. sort and uniqg will make sure they are in order and there is
only one of each.
for item in $ (apt-cache pkgnames | sort | uniq)
do
echo "$iteme0¢0000" >> $obj str path
done
This is a truncated version I can use to keep testing times reasonable
for item in $(dpkg --get-selections | awk '{print $1}"')
do
echo "$item+0e0+0+00" >> Sobj str path
done
Make 1 write
}
#
PkgRelBuild ()
This function will take no arguments. It will build a table that will
contain all the relationships between all the known packages.
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.

ObjExist Package list
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

local pkg 1lst file=Sobj str path

Create an object to hold the relationships
ObjCreate Relation List

local rel lst path=S$obj_str path

echo Srel lst_path

Calculate the relationships for each item in the list by iterating over
The entire list
itemindex=0
for item in $(cat $pkg lst file)
do
GetRelationships ${item%%+*} Pre-Depends S$rel lst path
GetRelationships ${item%%+*} Depends Srel lst path
GetRelationships ${item%%*} Recommends S$rel lst_path
GetRelationships ${item%%+*} Suggests Srel lst path

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 2

oo

GetRelationships ${item%%+*} Enhances S$rel lst_path
GetRelationships ${item%%e*} Breaks S$rel lst path

GetRelationships ${item%%*} Conflicts S$rel lst_ path
GetRelationships ${item%%**} Replaces S$rel lst_path
GetRelationships ${item%%*} Provides S$rel lst_path

Set a local index

local int end=$((${#array related pkgs ret[@]}-1))
for i in $(seq 0 $int end)
do
echo "${item%%e*}+S{array related pkgs ret[$i]}e+Depends" \
>>$rel lst path
done
let "itemindex += 1"
if [$((Sitemindex % 100)) -eq 0]; then
echo $itemindex
fi
done
}
#
MarkInstalled()
This function will take no inputs and it will go through and mark all the
packages that are installed in the list
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.
ObjExist Package List
local int_ret val=$?
If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path
local pkg 1lst file=Sobj str path
Create a file for the patterns
#local path pattern file="$Sobj str path.pattern”
#touch $path pattern file
for item in $(dpkg --get-selections | awk '{print $1}"')
do
#The periods that appear in search fields mess up grep so escape them
local fixeditem=${item//\./\\\.}
clear
echo -e "Setting installed bit for: $item"
#echo ""$fixeditems [0-9]+[0-9][0-9][0-9]<[0-9]" >>"Spath pattern file"
grep -v "~S$fixediteme[0-9][0-9]°[0-9]+[0-9]+[0-9]" S$Sobj str path >\
"$obj str path.tmp"
echo "$itemelele0¢00" >> "Sobj str path.tmp"
cat "Sobj str path.tmp" | sort > Sobj str path
done
#rm "$obj str path.pattern"
rm "$obj str path.tmp"
}
#
DepFileBuild()

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

This function will take no arguments. It will build a table that will
contain the names of all the files upon which others depend
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.

ObjExist Package List
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

local pkg 1lst file=Sobj str path
Create an object to hold the relationships

ObjExist Depend List
local int ret val=$?

if [$int ret val -eq 32]; then
ObjCreate Depend List

else
ObjDestroy Depend List
ObjCreate Depend List

fi

local rel lst path=S$obj_str path

echo Srel lst_path

Calculate the relationships for each item in the list by iterating over
the list of changed items that are to be installed in the future
itemindex=0

#for item in $(grep ".¢[0-9][0-9]+[0-9]+[0-9]+1" Spkg lst file)

for item in $(grep "+ [0-9]+1[0-9]°[0-9]°[0-9]" Spkg lst file)

do
GetRelationships ${item%%+*} Pre-Depends S$rel lst path
GetRelationships ${item%%+*} Depends Srel lst path
Set a local index
local int end=$((${#array related pkgs ret[@]}-1))
for i in $(seq 0 $int end)
do
echo "${item%%e*}+S{array related pkgs ret[$i]}e+Depends" \
>>$rel lst path
done
clear
echo "Finding Dependencies for: S${item%%e*}"
#sleep 1
let "itemindex += 1"
Tt if [$((Sitemindex % 100)) -eq 0]; then
echo $itemindex
fi
done
}
#
MarkNecessary ()
This function will take no inputs and it will go through and mark all the

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

packages that are necessary

{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.

ObjExist Package List
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

local pkg 1lst file=Sobj str path

Make sure the Depend List exists
ObjExist Depend List
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
DepFileBuild
fi
Either the ObjExists or the DepFileBuild functions will set the path

local dep_lst file=Sobj_str path

What needs to happen. I need to go through all the installed packages
and see if they are in the dependency list in the second column
#for item in $(grep ".e1s[0-9][0-9][0-9]<1" Spkg 1lst file)

for item in $(grep ".e[0-9]+1¢[0-9][0-9]°[0-9]" Spkg lst file)

do
ifs_old=$IFS
IFS="e"
set $item
IFS=$ifs_old
#echo $1

#The periods that appear in search fields mess up grep so escape them
#local fixeditem=S${item%%e*}
local fixeditem=$1
local fixeditem=${fixeditem//\./\\\.}
clear
echo -e "Checking Necessity for: $1"
if [S(grep -c ".eSfixediteme." $Sdep 1lst file) -gt 0]; then
grep -v "~S$fixediteme[0-9][0-9]°[0-9]+[0-9]+[0-9]" S$pkg lst file\
>"$pkg 1lst file.tmp"
echo "$1e$2$31$556" >> "$pkg lst file.tmp"
cat "Spkg lst file.tmp" | sort > Spkg lst file
elif [$(grep -c ".e.*|$fixediteme." Sdep 1lst file) -gt 0]; then
grep -v "~S$fixediteme[0-9][0-9]°[0-9]+[0-9]+[0-9]" S$pkg lst file\
>"$pkg 1lst file.tmp"
echo "$1e$25$31$556" >> "$pkg lst file.tmp"
cat "Spkg lst file.tmp" | sort > S$pkg lst file
elif [$(grep -c ".e$fixeditem|.*e." Sdep 1lst file) -gt 0]; then
grep -v "~S$fixediteme[0-9][0-9]°[0-9]+[0-9]+[0-9]" S$pkg lst file\
>"$pkg 1lst file.tmp"
echo "$1e$2$31$556" >> "$pkg lst file.tmp"
cat "Spkg lst file.tmp" | sort > S$pkg lst file
else
grep -v "~S$fixediteme[0-9][0-9]°[0-9]+[0-9]+[0-9]" S$pkg lst file\
>"$pkg 1lst file.tmp"
echo "$1¢$25$30$556" >> "$pkg lst file.tmp"

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

cat "Spkg 1lst file.tmp" | sort > Spkg lst file
fi
#echo "$itemel+0+0+0+1" >> "S$obj str path.tmp"
#cat "Sobj str path.tmp" | sort > Sobj str path

done
rm $pkg lst file.tmp

BuildDatabase ()
This function will just call the appropriate functions to build the database
{
PrePkgBuild
MarkInstalled
DepFileBuild
MarkNecessary
}
CopyDatabase ()
This function is for testing purposes only since it takes so long to load
All the package information and update the tables correctly this
function will shortcut that by creating the home for the package info
then copying it from the directory where the program has been run
{
This is a rather quick program that will create the appropriate
Directory
PrePkgBuild
Now just copy the two file to that directory and exit.

cp ./Depend List $obj dir name/Depend List
cp ./Package List $obj dir name/Package List

SaveDatabase ()
This function assumes that we have created the database already and copies
the files to the local directory so they can be used again in the
future
{

Now just copy the two file to that directory and exit.

cp $obj dir name/Depend List ./Depend List
cp $obj dir name/Package List ./Package List

Cleanup ()
{
RemoveAllObjects
}
This function will take no arguments and simply clean up after the program
just before it exits.

#**

#**

Main Program -- mostly to test
#‘k‘k‘k*********‘k‘k**********‘k‘k*********‘k‘k**********‘k‘k*****************************

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

#BuildDatabase

#grep .eawke. Depend List

#bol rel int go=1

#echo "Start" > ./test.txt
#ObjCreate Relation List

#rel lst path=Sobj str path

#echo $rel lst path
#GetRelationships zope-ploneformgen Depends $rel lst path
#MarkInstalled

#PkgRelBuild

#array related pkgs ret[$int index]

7.4. gupi_packages.sh

#!/bin/bash

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor Boston, MA 02110-1301, USA

o o o o o o o o W

#**

Public Functions
#‘k‘k‘k*********‘k‘k**********‘k‘k*********‘k‘k**********‘k‘k*****************************

UpdateDatabase ()
This function will take no input. It will take the contents of the array
and update the contents of the database with the changes. IT will then
call the appropriate functions to update the dependencies
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.

ObjExist Package List
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

local pkg 1lst file=Sobj str path
Create a file for the patterns

#local path pattern file="$Sobj str path.pattern”
#touch $path pattern file

Set the highest index number
let local int max=${#ary item list[@]}

Set the starting value
local int_index=0

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

while [$int index -1t $int max 1];
do
Tear list item apart
ifs 0ld=S$IFS
IFS="+"

set ${ary item list[$int index]}
IFS=$ifs_old

#The periods that appear in search fields mess up grep so escape them
local fixeditem=${1//\./\\\.}

Let user know something is happening

clear

echo -e "Updating database with: $1"
#echo "grep -v \""S$fixediteme[0-9][0-9]+[0-9]+[0-9]+[0-9]\" Sobj str path \\" \
#>command. txt
#echo "\"S$obj str path.tmp\"" >> command.txt

grep -v "~$fixediteme[0-9]¢[0-9]°[0-9]+[0-9]+[0-9]" Sobj str path >\

"$obj str path.tmp"

#read
echo "$1e$2¢$3545556" >> "S$obj str path.tmp"
cat "Sobj str path.tmp" | sort > Sobj str path

let local int_index=$int_index+l
done

rm "$obj str path.tmp"
DepFileBuild
MarkNecessary

ToggleFutureState () # str package string
This function will simply swap the value of the future state variable
between 0 and 1
{
if [-z "$1"]; then
return

fi

str package string=$51

Tear apart the entry
ifs 0ld=S$IFS
TFS="en

set $str package string
IFS=$ifs old

swap the state
if [$3 -eq 0]; then
local str fut state="1"
else
local str fut state="0"
fi
A package can't have a future state of 0 and keep set to 1 so if future
state is 0 change keep to 0
if [$str_ fut state -eq 0]; then
local str keep state="0"
else
local str keep state=$5
fi

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

rebuild string
str updated value="$1le$2+$str fut state+$4+Sstr keep state+$6"

ToggleKeepState () # str package string
This function will simply swap the value of the future state variable
between 0 and 1
{
if [-z "$1"]1; then
return
fi

str package string=$1

Tear apart the entry
ifs 0ld=S$IFS
TFS="en

set $str package string
IFS=$ifs_old

swap the state
if [$5 -eq 0]; then
local str keep state="1"
else
local str keep state="0"
fi
If Keep is 1 future state can't be 0 so if keep is 1 change future to 1
if [$str keep state -eq 1]; then
local str fut state="1"
else
local str fut state=$3
fi
rebuild string

str updated value="$1le$2+$str fut state+$4+Sstr keep state+$6"

ShowManPage () # str package string
This will simply show the man page of a package
{
if [-z "$1"]; then
return
fi

str package string=$1

Tear apart the entry
ifs 0ld=S$IFS
TFS="en

set $str package string
IFS=$ifs_old

#Show manpage

man $1
}
DisplayListItem() #item to display
This function will display a single item from the list and allow for
changes.

{

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

if [-z "$1"]1; then
return
fi

local str orig string=$1

Display the normal header
local str_filler=".« o0 e e e e e e et

Build the form header

clear

local str_line=' !

#local str headl="'| Package'

local str headl="| Package. "
local str headl="$str headl| Cur | Fut |. . .|. . .[|"

#local str head2="| Name"

local str head2="|Name. . . T

local str head2="$str head2|State|State|Reqgd?|Keep?|"

echo -e $str line$str line
echo -e $str_headl
echo -e $str_head2
echo -e $str line$str line

Break up the input
ifs_old=$IFS
TFS="en

set $str orig string
IFS=$ifs_old
local str name=$1

local str decrip=$ (apt-cache show $str name | grep -m 1 Description:)
if [$2 -eq 0]; then
local str cur state=". U ."
else
local str cur state=". I ."
fi
#echo $str cur state
if [$3 -eq 0]; then
local str fut state=". U ."
else
local str fut state=". I ."
fi
#echo $str fut state
if [$4 -eq 0]; then
local str necessary=" NO! "
else
local str necessary=" YES "
fi
#echo $str necessary
if [$5 -eq 0]; then
local str keep=" NO! "
else
local str keep=" YES "
fi
local str output="|$str name $str filler"
Create an object to hold the relationships

ObjExist Provide List
local int ret val=$?

if [$int ret val -eq 32]; then
ObjCreate Provide List

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

else
ObjDestroy Provide List
ObjCreate Provide List
fi

local rel provides_path=S$obj_ str path
Make sure the Depend List exists

ObjExist Depend List
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
DepFileBuild
fi
Either the ObjExists or the DepFileBuild functions will set the path

local dep_lst file=Sobj_str path
local str name orig=$str name

bol Dependant='0"

Check to see if this package provides any other package it it
does then we need to check to see if the provided
package is considered necessary. If so we need to
inform the user and prevent them from removing the
package.
GetRelationships $str_name Provides S$rel provides_path
if [$(grep -c . $rel provides path) -gt 0]; then
ifs_old=$IFS
IFS="-"

set $(grep -m 1 . Srel provides path)
IFS=$ifs_old

local fixeditem=$2

local fixeditem=${fixeditem//\./\\\.}
local "str name=$str name (Provides: $2)"

if [S(grep -c ".eS$fixediteme." $Sdep 1lst file) -gt 0]; then
bol Dependant='1"
else
bol Dependant='0"
fi
fi
Next we wish to find if there are multiple packages that may
fulfill a specific dependency. In this case the user
Has a choice which package to use but this program
will only identify the issue and prevent the user
from uninstalling the package.

local fixeditem=$str name_orig
local fixeditem=${fixeditem//\./\\\.}

if [$(grep -c ".s$fixeditem|.*s." $dep lst file) -gt O]; then
ifs_old=$IFS
TFS="en

set $S(grep -m 1 ".e$fixeditem|.*+." Sdep_lst file)
IFS=$ifs_old
local "str name=$str name (Choice: $2)"

fi

local str output="|$str name $str filler"

local str_output="${str_output:0:55}"

local str_output="$str output|$str_cur_ state|S$str_ fut state"
local str_output="$str output|$str necessary|S$str_keep|"
echo $str output

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

echo -e $str line$str line

echo
echo $str decrip
echo
if [S$bol Dependant = 'l']; then
echo "$2 is necessary. Future state may not be changed!"
echo
echo " Toggling future state disabled:. A\"=\""
else
echo
echo
echo
echo " To toggle (f)uture state type: A"E\""
fi
echo " To toggle (k)eep state type: o . A"kK\""
echo " To show the package's (m)an page type: \"m\""
echo " To (s)ave and return type: Coe . AMs\T
echo " To cancel changes and (g)uit) type:. \"g\""
echo
echo -e "Please enter your choice: \c"
read -n 1 item choice
}
DisplayListMenu () #int offset
This function will display the list that was just created so the user may
make use of it.
{
Set offset index: The number we need to skip from the beginning
if [-z "$1"]1; then
local int start=0
else
local int start=$1
fi
Set the highest index number

#let local int max=${#ary item list[@]}-1
let local int max=${#ary item list[@]}
let local int end=$int start+10

if [$int_max -1t $int_end]; then
int end=$int max
fi

local int_index=$int_start
local int_choice val=0
local str_filler=".

Build the form header
clear

local str_line='
#local str_headl="'| Package

local str headl="| Package. "
local str headl="$str headl| Cur | Fut |. . .|. . .[|"

#local str head2="| Name "
local str head2="|Name. "

local str head2="$str head2|State|State|Reqgd?|Keep?|"
echo -e $str line$str line
echo -e $str_headl

echo -e $str_head2
echo -e $str line$str line

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 3

while [$int_index -1t $int_end 1;

do
ifs_old=$IFS
IFS="e"
set ${ary item list[$int index]}
IFS=$ifs_old
local str name=$1
if [$2 -eq 0]; then
local str cur state=". U ."
else
local str cur state=". I ."
fi
if [$3 -eq 0]; then
local str fut state=". U ."
else
local str fut state=". I ."
fi
if [$4 -eq 0]; then
local str necessary=" NO! "
else
local str necessary=" YES "
fi
if [$5 -eq 0]; then
local str keep=" NO! "
else
local str keep=" YES "
fi
local str_output="|$int_choice_val."
local str output="$str output $str name S$str filler"
local str_output="${str_output:0:55}"
local str_output="$str output|$str_cur_ state|S$str_ fut state"
local str_ output="$str output|$str necessary|S$str_keep|"
echo $str output
let local int_index=$int_index+l
let local int_choice_val=$int_choice_val+l
done
Now I want to list 10 items from the list we created this list should
be from the offset plus 10 up to the highest number
echo -e $str line$str line
echo
echo " To modify a row please enter the number to its left: . . [0-9]"
echo " To move forward to the (n)ext list type: \"n\""
echo " To move (b)ack to the previous list type:. \"b\""
echo " To (s)ave your changes type: « « « « . . \"s\""
echo " To save and (r)eturn type: « « « « « « « « < A\"p\""
echo " To cancel changes (g)uit) type:. \"g\""
echo
echo -e "Please enter your choice: \c"

read -n 1 display choice

ListItemMenu ()

str package entry

This function will get and act on the choices for the List Item

Author Name, email@address

© 2010 The SANS Institute

Author retains full rights.

Using GUPI to create the Null Box | 4

itemmenuquit=0

str list entry=$1

str list backup=$1

while ["$itemmenuquit™ != "1"];

do
DisplayListItem $str list entry
case "$item choice" in

£)
Tear apart the entry
ifs_old=$IFS
IFS="-"
set $str_list entry
IFS=$ifs_old
if [$4 = '1']; then
clear
echo "Cannot change future state of necessary packages."
sleep 2
elif [$bol Dependant = 'l']; then
clear
echo "Adjustment of future state not permitted."
sleep 2
else
ToggleFutureState $str_list_entry
str list entry=$str updated value
fi;;
k)
ToggleKeepState $str list entry
str_list _entry=$str updated value;;
m)
clear
ShowManPage $str_list_entry
sleep 1;;
s)
str updated value=$str list entry
itemmenuquit=1;;
q)
str updated value=$str list backup
itemmenuquit=1;;
*)
echo -e "That was not a valid choice. Choose a value or press \n"
echo "\"g\"to quit"
sleep 2;;
esac
done
}
DisplayRemovableList ()
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.
ObjExist Package List
local int_ret val=$?
If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

pkg 1lst file=$Sobj str path

Assign each returned string to a field in an array.

Using GUPI to create the Null Box | 4

easily find which is going to be modified.

unset ary item_ list
local int index=0

for item in $(grep "+ [0-9]+100+[0-9]" Spkg 1lst file)

do

ary item list[$int index]=S$item

let "int index += 1"
done

local start val=0

menuquit=0

while ["S$menuquit" != "1"];

do
DisplayListMenu $start val
case "$display choice" in

This way I can

[0-91%)
let local showitem=$display choice+$start val
if [$showitem -ge $int index]; then
showitem=$int index
let "showitem -= 1"
fi
ListItemMenu ${ary item list[$showitem]}
ary item list[$showitem]=$str updated value;;
n)
let start val=S$start val+l0
if [S$start val -gt $int index]; then
let start val=S$start val-10
fi;;
b)
let start val=S$start val-10
if [$start val -1t 0]; then
let start val=0
£i;;
s)
UpdateDatabase
local int index=0
unset ary item_ list
for item in $(grep "+ [0-9]+1+0+0+[0-9]" S$pkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done; ;
r)
UpdateDatabase
menuquit=1;;
q)

menuquit=1;;
*)

echo -e "That was not a valid choice.

echo "\"g\"to quit"

sleep 2;;
esac
done
}
DisplayKeptList ()
{
Get path to Package List.
PrePkgBuild and get

Author Name, email@address

© 2010 The SANS Institute

If it has not been created yet run
the path.

Choose a value or press \n"

Author retains full rights.

Using GUPI to create the Null Box | 4

ObjExist Package List
local int ret val=$?

If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

pkg 1lst file=$obj str path

Assign each returned string to a field in an array. This way I can
easily find which is going to be modified.
unset ary item_ list
local int index=0
for item in $(grep "+ [0-9]+1+0+1+[0-9]" S$pkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done

local start val=0

menuquit=0

while ["S$menuquit" != "1"];

do
DisplayListMenu $start val
case "$display choice" in

[0-91%)
let local showitem=S$display choice+$start val
if [S$showitem -ge $int index]; then
showitem=$int index
let "showitem -= 1"
fi
ListItemMenu ${ary item list[$showitem]}
ary item list[$showitem]=$str updated value;;
n)
let start val=S$start val+l0
if [S$start val -gt $int index]; then
let start val=S$start val-10
£i;;
b)
let start val=S$start val-10
if [$start val -1t 0]; then
let start val=0
£i;;
s)
UpdateDatabase
local int index=0
unset ary item_ list
for item in $(grep "+ [0-9]+1+0+1+[0-9]" S$pkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done; ;
r)
UpdateDatabase
menuquit=1;;
q)
menuquit=1;;
*)
echo -e "That was not a valid choice. Choose a value or press \n"

echo "\"g\"to quit"

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

sleep 2;;
esac
done
}
DisplayRemovedList ()
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.
ObjExist Package List
local int ret val=$?
If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

pkg 1lst file=$Sobj str path

Assign each returned string to a field in an array. This way I can
easily find which is going to be modified.
unset ary item_ list
local int index=0
for item in $(grep "+ [0-9]+0+0+0+[0-9]" S$pkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done

local start val=0

menuquit=0

while ["S$menuquit" != "1"];

do
DisplayListMenu $start val
case "$display choice" in

[0-91%)
let local showitem=$display choice+$start val
if [S$showitem -ge $int index]; then
showitem=$int index
let "showitem -= 1"
fi
ListItemMenu ${ary item list[$showitem]}
ary item list[$showitem]=$str updated value;;
n)
let start val=S$start val+l0
if [S$start val -gt $int index]; then
let start val=S$start val-10
fi;;
b)
let start val=S$start val-10
if [$start val -1t 0]; then
let start val=0
fi;;
s)
UpdateDatabase

local int index=0
unset ary item_ list
for item in $(grep "+ [0-9]+0+0+0+[0-9]" S$pkg lst file)
do
ary item list[$int index]=S$item

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

let "int index += 1"

done; ;
r)
UpdateDatabase
menuquit=1;;
q)
menuquit=1;;
*)
echo -e "That was not a valid choice. Choose a value or press \n"
echo "\"g\"to quit"
sleep 2;;
esac
done
}
DisplayNecessaryList ()
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.
ObjExist Package List
local int ret val=$?
If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

pkg 1lst file=$Sobj str path

Assign each returned string to a field in an array. This way I can
easily find which is going to be modified.
unset ary item_ list
local int index=0
for item in $(grep "+ [0-9]+[0-9]+1[0-9]°[0-9]" Spkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done

local start val=0

menuquit=0
while ["S$Smenuquit" != "1"];
do
DisplayListMenu $start val
case "$display choice" in
[0-9]%)
let local showitem=$display choice+$start val
if [$showitem -ge $int index]; then
showitem=$int index
let "showitem -= 1"
fi
ListItemMenu ${ary item list[$showitem]}
ary item list[$showitem]=$str updated value;;

n)
let start val=S$start val+l0
if [S$start val -gt $int index]; then
let start val=S$start val-10
fi;;
b)

let start val=S$start val-10

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

if [$start val -1t 0]; then
let start val=0
fi;;
s)
UpdateDatabase
local int index=0
unset ary item_ list
for item in $(grep "+ [0-9]+1+0+1+[0-9]" S$pkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done; ;
r)
UpdateDatabase
menuquit=1;;
q)
menuquit=1;;
*)
echo -e "That was not a valid choice. Choose a value or press \n"
echo "\"g\"to quit"
sleep 2;;
esac
done
}
DisplayAllList ()
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.
ObjExist Package List
local int_ret val=$?
If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

pkg 1lst file=$Sobj str path

Assign each returned string to a field in an array. This way I can
easily find which is going to be modified.

unset ary item_ list
local int index=0
for item in $(grep "+ [0-9]+[0-9]+[0-9]+[0-9]+[0-9]" $pkg lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done

local start val=0

menuquit=0
while ["S$menuquit" != "1"];
do
DisplayListMenu $start val
case "$display choice" in
[0-9]%)
let local showitem=$display choice+$start val

if [S$showitem -ge $int index]; then

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

showitem=$int index
let "showitem -= 1"
fi
ListItemMenu ${ary item list[$showitem]}
ary item list[$showitem]=$str updated value;;

n)
let start val=S$start val+l0
if [$start val -gt $int index]; then
let start val=S$start val-10
fi;;
b)
let start val=S$start val-10
if [$start val -1t 0]; then
let start val=0
fi;;
s)
UpdateDatabase
local int index=0
unset ary item_ list
for item in $(grep "+ [0-9]¢[0-9]1[0-9][0-9][0-9]"™ \
Spkg 1lst file)
do
ary item list[$int index]=S$item
let "int index += 1"
done; ;
r)
UpdateDatabase
menuquit=1;;
q)
menuquit=1;;
*)
echo -e "That was not a valid choice. Choose a value or press \n"
echo "\"g\"to quit"
sleep 2;;
esac
done
}
CreateCommand ()
This command will write the command you need to uninstall the unwanted
packages
{
Get path to Package List. If it has not been created yet run
PrePkgBuild and get the path.
ObjExist Package List
local int ret val=$?
If int_ret_val shows 32 create the object and continue otherwise
continue
if [$int ret val -eq 32]; then
PrePkgBuild
fi
Either the ObjExist or the PrePgkBuild functions will set the path

pkg 1lst file=$Sobj str path

Assign each returned string to a field in an array. This way I can
easily find which is going to be modified.

echo -e "apt-get -y --force-yes purge \c" > Apt Command.sh
for item in $(grep "+1¢0+[0-9][0-9][0-9]" Spkg 1lst file)

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

Break up the input

ifs_old=$IFS

IFS="e"

set $item

IFS=$ifs_old

echo -e "$1 \c¢" >> Apt Command.sh
done
chmod +x ./Apt Command.sh
echo -e "The script \"Apt Command.sh\" was created in the directory \c"
echo -e "where you ran this script."
echo "Run the command with sudo and it will remove the packages requested"
echo "with no questions asked (be careful)"

sleep 3

7.5. objects.sh

#!/bin/bash

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor Boston, MA 02110-1301, USA

HHoH M H H W H o H H

#***

Overall Description
#***

This script will centralize the common functions to all "objects". Bash is,
of course, not an object oriented language but that behavior can be
simulated by creating files in memory that store the state of each
"object" The name of the "object" is the name of the file and the path
to the "object" will include the program ID of the script that was first

called which created the particular instance of the object.
#***

HH H o H H

#**#

Object Return Codes

#**#

Here I am just defining error codes common to those scripts that call this
one

obj bad value=10

obj internal go not set=20

obj exists=30

obj not found=32

obj argument mismatch=40

#***

#***

Global Variables

#***

Bash Functions are not able to return any information other than a state

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

from 1 to 256 so these are the return variables so they can be returned
by reference. I will prefix them so they can be differentiated from

return variables from another function.

Internal only flag: This is a flag that will prevent functions that are not

to be used outside of this script unable to be used

obj bol internal=0

Return by reference for the function MakelInt
obj int only=0

Return by refrence for the function CleanVar
obj str scrubbed=

nn

Return by refrence for the function MakeDirName
obj dir name=""

Path to the object Returned from ObjCreate and ObjPath
obj str path=""

#**

#**

Functions that are public -- These should be accessed by external users
#**
MakeInt () #var user input
This function will take any input and return only the numbers. Not even
Decimals. i.e. "pie is good 3.14159" would return 314159
{
Set the user input to a named variable
var user input=$1
Check to see if necessary values were passed
if [-z "$var user input"]; then
Exit with an error
return Serr argument mismatch
fi
Remove any non numeric character

local good_char_ 1st="1234567890"
local var user input="${var user input//["1234567890]/}"

Check to see if the variable is empty
if [-z "$var user input"]; then
Exit with an error

echo "No Argument or empty string after modification"
return Serr bad value

fi
Only numbers are left return a value by reference
obj int only=$var user input
return 0
}
#

CleanVar () #str_user_ input <int non_default_ length>

This function will take user input and remove any characters that may cause
issues. It will also truncate very long inputs. The second variable
will modify the truncation length (it is not required)
{
Check to see if necessary values were passed
if [-z "$1"™]; then
Exit with an error

return Serr_ argument mismatch

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 4

fi
Set the truncation length based on default or user input
if [-z "$2"]; then
no data entered use default
local int trunc_len=100
else
Check Input
MakeInt $2
Check return Value
local ret_val=$?
if [Sret val -gt 0]; then
echo "Warning!! Truncation value not valid -- using default"
local int trunc_len=100
else
int trunc len=S$obj int only
fi
fi
Truncate the input

local str user input=${1:0:$int trunc_len}

Remove anything strange from the inputs

Create a string of all the types of letters permitted

local str good char 1lst='ABCDEFGHIJKLMNOPQRSTUVWXYZ-'

local str good char lst="$str good char lst abcdefghijklmnopgrstuvwxyz"
local str_good char lst="$str good char lst 1234567890\ \-"

Remove anything that is not in the good string
str_user_input="${str_user_ input//["$str_good char lst]/}"

Check to see if variable is empty
if [-z "S$str user input"]; then
Exit with an error

echo "No argument or empty string after modification"
return Serr bad value
fi

Everything is good Return value by reference
obj_str_ scrubbed=$str user_ input

return 0O

}

#
MakeDirName ()
This function takes no input but pulls the PID of the current running
process and uses it to create a directory name.
{
Create path for this calling program. If for some reason you don't want
The objects to be stored in memory (low memory machine) change the
path right here!!
% WARNING * If you do not follow the pattern:
/ [whatever]/[dir for all objects]/[call specific objects]
you will break the function RemoveAllObjects and it may do something
very bad
Create a directory to hold all my objects so we can delete them all at
one time if necessary

obj dir name="/dev/shm/rlc-objects"
if [! -d "S$obj dir name"]; then
mkdir "$obj_dir name"

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

}
#

Using GUPI to create the Null Box | 5

chmod 700 $obj_dir name
fi

Get the PID of the calling program add it for this instance
local int pid=S$$

obj dir name="/dev/shm/rlc-objects/$int pid"

return 0

ObjExist () #name of object

This function will check to see if the object already exists if it does it
will return obj exists=30 if not it will return obj not found=32 in
either case it will set the obj dir name and the obj str path
{
Check to see if necessary values were passed
if [-z "$1"]; then
Exit with an error
return Serr argument mismatch
fi
Get the path name and set the path
MakeDirName
obj str path=$obj dir name/$1
Check to see if the file (object) exists if so set path and return value
otherwise just set return value
if [-e "Sobj str path"]; then
return S$Sobj exists
else
return $obj not found
fi
}
#
ObjCreate() #object name
This function will create file to store the instance of an object
{
Since we use this name to create a file name we must be careful of what
we permit to be in the file
CleanVar $1
local ret_val=$?
if [Sret val -gt 0]; then
return S$ret_val
fi
Assign the returned value
local obj name=S$obj str scrubbed
Next let’s see if this object exists. If it does return that it exists
error and exit otherwise you have set the path and directory so...

ObjExist $obj name
local ret val=S$?

if [Sret val -1t 32]; then
Object Exists so no point in continuing
#echo "returning because object exists"
return Sret_val

fi

Create the directory if it does not exist set permissions

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

if [! -d "Sobj dir name"]; then
mkdir "$obj_dir name"
chmod 700 $obj_dir name
#echo "made directory"

fi

Create final path to object
obj str path="$obj dir name/$obj name"

If you made it this far you can create the file for the object

touch $obj_str path

chmod 700 S$obj_str_path

return 0
}
#
ObjDestroy () #object name

This function will destroy the instance of the object

Check to see if the object exists
ObjExist $1
local int ret val=$?

If int ret val shows 30 delete the file if it shows anything else ignore
the request
if [$int ret val -eq 30]; then

rm -f $Sobj str path
fi
return 0
}
#
RemoveProgObjects ()

This function takes no input it will remove the objects created by the
calling program. (it will delete the directory created)
{
Check to see if an object directory for this pid exists and if so
delete it.
Get the PID of the calling program add it for this instance
MakeDirName
if [-d "Sobj dir name"]; then
rm -rf "S$obj_dir name"
return 0O
fi

return 30

}

#
RemoveAllObjects ()
This function takes no input it will remove all the objects created by any
program that uses this fucntion.
{
Remove the final name from the directory path and remove the parent
directory
MakeDirName
if [-d "${obj dir name%\/*}"]; then

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

rm -rf "${obj dir name%\/*}"
return 0
fi

return 30

}

#**
#**

Main Program -- mostly to test
#‘k‘k‘k*********‘k‘k**********‘k‘k*********‘k‘k**********‘k‘k*****************************

echo "Test MakeInt"
test_input='PielsGood3.14159 other stuff'
echo "Test input: Stest input"

MakeInt Stest input

echo "Test output: $obj int only"

echo \

HH oH o H S H H

echo

echo "Test CleanVar"
test_input='Hello../../../../../fred_is_at_root-3\'
echo "Test input no argument: S$test input"
CleanVar $test input #no argument

echo "Test output no argument: $obj str scrubbed"
echo "+++++++++t+++!

echo "Test with good argument: 25"

CleanVar S$test_input 25

echo Sobj str scrubbed

echo '"+++++++++t++++!

echo Test with bad argument: sw25

CleanVar S$test_input sw25

echo Sobj str scrubbed

echo '"+++++++++t++++!

echo Test with really bad argument: sw250000
CleanVar S$test input sw250000

echo Sobj str scrubbed

echo \

o o o o o o o o 3k

echo

echo "Test MakeDirName: There is no input just call the function and display"
echo "the results"

MakeDirName

echo S$obj dir name

echo \

HH oH o H S H H

echo

echo "Test ObjCreate (this will also test part of ObJjExist)"
ObjCreate Fred the object

echo Sobj str path

echo "Try to create Fred again...
ObjCreate Fred the object

echo "Create a third object"
ObjCreate Geroge the object

echo "Hang on long enough to see my work"

"

sleep 1
echo \

H o o o o o o

e

echo

e

echo "Try to delete an object that does not exist"

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

ObjDestroy Sally the object
echo "Destroy Geroge"
ObjDestroy Geroge the object
sleep 2

echo \

HH H o o H H

echo

echo "Remove all program related objects"
RemoveProgObjects

echo \

HH H o H

B

echo
RemoveAllObjects

B

8. Appendix B Package lists
Below is a listing of the packages that the administrator can remove and those that

must stay.

8.1. Removable Packages

apparmor

apparmor-utils

aptitude

apt-transport-https

May cause issues because apt will be unable to set up certain
apt-utils packages correctly.

at

bash-completion
bind9-host
bsdmaintutils
bsdutils
busybox-static
bzip2
ca-certificates

command-not-found

command-not-found-data

console-setup Involved in a circular dependency with xbd - GUPI will not find it.

console-terminus

cpp
cpp-4.4

cron

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

Before removing this, it is imperative that the IP addressing be
defined in /etc/network/interfaces. Do not forget to also place DNS
dhcp3-client info in /etc/resolve.conf

dhcp3-common
diffutils

dmidecode

dmsetup

dnsutils

dosfstools

ed

eject

file
friendly-recovery
ftp

fuse-utils

geoip-database

gettext-base

gnupg
gnupg-curl

groff-base

grub-common

Can be removed but must edit /boot/grub/grub.cfg or replace the
Jusr/share/grub/unicode.pf2 file to avoid the "File Not Found" error
grub-pc on bootup. Also will be unable to ever change boot files

hdparm

info

installation-report

iproute

Administrators can remove this package but it will take away the
ability to configure the kernel side of IPTABLES. In effect this
iptables disables the firewall

iputils-arping

iputils-ping

iputils-tracepath

irgbalance

iso-codes

Involved in a circular dependency with console-setup - GUPI will
kbd not find it.

language-selector-common

laptop-detect

less

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

libapparmorl

libapparmor-perl
libatm1
libbind9-60
libbsdO
libc6-i686
libcap2

libcap-ng0

libclass-accessor-perl

libcurl3-gnutls
libcwidget3
libdevmapper1.02.1
libdns64

libedit2

libelfl

libept0

libexpatl

libfont-afm-perl

libfreetypeb
libfribidiO
libfuse2
libgclc2
libgcryptll
libgdbm3
libgeoipl

libgmp3c2
libgnutls26
libgpg-error0

libgpm?2
libgssapi-krb5-2
libhtml-format-perl

libhtml-parser-perl

libhtml-tagset-perl

libhtml-tree-perl
libidn11
libio-string-perl
libisc60
libisccc60
libisccfgb0
libk5crypto3
libkeyutils1

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

libkrb5-3
libkrb5support0
libldap-2.4-2
liblockfilel
liblwres60
libmagicl

libmailtools-perl
libmpfrildbl
libncursesw5
libntfs-3g75
libparse-debianchangelog-perl
libpartedOdebianl
libpcap0.8

libpci3
librpc-xml-perl
libsas|2-2
libsasl2-modules
libsigc++-2.0-0c2a
libsqlite3-0
libssl0.9.8
libsub-name-perl
libtasn1-3

libterm-readkey-perl

libtimedate-perl

liburi-perl

libwww-perl
libx11-6
libx11-data
libxapian15
libxau6
libxcb1
libxdmcp6
libxext6
libxm|2

libxml-libxml-perl

libxml-namespacesupport-per|

libxml-parser-perl

libxml-sax-expat-perl

libxml-sax-perl

libxmuul

linux-firmware

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

linux-generic-pae
linux-headers-2.6.32.-21
linux-headers-2.6.32.-21-generic

linux-headers-generic-pae

linux-image-generic-pae

locales

lockfile-progs

logrotate

This command is used to create the motd file. Administrators must
edit the /etc/update-motd.d/00-header file to avoid a non-critical
Isb-release error on logon.

Ishw

Isof

Itrace

make

man-db

manpages

memtest86+

mime-support

mlocate
mtr-tiny
nano
Removing this package will prevent certain other packages from
ncurses-base installing correctly. It will also break GUPI.

netcat-openbsd
ntfs-3g
ntpdate

openssh-client

openssl|

os-prober

parted

pciutils

Involved in a circular dependency with peri-modules - GUPI will not
perl find it.

perl-modules Involved in a circular dependency with per1 - GUPI will not find it.

plymouth-theme-ubuntu-text

popularity-contest

powermgmt-base

ppp

pppconfig
pppoeconf

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

psmisc

python

python2.6

python2.6-minimal

python-apt

python-central

python-gdbm

python-gnupginterface

python-minimal

python-support

rsync

rsyslog

sgml-base

strace

Involved in a circular dependency with tasksel-data - GUPI will not
tasksel find it.

Involved in a circular dependency with tasksel - GUPI will not find
tasksel-data it.

tcpdump

telnet

time

ubuntu-keyring

ubuntu-minimal

ubuntu-standard

ucf

ufw

update-manager-core

ureadahead

usbutils

uuid-runtime

vim-common

vim-tiny

w3m

wget

xauth
xkb-data
xml-core

8.2

‘ adduser

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 5

Removing this file prevents the administrator from installing new
apt software

base-files

base-passwd

bash This can be replaced with another version of the command shell

busybox-initramfs

coreutils
cpio
dash
debconf
This can be replaced with an English-only version (debconf-
debconf-i18n english), saving some space.
debianutils
dpkg
e2fslibs
e2fsprogs Causes errors on startup (cannot check the disks)
findutils
gcc-4.4-base
Removing this prevents the apt-get update function from checking
the validity of the store. While technically it does not prevent the
gpgv system from working, it causes many errors.
Removing this will prevent GUPI from functioning. It also causes
grep error on shutdown and startup.
gzip Administrators cannot unzip packages without this package.
Removing this package causes every command to show an error
hostname about being unable to find the host.
ifupdown

initramfs-tools

initramfs-tools-bin

initscripts

insserv

install-info
klibc-utils
libacll
libattrl
libblkid1
libbz2-1.0
libcb
libc-bin
libcomerr2
libdb4.8

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 6

libdbus-1-3
libdrm2
libdrm-intell

libdrm-nouvaul

libdrm-radeonl

libgccl
libglib2.0-0
libklibc

liblocale-gettext-per!

libncurses5
libnewt0.52
libnih1
libnih-dbus1
libpamOg

libpam-modules

libpam-runtime

libpcre3

libplymouth2
libpng12-0
libpoptO
libreadlines6

libselinux1

libsepoll

libslang2

libss2

libstdc++6
libtext-charwidth-perl

libtext-iconv-perl

libtext-wrapil8n-perl
libudevO
libusb-0.1-4

libuuidl

linux-image-2.6.32-21-generic- This is the kernel; getting rid of this keeps the computer from
pae booting.

login Without this package, the administrator cannot log on.

Isb-base

lzma

makedev

mawk Provides awk, which cannot be removed.

module-init-tools

mount

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 6

mountall

ncurses-bin

netbase

net-tools

passwd

perl-base

plymouth

procps

readline-common

sed

sensible-utils

The administrator is unable to remove this package until they export
'SUDO_FORCE_REMOVE=yes'. Then apt-get will be able to remove
this package. Be certain before taking this action that the root

sudo account's password is set to a known value.

sysvinit-utils

SYsV-rc

tar This package is necessary to install others.
tzdata

udev

upstart

util-linux

whiptail This package is necessary to install others.

wireless-crda
zliblg

9. Script to create Null Box
The user may modify this script as they see fit. It will remove all packages it can
from the Ubuntu 10.04 Server minimal install. It also sets some minor security related

settings.

#!/bin/bash
#**Set some limits on cores, open processes per user and open files per process

Create a temp file with most of the information in it
cat /etc/security/limits.conf |grep -v 'End of file' > ./limits.conf

Prevent Core dumps

echo '* hard core 0' >> ./limits.conf

Set limits on number of processes per user
echo '* soft nproc 64' >> ./limits.conf

echo '* hard nproc 128' >> ./limits.conf

Set limits on number of files a process may open
echo '* soft nofile 256 >> ./limits.conf

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

Using GUPI to create the Null Box | 6

echo '* hard nofile 256 >> ./limits.conf

Finish up the file
echo '# End of file' >> ./limits.conf

Move the old file out of the way and place the new file
mkdir ./oldfiles

sudo mv /etc/security/limits.conf ./oldfiles/.limits.conf
sudo mv ./limits.conf /etc/security/limits.conf

mkdir ./grubstore

sudo cp /usr/share/grub/unicode.pf2 ./grubstore

echo '#!/bin/sh' >./00-header

echo 'printf "%$s\n" "This system reserved for authorized use only"' >> ./00-header

sudo mv /etc/update-motd.d/00-header /etc/update-motd.d/00-header.old

sudo mv ./00-header /etc/update-motd.d/00-header

echo 'This computer is for authorized uses only. All activity will be monitored' >
./issue

sudo mv /etc/issue /etc/issue.old

sudo mv ./issue /etc/issue

sudo apt-get —--purge remove apparmor apparmor-utils apt-transport-https apt-utils at
bash-completion bind9-host bsdmainutils busybox-static bzip2 ca-certificates command-not-
found command-not-found-data cpp cpp-4.4 cron dhcp3-client dhcp3-common dmidecode
dnsutils dosfstools ed eject file friendly-recovery ftp fuse-utils geoip-database gnupg
gnupg-curl groff-base hdparm info installation-report iproute iputils-arping iputils-ping
iputils-tracepath irgbalance iso-codes language-selector-common laptop-detect less
libapparmorl libapparmor-perl libatml libbind9-60 libbsd0 1libc6-1686 libcap2 libcap-ng0
libclass-accessor-perl libcurl3-gnutls libdns64 libedit2 libelfl libexpatl libfont-afm-
perl libfribidi0 libfuse2 libgclc?2 libgcryptll libgeoipl libgmp3c2 libgnutls26 libgpg-
error(0 libgpm2 libgssapi-krb5-2 libhtml-format-perl libhtml-parser-perl libhtml-tagset-
perl libhtml-tree-perl libidnll libio-string-perl libisc60 libisccc60 libisccfg60
libk5crypto3 libkeyutilsl libkrb5-3 libkrbbSsupport0 libldap-2.4-2 liblockfilel liblwres60
libmagicl libmailtools-perl libmpfrlldbl libntfs-3g75 libparse-debianchangelog-perl
libpartedOdebianl libpcap0.8 libpci3 librpc-xml-perl libsasl2-2 libsasl2-modules
libsglite3-0 libsub-name-perl libtasnl-3 libterm-readkey-perl libtimedate-perl liburi-
perl liburi-perl libx11l-6 libxll-data libxau6 libxcbl libxdmcp6 libxext6 libxml2 libxml-
libxml-perl libxml-namespacesupport-perl libxml-parser-perl libxml-sax-expat-perl libxml-
sax-perl libxmuul linux-generic-pae linux-headers-2.6.32-21 linux-headers-generic-pae
linux-image-generic-pae lockfile-progs logrotate lsb-release lshw lsof ltrace make man-db
manpages memtest86+ mime-support mlocate mtr-tiny netcat-openbsd ntfs-3g ntpdate openssh-
client openssl parted pciutils plymouth-theme-ubuntu-text popularity-contest powermgmt-
base ppp pppconfig pppoeconf psmisc python python2.6 python-apt python-central python-
gdbm python-gnupginterface python-support rsync rsyslog strace tcpdump telnet time
ubuntu-keyring ubuntu-minimal ubuntu-standard ufw update-manager-core ureadahead usbutils
uuid-runtime vim-common vim-tiny w3m wget xauth xml-core tasksel-data tasksel aptitude
bsdutils dmsetup linux-firmware locales nano os-prober python-minimal sgml-base
libcwidget3 libeptO libsigc++-2.0-0c2a libxapianl5 iptables kbd console-setup console-
terminus libncursesw5 python2.6-minimal 1libssl0.9.8 xkb-data libgdbm3 perl perl-modules
grub-pc grub-common ucf gettext-base libdevmapperl.02.1 libfreetypeb

echo /usr/share/grub/

sudo mkdir /usr/share/grub

sudo cp ./grubstore/unicode.pf?2 /usr/share/grub/

Author Name, email@address

© 2010 The SANS Institute Author retains full rights.

