
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Correctly Implementing Forward Secrecy

GIAC (GCIH) Gold Certification

Author: Chris Schum, cschum@centralbank.com
Advisor: Richard Carbone

Accepted: March 14, 2014

Abstract

Forward Secrecy further protects the confidentiality and integrity of the information
transmitted during a TLS connection and encrypts TLS connections to a website or
service.

Forward Secrecy offers substantial privacy and confidentiality benefits for encrypted
channels accessing the Internet. Unfortunately, its benefits are often times not fully
realized due to configuration errors, misconfiguring services that negatively affect the
effectiveness of Forward Secrecy, or avoiding the use of it because of a requirement to
support legacy systems that do not have the ability to utilize it. To address these issues,
this paper will describe how users can implement Forward Secrecy to its full benefits.

HTTPS traffic can contain some of the most sensitive information belonging to
individuals and businesses such as SSNs, account numbers, balances and user names or
passwords. However, it may also contain less sensitive information, but information that
one would expect to be protected from any unauthorized viewing or collection. Without
correct implementation, the goal of Forward Secrecy can never be achieved and any data,
whether sensitive or not, could have its privacy compromised.

Correctly Implementing Forward Secrecy 2

Chris Schum, cschum@centralbank.com

1. Introduction
At the heart of Forward Secrecy is the use of the Diffie-Hellman key exchange.

In addition, in order to gain the benefits of Forward Secrecy, ephemeral keys must be

utilized during the exchange. OWASP describes ephemeral keys as:

Ephemeral keys are temporary keys used for one instance of a protocol execution

and then thrown away. An ephemeral key has the benefit of providing forward

secrecy, meaning a compromise of the site or service's long term (static) signing

key does not facilitate decrypting past messages because the key was temporary

and discarded (once the session terminated). [1]

Therefore, to ensure that ephemeral keys are used in a Diffie-Hellman key

exchange, either the Ephemeral Diffie-Hellman (DHE) or Ephemeral Elliptic Curve

Diffie-Hellman (ECDHE) modes should be used. According to OpenSSL, ephemeral

Diffie-Hellman keys are designed as:

Ephemeral Diffie-Hellman uses temporary, public keys. Each instance or run of

the protocol uses a different public key. The authenticity of the server's temporary

key can be verified by checking the signature on the key. Because the public keys

are temporary, a compromise of the server's long term signing key does

not jeopardize the privacy of past sessions. [2]

In relation to ECDHE, Ivan Ristic’s book Bulletproof SSL and TLS explains the

ephemeral elliptic curve Diffie-Hellman key exchange in detail:

The ephemeral elliptic curve Diffie-Hellman (ECDHE) is conceptually similar to

Diffie-Hellman, but it uses a different mathematical foundation at the core. As

the name implies, ECDHE is based on elliptic curve (EC) cryptography.

An ECDH key takes place over a specific elliptic curve, which is for the server to

define. The curve takes the role of domain parameters in DH. In theory, static

ECDH key exchange is supported, but in practice only the ephemeral variant

(ECDHE) is used. [3]

It should be noted that Authentication is closely tied to the key exchange process.

Either RSA or ECDSA can be used for authentication however this paper will focus

Correctly Implementing Forward Secrecy 3

Chris Schum, cschum@centralbank.com

specifically on RSA as ECDSA is not widely supported and requires a different SSL/TLS

certificate than is likely being used by most servers.

As discussed, it is absolutely necessary that ephemeral keys are used in order for

Forward Secrecy to work effectively. However, there are also several other configuration

settings that must be configured for Forward Secrecy to work correctly as well. These

are described in Section 2.

Thankfully, many of the configuration changes needed to enable Forward Secrecy

do not incur any additional cost. Even if some of the changes do have a financial cost, it

is often minimal.

2. Common Configuration Errors that Compromise Forward
Secrecy

Proper configuration of Forward Secrecy will provide maximum data protection.

In some instances, users may require alternative solutions depending on their unique

setup.

2.1. Cipher Suite Priority

Cipher suites that support Forward Secrecy are often made available from an

HTTPS server. However, if they are not prioritized correctly, Forward Secrecy will not

be used.

For encrypted sessions, a browser provides a list of supported cipher suites to the

web server that determines the specific suite configuration. Ideally, the server would

negotiate and utilize the most secure suites. In most instances, the server selects the first

cipher suite in its priority list regardless of the strength for standard browsers such as IE,

Safari, Chrome, Opera, and Firefox.

The example in Figure 1 depicts cipher suite selection by using the Qualys SSL

Server Test (located at https://www.ssllabs.com/ssltest/index.html). For the unnamed

domain tested, the cipher suite order shows the first one prioritized by the server is

‘TLS_RSA_WITH_AES_256_CBC_SHA’.

Correctly Implementing Forward Secrecy 4

Chris Schum, cschum@centralbank.com

Figure 1: Prioritization Example

By using Telerik’s tool ‘Fiddler’ (available from http://www.telerik.com/fiddler)

and configuring the tool to capture SSL traffic, users can view traffic between the

unnamed domain and the browser. Notice in Figure 2 how even though the more secure

ECDHE cipher suites are supported, because the AES256 suite is prioritized first, this is

the cipher the will browser use.

Figure 2: AES 256 Traffic Capture

By using the Qualys SSL Server Test, if the priority is re-adjusted, the negotiated

cipher suites are different, as shown in Figure 3. With the Forward Secrecy cipher suites

first, the captured traffic shows in Figure 4 using Fiddler that traffic viewed between the

unnamed domain and the browser, which demonstrates how the first Forward Secrecy

cipher suite supported by the browser is in fact the first suite chosen.

Figure 3: Prioritization Change

Correctly Implementing Forward Secrecy 5

Chris Schum, cschum@centralbank.com

Figure 4: ECDHE Traffic Capture

Using the Qualys and Fiddler tools demonstrates that, even if a server supports

cipher suites capable of Forward Secrecy, if they are not prioritized over other suites, the

browser will choose whichever suite is presented first, as long as it can support said

cipher suite. Forward Secrecy offers substantial security advantages to an encrypted

connection and should always be prioritized first, if possible.

To ensure the highest level of session security for connecting browsers, users

should prioritize cipher suites in a compatible and descending order of security. See

Figure 5 below for a visual representation of proper cipher suite negotiation between

browsers and servers.

To further assist proper cipher suite prioritization and negotiation is the utilization

of protocol TLSv1.2 or later. TLSv1.2 (or later) supports many secure cipher suites and

enables the use of cipher suites such as Galois/Counter Mode (GCM). GCM is a block

cipher, less susceptible to Cipher Block Chaining (CBC) attacks such as the Lucky13 and

BEAST attacks. If TLSv1.2 or later is enabled in the browser, servers prioritize GCM

capable suites. Therefore, users should enable TLSv1.2 in their browsers for proper

configuration and maximum data protection.

Correctly Implementing Forward Secrecy 6

Chris Schum, cschum@centralbank.com

Figure 5: Browser Cipher Suite Negotiation

2.1.1 Configuring Apache for Cipher Suite Prioritization and Specific Cipher

Suite Usage

Apache’s cipher suite configuration directives usually reside in the ‘httpd.conf’

file. Depending on a system’s Apache version, third party integrated Apache applications

or many other scenarios, this file could be located in many different locations. Once

located, the following line will need to be added to enable Cipher Suite Prioritization.

SSLHonorCipherOrder on

The aforementioned line enables the ability to prioritize the most secure cipher

suites in Apache. See Figure 5 for a visual representation of this.

Correctly Implementing Forward Secrecy 7

Chris Schum, cschum@centralbank.com

However, the ‘SSLHonorCipherOrder on’ directive will only allow Apache to

prioritize cipher suites. The directive for which cipher suites will be supported and in

what prioritization must also be configured. There are several examples below which

accomplish both these functions.

The following configurations show several options for various case scenarios.

Custom configurations may be required for Apache implementations supporting legacy

browsers or based on security posture.

Note: These configuration examples also include the removal of support for

SSLv2 and SSLv3 that are deprecated and should no longer be used. They also

remove support for Windows XP that is also deprecated and should not be used.

If support for Windows XP is required, consider implementing SSL Offloading

described in Section 3.1 of this document.

The configuration options below are set in the Virtual Host section of the

‘httpd.conf’ file, beginning with ‘<VirtualHost *:443>’ and ending with

‘</VirtualHost>’.

Users should first determine which cipher suites the installed version of Apache

supports by using the command ‘openssl ciphers –v’. After identifying the supported

cipher suites, the configurations below can be adjusted to accommodate only the

supported suites. If the system does not support Elliptic Curve Diffie-Hellman (ECDHE)

suites, it may be beneficial to consider utilizing the SSL Offloading solution described in

Section 3.1 of this document. While Ephemeral Diffie-Hellman (DHE) cipher suites

support Forward Secrecy, they are much less efficient in the negotiation phase between

the browser and web server and require more CPU resources.

2.1.2 Apache Forward Secrecy Cipher Suite Configuration Examples

Most Secure Long List (Only Forward Secrecy Capable Suites) – This

configuration consists of a long list of cipher suites capable of Forward Secrecy but will

support most browsers:

SSLHonorCipherOrder on
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-

Correctly Implementing Forward Secrecy 8

Chris Schum, cschum@centralbank.com

SHA256:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-
SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA
SSLProtocol ALL -SSLv3 -SSLv2

Less Secure Long List (Includes non-Forward Secrecy capable Suites) – This

configuration includes vast support for browsers that require some suites that do not

support Forward Secrecy:

SSLHonorCipherOrder on
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-
SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA:AES256-
SHA
SSLProtocol ALL -SSLv3 -SSLv2

Most Secure Short List (Only Forward Secrecy Capable Suites) – This

configuration lists only several highly supported suites in instances where an Apache

server has limited resources to assign to the cipher suite negotiation process:

SSLHonorCipherOrder on
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA
SSLProtocol ALL -SSLv3 -SSLv2

Less Secure Short List (Includes non-Forward Secrecy Capable Suites) – This

configuration is only necessary in limited situations where legacy browser support is

needed and no other option, such as SSL Offloading is available:

SSLHonorCipherOrder on
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-
SHA:DHE-RSA-AES128-SHA:AES128-SHA
SSLProtocol ALL -SSLv3 -SSLv2

Optional: GSM Priority List (Includes non-Forward Secrecy Capable Suites) –

This configuration could be used in the event that a vulnerability is discovered in a CBC

cipher suite and/or TLSv1.0 and TLSv1.1 are somehow compromised. GCM suites could

be prioritized to somewhat mitigate the vulnerability as they use TLSv1.2 and are not

affected by CBC vulnerabilities. Only use this configuration in the specific scenario

Correctly Implementing Forward Secrecy 9

Chris Schum, cschum@centralbank.com

above as it contains both Forward Secrecy and non-Forward Secrecy suites that could

somewhat minimize the benefits:

SSLHonorCipherOrder on
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-
SHA256:AES128-GCM-SHA256:AES256-GCM-SHA384:ECDHE-RSA-
AES128-SHA:ECDHE-RSA-AES256-SHA
SSLProtocol ALL -SSLv3 -SSLv2

2.1.3 Configuring Nginx for Cipher Suite Prioritization and Specific Cipher Suite
Usage

In Nginx, the cipher suites configuration directives usually reside in the

‘default.conf’ file. Depending on multiple variables, that include the Nginx version, or

other integrated applications, the ‘default.conf’ file could be located in many different

locations.

The configuration options for cipher suites are typically located in the first entry

in the ‘default.conf’ file. The file should end with a ‘}’ as shown below:

server {
 listen 443;
 server_name localhost;
}

The configuration options below are the same as for Apache, but have been

adjusted to work with Nginx servers.

Most Secure Long List (Only Forward Secrecy Capable Suites) – This

configuration consists of a long list of cipher suites capable of Forward Secrecy but will

support most browsers:

ssl on;
ssl_certificate /etc/nginx/ssl/path/to/cert;
ssl_certificate_key /etc/nginx/ssl/path/to/key;

ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-
SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

Correctly Implementing Forward Secrecy 1
0

Chris Schum, cschum@centralbank.com

 ssl_prefer_server_ciphers on;

Less Secure Long List (Includes non-Forward Secrecy capable Suites) – This

configuration includes vast support for browsers that require some suites that do not

support Forward Secrecy:

ssl on;
ssl_certificate /etc/nginx/ssl/path/to/cert;
ssl_certificate_key /etc/nginx/ssl/path/to/key;

ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-
SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA:AES256-
SHA;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;

Most Secure Short List (Only Forward Secrecy Capable Suites) – This

configuration lists only several highly supported suites in instances where an Nginx

server has limited resources to assign to the cipher suite negotiation process:

ssl on;
ssl_certificate /path/to/cert;
ssl_certificate_key /path/to/key;

ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;

Less Secure Short List (Includes non-Forward Secrecy Capable Suites) – This

configuration is only necessary in limited situations where legacy browser support is

required and no other options (such as SSL Offloading) are available:

ssl on;
ssl_certificate /path/to/cert;

Correctly Implementing Forward Secrecy 1
1

Chris Schum, cschum@centralbank.com

ssl_certificate_key /path/to/key;

ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-
SHA:DHE-RSA-AES128-SHA:AES128-SHA;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;

Optional: GSM Priority List (Includes non-Forward Secrecy Capable Suites) –

This configuration could be used in the event that a vulnerability is discovered in a CBC

cipher suite and/or TLSv1.0 and TLSv1.1 are somehow compromised. GCM suites could

be prioritized to somewhat mitigate the vulnerability as they use TLSv1.2 and are not

affected by CBC vulnerabilities. Only use this configuration in the specific scenario

above as it contains both Forward Secrecy and non-Forward Secrecy suites that could

somewhat minimize the benefits:

ssl on;
ssl_certificate /path/to/cert;
ssl_certificate_key /path/to/key;

ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-
GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-
SHA256:AES128-GCM-SHA256:AES256-GCM-SHA384:ECDHE-RSA-
AES128-SHA:ECDHE-RSA-AES256-SHA;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;

2.1.4 Configuring IIS for Cipher Suite Prioritization and Specific Cipher Suite
Usage

When using the Windows IIS web server, the configuration directives related to

cipher suites are managed by adding or removing registry entries. Tools such as ‘IIS

Crypto’ (available at https://www.nartac.com/Products/IISCrypto/) allow users to adjust

cipher suites, protocols, hashes, and key exchanges.

After users install and launch ‘IIS Crypto’, an interface will appear similar to

Figure 6:

Correctly Implementing Forward Secrecy 1
2

Chris Schum, cschum@centralbank.com

 Figure 6: IIS Crypto User Interface

Users should make the following changes in order to address several security risks

and enable Forward Secrecy:

Remove support for MD5 hashes by unchecking the box;

Remove support for SSL 3 and SSL 2 by unchecking the boxes;

Check only the boxes for AES 128/128 and AES 256/256 in the Ciphers Enabled
section.

As it relates to ciphers, enable only those that include

‘TLS_ECDHE_RSA_WITH_AES_’ and prioritize them by using the green arrows to the

right (see Figure 6).

The cipher suites utilized in Figure 6 offer substantial security and support many

browsers including all versions of Safari, Chrome, Opera, Firefox, and IE (except those

used on XP).

Users on Windows Server 2003 or earlier should utilize the ‘SSL Offloading’

solution described in Section 3.1 because cipher suite prioritization is not available.

Correctly Implementing Forward Secrecy 1
3

Chris Schum, cschum@centralbank.com

2.2. Disable SSLv3 & RC4
In order to implement Forward Secrecy, users should disable SSLv3 and RC4

cipher suites. The SSLv3 protocol and RC4 cipher suites have been insecure for some

time and have cryptographic weaknesses demonstrated by the POODLE vulnerability [4].

In the event that SSLv3 or RC4 must be used for legacy systems, Section 3.1 SSL

Offloading describes several ways that legacy systems can be supported without

compromising Forward Secrecy.

2.3 TLS Session Tickets are not Refreshed Frequently

When a user initiates an HTTPS session, the browser negotiates a connection with

the server determining which cipher suites, protocol, and key exchange to use. After this

initial handshake, the server creates a TLS Session Ticket that is sent to the client in the

event the client resumes the connection later.

TLS Session Tickets re-establish previous connections without performing

another TLS handshake. This process increases performance and reduces computational

overhead on the web server.

When implementing Forward Secrecy correctly, TLS Session Tickets can become

troublesome because it remains in the memory of the server until the server or the

HTTPS web service is restarted. Depending on how often the server or service restarts,

any TLS Session Tickets may remain available in server memory. Therefore, TLS

Session Tickets are a single point of compromise for any session. Section 3.2

“Scheduled Tasks” describes workarounds to this issue.

2.4 SSL/TLS Session IDs are not Refreshed Frequently

SSL/TLS Session IDs are similar to TLS Session Tickets and affect Forward

Secrecy because Session IDs are written to a local disk on the server (depending on

configuration). This could present a problem for implementing Forward Secrecy because

Session IDs could be used to decrypt communications.

Correctly Implementing Forward Secrecy 1
4

Chris Schum, cschum@centralbank.com

Unlike TLS Session Tickets, SSL/TLS Session IDs can be configured so that they

are not written to disk, quickly refreshed in memory or both. This configuration however

needs to align with business needs.

2.5 Cipher Suites Other than those Capable of Forward Secrecy are

Used

Currently, there is no known attack that would cause a server supporting both

Forward Secrecy cipher suites and non-Forward Secrecy cipher suites to revert or

downgrade the cipher suites used. However, previous attacks such as POODLE, can

downgrade cipher suites to non-Forward Secrecy suites. Limit the cipher suites

supported on a web server to only those that support Forward Secrecy. Forward Secrecy

supported configurations for all major browsers would then limit customer impact.

3. Alternative Solutions to Problems with Implementing
Forward Secrecy

3.1 SSL Offloading
SSL Offloading manages HTTPS traffic by dedicating one server to perform all

functions related to SSL/TLS encryption and SSL certificate management. In this

scenario, the server(s) become the termination point for any SSL/TLS connections.

Figure 7 shows how Nginx, an open source webserver capable of SSL

Offloading, displays the SSL Offloading configuration.

Correctly Implementing Forward Secrecy 1
5

Chris Schum, cschum@centralbank.com

Figure 7: SSL Offloading Overview (Source: Nginx Wiki)

 Nginx has a comprehensive webpage that describes in detail how to install,

configure, and implement an SSL Offloading solution. The guide is available at

http://wiki.nginx.org/SSL-Offloader. The Nginx server providing SSL Offloading can be

configured using the ‘Configuring Nginx for Cipher Suite Prioritization and Specific

Cipher Suite Usage’.

This solution can address issues with legacy systems that cannot support the most

secure cipher suites or cipher suite prioritization. While some configuration is required,

this solution is cost effective in that Nginx is free

Another option for SSL Offloading is utilizing a Web Application Firewall, a

termination point for connections to web servers that acts to offload HTTPS traffic. All

offloaded traffic is scanned in real-time for web-specific attacks such as SQL Injection

and Cross Site Scripting that protect servers that are protected by the Web Application

Firewall. Many Web Application Firewall solutions are appliances that have the

additional benefit of a user-friendly interface to manage certificates, cipher suites, hashes

and key exchanges. Simultaneously, this solution protects information and is cost

effective.

Note that with both the SSL Offloading solutions listed above, the issues in

Section 2.3 – ‘TLS Session Tickets are not Refreshed Frequently’ and Section 2.4 –

Correctly Implementing Forward Secrecy 1
6

Chris Schum, cschum@centralbank.com

‘SSL/TLS Session IDs are not Refreshed Frequently’ must still be addressed as described

in those sections. The SSL Offloading solutions do not address the Session Ticket and

Session ID refresh issues.

3.2 Scheduled Tasks

If TLS Session Tickets or SSL/TLS Session IDs cannot be refreshed frequently,

another option to mitigate the potential risk is to reboot the web server or web service on

a schedule that can be established based on business needs; such as during a weekly

server maintenance window. This can be done through a Scheduled Task in Windows or

Cron job in Linux.

A service restart or server reboot will refresh the TLS Session Tickets or

SSL/TLS Session IDs and will use those tickets and IDs for any new sessions. However,

in some instances, the previous tickets or IDs may remain in server memory for an

undetermined amount of time; however, this is unlikely.

4. Conclusion
 Forward Secrecy offers a substantial increase in encrypted traffic protection for

little or no cost. By using unique keys, information in a session can be protected even if

the server is compromised in the future. Additionally, Forward Secrecy is not difficult to

implement, provides substantial browser support, and requires little to no financial

investment. For all these reasons, Forward Secrecy should be utilized in all possible

instances to ensure the confidentially and integrity of information that passes over any

network segment.

Correctly Implementing Forward Secrecy 1
7

Chris Schum, cschum@centralbank.com

5. References
[1]Walton, Jeffery; Steven, John, et al. (August 14, 2014). Certificate and Public Key

Pinning. Web article. Retrieved January 15, 2015.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Ephemer

al_Keys

[2] OpenSSL Wiki. (2015). OpenSSL: Diffie Hellmann. Retrieved January 21, 2015.

http://wiki.openssl.org/index.php/Diffie_Hellman

 [3] Ristic, Ivan. (2014). Bulletproof SSL and TLS London. Book. ISBN: 978-1907117.

UK Feisty Duck.

[4] Google. (2014, October 14). Online Security Blog. Retrieved January 2015.

http://googleonlinesecurity.blogspot.com/2014/10/this-poodle-bites-exploiting-

ssl-30.html

Correctly Implementing Forward Secrecy 1
8

Chris Schum, cschum@centralbank.com

6. Bibliography

Bernat, V. (2012, January 1). SSL/TLS & Perfect Forward Secrecy. Web article

Retrieved March 5, 2015, from http://vincent.bernat.im/en/blog/2011-ssl-

perfect-forward-secrecy.html

Elliptic Curve Cryptography. (2013, March 12). OpenSSL: Elliptic Curve

Cryptography. Wiki. Retrieved March 4, 2015, from

http://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography

Google. (2014, October 14). Online Security Blog. Retrieved January 2015.

http://googleonlinesecurity.blogspot.com/2014/10/this-poodle-bites-exploiting-

ssl-30.html

Graham-Cumming, J. (2013, July 12). Staying on top of TLS attacks. Web article.

Retrieved March 5, 2015, from https://blog.cloudflare.com/staying-on-top-of-tls-

attacks/

Hoffman-Andrews, J. (2013, November 22). Forward Secrecy at Twitter. Web article.

Retrieved March 2, 2015, from https://blog.twitter.com/2013/forward-secrecy-

at-twitter

Langley, A. (2013, June 27). How to Botch TLS Forward Secrecy. Blog. Retrieved

March 2, 2015, from

https://www.imperialviolet.org/2013/06/27/botchingpfs.html

OpenSSL Wiki. (2015). OpenSSL: Diffie Hellmann. Retrieved January 21, 2015.

http://wiki.openssl.org/index.php/Diffie_Hellman

Ristic, I. (2013, August 5). Configuring Apache, Nginx, and OpenSSL for Forward

Secrecy. Blog. Retrieved December 8, 2014, from

http://blog.ivanristic.com/2013/08/configuring-apache-nginx-and-openssl-for-

forward-secrecy.html

Ristic, I. (2013, June 25). SSL Labs: Deploying Forward Secrecy. Blog. Retrieved

December 8, 2014, from

Correctly Implementing Forward Secrecy 1
9

Chris Schum, cschum@centralbank.com

https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-

forward-secrecy

Ristic, Ivan. (2014). Bulletproof SSL and TLS London. Book. ISBN: 978-1907117. UK

Feisty Duck.

SSL-Offloader. (2012, April 21). Web article. Retrieved March 2, 2015, from

http://wiki.nginx.org/SSL-Offloader

Wikipedia. (2014, April 9). Forward Secrecy. Online encyclopedic entry. Retrieved

March 2, 2015, from http://en.wikipedia.org/wiki/Forward_secrecy

Zhu, Y. (2014, April 8). Why the Web Needs Perfect Forward Secrecy More Than

Ever. Web article. Retrieved February 2, 2015, from

https://www.eff.org/deeplinks/2014/04/why-web-needs-perfect-forward-secrecy

