
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

NETWORK TRAFFIC INTERCEPTION ON A SWITCHED
LAN ENVIRONMENT

PRACTICAL ASSIGNMENT
FOR

JOHN BURKE

GIAC Advanced Incident Handling And Hacker
Exploits, SANS Network Security 2000, Monterey,
California, October 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 i

EXPLOIT DETAILS ... 1
PROTOCOL DESCRIPTION 2
ETHERNET TECHNOLOGY... 2
SHARED ETHERNET LAN ENVIRONMENT............................... 3
SWITCHED ETHERNET LAN ENVIRONMENT 4
ADDRESS RESOLUTION PROTOCOL 6

DESCRIPTION OF VARIANTS 8
HOW THE EXPLOIT WORKS 9
HOW TO USE THE EXPLOIT 12
SIGNATURE OF THE ATTACK 14
HOW TO PROTECT AGAINST IT? 14
SOURCE CODE/PSEUDO CODE 15
ADDITIONAL INFORMATION 17
REFERENCES ... 17

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

EXPLOIT DETAILS

Name: Address Resolution Protocol (ARP) cache poisoning on
a switched Local Area Network (LAN)

Variants: also known as ARP spoofing

Operating Systems: all

Protocols/Services: ARP

Brief Description: All hosts connected to a LAN use ARP to
map IP addresses to network hardware addresses. Because
ARP trusts all information it receives, an attacker on a
switched LAN can intercept traffic destined for other users
by sending spoofed ARP replies to other hosts on the
switch. As a consequence, user authentication information
(e.g. user login names and passwords) can be sifted from
the traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

PROTOCOL DESCRIPTION

This exploit is capable of intercepting traffic from

other directly connected switched LAN segments to yours.
To better understand what this means, a short discourse
into Ethernet technology, and the differences between
shared and switched environments is required.

Ethernet Technology

 Ethernet is the most prevalent LAN technology. There
are several forms of Ethernet with the most prevalent today
being 10BASE-T. 10BASE-10 is a 10 Megabits per second
baseband LAN transmission over twisted pair copper wires.
Baseband signals are transmitted by directly inserting
voltage pulses onto the wire taking the entire bandwidth of
the wire.

Two major Ethernet properties are:

 • it is a broadcast bus technology
 • it has a distributed access control mechanism

All attached interfaces share the common communications
channel (bus) and all interfaces see every transmission on
the bus (broadcast). The access control mechanism or who
has the right to transmit on the bus at any time is not
centrally controlled. All interfaces share a common access
scheme called Carrier Sense Multiple Access with Collision
Detect (CSMA/CD). When a host wants to transmit, its
interface first checks for the presence of a carrier wave
on the wire. If it senses there is a carrier wave, then it
means another interface is currently using the wire and
that it must wait before transmitting. When the interface
senses there is no carrier then it will begin transmitting.
This access scheme attempts to avoid collisions, a
condition when two interfaces transmit simultaneously.

However, when increasing numbers of interfaces compete
for access, the possibility of a collision increases.
Collisions cause data errors. When the Ethernet CSMA/CD
mechanism determines that a collision has occurred during
its transmission, it will automatically abort the
transmission, wait for the activity to subside, and then
attempt to retransmit. In fact, Ethernet has a rather
complicated backoff strategy that includes random delays

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

before retransmission. As you can imagine, a lot of
collisions can cause for network throughput to suffer.
 Another factor in collision avoidance is that each
transmission by an interface is of a limited duration.
Transmission will only take place to put one Ethernet
protocol data unit (PDU) on the wire. PDU is a generic
atomic data structure described by the protocol. Figure 1
describes the Ethernet PDU or frame.

Figure 1. The Ethernet frame format. The preamble is the first part of the

frame to be transmitted on the wire. Network interfaces sense frames
on the wire by keying on the preamble. It was good design to have
the destination address be the next frame element. This allows the
interface to make a quick decision on the relevance of the frame.
The final element, CRC, is an acronym for Cyclic Redundancy Check.
The CRC helps the interface detect errors.

Of particular interest is the form of the source and

destination addresses. They are Ethernet hardware
addresses and are 6 octets or bytes long. Each network
interface is assigned a unique hardware address by its
vendor.

Network interfaces in standard operation only process
and pass up the data portion of Ethernet frames that are
hardware addressed to it. However, when put into a special
promiscuous mode they will process and pass any valid
frames they see regardless of the hardware address. One
limiting factor in the ability to sniff network traffic is
that the root user is the only user who is allowed to put
the network interface into promiscuous mode. An attacker
will therefore need to have special user privileges on a
box to sniff network traffic. This can be accomplished if
the user was able to first elevate his or her own user
privilege to root level or has brought in a personal host
onto the network where root access has already been
established.

Shared Ethernet LAN Environment

Most legacy LANs are shared segments where all

attached network interfaces have equal access to all

Preamble

8 octets

Destination
Address

6 octets

Source
Address

6 octets

Frame
Type

2 octets

Frame Data
 64-1500 octets

CRC

4 octets

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

network traffic. Hubs are a mature and inexpensive network
infrastructure that support shared LAN segments.

The security impact of using shared Ethernet is that
its common communications channel allows any user on that
LAN to monitor the entire LAN traffic if so desired. This
is a fundamental property of Ethernet, and in the shared
LAN segment it is unavoidable.
 The shared LAN environment also has its performance
limitation. One shared LAN segment can become saturated
when the number of competing interfaces reaches a certain
point. The maximum feasible number of users on one shared
LAN segment is related to the duty cycle of the average
user. Duty cycle is a ratio of the time an interface
transmits and the total time.

Switched Ethernet LAN Environment

The switched Ethernet LAN eliminates almost all
contention for the wire by establishing separate LAN
segments on each port on the switch. Each segment gets the
entire Ethernet bandwidth of the wire. Throughput
performance does not take a hit as more interfaces populate
the ports at the switch. Each switch can support a limited
number of ports.
 Most switches operate on the data link layer of the 7-
layer Open System Interconnection model. They make
switching decisions based on the destination hardware
address of the Ethernet frame. There are also some network
layer varieties that switch based on IP address, but they
aren't as common and it is unknown whether or not
arpredirect would work on them. A switch has electronics
that monitors each port and keeps a table of all the
hardware addresses it sees on each port. It is not unusual
for a switch to see more than one hardware address active
on each port. Network designers can put an entire shared
LAN segment on each switched port. It is a common way to
better distribute network traffic loads among multiple
shared LAN segments. There is memory in the switch that is
typically capable of storing thousands of hardware
addresses it learns through tracking the ARP message
traffic.

The security benefit of the switched LAN segment is
that the network interface on a segment doesn't get traffic
that is not hardware addressed to that interface.
Therefore, it is thought of as more secure than using a
shared LAN.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

But, what if it was possible for you to trick other
hosts on your switched LAN into thinking your hardware
address was the hardware address for other hosts they want
to communicate with? Dumb switches don’t care if hardware
addresses change on its ports or even if some ports share
the same hardware address. The switch would just redirect
frames originally intended for other hosts to yours.
Spoofing ARP reply messages does this. Read the following
section for background on ARP.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Address Resolution Protocol

 Before a host can communicate with another host, it
must determine the hardware address for that other host
through the ARP request and reply process. The sending
host will build the ARP request message as in Figure 2. It
also shows how the ARP message is encapsulated within the
frame data area of an Ethernet frame. ARP request messages

are sent to the hardware address FF:FF:FF:FF:FF:FF. This
is a special broadcast address that causes all live
interfaces to process the frame and pass the ARP request to
the host OS. All interfaces that receive the ARP request
make a note of the sender's hardware and IP addresses in
its ARP cache. If a host's interface has the IP address
asked for in the ARP request it and only it should send an
ARP reply. The ARP reply message has the same format as
the ARP request, except that the OPCODE field in the ARP
header is equal to 2. The ARP reply is sent back only to
the sender's hardware address and contains the requested
replier’s hardware address.

Each host maintains an ARP cache of all recently
learned IP and hardware address pairs to minimize the
number of broadcast ARP requests transmitted. Before

HARDWARE TYPE =1 PROTOCOL TYPE=0x800

HLEN=6 PLEN=4 OPCODE =1 (request)

SENDER HARDWARE ADDRESS (HA) (octets 0-3)

SENDER HA(octets 4-5) SENDER IP(octets 0-1)

SENDER IP(octets 2-3) TARGET HA(octets 0-1)

TARGET HA (octets 2-5)

TARGET IP (octets 0-3)

FRAME DATA AREA FRAME HEADER

Figure 2. The encapsulated ARP request
message

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

transmitting a packet a host always checks its ARP cache to
prevent unnecessary ARPing.
 The security weakness that the ARP cache poisoning
exploit uses is ARP’s total lack of any security measures.
ARP fully trusts all ARP replies that fit the protocol
header form and will update its cache immediately when it
receives new information.
 Because it was designed with no security requirements
in mind, ARP fully trusts all ARP messages it sees. Of
course, the ARP packet must be correctly framed and conform
to the protocol, but this is easy for an exploit to
overcome. Whenever a host running ARP sees an ARP message
it checks it cache for the sender’s IP address. If it’s
already in its cache then the host will overwrite the
corresponding hardware address with the hardware address
from the ARP packet. It doesn’t care if the hardware
address has changed and it doesn’t check it for
authenticity. This is the security shortcoming that this
exploit utilizes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

DESCRIPTION OF VARIANTS

 ARP cache poisoning is also know as ARP spoofing. The
attacker’s objective is to modify or “poison” the current
ARP cache of other hosts and tell the switch that your
hardware address has changed. The attacker’s means to this
end is ARP spoofing or masquerading as another network
interface.
 Several tools exist to implement this exploit:

ARP0c2 (Linux)
dsniff, or more accurantly, arpredirect (Unix)
smit (Linux)
THK-Parasite (Linux)
WC1 (Windows)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

HOW THE EXPLOIT WORKS

In order to verify operation of the exploit, a small
switched LAN was set up as shown in Figure 3. Three Linux
hosts were set up on a common switch. The three Linux
hosts are:

• target1

eth0 Link encap:Ethernet HWaddr 00:10:4B:D9:D6:3D
 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

• target2

eth0 Link encap:Ethernet HWaddr 00:A0:C9:56:43:66
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

• hacker

eth0 Link encap:Ethernet HWaddr 00:50:04:8B:C8:A5
 inet addr:192.168.1.3 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 The switch used was a Bay Networks NETGEAR Model FS105
dual 10/100 Mbps fast Ethernet switch.
 Target2 was set up to repeatedly send a file to
target1 using netcat in a crontab so some network traffic
would be continuously running in the background. As
expected on the switch, hacker could normally not see the
data transfer between target1 and target2. The hacker box

switch

target1

target2

hacker

Figure 3. The test switched LAN

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

was used to run the exploit in an attempt to sniff the data
transfer. Tcpdump was run on hacker to sniff traffic seen
by hacker.
 Here is a display of the packets from hacker’s
viewpoint showing the exploit in action:

1. 0:50:4:8b:c8:a5 Broadcast 42: arp who-has 192.168.1.1 tell hacker
2. 0:10:4b:d9:d6:3d 0:50:4:8b:c8:a5 60: arp reply 192.168.1.1 is-at

0:10:4b:d9:d6:3d
3. 0:50:4:8b:c8:a5 0:10:4b:d9:d6:3d 42: hacker.1024 > target1.67:

udp 0
4. 0:10:4b:d9:d6:3d 0:50:4:8b:c8:a5 70: target1 > hacker: icmp:

192.168.1.1 udp port 67 unreachable [tos 0xc0]
5. 0:50:4:8b:c8:a5 Broadcast 60: arp reply 192.168.1.1 is-at

0:50:4:8b:c8:a5
6. 0:a0:c9:56:43:66 0:50:4:8b:c8:a5 1514: target2.1234 >

target1.4766: tcp 1448 (DF)
7. 0:50:4:8b:c8:a5 0:10:4b:d9:d6:3d 1514: target2.1234 >

target1.4766: tcp 1448 (DF)
8. 0:a0:c9:56:43:66 0:50:4:8b:c8:a5 1514: target2.1234 >

target1.4766: tcp 1448 (DF)
9. 0:50:4:8b:c8:a5 0:10:4b:d9:d6:3d 1514: target2.1234 >

target1.4766: tcp 1448 (DF)
10. 0:a0:c9:56:43:66 0:50:4:8b:c8:a5 1514: target2.1234 >

target1.4766: tcp 1448 (DF)

11. 0:a0:c9:56:43:66 0:50:4:8b:c8:a5 1514: target2.1234 >
target1.4766: tcp 1448 (DF)

12. 0:50:4:8b:c8:a5 0:10:4b:d9:d6:3d 1514: target2.1234 >
target1.4766: tcp 1448 (DF)

13. 0:10:4b:d9:d6:3d Broadcast 60: arp reply 192.168.1.1 is-at
0:10:4b:d9:d6:3d

14. 0:10:4b:d9:d6:3d Broadcast 60: arp reply 192.168.1.1 is-at
0:10:4b:d9:d6:3d

15. 0:10:4b:d9:d6:3d Broadcast 60: arp reply 192.168.1.1 is-at
0:10:4b:d9:d6:3d

16. 0:50:4:8b:c8:a5 0:10:4b:d9:d6:3d 42: arp who-has
192.168.1.1 tell hacker

17. 0:10:4b:d9:d6:3d 0:50:4:8b:c8:a5 60: arp reply 192.168.1.1
is-at 0:10:4b:d9:d6:3d

 Frame 1 shows hacker's broadcast ARP request for
target1's hardware address. Frame 2 is target1's reply.
Since hacker's ARP cache did not include target1's IP and
hardware address pair, frames 3 and 4 are a result of code
conditionally compiled into the exploit if you are
compiling for Linux. The exploit needs to force the Linux
kernel to ARP. So, the program sends a BOOTP packet to
target1. This will force the kernel to first ARP for
target1 as shown in frame 1. In frame 4, target1 sends an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

ICMP destination unreachable back to hacker since it is not
running BOOTP.
 Now for the subversion, frame 5 shows the hack in
action: it is a bogus ARP reply broadcast to the LAN
falsely stating that target1’s hardware address is the same
as hacker. Frame 2 and frame 5 tell a different story, but
the switch, and all other interfaces read both. From that
point until the exploit restores the original
configuration, the switch will send frames addressed for
target1 to hacker.
Frames 6 and 7 show hacker’s IP forwarding working to get
one IP packet it is intercepting to its intended target.
Frame 6 is from target2’s hardware address and it is
destination hardware addressed for hacker. Hacker’s IP
forwarding will repackage the IP packet, decrementing the
IP Time To Live field, and put it in frame 7 hardware
addressed for target1.

When the user has had enough sniffing a Control-C
signal will cause the exploit program to clean up after it.
It will send three ARP replies with the correct hardware
address for target1. Notice these three ARP replies
(frames 13-15) are spoofing target1’s hardware address.
Then, to be sure the switch is back to its original
configuration, the exploit will ARP request for target1’s
hardware address (frame 16). Finally, target1 is nice
enough to oblige with an ARP reply, and all is right again.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

HOW TO USE THE EXPLOIT

Arpredirect is the program used to execute this

exploit.
A major prerequisite for using arpredirect effectively

is having IP forwarding turned on at the host on which you
are using it. That “attack” host will be seeing, if
successful, a lot of traffic that is not IP addressed to
it. That traffic will not make it to its intended target
unless your IP stack recognizes that the packets are not
for you and stuffs them in another Ethernet frame hardware
addressed for the real destination host. Another
prerequisite would be to turn off Internet Control Message
Protocol (ICMP) redirects at your “attack” host. I believe
this can be done with most versions of Linux with the
command:
“echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects”.

The /proc tree is not standard for all distributions of
Linux out there so this command is not guaranteed to work
for you, but you should have a similar path under /proc.
Sending ICMP redirects when you receive IP packets not
addressed to you is good practice normally, but you are
trying to be as stealthy as possible in this hack.
 The program itself is very easy to use with just a few
command line options. Let’s look at the proper usage as
reported by arpredirect:

./arpredirect -?
Version: 2.2
Usage: arpredirect [-i interface] [-t target] host

Use the optional interface switch if you have more than one
live network interface, otherwise the program will use your
default interface.

The optional target switch is rather important to
understand so you use it properly. If left off the command
line, arpredirect will broadcast its bogus ARP reply to
every interface listening on the LAN. This can be very
dangerous since it potentially alerts someone on the LAN
that you are fooling around. Remember that the consequence
of using arpredirect is that some host or its operating
system (OS) could recognize an anomalous condition on the
LAN. It will appear, depending on the OS, that either two

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

IP addresses share the same hardware address or worse, that
two hosts share the same IP address. The latter case is
shown by FreeBSD hosts that treat its interface’s hardware
addresses as permanent and when a bogus ARP reply is seen
it writes a entry in its syslog warning that two interfaces
share the same IP address.

The mandatory host field specifies from which host you
want to intercept packets. It could be the same as the
target host, or if you feel ambitious, arpredirect’s author
says you could put the local gateway here and get the
maximum amount of data.

Let’s give arpredirect a typical run command to
demonstrate what arpredirect looks like when executed. Say
that a host named target1 is expected to use FTP to move a
file to target2, then the least intrusive way to sniff the
user’s name and password on target2 would be:

./arpredirect –i eth0 –t target1 target2
arpredirect: intercepting traffic from 192.168.1.1 to 192.168.1.2 (^C
to exit)...

After sniffing is complete press control-c:

arpredirect: restoring original ARP mapping for 192.168.1.2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

SIGNATURE OF THE ATTACK

 Any means of ARP cache poisoning will be detectable by
either host or network based intrusion detection systems
(IDS). An IDS should track each local network interface by
its hardware and IP address and monitor the ARP traffic for
ARP replies where the SENDER HA field has changed for a
given IP address. When an ARP reply with a changed SENDER
HA field is detected look at the source hardware address of
the frame. This hardware address points to the machine
used by arpredirect to snoop on the switch.

HOW TO PROTECT AGAINST IT?

One way to protect LANs against ARP cache poisoning
would be to lock them down into static network
configurations. Load each host with a static ARP cache and
avoid using ARP. This has a serious drawback that if you
had to change the network interface in any host on the LAN,
or put a new host on the LAN, you would also have to
replace the ARP cache on every host. This would be
administratively impossible except for the smallest LANs.

A better solution is to use a switch with security
features. This paper shows successful ARP cache poisoning
using an inexpensive 5-port switch. Without mentioning
individual product names, there are many vendors who
provide “secure ports” on their switches. Some common
security features on the “secure ports” are:

• Restricting a port to a user-defined set of hosts
• Alerting when a port security address violation

occurs
• Shutting down a port when a port security address

violation occurs.

 Of course, proper use of strong encryption on the LAN
can make any sniffing attempts moot.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

SOURCE CODE/PSEUDO CODE

 Arpredirect source code compiles easily under Linux
using the configure script supplied. However, arpredirect
source code is only found with a set of other interesting
tools by the same author called dsniff. Source code can be
downloaded from the author's website
http://www.monkey.org/~dugsong/dsniff. Instead of pulling
out just the code for arpredirect and building just it;
it’s easier to build the entire dsniff package than to
build arpredirect alone. Besides you will get a lot of
other cool tools with arpredirect. Building dsniff
requires:

• libpcap – http://www.tcpdump.org/
• libnet – http://www.packetfactory.net/Projects/Libnet/
• libnids –

http://www.packetfactory.net/Projects/Libnids
• libdb – http://www.sleepycat.com/

To build dsniff on a Linux box:

1. untar the source code tar file: tar zxvf dsniff-
2.2.tar.gz

2. cd dsniff-2.2/
3. ./configure
4. make
5. make install

Pseudo code Analysis

Execution chain:

1. Execution starts at main
 main() – passes in command line variables

getopt() - command line variable handling
libnet_name_resolve() – libnet function to handle name

resolution
pcap_lookupdev() – libpcap function for network

interface
libnet_open_link_inerface() – libnet function to open

link-layer interface

2. ARP request for target
 arp_find() – ARP cache lookup

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

 arp_send() – uses libnet functions to build and send
ARP request message

3. Spoofed ARP reply for target

arp_send() – uses libnet functions to build and send
ARP reply message with local hardware address

4. Signal handling code
 If SIGHUP, SIGINT, or SIGTERM caught, go to Cleanup
5. Infinite loop
 arp_send() - uses libnet functions to build and send
ARP reply message with local hardware address
 sleep 2 seconds
6. Cleanup code
 arp_send() – restores original ARP mapping

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

ADDITIONAL INFORMATION

REFERENCES

COMER, DOUGLAS E. [1995], Internetworking with TCP/IP,
Volume 1 Principles, Protocols, and Architecture.

STALLINGS, WILLIAM [1996], Data and Computer
Communications, 5th Edition.

