
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 1

The SirEG Toolkit

A Solaris incident response Evidence

Gathering toolkit for security analysts

Author: François Bégin, francois@warpmail.net

Adviser: Rick Wanner

Accepted: 2009-04-21

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 2

Table of Contents

1. Introduction ... 7

2. SirEG Toolkit Overview ... 8

2.1 SirEG_Build_Toolkit.sh ... 8

2.2 SirEG_Gather_Data.sh ... 9

2.3 SirEG_Analyze_Data.sh ... 9

2.4 Using the toolkit .. 10

3. Data captured on live system .. 11

3.1 Type of data captured by the SirEG Toolkit .. 11

3.2 How will the SirEG Toolkit capture the data?.. 12

3.2.1 Trusted binaries and libraries ... 13

3.2.2 Trusted environment .. 15

3.3 Commands used to capture data .. 15

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 3

3.3.1 Header ... 16

3.3.2 Basic Host information ... 16

3.3.3 User information ... 17

3.3.4 Network-related information ... 18

3.3.5 Process and modules information .. 19

3.3.6 Configuration files .. 20

3.3.7 Startup scripts and services ... 20

3.3.8 Log files .. 20

3.3.9 Installed packages and patches ... 21

3.3.10 Other files of interest .. 21

3.3.11 Cryptographic checksums of system binaries .. 21

4. Data analysis .. 22

5. The SirEG Toolkit from A to Z ... 22

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 4

5.1 SirEG_Build_Toolkit.sh ... 23

5.1.1 Overview .. 23

5.1.2 Installing SirEG_Build_Toolkit.sh ... 24

5.1.3 Running SirEG_Build_Toolkit.sh .. 25

5.2 SirEG_Gather_Data.sh ... 30

5.2.1 Installing SirEG_Gather_Data.sh ... 30

5.2.2 Running SirEG_Gather_Data.sh .. 30

5.3 Sireg_Analyze_Data.sh .. 35

5.3.1 Installing SirEG_Analyze_Data.sh .. 35

5.3.2 Running SirEG_Analyze_Data.sh .. 35

5.4 SirEG Toolkit reports .. 36

5.4.1 Main report ... 37

5.4.2 Raw Report .. 39

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 5

5.4.3 Open Ports Report ... 39

5.4.4 Network Report .. 41

5.4.5 Processes Report .. 43

5.4.6 Patches Report .. 44

5.4.7 Users and logins Report ... 45

5.4.8 Vulnerabilities Report ... 48

5.4.9 Solaris Fingerprints Report .. 49

5.4.10 MDB commands Report ... 50

5.4.11 System logs Report .. 53

5.4.12 Startup/Services Report ... 54

5.4.13 Interesting files report ... 55

6. Demonstrating the use of the SirEG Toolkit .. 57

6.1 Compromising our test host .. 57

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 6

6.2 S.I.n.A.R. 101 ... 59

6.3 Checking open ports ... 63

6.4 Checking users ... 68

6.5 Finding tampered binaries .. 72

6.6 Unlinked files .. 73

6.7. Rooting out S.I.n.A.R. .. 74

7. Summary... 76

8. Appendix A - Compilation notes .. 79

8.1 Compiling lsof ... 79

8.2 Compiling hashdeep (MD5deep) .. 81

8.3 Compiling S.I.n.A.R. ... 82

9. References.. 87

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 7

1. Introduction

Security professionals responding to incidents are often asked to assess a host that is

suspected of having been compromised. Although there are cases where a compromise is

obvious, others are not, as hackers are getting more adept at covering their tracks.

Furthermore, great care must be taken to ensure that ample evidence is gathered before

making the call to ‘pull the plug’ on a server since this action may have dire consequences

to one’s business.

While there is a lot of literature on the subject of gathering data and assessing whether

or not a host has been compromised, there are very few tools to help someone perform these

tasks quickly and efficiently, particularly on Solaris hosts. The SirEG (Solaris incident

response Evidence Gathering) Toolkit has been designed to fill this gap. It consists of bash

scripts that can help security professionals respond to potential compromises of Solaris

servers.

The SirEG toolkit was created with three specific goals in mind:

 Re-usability and quick deployment: Evidence gathering packages for different versions

of Solaris and different hardware platforms can be quickly built and deployed

 Simplicity: Evidence gathering takes place in a few simple steps and the scripts used

for that purpose are easy to review

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 8

 Analysis & Reporting: The toolkit can process the data it gathers and report on it

According to Skoudis (2007), there are 6 phases of incident response: Preparation,

Identification, Containment, Eradication, Recovery and Lessons learned. The SirEG Toolkit

aligns directly with phase 2 (Identification) where we “gather events, analyze them, and

determine whether we have an incident” (p. 46). The SirEG Toolkit is not meant to be used

as a forensics tool: it will capture live data on a live system. Taking the host offline and

working on an imaged hard drive is not an option.

This paper provides the reader an overview of the SirEG Toolkit, then discusses the

type of data it captures on a suspicious host and more importantly, how that data is captured.

The toolkit is demonstrated, including installation, deployment and data analysis. Finally, the

toolkit is applied to a host that has been compromised in order to show how a security analyst

would benefit from its use in the field.

2. SirEG Toolkit Overview

The SirEG Toolkit is made up of three distinct scripts:

2.1 SirEG_Build_Toolkit.sh

This script allows a security analyst to quickly build an evidence gathering kit adapted

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 9

to a specific version of Solaris. This allows security personnel not only to build kits for various

Solaris versions but also to quickly adapt to new releases.

2.2 SirEG_Gather_Data.sh

This script is used to gather information from a live system. As will be discussed in this

paper, this is more than just a shell script: it is a deployment kit with trusted tools and libraries

that is run as a self-contained mini-environment. The output is a simple text file that can either

be analyzed manually or by using another script (SirEG_Analyze_Data.sh).

2.3 SirEG_Analyze_Data.sh

While most guides and tools that are available to security analysts limit themselves to

capturing data from a host, the SirEG Toolkit goes one step further with the

SirEG_Analyze_Data.sh script, which takes the output of the SirEG_Gather_Data.sh script

and analyzes it. The data is re-organized into a set of web pages aimed at presenting useful

information such as running processes and open ports, highlighting discrepancies and

anomalies that could indicate a compromise.

While the SirEG_Analyze_Data.sh script cannot provide an exhaustive analysis of the

results, it should help a skilled analyst make an informed decision more rapidly by providing

useful information in an easily accessible format.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 10

2.4 Using the toolkit

Using the SirEG Toolkit to investigate a suspicious system requires all 3 scripts. Here

is what is involved:

• Compile a few open-source tools on a trusted host

• Run SirEG_Build_Toolkit.sh on that trusted host

• Copy the resulting tarball to the suspicious system

• Untar the tarball and run a command to set up the environment

• Run SirEG_Gather_Data.sh to gather that data

• Get the resulting report off the suspicious host

• Run SirEG_Analyze_Data.sh against the data gathered

• Get a security analyst to review the resulting html report

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 11

3. Data captured on live system

3.1 Type of data captured by the SirEG Toolkit

There are many excellent guides that discuss the type of information that should be

captured on a live system. Two good examples are First Responders Guide to Computer

Forensics (Nolan, O’Sullivan, Branson, & Waits, 2005) and Guide to Integrating Forensic

Techniques into Incident Response (Kent, Chevalier, Grance, & Dang, 2006). The SirEG

Toolkit draws on these guides to determine what commands to run and the type of

information to capture. This data is gathered according to the following broad categories:

• Basic host information

• User information

• Network-related information

• Process & modules information

• Configuration files

• Startup scripts and services

• Log files

• Installed software and patches

• Other files of interest

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 12

Another excellent resource available specifically for Sun systems is the Solaris

Fingerprint Database, which is described in The Solaris fingerprint database: A security tool

for Solaris Operating environment files (Dasan, Noordergraaf, Ordorica, & Brunette, 2006).

This is a repository of MD5 checksums for every binary ever released by Sun for their Solaris

OS and the SirEG Toolkit makes use of it.

3.2 How will the SirEG Toolkit capture the data?

The methods used by the SirEG Toolkit to capture data have been influenced by Live

Solaris Evidence Gathering Instructions, written by Furner & Buetler from Compass Security

(2006). While investigating a host that may have been compromised, an analyst must be very

careful how he gathers data. If indeed the host has been compromised, some of its binaries

and/or system libraries may have been tampered with by a malicious hacker. The hacker’s

aim might be to gather additional data (e.g. credit numbers, usernames/passwords) or to hide

what he is currently doing to the compromised host (sending out spam, sniffing traffic on the

network, etc.).

Until a compromise has been ruled out, the analyst cannot trust that host. This means

that he must avoid gathering data with the binaries found on that system. Instead, “it is

advisable to use trusted programs to gather evidence: programs that have been gathered

from a ‘clean’ system with [the] same OS and patch level as the system to be

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 13

investigated” (p. 7).

Gathering and organizing trusted binaries falls to the SirEG_Build_Toolkit.sh script,

which can be found at http://sireg.franky.ca/downloads/SirEG_Build_Toolkit. Although this

script will be covered in greater details in section 5 (The SirEG Toolkit from A to Z), one

needs to understand how data is captured, which requires a discussion of trusted binaries

and libraries.

3.2.1 Trusted binaries and libraries

When binaries are compiled for a particular operating system and hardware platform,

two options are available: the binaries can be statically linked or dynamically linked.

Dynamically compiled binaries make calls to libraries. These libraries contain code that

a program can use, allowing it to leverage existing routines rather than having to re-

implement them. For instance, a program can use a cryptographic library (like openssl) and

encrypt/decrypt data with a simple library call. Statically compiled binaries on the other hand

are created when the required library is copied into the target application so that the

application contains both its code and the library.

The distinction between the two is important. As stated previously, an analyst can

neither trust the suspicious host’s binaries nor its libraries. Either one of these could have

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 14

been compromised by a malicious hacker. It is therefore crucial to use trusted tools that make

calls to trusted libraries. Statically-compiled libraries offer this enhanced level of trust. This is

what RFC 3227 (Brezinski & Killalea, 2002) recommends: “The programs in your set of tools

should be statically linked, and should not require the use of any libraries other than those on

the read-only media” (p. 8).

RFC3227 actually goes one step further by recommending to “run your evidence

gathering programs from appropriately protected media” (p. 4). The SirEG toolkit can be

burned to a cd-rom for deployment but one must keep in mind that there is no guarantee that

the system under investigation has a cd-rom drive. Furthermore, in this era of remote server

farms there is no guarantee either that the systems administrator of the host even has

physical access to the server. Considering these limitations, the deployment of the toolkit is

left to the discretion of the person assisting the security analyst and this paper focuses

instead on taking great care when setting up a trusted environment. Even then, one should be

aware that “since modern rootkits may be installed through loadable kernel modules, you

should consider that your tools might not be giving you a full picture of the system” (p. 8).

In a perfect world, an evidence gathering toolkit would be made up exclusively of

statically-linked binaries. Unfortunately, Solaris is not the easiest OS platform to compile

statically-linked binaries (Pomeranz, 2001). An alternative is to create a self-contained mini-

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 15

environment that contains trusted binaries and trusted libraries – and to ensure that only

these binaries and libraries are used when capturing data.

3.2.2 Trusted environment

As soon as a user logs into a system, a shell is spawned and environment variables

such as the PATH (path to the binaries) and the LD_LIBRARY_PATH (path to the libraries)

are set. Fortunately, a user can control his environment and can spawn his own shell within

the shell that the system assigns to him. This is key in setting up a trusted environment.

Amongst the many tools included in the SirEG Toolkit is a trusted bash binary and a

shell profile called SirEG_shell.profile. The complete source for this profile is available at

http://sireg.franky.ca/downloads/SirEG_shell.profile. It contains directives to ensure that only

trusted binaries and libraries are called. This profile will be re-visited in greater details in

section 5.

3.3 Commands used to capture data

Now that the need for a trusted environment has been established, let us turn our

attention to the commands that will capture the data. Although it is not the goal of this paper

to provide an in-depth description of what information is captured and why it is captured (the

guides cited in section 3.1 provide these answers), here is a summary of the various

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 16

commands that the SirEG Toolkit relies upon:

3.3.1 Header

Command Comment

date system date at onset of data collection

hostname Name of the system under investigation

uname -r Solaris version

uname -v Kernel revision

uname -p Hardware platform

3.3.2 Basic Host information

Command Comment

uname -a Basic information currently available from the

system

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 17

3.3.3 User information

Command Comment

w Users currently logged in and what they are doing

last Last logins and reboots

cat /etc/passwd List of users

cat /etc/group List of groups

cat $HOME/.history

cat $HOME/.bash_history
1

List of commands that $USER
2
 typed in

cat /var/spool/cron/crontabs/$USER
2
 Contents of $USER

2
 crontabs

1
 for HOME in `cat /etc/passwd | awk -F: '{print $6}'`

2
 for USER in `ls /var/spool/cron/crontabs/`

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 18

3.3.4 Network-related information

Command Comment

arp -a Arp cache of the host

netstat -an Ports on which the host is currently listening

echo “::netstat -a” | mdb -k

List of ports on which the host is currently listening

as seen from the Modular Debugger. In theory, the

output of this should be the same as `netstat -a`.

Why we gather this information will be explained in

a later section

netstat -rn Routing table

ifconfig -a List of interfaces

ndd /dev/ip $PARAM
1
 /dev/ip settings

ndd /dev/tcp $PARAM
2 /dev/tcp settings

1
for PARAM in `ndd /dev/ip ? | awk '{print $1}' | grep -v "?" | grep -v obsolete`

2
for PARAM in `ndd /dev/tcp ? | awk '{print $1}' | grep -v "?" | grep -v obsolete`

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 19

3.3.5 Process and modules information

Command Comment

ps aulxwww

List of processes. We use the binary found in

/usr/ucb/ with the 'www' arguments to get a wide

output and avoid truncation

echo “::ps –f” | mdb -k

List of processes as seen from the Modular

Debugger. In theory, this output should be the

same as `ps aulxwww`.

pldd $PID 1 Dynamic libraries linked to each process

pcred $PID 1 Credentials for each process

pmap $PID 1 Address space map for each process

pfiles $PID 1
fstat and fcntl information of all open files for each

process

ptree $PID 1 Process tree

modinfo List of kernel modules currently loaded

echo “::modinfo” | mdb -k

List of kernel modules currently loaded as seen

from the Modular Debugger. In theory, this output

should be the same as `modinfo`.

1 for PID in `ps -aux | grep -v ^USER | awk '{print $2}' | sort -n`

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 20

3.3.6 Configuration files

Command Comment

cat /etc/inet/hosts The hosts file

cat /etc/inet/ipnodes The ipnodes file

3.3.7 Startup scripts and services

Command Comment

ls -Ractl /etc/rc* List of startup scripts

svcs Services and their status

3.3.8 Log files

Command Comment

cat /var/adm/messages Main system log file

cat /var/adm/loginlog User logins log file

cat /var/adm/sulog
Log file tracking users switching to another user

('su')

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 21

3.3.9 Installed packages and patches

Command Comment

showrev -p List of patches currently applied on the host

cat /var/sadm/install/contents List of binaries that were installed using pkgadd

3.3.10 Other files of interest

Command Comment

lsof -Di -P List of open files

lsof +L1 List of unlinked files

ls -Ractl /tmp Contents of /tmp

3.3.11 Cryptographic checksums of system binaries

Command Comment

hashdeep -r -s /usr/bin /usr/sbin
Captures the MD5 and SHA256 hashes for each

files found in /usr/bin and /usr/sbin.

All of these commands are incorporated in the SirEG_Gather_Data.sh script. The

complete source code is available at http://sireg.franky.ca/downloads/SirEG_Gather_Data.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 22

After the script has run, the data is available in a simple text file that looks like this:

Screen Shot 1 Partial output of SirEG report

4. Data analysis

Once the data has been captured, SirEG_Analyze_Data.sh is used to parse the report.

The complete source is available at http://sireg.franky.ca/downloads/SirEG_Analyze_Data.

When SirEG_Analyze_Data.sh runs, it starts by extracting the output of each command run by

SirEG_Gather_Data.sh and stores it in individual files. It then creates a main report and

specialized reports. The specialized reports are discussed in the next section.

5. The SirEG Toolkit from A to Z

Now that we know what data the SirEG Toolkit captures and how it is captured, let us

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 23

see it in action. This section covers how to use SirEG_Build_Toolkit.sh to create a deployment

kit, how to deploy the kit on a host and capture data with SirEG_Gather_Data.sh, and how to

analyze the resulting report with SirEG_Analyze_Data.sh, including a demonstration of using

the toolkit on a compromised host.

5.1 SirEG_Build_Toolkit.sh

5.1.1 Overview

The first thing required to build an evidence gathering kit is a trusted host at the same

OS level and architecture as the suspicious system i.e. Solaris 10 on sparc, Solaris 9 on x86,

etc. It is from that host that the trusted binaries and libraries are gathered. Preferably, access

to this host should be restricted to security personnel. It should have been hardened and kept

up-to-date with regular patching.

Although native Solaris binaries and libraries are preferred when building the evidence

gathering toolkit, there are two open source tools that have no elegant counterparts in the

Solaris operating system: hashdeep and lsof. The former is part of the MD5deep suite of tools

and is used to recursively compute cryptographic digests for files (Sharma, 2007). The latter

supplements ps and netstat (Miessler, 2009), two key commands used when gathering live

data. Both hashdeep and lsof are included in the toolkit.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 24

A security analyst’s first step is, therefore, to deploy both programs on a trusted host.

These can either be compiled from source or downloaded from a trusted provider of

precompiled binaries like Sunfreeware (www.sunfreeware.com) or Blastwave

(www.blastwave.com). Since compiling on Solaris systems is not always straightforward,

compilation notes for these two packages are included in Appendix A.

5.1.2 Installing SirEG_Build_Toolkit.sh

There is no need to run SirEG_Build_Toolkit.sh as root so the best approach is to

create a sireg group and make the security analyst a member of that group. The following is

done as root:

mkdir /usr/local/SirEG_Toolkit

groupadd sireg

vi /etc/group and add the user to sireg group e.g. sireg::100:fbegin1

chgrp sireg /usr/local/SirEG_Toolkit

chmod g+w /usr/local/SirEG_Toolkit

As a regular user member of the sireg group, the latest version of the SirEG Toolkit

can be downloaded from http://sireg.franky.ca/downloads.html and untarred to any directory.

For the purpose of this paper, /usr/local/SirEG_Toolkit (sometimes refered to as $SIREG in

the text) is used.

lsof typically comes in 32-bit and 64-bit version so one must ensure that the right

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 25

version is used. The following output shows a 64-bit (sparcv9) system:

$ isainfo

sparcv9 sparc

The lsof and hashdeep binaries previously compiled/installed are copied in the

appropriate sub-directories of $SIREG/Other_Tools based on the architecture (sparc, i386)

and Solaris version, as follows:

$ cp /usr/local/bin/sparcv9/lsof /usr/local/SirEG_Toolkit/Other_Tools/`uname –p`/`uname –r`/

$ cp /usr/local/bin/hashdeep /usr/local/SirEG_Toolkit/Other_Tools/`uname –p`/`uname –r`/

5.1.3 Running SirEG_Build_Toolkit.sh

Once lsof and hashdeep are in place, SirEG_Build_Toolkit.sh can be run, as shown in

Screen Shot 2:

Screen Shot 2 Running SirEG_Build_Toolkit.sh

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 26

When the script runs, it gathers a list of tools that will be required to gather evidence on

the suspicious system. These tools get copied to $SIREG/Toolkit/Tools. Amongst the tools

gathered are the following commands: grep, awk, netstat, arp, ndd, etc. Refer to the source

code of SirEG_Build_Toolkit.sh for a complete list. Some commands (like sort and mdb)

come in both 32-bit and 64-bit versions so $BIT_SIZE is used to determine which one is

required:

BIT_SIZE=`isainfo -kv | awk '{print $2}'`

For each of these tools, the script also finds all the libraries against which they are

linked. To do so, the ldd utility is used (Henry-Stocker, 2006). For example, to list the

supporting libraries for /bin/grep on the trusted system, /bin/ldd /bin/grep is run as shown in

Screen Shot 3:

Screen Shot 3 Listing libraries required by /bin/grep

In this example, libraries /lib/libgen.so.1, /lib/libc.so.1 and /lib/libm.so.2 are copied to

$SIREG/Toolkit/Libs. One might ask about the final library: /platform/SUNW,UltraAX-

i2/lib/libc_psr.so.1. Unfortunately, that one is an absolute binding (Sun, & Couch, 2001), which

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 27

“must exists in exactly that place in the filesystem or the program will not function. In this

case there is a good reason for the absolute binding as the existence of the library in question

is dependent upon the sub-architecture of the particular machine” (p.146). In other words,

for grep to function on that particular hardware platform (a Sun Fire V120), it needs to make

calls to that specific library file. The only way to overcome this requirement would be by re-

booting the suspicious host using a Solaris boot disk, which was ruled out earlier. This

limitation of the toolkit simply has to be accepted.

As the script completes its run, all required libraries are saved to $SIREG/Toolkit/Libs

while all required tools end up in $SIREG/Toolkit/Tools, as shown in Screen Shot 4:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 28

Screen Shot 4 Contents of Tools and Libs directories

3 additional files can also be found under $SIREG/Toolkit:

SirEG_Gather_Data.sh :

This is the script that will be gathering the data from the suspicious host.

sparc-5.10[Generic_127127-11]v0.7g :

This file is used to identify the platform and OS for which the toolkit was created.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 29

SirEG_shell.profile :

A special profile which will ensure that only calls to the trusted binaries and trusted

libraries are made when SirEG_Gather_Data.sh is run

Let us take a closer look at SirEG_shell_profile before actually deploying the toolkit to a

suspicious host. The source code can be found at

http://sireg.franky.ca/downloads/SirEG_shell.profile. The key lines are these ones:

export PATH=./Tools

export LD_LIBRARY_PATH=./Libs

The first one sets the security analyst’s PATH. As can be seen, the PATH is limited

to the ./Tools directory, so unless the analyst gives a full path, any command he types will be

run using the trusted binaries previously gathered. The second line sets the path to the library

files. When deploying the toolkit to a suspicious host, the trusted environment is set up by

invoking the command ./Tools/bash --rcfile ./SirEG_shell.profile, thereby ensuring that both

$PATH and $LD_LIBRARY_PATH are set correctly. This will be demonstrated in the next

section of this paper.

Once SirEG_Build_Toolkit.sh has run, the complete toolkit ends up being tarred in the

current working directory, ready for deployment:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 30

[t805959@defiant]:/usr/local/SirEG_Toolkit$ ls *tar

SirEG_Toolkit-sparc-5.10[Generic_127127-11]v0.8.tar

5.2 SirEG_Gather_Data.sh

5.2.1 Installing SirEG_Gather_Data.sh

At this point, we have a toolkit called SirEG_Toolkit-sparc-5.10[Generic_127127-

11]v0.8.tar that is ready to be used on a suspicious host. It should be noted that when

gathering evidence, SirEG_Gather_Data.sh needs to be run as root. Since most businesses

implement separation of roles, it is likely that this toolkit will be handed to the systems

administrator of the host. How the tarball gets copied to the host is therefore left to the

discretion of that person. In most cases, the file will simply be copied via scp. Once on the

host, there is no complicated installation procedure. All that one needs to do is untar the

toolkit in any directory.

[root@suspicious-host]: # mkdir /tmp/SirEG

[root@suspicious-host]: # cd /tmp/SirEG

[root@suspicious-host]: # cp ~/ SirEG_Toolkit-sparc-5.10[Generic_127127-11]v0.8.tar /tmp/SirEG

[root@suspicious-host]: # tar xvf SirEG_Toolkit-*.tar

5.2.2 Running SirEG_Gather_Data.sh

To gather data, a trusted shell and environment are spawned as shown in Screen Shot 5:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 31

Screen Shot 5 Setting up the trusted environment

The analyst can verify that the environment is set up correctly. The which command

shows the exact path of a command, so running which netstat in the trusted environment

demonstrates that the PATH is set correctly to ./Tools.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 32

Screen Shot 6 PATH is correctly set in trusted environment

ldd shows that, apart from a few absolute bindings related to the hardware platform, all

libraries are called from the trusted libraries located in ./Libs

Screen Shot 7 All libraries (except absolute bindings) are called from trusted environment

The truss command (Walberg, 2006) confirms all this, as shown in Screen Shot 8:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 33

Screen Shot 8 Output of truss command for netstat in trusted environment

Note how the open() calls are made to libraries located in ./Libs except for the

unavoidable absolute bindings.

To offer some added flexibility, the SirEG Toolkit gives the user the option to run any

command independently within the confines of the trusted environment. A system

administrator could therefore gather data and investigate the incident manually. For instance,

he can look at the ARP table:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 34

Screen Shot 9 Running arp -a manually

Realistically though, the best approach is to use SirEG_Gather_data.sh:

Screen Shot 10 Running SirEG_Gather_Data.sh

The script runs all the commands listed in section 3.3 and saves the output to a simple

text file called report. There are some errors that can be safely ignored: some lsof and mdb

“noise” as well as a complaint that /var/adm/loginlog does not exist (it never was created

on this particular system). Once the report has been generated, the systems administrator

can copy the report back to a trusted host where it can be analyzed.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 35

5.3 Sireg_Analyze_Data.sh

5.3.1 Installing SirEG_Analyze_Data.sh

SirEG_Analyze_Data.sh needs to run on a host that has access to the internet. The

tool wget (Trapani, 2006) is required as it will be used to retrieve patch reports, access the

Solaris Fingerprint Database, etc.

Preferably, this host should also run a web server (apache for instance) although the

report can be viewed offline. One can simply install apache and note its document root, then

copy SirEG_Analyze_Data.sh and the report obtained from the suspicious host to any

directory. The following variables in SirEG_Analyze_Data.sh must be changed:

HTDOCS=/usr/local/apache2/htdocs

http_proxy="http://192.168.1.100:8080";export http_proxy

The first one needs to be pointed to the web server’s document root. If there is no

web server available on that host, it should be pointed to a directory from which the html

reports can be retrieved. The second variable should point to the web proxy the server uses

to access the internet. That whole line should be commented out if no proxy is used.

5.3.2 Running SirEG_Analyze_Data.sh

SirEG_Analyze_Data.sh can now be run against the report that was generated on the

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 36

suspicious host:

Screen Shot 11 Running SirEG_Analyze_Data.sh

5.4 SirEG Toolkit reports

After the script has run, reports will be available in the directory defined by $HTDOCS

in SirEG_Analyze_Data.sh. If no web server is running, the whole directory and all

subdirectories need to be copied to the analyst’s workstation, and then index.html can be

opened in a browser. If a web server is running, the analyst can simply point his browser to

http://<server_name_or_ip>/index.html. as shown in Screen Shot 12:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 37

Screen Shot 12 SirEG Toolkit main page as seen from a browser

Reports for specific hosts can be accessed directly by going to

http://<server_name_or_ip>/SirEG_reports/<hostname>/CURRENT/. Most of the

screen shots and examples presented in the remainder of this paper are taken from a

host called defiant. The complete report for this host is available online at

http://sireg.franky.ca/demo.

5.4.1 Main report

Here is the main page for host defiant.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 38

Screen Shot 13 Main report page for host defiant

There are three main sections on this report. Basic host Information is just a header

with data to help identify the host. SirEG Reports are specialized reports where

SirEG_Analyze_Data.sh presents correlated information that can be used by an analyst.

Finally, Output from SirEG_Gather_Data.sh is the output from each of the commands from

section 3.3. Let us look at each specialized report in detail.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 39

5.4.2 Raw Report

Screen Shot 14 shows the raw, unprocessed report that was captured by

SirEG_Gather_Data.sh. It can be searched with the search function of a browser.

Screen Shot 14 Raw report generated by SirEG_Gather_Data.sh

5.4.3 Open Ports Report

According to Staniford, Hoagland, & McAlerney (2002), “Portscanning is a common

activity of considerable importance. It is often used by computer attackers to characterize

hosts or networks which they are considering hostile activity against” (p. 105). The SirEG

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 40

Toolkit therefore generates a specialized report based on open ports and established

connections to help a security analyst identify the possible ‘doors’ a malicious hacker

might use to enter a system uninvited. Screen Shot 15 shows what the report looks like:

Screen Shot 15 Open ports reports

In the first section titled Open ports, each open port found on the system is listed and

the port number is matched to the Well Known Port Numbers list from IANA (2009). Since

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 41

ports are opened by processes, SirEG_Analyze_Data.sh correlates each open port to running

processes using lsof. Note also how the PID of each process is a hyperlink to a more detailed

process report.

In the second section (Established connections), established connections are shown. If

for some reason an established connection exists on a port that the server is not listening to,

that connection is highlighted. The reason for this will be explained when we look at a

compromised host in section 6.

5.4.4 Network Report

Arp cache poisoning (Montoro, 2001) and other forms of manipulation of the TCP/IP

stacks and routing tables of a host can be exploited by a malicious hacker. The SirEG Toolkit

therefore has a specialized report of network-related information like interfaces, routes, arp

table and both the ip and tcp stacks, as shown in Screen Shot 16:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 42

Screen Shot 16 Network report

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 43

5.4.5 Processes Report

Screen Shot 17 shows the Processes Report which contains information about

processes running on the system.

Screen Shot 17 Processes report

Processes running with suid=0 or sgid=0 are highlighted. Each process’s PID

(Process ID) and PPID (Parent Process ID) is a hyperlink to a detailed report for that

particular process (Screen Shot 18). The detailed report covers the libraries that the process

makes calls to (pldd), under what credentials it is running (pcred), what memory areas it is

referencing (pmap), its place in the process tree (ptree) and the files it has opened (pfiles).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 44

Screen Shot 18 Detailed report for process with PID=473

5.4.6 Patches Report

According to Nicastro (2003), “most organizations tend to tolerate the existence of

security vulnerabilities and, as a result, deployment of important security-related patches is

often delayed” (p. 2). This delay in turn can lead to the host being exploited. This is the

reason behind the Patches Report, which highlights the patch level of the host, as shown in

Screen Shot 19:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 45

Screen Shot 19 Patches report

Each patch currently applied on the system is listed with a hyperlink to Sunsolve

(sunsolve.sun.com). Up-to-date security patches are highlighted in pale yellow, while obsolete

security patches are highlighted in bright yellow. By highlighting security-related patches that

are out of date, this page can help an analyst identify the attack vector used by a malicious

hacker to compromise the host.

5.4.7 Users and logins Report

Screen Shot 20 shows the Users and Logins Report, which focuses on users and their

activity on the system.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 46

Screen Shot 20 Users report

Users with uid=0 and groups with gid=0 are highlighted in yellow. Other things

available in this report are the times of the last reboots, which users are currently on the host,

a tally of user logins and login sources, and the log of su activity. Note how each username is

a hyperlink that takes the analyst to a personalized report for that user (Screen Shot 21).

These personalized reports show detailed user information like the list of all processes owned

by the user, what files the user currently has open, what system(s) he logged in from, the

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 47

user’s history files, any entries in /var/adm/messages attributed to that user, and his su

activity.

Screen Shot 21 User report for 'fbegin1'

Not surprisingly, there is ample literature on the subject of covering one’s tracks by

altering history files, su logs and other system logs. One such example is Steps To Deface A

Webpage (b0iler, 2006). But not all malicious hackers are both careful and skilled, and even

the ones who are can make mistakes, allowing security analysts to find useful information

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 48

while parsing these logs.

5.4.8 Vulnerabilities Report

The Vulnerabilities Report (Screen Shot 22) focuses on vulnerabilities that the host

might be susceptible to.

Screen Shot 22 Vulnerability report

To create this report, SirEG_Analyze_Data.sh queries the Common Vulnerabilities and

Exposures database (CVE), the National Vulnerability Database (NVD) as well as Sunsolve.

A list of current known vulnerabilities is downloaded and processed. From that list, all Solaris

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 49

vulnerabilities associated with the particular OS version and platform of our suspicious host

are extracted. The script then attempts to determine the condition under which the host might

be vulnerable (typically a patch that has not been installed).

If successful, the script assesses whether or not the host is vulnerable and highlights

the vulnerability based on the NVD Base Score & Severity (bright yellow: high, yellow:

medium, pale yellow: low). Just like the patch report, this page can help identify the attack

vector used if the host has indeed been compromised.

5.4.9 Solaris Fingerprints Report

This report (Screen Shot 23) focuses on the MD5 checksums of the binaries found in

/usr/bin and /usr/sbin on the system.

Screen Shot 23 Solaris fingerprint report

Using the output of the hashdeep tool, SirEG_Analyze_Data.sh queries the Sunsolve

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 50

Fingerprint Database and compares each MD5 checksum found on the suspicious host to

what is known to the database. If a binary is not found or if the MD5 does not match, the file is

highlighted in bright yellow.

Recent research has shown weakness in the MD5 algorithm, and it is a well-known fact

that a malicious and enterprising hacker can create two binaries that perform totally different

functions and yet have the same MD5 checksum. Stevens, Lenstra, & de Weger

demonstrated this in their paper Vulnerability of software integrity and code signing

applications to chosen-prefix collisions for MD5 (2007). But for this to happen, both files have

to be modified. In other words, you cannot create a file that has a given hash; you can only

manipulate two files in such a way that both return the same hash. In practical terms, this

means that if our malicious and enterprising hacker wanted to compromise Solaris binaries

and hide this compromise from the Solaris Fingerprint Database, he would have to

compromise not just the binaries on the host but also the database itself. Considering the

effort that would be required to achieve both tasks, the Solaris Fingerprint Database remains

a trustworthy tool to assess the integrity of binaries found on a suspicious system.

5.4.10 MDB commands Report

According to Batchev (2007), “the operating system kernel is where the meta-data

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 51

about system operation lives and is maintained. The Kernel is the most reliable source of this

metadata (provided that it has not been tampered with)” (p. 19). This statement opens up

new avenues for us to gather and analyze data. For instance, while the ps command can be

used to list process information, we can also query the kernel directly using the MDB

debugger tool (mdb). For a malicious hacker, hiding a process by compromising the ps

command on a host is a lot easier than hiding it by modifying the running kernel.

The MDB commands Report therefore compares the output of the ps command to

what is in the running kernel (using the kernel debugger running in read-only mode). Any

process for which ps and mdb find themselves in disagreement (one can see it but the other

cannot) is highlighted (Screen Shot 24).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 52

Screen Shot 24 Comparing the output from the ps and mdb commands

Since certain rootkits make use of kernel modules, we also present a comparison

between the modinfo command and its kernel debugger counterpart, highlighting any

discrepancies (Screen Shot 25).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 53

Screen Shot 25 Comparing the output from the modinfo and mdb commands

5.4.11 System logs Report

While it is well understood that “if the logs are kept locally on the compromised

machine they are susceptible to alteration or deletion by an attacker” (Braid, 2001. p. 7),

system logs often contain traces left behind by a careless or unskilled malicious hacker. Not

only that but sometimes “it may be what’s missing from the logs that is suspicious” (p. 8).

The System logs Report (Screen Shot 26) therefore focuses on gathering some key system

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 54

logs. Since analyzing logs and highlighting suspicious events based on heuristics would

warrant a paper in themselves, this report does nothing more than organize the logs so they

can be viewed and referred to easily.

Screen Shot 26 Logs report

5.4.12 Startup/Services Report

Screen Shot 27 shows the Startup/Services Report, which lists startup scripts and

services running on the host. This can be used by an analyst to correlate processes to ports

currently listening on the host, to list applications that have started following a reboot, etc.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 55

Screen Shot 27 Startup scripts and services report

5.4.13 Interesting files report

This report (Screen Shot 28) focuses on files and directories that might be of interest.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 56

Screen Shot 28 Special files report

Some key data available on this page are

 List of unlinked files

Files that are linked to a process that is running in memory, yet the program that

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 57

spawned it no longer exists on disk.

 Contents of users’ crontab files

It is common for malicious hackers to use cron to perform regular tasks on a

compromised host e.g. send out spam, re-open a port, move files, etc.

 Contents of /tmp

This is where programs typically keep temporary files used while they are

running. On Solaris, this is part of the virtual memory and the data in question is

lost when the system reboots.

6. Demonstrating the use of the SirEG Toolkit

6.1 Compromising our test host

To demonstrate the use of the SirEG Toolkit, let us gather and analyze data from a

host that has been tampered with and see how an analyst could use the html reports to

discover the compromise. In this fictitious scenario, an analyst is asked to investigate a

Solaris 10 host named defiant which runs a web server for his company. He is told that the

two main users of that host are F. Bégin and J. Jones, that the host has been somewhat

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 58

hardened and should only have services listening on ports 80 (web server) and 22 (ssh

server). Prior to using the SirEG Toolkit, the following was done to the host:

1. netcat was installed and made to listen on port 666 to simulate a hacker

installing a backdoor on the host. The nc binary was renamed svc.configd to try to

camouflage netcat as a trusted Solaris system process. Finally, a connection via the netcat

listener was established from another host.

2. The lp system user account was modified and given root privileges to simulate

the creation of login id with admin privileges that a hacker could use to log in to the server.

3. The pwd binary was tampered with to simulate a malicious hacker modifying

common binaries in order to gain information from unsuspecting users and/or to ensure that

he can re-take control of the host in the event he is discovered.

4. A script called hackthebox.sh was run to spawn a process, then the script was

deleted. This simulates a hacker running a process for some nefarious purpose and then

trying to delete traces of his actions from the hard disk.

5. S.I.n.A.R, a Solaris proof-of-concept rootkit, was installed on the host. An

account named jsmith1 was then created. Someone logged in to the system as that user and

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 59

escalated his privileges to root using S.I.n.A.R. This simulates techniques a hacker might use

to re-gain ownership of a server after he has been discovered.

6.2 S.I.n.A.R. 101

Before looking at the suspicious host using SirEG, let us take a tour of S.I.n.A.R. This

should give us a clear idea of what a sophisticated compromise looks like.

S.I.n.A.R. was written by Archim as a proof-of-concept Solaris rootkit. The tool is

described in detail in his paper titled SUN - Bloody Daft Solaris Mechanisms. “B.D.S.M. the

Solaris 10 way.” S.I.n.A.R. isn't a rootkit (2004). This particular piece of code is a loadable

kernel module that has been designed to unlink itself from the module list and decrement the

module ID, therefore hiding itself from a user trying to get a list of kernel modules. S.I.n.A.R.

also hides the user shell of someone who uses it to escalate his privileges. All in all, it is a

challenging tool to find on a suspicious host. Refer to Appendix A for a detailed discussion of

how to obtain and compile S.I.n.A.R. In this section, only S.I.n.A.R.’s use is demonstrated.

First, a snapshot of the output of modinfo is taken before loading S.I.n.A.R.

modinfo > /tmp/modinfo_before

/usr/local/bin/hashdeep /tmp/modinfo_before

%%%% HASHDEEP-1.0

%%%% size,MD5,sha256,filename

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 60

Invoked from: /

/usr/local/bin/hashdeep /tmp/modinfo_before

11616,165c954c117cf37a8833d15f63292572,a62df017a6ace31c67c6704c60f56dd34ec185e058d8100a

c50984385ac7d452,/tmp/modinfo_before

Now S.I.n.A.R. is loaded and a snapshot of modinfo is taken.

modload sinar

modinfo > /tmp/modinfo_sinar_loaded

/usr/local/bin/hashdeep /tmp/modinfo_sinar_loaded

%%%% HASHDEEP-1.0

%%%% size,MD5,sha256,filename

Invoked from: /export/home/fbegin1/good_sinar

/usr/local/bin/hashdeep /tmp/modinfo_sinar_loaded

11616,165c954c117cf37a8833d15f63292572,a62df017a6ace31c67c6704c60f56dd34ec185e058d8100a

c50984385ac7d452,/tmp/modinfo_sinar_loaded

The checksums are exactly the same, so as far as the list of modules running on the

system is concerned, S.I.n.A.R does not exist. S.I.n.A.R. does output something to

/var/adm/messages but that is just to show that the module was successfully loaded

(S.I.n.A.R.’s author considers the code as a proof-of-concept):

Jan 13 15:25:04 defiant sinar: [ID 727367 kern.notice] NOTICE: SInAR installed.

Jan 13 15:25:04 defiant <unknown>: [ID 487132 kern.notice] NOTICE: SInAR unregistering from DTrace

FBT provider

In this scenario, a malicious hacker created a new regular user account called jsmith1.

This regular account can be used to demonstrate how the hacker can escalate his privileges

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 61

by using S.I.n.A.R. First, the user logs in to the host where S.I.n.A.R. has been loaded:

$ ssh -l jsmith1 defiant

Password:

Last login: Tue Jan 13 12:53:14 2009 from edtosim02.telus

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

This is only a regular user who has no access to the shadow file:

$ id

uid=102(jsmith1) gid=1(other)

$ cat /etc/shadow

cat: cannot open /etc/shadow

S.I.n.A.R. can be kicked off by using the secret command compiled in the module (see

Appendix A for more details):

$./sinarrk

sinarrk-3.00# id

uid=0(root) gid=0(root)

Voila! Instant root! Further proof can be obtained by taking a look at the /etc/shadow

file, which should only be visible to root:

cat /etc/shadow

root:pvChE8uxoy1VI:6445::::::

daemon:NP:6445::::::

bin:NP:6445::::::

sys:NP:6445::::::

adm:NP:6445::::::

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 62

lp:yEVEPiZP1D8.E:14251::::::

uucp:NP:6445::::::

fbegin1:jh0LyLr5ZjZ62:14090::::::

tjones1:o3SaHS3GJAqYw:14251::::::

jsmith1:wqhxlin3hU1DM:14251::::::

Since S.I.n.A.R. has just allowed a user to escalate his privileges on the system,

perhaps it is now visible to modinfo? To test this proposition, modinfo is run one more time

and its MD5 and SHA256 hashes are computed. The hashes are the same as before, so

S.I.n.A.R. remains hidden. Not only that, but jsmith1 does not appear to be doing anything

special. Here is the output of ps –ef , before and after privilege escalation:

Before privilege escalation

ps -ef | grep jsmith1

jsmith1 465 463 0 15:26:22 pts/2 0:00 –bash

jsmith1 463 460 0 15:26:22 ? 0:00 /usr/lib/ssh/sshd

After privilege escalation

ps -ef | grep jsmith1

jsmith1 465 463 0 15:26:22 pts/2 0:00 –bash

jsmith1 463 460 0 15:26:22 ? 0:00 /usr/lib/ssh/sshd

No other suspicious process shows up when ps –ef is run. S.I.N.A.R. works as

advertized, hiding itself quite well from a superficial investigation. We are now ready to see if

the SirEG Toolkit is up to the challenge of finding this compromise, including S.I.n.A.R.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 63

6.3 Checking open ports

One of the first things most security analysts will do on a live system that is suspected

of having been compromised is to look at its open ports. Referring back to Screen Shot 15,

multiple ssh connections to that host from various sources can be seen. The web server

listening on port 80 is also visible as expected, but there is a third entry in the table:

Screen Shot 29 Suspicious entry in the open ports report

This does not look quite right. Something is listening on port 666 on that system. A

IANA lookup identifies the service as doom ID Software and lsof associates the open port with

a process called svc.confi (the name was truncated) with PID of 2877. Clicking on the

hyperlink for PID 2877, the analyst can get a detailed report of that process, as shown on

Screen Shot 30:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 64

Screen Shot 30 Detailed report for process with PID=2877

From the detailed process report, the analyst can see that the process was called with

the command: ./svc.configd –l –p 666. Anyone familiar with GNU netcat will probably

recognize the syntax. Apparently, the nc binary has been renamed svc.configd before being

run. But even someone unfamiliar with netcat should notice that the command was run from

the current working directory (./) rather than being called using an absolute path. This most

certainly does not look right! Scrolling down Detailed Report for Process 2877, the analyst

can examine the process tree (based on the ptree command) to see where this process

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 65

originated.

Screen Shot 31 ptree for suspicious process

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 66

Note how SirEG highlights the current process in red in the ptree section of the

detailed report. The process was spawned by a shell session (PID 2872 –bash) which

originated from an ssh session (PID 2870 /usr/lib/ssh/sshd). So someone connected to the

server via ssh and ran ./svc.configd –l –p 666. This resulted in the host listening on port 666.

There is definitely something suspect happening here.

Note that if an active session had been taking place when SirEG_Gather_Data.sh was

run, then nothing would have been listening on port 666 since GNU netcat only accepts a

single connection at a time. The SirEG toolkit would still help. Consider Screen Shot 32 for

that particular scenario:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 67

Screen Shot 32 Looking at established sessions

Under Established Connections, SirEG lists all connections currently established on

the host. As mentioned previously, if a connection is established but the host is no longer

listening on that port, then the connection is highlighted. There are legitimate reasons for

these types of connections, for instance an ftp server that only allows 3 users to be logged in

at one time. But one goal of SirEG is to highlight things that might not be quite right.

In this particular case, it shows that something has established a dedicated connection

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 68

to the host on port 666, yet under Open Ports, nothing is listening. To find out what that

‘something’ is, an analyst would go back to the main report (Screen Shot 13) and pick lsof

–Di –P : List open files under the section titled Output from SirEG_Gather_Data.sh. He would

then search for port 666 (:666) using his browser’s search feature. Here is what he would

find:

Screen Shot 33 Tracking process listening on port 666 using lsof

From that point, he could take a closer look at the process with PID=7194 (svc.confi)

and repeat the steps taken when that process was listening, reaching the same conclusion:

something does not look quite right.

6.4 Checking users

After having checked for open ports, an analyst might want to take a closer look at the

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 69

users and their activities on the system. Referring back to Screen Shot 20, an extract from

/etc/passwd and /etc/group can be seen. Users whose UID=0 are highlighted in yellow by

SirEG. The analyst would note right away that there is more than one root user on that

system: user lp also has a UID=0. This should raise a red flag immediately. Clicking on that

user, the analyst would get further details, as shown by Screen Shot 34:

Screen Shot 34 Details for user lp

The history of logins for that user can also be examined, including where the user

logged from (Screen Shot 35):

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 70

Screen Shot 35 Logins for user lp

The lp account is a system account and should only be used to administer printers.

The simple fact that someone is logging in as that user and that this user has privileges

equivalent to root are sufficient in themselves to declare that the host has been compromised.

If the malicious hacker is careless or does not feel like he needs to cover his tracks, his

actions on the host may have been logged. To verify this, the analyst would look at .history or

.bash_history under the Detailed report on user lp, as shown in Screen Shot 36:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 71

Screen Shot 36 History report for user lp

The analyst would quickly discover more evidence: The lp user rebooted the server

(reboot), loaded some sort of kernel module (modload sinar), and even added a new user to

the server (useradd –u102 jsmith1 …).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 72

6.5 Finding tampered binaries

Malicious hackers sometimes tamper with the binaries found on a system to ensure

they can regain control or gather information from unsuspecting users. The analyst should

therefore take a closer look at the system binaries. Referring back to Screen Shot 23, he can

see that the SirEG Toolkit has caught two such binaries in its Solaris Fingerpints Report:

/usr/bin/pwd and /usr/bin/vncviewer. Neither of these has passed the check against the

Solaris Fingerprint Database.

Screen Shot 37 Two binaries flagged by the Solaris fingerprint database

This means that the binaries found on the host do not match any binaries ever

released by Sun. This includes not only original binaries but also all patched binaries. In the

case of vncviewer, this is a remote client tool used to connect to other systems, so it is

possible that it was installed by the administrator of the host for a legitimate purpose. But

vncviewer and its server counterpart (vncserver) are also common tools used by malicious

hackers. This needs to be investigated further.

Of more immediate concern is the unrecognized /usr/bin/pwd binary on that host.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 73

Unless the administrator of that host re-compiled some key system tools (perhaps preferring

GNU tools to the Solaris ones), this definitely looks like a compromise. This should also

reinforce the need to run SirEG_Gather_Data.sh in its trusted environment, using binaries we

know are legitimate.

6.6 Unlinked files

Referring to Screen Shot 28, the analyst can see that nothing turned up in the Unlinked

Files section of the Interesting Files Report. This result is surprising since the same test on a

Solaris x86 system revealed the hackthebox.sh script that the malicious hacker tried to hide:

Screen Shot 38 Using lsof to show unlinked files – result on x86 system

It can only be surmised that the version of lsof compiled on the sparc machine did not get all

the hooks it needed to be able to list these files. Still, this remains a valid section of the

Interesting Files Report, at least on the x86 platform. Armed with the PID of the process

(PID=13451) in question, the analyst could get to the detailed report for the process and track

down its provenance.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 74

6.7. Rooting out S.I.n.A.R.

Now let us see if our analyst could root out S.I.n.A.R. First, let us reiterate that this

particular compromise is in a class of its own: it consists of a well hidden kernel module that

allows a user to escalate his privileges to root by typing the command ./sinarrk , and the

escalated shell obtained is invisible to the ps command. How can the SirEG Toolkit help

identify this breach? The answer lies within the Solaris kernel itself as a data source and in

using some of Batchev’s techniques from his paper FORENSICS FUSION or Sushi &

Gorgonzolla (2007).

To safely investigate the kernel of a live system, SirEG_Gather_Data.sh incorporates

certain kernel debugger commands. The kernel debugger command (mdb) itself is run with

the -k option to ensure that the kernel is examined in read-only mode. Specifically, here are

two key commands:

echo “::ps -f” | mdb –k

echo “::modinfo” | mdb –k

The first one returns the processes as seen by the kernel, while the second returns a

list of modules. The problem facing our analyst boils down to two specific questions:

Can the S.I.n.A.R. module be found by interrogating the kernel directly?

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 75

Can evidence of a user having escalated his privileges with S.I.n.A.R. be seen?

The answer to the first question is no, but fortunately it is yes for the second one.

Under the report called MDB Commands, SirEG_Analyze_Data.sh compares kernel modules

as shown by modinfo to the kernel modules reported by echo “::modinfo” | mdb –k. and

highlights any discrepancies.

As shown in Screen Shot 25, this is hit-and-miss. cl_bootstrap, swapgeneric and

lbl_edition are system modules that do not show up by running the modinfo command as root

on the system. Parsing through the whole list, S.I.n.A.R. is nowhere to be seen. But

SirEG_Analyze_Data.sh also reports on discrepancies between the regular ps –ef command

and its kernel debugger counterpart, echo “::ps -f” | mdb –k . See Screen Shot 39:

Screen Shot 39 Tracking down root privilege shell started by ./sinarrk

From this report, an analyst could quickly determine that there is a process known as

./sinarrk with a PID=2262 that is invisible to the ps –ef command yet exists in the kernel. If he

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 76

tries to follow the hyperlink to PID=2262, he gets nowhere, as show by Screen Shot 40:

Screen Shot 40 The invidible process with PID=2262

But he can get a detailed report on its parent process (PPID=2256) and find user

jsmith1 logged in with a bash shell via an ssh session. With overwhelming evidence pointing

to a compromise, it is time for the analyst to inform upper management, pull the plug on the

host, and call in the forensics team.

7. Summary

This paper introduced the SirEG Toolkit as a tool that security analysts can use to

investigate a Solaris host that may have been compromised. The three main functions of the

Toolkit were demonstrated:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 77

1. Building other toolkits (SirEG_Build_Toolkit.sh)

2. Gathering the data (SirEG_Gather_Data.sh)

3. Analyzing the data (SirEG_Analyze_Data.sh)

The commands used to gather useful information on a live system were listed as well

as how to run them in a self-contained trusted environment. The paper then delved deeper

into the toolkit, showing how it is installed and used in the field. Finally, a demonstration was

given of how the reports it produces can be used by an analyst to ascertain security breaches

on a fictitious host.

The SirEG Toolkit purposely shies away from trying to quantify the various tell-tale

signs of security breaches, which so many commercial tools do. On its own, the toolkit is

incapable of ascertaining that a compromise has taken place. The reports it provides must

therefore be interpreted by a skilled security analyst.

The SirEG Toolkit presented in this paper has been tested on Solaris 10 (both x86 and

sparc). It should be noted that while the current version can capture some useful information

in Solaris containers, the full analysis provided by the processing script is geared towards

global zones.

The SirEG Toolkit will be hosted at http://sireg.franky.ca for the foreseeable future. My

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 78

hope is that it will find a place among other tools used by security personnel who need to

investigate potential incidents on Solaris hosts, and that users of the toolkit will provide

feedback that will lead to various enhancements. Plans are being made to re-write

SirEG_Analyze_Data.sh in PHP with a MySQL backend so that reports can be produced

more efficiently.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 79

8. Appendix A - Compilation notes

When compiling software on Solaris, two choices exist: you can use the GNU compiler

(gcc) or Sun Studio (cc). This appendix covers how to compile lsof, hashdeep and S.I.n.A.R.

using Sun Studio 12.

8.1 Compiling lsof

You can compile lsof without root privileges but you will need to be root to test the tool.

Get the latest source for lsof from http://freshmeat.net/projects/lsof/ and verify its signature

using the author’s public gpg key. The example below makes use of GnuPG:

Import the GPG key of the author of lsof (Victor Abell):

$ gpg --search-keys abe@purdue.edu

gpg: WARNING: using insecure memory!

gpg: please see http://www.gnupg.org/faq.html for more information

gpg: searching for "abe@purdue.edu" from hkp server keys.gnupg.net

(1) Victor A. Abell abe@purdue.edu

 Victor A. Abell abe@cc.purdue.edu

 1024 bit RSA key 40BD3D55, created: 1994-11-03

Keys 1-1 of 1 for "abe@purdue.edu". Enter number(s), N)ext, or Q)uit > 1

gpg: requesting key 40BD3D55 from hkp server keys.gnupg.net

gpg: /export/home/fbegin1/.gnupg/trustdb.gpg: trustdb created

gpg: key 40BD3D55: public key "Victor A. Abell <abe@purdue.edu>" imported

gpg: no ultimately trusted keys found

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 80

Verify the signature of the package you downloaded:

$ gpg --verify lsof_4.81_src.tar.sig

gpg: WARNING: using insecure memory!

gpg: please see http://www.gnupg.org/faq.html for more information

gpg: Signature made Wed Oct 22 08:36:15 2008 MDT using RSA key ID 40BD3D55

gpg: Good signature from "Victor A. Abell <abe@purdue.edu>"

gpg: aka "Victor A. Abell <abe@cc.purdue.edu>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 10 16 6B 78 9E 18 B9 A7 AB 63 50 91 58 26 16 E9

Once you verify that what you downloaded matches the author’s key, untar the

source code and run ./Configure. Choose your options based on your needs (zfs support,

etc.).

$ tar xvf lsof_4.81_src.tar

$ cd ./lsof_4.81_src

$./Configure solariscc

Edit the Makefile and replace -xarch=v9 (deprecated) with –m64. Then run gmake.

$ /usr/sfw/bin/gmake

The lsof binary will be found in the directory where you ran ./Configure

$ file ./lsof

./lsof: ELF 64-bit MSB executable SPARCV9 Version 1, dynamically linked, not stripped

For lsof to work correctly in the SirEG Toolkit, it must be able to list information for

open ports. Run the following as root to test that your binary works correctly:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 81

./lsof -i TCP:22

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sshd 282 root 3u IPv6 0x600109988c0 0t0 TCP *:ssh (LISTEN)

sshd 550 root 6u IPv6 0x60010998f80 0t49122 TCP defiant:ssh->edtosim02.telus.sec:42367

(ESTABLISHED)

sshd 553 fbegin1 4u IPv6 0x60010998f80 0t49122 TCP defiant:ssh->edtosim02.telus.sec:42367

(ESTABLISHED)

You want to avoid using a binary that would produce the following types of output:

./lsof -i TCP:22

{ no output}

./lsof | grep TCP

sshd 282 root 3u IPv6 TCP no TCP/UDP/IP information available

sshd 550 root 6u IPv6 TCP no TCP/UDP/IP information available

8.2 Compiling hashdeep (MD5deep)

You can compile and test hashdeep without the need for root privileges. First, get the

latest source for MD5deep from http://MD5deep.sourceforge.net/ and check its SHA256

cryptographic hash. You can use the digest tool for this

$ digest -a sha256 MD5deep-3.1.tar.gz

fdcfaa469923248b0412b4a1afab39f5c26ea778edaab51af2d97eed46bcf2af

Compare the checksum to what is posted on the download page. Once you have

verified the hash, uncompress and untar the source code then run ./configure.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 82

$ env CPPFLAGS=" -I/opt/SUNWspro/prod/include/CC/Cstd/rw/ -I/opt/SUNWspro/prod/include/CC/Cstd/

-I/opt/SUNWspro/prod/include/CC/std/" CFLAGS="-m64" ./configure

Note the added includes with CPPFLAGS that were necessary for the compiler to find

certain header files (namely math.h, stdcomp.h and cmath). Note also the –m64 compiler

switch to force the compilation of a 64 bit binary.

You can now run gmake.

$ /usr/sfw/bin/gmake

The hashdeep binary will be found in ./hashdeep/hashdeep

$ file hashdeep/hashdeep

hashdeep/hashdeep: ELF 64-bit MSB executable SPARCV9 Version 1, dynamically linked, not

stripped

We can test it:

[fbegin1@defiant]:/export/home/fbegin1$./hashdeep /usr/bin/ac*

%%%% HASHDEEP-1.0

%%%% size,md5,sha256,filename

Invoked from: /export/home/fbegin1

$./hashdeep /usr/bin/acroread /usr/bin/activation-client

92969,f788d7691cec2095c8fbeae4bca788a9,e055c3703fe3f415c701a295c5fec9b2563c6fd418691642c

a0beb1282480b9c,/usr/bin/acroread

12672,34076734486a477814d2e36263d2bdca,891d46bffdf23b079a9ac439b3c2f59f9b665111f7203598

517fa3e346a22dd3,/usr/bin/activation-client

8.3 Compiling S.I.n.A.R.

S.I.n.A.R. can be compiled by a regular user but requires root to test. Note that there is

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 83

no way to unload the module once loaded, so you will need to reboot the host to get rid of it.

Ensure that you run these tests on a suitable development server. The source code can be

downloaded from Packet Storm Security

http://packetstormsecurity.org/UNIX/penetration/rootkits/SInAR-0.3.tar.bz2

Untar the source code and go into the src subdirectory

[fbegin1@defiant]:/export/home/fbegin1/SInAR-0.3$ cd src/

 [fbegin1@defiant]:/export/home/fbegin1/SInAR-0.3/src$ ls

 Makefile opcodes.h sinar.c

Since the code is a proof of concept, it is not completely usable as-is. A few

modifications are required, as described in Spainhower’s paper titled Feasibility Analysis of

DTrace for Rootkit Detection (2008). Right after line 165 of the original code, add this line

#define RK_EXEC_SHELL "/bin/bash"

Here is what that section of code looked like before:

#define RK_EXEC_KEY "./sinarrk"

#define RK_EXEC_KEY_LEN 9

and how it looks after

#define RK_EXEC_KEY "./sinarrk"

#define RK_EXEC_KEY_LEN 9

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 84

#define RK_EXEC_SHELL "/bin/bash"

Right after line 184 of the original code, make the following addition/modification

Add : ddi_copyout(RK_EXEC_SHELL,fname,RK_EXEC_KEY_LEN,0);

Modify : error = exec_common(fname, argp, envp, 0);

Here is what the code looked like before

if(strncmp(RK_EXEC_KEY,sinar_pn.pn_path,RK_EXEC_KEY_LEN) == 0)

{

 is_gone = 1;

// give ourselves kernel creds. "yeah man he got kcred" *ahem*

 curproc->p_cred = crdup(kcred);

}

 error = exec_common(fname, argp, envp);

 if(is_gone)

And here is what it looks like after the change

if(strncmp(RK_EXEC_KEY,sinar_pn.pn_path,RK_EXEC_KEY_LEN) == 0)

{

 is_gone = 1;

// give ourselves kernel creds. "yeah man he got kcred" *ahem*

 curproc->p_cred = crdup(kcred);

}

 ddi_copyout(RK_EXEC_SHELL,fname,RK_EXEC_KEY_LEN,0);

 error = exec_common(fname, argp, envp, 0);

 if(is_gone)

We are now ready to compile. In this example, we compile on a Solaris 10 (sparc)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 85

system using Sun Studio 12 and /usr/ccs/bin/make which is part of the SUNWsprot package.

Here is the Makefile:

CC=cc

CFLAGS= --m64 -D_KERNEL -DSVR4 -DSOL2 –c

LFLAGS= -64 –r

all: sinar

clean:

 rm -f *.o sinar *.*~

sinar:

 $(CC) $(CFLAGS) sinar.c -o sinar.o

 ld $(LFLAGS) sinar.o -o sinar

Now we compile

/usr/ccs/bin/make

 cc -m64 -D_KERNEL -DSVR4 -DSOL2 -c sinar.c -o sinar.o

 "sinar.c", line 98: warning: improper pointer/integer combination: op "="

 "sinar.c", line 261: warning: improper pointer/integer combination: op "="

 "sinar.c", line 272: warning: improper pointer/integer combination: op "="

 "sinar.c", line 275: warning: improper pointer/integer combination: op "="

 ld -64 -r sinar.o -o sinar

The resulting file is a loadable kernel module

file sinar

sinar: ELF 64-bit MSB relocatable SPARCV9 Version 1

We can now test it

modload sinar

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 86

tail /var/adm/messages

Feb 23 08:40:14 defiant sinar_good: [ID 727367 kern.notice] NOTICE: SInAR installed.

Feb 23 08:40:14 defiant <unknown>: [ID 487132 kern.notice] NOTICE: SInAR Unregistering from

DTrace FBT provider

Log in as a regular user and see if you escalate your privileges

[fbegin1@defiant]:/export/home/fbegin1$ id

uid=100(fbegin1) gid=1(other)

[fbegin1@defiant]:/export/home/fbegin1$./sinarrk

sinarrk-3.00# id

uid=0(root) gid=0(root)

sinarrk-3.00#

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 87

9. References

Archim (2004)

SUN - Bloody Daft Solaris Mechanisms. “B.D.S.M. the Solaris 10 way.” S.I.n.A.R.

isn't a rootkit. Retrieved Feb 17, 2009 from

http://www.ouah.org/67-sun-bloody-daft-solaris-mechanisms-paper.pdf

b0iler (2006).

Steps To Deface A Webpage. Retrieved Feb 16, 2009 from

http://hacking.3xforum.ro/post/244/1/How_To_Deface_A_Website/

Batchev, E. (2007)

FORENSICS FUSION or Sushi & Gorgonzolla. Retrieved Feb 17, 2009 from

http://opensolaris.org/os/project/forensics/files/Solaris_Kernel_Dissection_for_Fun_Fore

nsics0.2CSIRT.pdf

Braid, M. (2001)

Collecting Electronic Evidence After a System Compromise. Retrieved Feb 17, 2009

from AusCERT

http://www.auscert.org.au/download.html?f=22&it=2247&cid=

Brezinski, D, & Killalea, T. (2002)

RFC3227 - Guidelines for Evidence Collection and Archiving.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 88

Retrieved Mar 30, 2009 from The Internet Engineering Task Force (IETF) web site

http://www.ietf.org/rfc/rfc3227.txt

Dasan, V., Noordergraaf, A., Ordorica, L., & Brunette, G. (2006)

The Solaris™ fingerprint database: A security tool for Solaris Operating environment

files. Retrieved Feb 10, 2009 from SunBluePrints OnLine

http://www.sun.com/blueprints/0306/816-1148.pdf

Furner, M., & Buetler, I. (2006)

Live Solaris Evidence Gathering Instructions. Retrieved Feb 10, 2009 from Compass

Security

http://www.csnc.ch/misc/files/publications/solaris_evidence_gathering_v1.2.pdf

Henry-Stocker, S. (2006)

Unix Tip: Viewing library dependencies with ldd. Retrieved Feb 10, 2009 from

http://www.itworld.com/nls_unix_lib060727

Internet Assigned Numbers Authority (2009)

Well Known Port Numbers. Retrieved Feb 19, 2009 from IANA

http://www.iana.org/assignments/port-numbers

Kent, K., Chevalier, S., Grance, T., & Dang, H. (2006)

Guide to Integrating Forensic Techniques into Incident Response

Retrieved Feb 10, 2009 from NIST

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 89

http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf

Miessler, D. (2009)

An lsof tutorial/primer. Retrieved Feb 13, 2009 from

http://dmiessler.com/study/lsof

Montoro, M (2001)

Introduction to ARP poison routing. Retrieved Feb 16, 2009 from

http://www.oxid.it/downloads/apr-intro.swf

Nicastro, F. (2003)

Security Patch Management. Retrieved Feb 16, 2009 from

http://www.kwesthuba.co.za/downloads/04_ins_security_patch_mgmt_0303.pdf

Nolan, R., O’Sullivan, C., Branson, J., & Waits, C. (2005)

First Responders Guide to Computer Forensics

CERT, Retrieved Feb 10, 2009 from CERT

http://www.cert.org/archive/pdf/FRGCF_v1.3.pdf

Pomeranz, H. (2001)

Static Linking Under Solaris. Retrieved Feb 10, 2009 from

http://www.deer-run.com/~hal/sol-static.txt

Sharma, M. (2007)

 Comprehensive integrity verification with MD5deep. Retrieved Feb 13, 2009 from

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 90

 http://www.linux.com/feature/118616

Skoudis, E. (2007)

Security 504 Hacker techniques, exploits, and incident handling

The SANS Institute

Spainhower, M. (2008)

 Feasibility Analysis of DTrace for Rootkit Detection

Retrieved Feb 17, 2009 from

http://cs.gmu.edu/~hfoxwell/cs671projects/spainhower_DT.pdf

Staniford, S, Hoagland, J.A., & McAlerney, J (2002)

 Practical automated detection of stealthy portscans.

 Journal of Computer Security 10. Retrieved Feb 16, 2009 from

http://webpages.cs.luc.edu/~pld/courses/447/fall05/hoagland_spade.pdf

Stevens, M., Lenstra, A., & de Weger, B. (2007)

Vulnerability of software integrity and code signing applications to chosen-prefix

collisions for MD5. Retrieved Feb 17, 2009 from

http://www.win.tue.nl/hashclash/SoftIntCodeSign/

Sun, Y., & Couch, Dr. A., 2001)

Global impact analysis of Dynamic Library Dependencies. Retrieved Feb 10, 2009 from

http://www.usenix.org/events/lisa2001/tech/full_papers/sun/sun.pdf

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The SirEG Toolkit

François Bégin 91

Trapani, G (2006)

Geek to Live: Mastering Wget. Retrieved Feb 13, 2009 from

http://lifehacker.com/software/downloads/geek-to-live-mastering-wget-161202.php

Walberg, S (2006)

 Solve application problems with tracing. Retrieved Feb 13, 2009 from

http://www.ibm.com/developerworks/aix/library/au-unix-tracingapps.html

