
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Network Covert Channels:
Subversive Secrecy

Raymond Sbrusch

sbrusch@gmail.com

Abstract: Confidentiality, one of the primary goals of
information security, is most frequently achieved utilizing
cryptography. There exist other methods to conceal information
from unauthorized or undesired viewers. One category of non-
cryptographic concealment techniques, called covert channels, can
hide information locally on a system or mask traffic as it passes
over a network. This report will explore the art of hiding data
as it traverses a network. This paper will analyze motivations
for network covert channels, survey current data hiding research
and tools, and evaluate countermeasures to detect and prevent
network-based steganography.

1. Introduction

Steganography is the practice of concealing
information in channels that superficially appear
benign. The National Institute of Standards and
Technology defines a covert channel as “any
communication channel that can be exploited by a
process to transfer information in a manner that
violates the system’s security policy” [13]. In other
words, a network covert channel is manipulation of a
communication protocol to transfer information in a
way outside the protocol’s specification. In part,
these channels exist because of undefined, optional,
or permissive values allowed to be assigned to certain
fields. Steven Bellovin summarizes the issue in
stating that “we are not concerned with flaws in
particular implementations of the protocols … rather,
we discuss generic problems with the protocols
themselves” [5]. This paper will analyze motivations
for using covert channels, define criteria used when
evaluating covert channels, survey existing research
and tools, and review mechanisms for detecting and
preventing network-based steganography.

2. Motivations

Covert network channels provide an
alternative, somewhat subversive means of achieving
confidentiality and maintaining anonymity. There
exist both illicit and honorable motivations for using
network steganography. For one, many countries
maintain strict regulations over use of cryptography
[11]. It is possible for citizens of some countries to
be imprisoned if they encrypt messages and attempt
to evade government detection. Even in the United
States, the federal government expressed interest in
key escrow systems that would enable trusted

agencies to decipher encrypted messages [8]. In some
cases, the contents of the message are less meaningful
to observers than the mere fact that two parties are
communicating. If the observer witnesses encrypted
communications, they may become curious about the
motivation for hiding something. In this case, the
best way for a message sender and recipient to avoid
traffic analysis is to never communicate directly.
Some covert channel techniques described in this
report can be used by benevolent entities that wish to
watermark communications from opposition
organizations. For example, a country can digitally
watermark a network datagram as it leaves the
network of one enemy. They can observe datagrams
entering other organizations network and thus
determine who cooperates with whom.

Covert channel tools are not attack tools;
they are not used to break into systems. In some
scenarios, they can be used alongside an exploit tool
to leech information off a system or to secretly
deliver commands to a system. For example, an
attacker can compromise the web server of a popular
banking site. The usernames and password of the
bank’s customers are much more valuable than
simply defacing the web page. The attacker can plant
a password sniffing program on the site and use a
covert channel tool to stealthily deliver credentials
from the web server to another location. Messages
can be delivered on a scheduled interval, such as with
a cron job, or they can be sent interactively, as with
an email system. The scenario works in reverse, as
well. The covert channel tool can be used to retrieve
commands from an external site that are to be run on
the compromised, internal server.

3. Evaluation Methodology.

The criteria for evaluating covert channels
are not inherently different from those used when
evaluating open communication mechanisms, except
in a few cases. Bandwidth, ease of implementation,
and range are still important traits. However, the
ways they are measured may differ. Additional
criteria include permissibility, probability of detection,
and level of anonymity. Bandwidth can be measured
in term of bits per packet and bits per session. For
example, some systems encode a character in every
frame that leaves a network. Other systems, such as
those based on TCP Initial Sequence Numbers, may
only encode one character in each TCP session.

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 2 Network Covert Channels

Application layer based channels may deliver large
quantities of information in a single segment.
Implementation factors include whether specialized
hardware is required, operating system modules need
to be modified, or control over specific systems in
the network path is required. As with the OSI layer
in general, some protocols have limited range. For
example, Ethernet frames can not easily be tunneled
across the Internet to remote hosts. Similarly, covert
channels based modifications of the Ethernet
specification have limited range as well. Even
network layer covert channels face unique obstacles.
For example, many protocols are not permitted to
travel outside a firewall and leave a protected
network. Protocol headers may be modified or
carefully inspected while the packet is in transit. For
example, Network Address Translation (NAT)
typically replaces the source IP address from an RFC
1918 address to a publicly routable address. Firewalls
and other devices may reject packets with spoofed
addresses. While there are many optional fields in the
IP and TCP headers, Craig Rowland argues that the
mandatory fields may be more likely to reach the
destination intact as they are not stripped off by
packet filtering mechanisms or damaged through
fragmentation and reassembly [16]. Since covert
channels are typically utilized to provide anonymity,
ease of detection is an important characteristic. In
some cases, the tools can evade detection by a casual
observer, such as a naïve network administrator.
However, these tools may be discovered by a trained
intrusion detection system or by an official dedicated
to uncovering covert enemy communications.

Bauer defines important qualities of covert
channels when they are used for anonymous
communication [4]. In order to increase anonymity,
the covert messages must be merged with legitimate
messages, either by directly injecting the covert
message into the legitimate message or by assuring
that there are enough legitimate messages on the
network to hide among. The communication
between sender and receiver must be “unlinkable.”
Unlinkable means that an observer can determine
that messages are being delivered, but the observer
can not tell who communicates with whom. A
stronger property, “unobservability,” indicates that
the observer can not determine if messages are being
delivered at all. The term “anonymity sets” refers to
the set of all possible subjects who might participate
in the transmission or reception of covert messages.
A larger the group of possible subjects increases the
probability that the participants in the covert channel
will remain anonymous. Most strategies defined in
this report are linkable; they require that the sender
directly communicate with the recipient. Messages
may be reflected off a naïve third party to increase
anonymity, yet these still may be detected as these

linkable channels frequently generate their own
network packets for hiding data. Unlinkable systems
typically wait to inject their data into packets naturally
existing on a network.

4. Current Research and Tools

4.1 The Data Link Layer

Much network steganography development
focuses above the data link layer of the OSI reference
model. There are reasons for this. Data link layer
headers offer limited benefit in wide-area
communication. The link layer headers are replaced
each time a frame passes through a network layer
device. This means that for two systems to
communicate covertly using link layer headers, they
must be on the same local area network (LAN).
Even if devices are on the same LAN, there remains
the challenge of anonymity. Most wired LANs
switch packets instead of broadcasting them to all
connected systems as on a hub. This means that the
sender, in order to deliver a message his target, must
either send the message directly to the recipient, or
intentionally broadcast the message to all hosts on a
LAN. While broadcast link layer traffic is not
uncommon, it does not aide anonymity.
Modification of data link layer headers typically
requires low-level control of the network interface
hardware. HICCUPS, which stands for Hidden
Communication System for Corrupted Networks, is
not immune to this challenge.

HICCUPS, by Krzysztof Szczypiorski, takes
advantage of the implementation of data link layer
headers in wireless LANs [18]. Wireless protocols,
such as IEEE 802.11, require that all frames be
broadcast over the airwaves since there is no direct
physical connection between hosts. While the
destination hardware address may be unicast, the
signal is sent from the wireless radio in all directions.
Additionally, wireless data transmission is an
imperfect medium. Interference and noise are
common in wireless communications and the
protocols allow a certain level of distortion.
HICCUPS usurps this flexibility and masks messages
in wireless traffic that appears corrupted by
interference.

Szczypiorski enumerates three properties of
a network environment that make it amenable to
coercion. First, the medium must be shared and the
recipient must have a high probability of intercepting
the message. This is the only essential property for
the HICCUPS proposal. Second, an environment
with a published algorithm for link layer cipher
initialization is advantageous. Third, the environment
should provide some mechanism for validating
message integrity, such as Cyclic Redundancy Check

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 3 Network Covert Channels

(CRC). In a network environment possessing these
three properties, three hidden data channels can be
introduced. The first channel manipulates the
initialization vector in the link layer cipher. The
second channel relies on forged link layer hardware
addresses (MAC addresses). The third channel co-
opts the data integrity mechanism. All three
properties exist in 802.11 networks with WEP
encryption, thus 802.11 networks offer three
channels for network steganography. High error
rates are common in wireless networks, with CRC
error rates commonly reaching 25 percent. This high
tolerance for errors presents a greater opportunity for
sending secret messages in corrupted headers.

HICCUPS encoded messages can only be
deciphered by stations belonging to the “hidden
group.” Membership in this hidden group is defined
during the system initialization phase of HICCUPS
operation. During initialization, group members
agree upon encoding and decoding schemes and
choose whether to protect their transmissions with
cryptography. While the frames altered by HICCUPS
will be broadcast over radio waves to all listeners, the
decoded communication among group members may
be unicast, multicast, or broadcast to stations which
participate in the hidden group. System initialization
also includes incorporation of the traditional
confidentially mechanism, cryptography.
Enciphering data not only makes it more difficult for
the eavesdropper to decode, but it also introduces
randomness which makes the subversion more
difficult to detect. The procedures for recruitment
into the hidden group and the procedures for
managing key exchange are left undefined.
Szczypiorski suggests using a key exchange algorithm
such as Diffie-Hellman, but he warns that the key
agreement process may expose the members of the
hidden group if it is not carefully implemented.

Encoding and transport of covert messages
is implemented in the next two HICCUPS modes.
“Basic mode” utilizes hidden data channels in
network interface MAC addresses and cipher
initialization vectors, as shown in figure 1. The
802.11 standard uses four 48-bit hardware MAC
addresses for identifying the source, destination,
transmitter, and receiver of wireless frames. 802.11
networks with WEP encryption utilize RSA’s RC4
cipher to generate initialization vectors. The
initialization vector is a 24 bit field. There are a total
of 216 bits per frame available for data hiding in basic
mode. Keep in mind that the system is based on
purposely injecting seemingly meaningless data into
the initialization vector and MAC addresses. Thus,
the initialization vector is never actually used for
decipherment by a receiving station and the MAC
addresses do not have to represent an actual device.
The sending station can repeatedly send frame after

frame with 216 bits of erroneous data which will only
be understood by hidden group members. This is
still limited bandwidth in contrast to correctly
functioning protocols, thus basic mode is used
primarily for exchange of control messages.

Figure 1. HICCUPS Basic Mode

The highest bandwidth is available in

HICCUPS “corrupted frame mode.” In this mode,
the entire data payload can be used for delivery of
covert messages. The Frame Check Sequence (FCS)
is manipulated to signal to hidden group members
that a steganographic message is being delivered
inside the data payload (figure 2). Stations that do
not belong to the hidden group will discard the
corrupted frames assuming that they were damaged
in transit. Stations that do belong to the hidden
group know the algorithm for creation of bad
checksums and how to extract the hidden data.
Overall, Szczypiorski estimates that the bandwidth
available for steganography is 44 kilobits per second
on an 802.11 b network and 216 kilobits per second
on an 802.11 g network.

Figure 2. HICCUPS Corrupted Frame Mode

While the HICCUPS proposal offers high

bandwidth in contrast to other steganographic
systems, it suffers from serious setbacks. As
indicated previously, link layer steganography may
require low level control over network interfaces.
Reception and decoding of steganographic messages
can be handled by commercially available wireless
cards in monitor mode, a special wireless case of
promiscuous mode. However, Szczypiorski could
not find any card that allowed manipulation of CRC
checksums on outgoing packets via an existing
software mechanism. This prohibited Szczypiorski
from actually implementing the HICCUPS system.

HICCUPS is not undetectable, either.
Wireless intrusion detection systems (IDS) provide
one mechanism for detecting intentional corruption
of wireless frames [1]. For example, the IDS can
track the source and destination hardware address of
wireless frames. The purported address can be
validated against a published list of known
organizationally unique identifiers, the first three
octets of a MAC address. Addresses not included in

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 4 Network Covert Channels

the list can be tagged as anomalous and subject to
further investigation. More importantly, wireless IDS
typically monitors network performance
characteristics such as packet retries and CRC errors.
As mentioned previously, a CRC error rate of 25
percent is not uncommon in an area with a large
amount of wireless traffic. Rates exceeding 25
percent, however, should trigger an alarm in the
intrusion detection system. If there are no
interference sources in the same airspace as the
wireless system, then frame tampering could be the
cause.

4.2 The Network Layer

The network layer is dominated by the
Internet Protocol (IP) and its complements ICMP,
IGMP, ARP, and RARP. The network layer provides
for the transfer of data in the form of packets across
a communication network. IP is responsible for
routing, the process of selecting a path across a
network. It makes wide area networking possible,
which means the range of the packets can be global
and across disparate network subsystems. Because of
this, network layer protocols are popular targets for
data hiding.

The Internet Protocol version 4 (IPv4)
specification outlines 23 fields to carry routing,
quality of service, and fragmentation information.
Many of these fields have been hijacked to carry
covert communications. For example, the 8-bit Type
of Service (ToS) field indicates delay, throughput,
reliability, and cost requirements of the IP datagram.
Any of these 8 bits can be used to carry a covert
payload. Since this field is used infrequently, setting
it to any nonzero value significantly increases
probability of detection. Hintz suggests using only
the delay bit to reduce odds of detection, but this
decreases bandwidth to one bit per datagram [9].

The 16-bit IP Identification field is a
common target for developers of covert channel
tools. The IP ID field is intended to uniquely identify
datagram fragments as they reach their destination.
According to the Internet Protocol RFC, the field
should be “unique for the source, destination pair
and protocol for the time the datagram (or any
fragment of it) could be alive in the internet” [14].

Craig Rowland demonstrates characteristics
of IP ID manipulation with his tool Covert_TCP
[16]. This proof-of-concept tool limits its focus to
analysis of header manipulation and not optimal data
hiding strategies. While the tool is not especially
stealthy, it demonstrates the simplicity of usurping
the IP ID field for covert message delivery.
Covert_TCP simply replaces the 16-bit IP
Identification field with a mathematical product of
the ASCII value of the character to be encoded.

Characters are read from a file and injected one by
one into TCP SYN packets. The value injected into
the IP ID field is simply the ASCII value of the
character multiplied by 256. Figure 3 shows the
Wireshark decode of an IP header forged by
Covert_TCP. The Identification field is set to
18432, which, when divided by 256 yields 72, the
ASCII value for the letter ‘H.’ The recipient is
passively listening for connections and thus never
responds to the SYN requests, so a TCP three-way-
handshake is never completed. Since establishment
of a TCP session is not required, Covert_TCP has a
potential bandwidth of 16-bits per packet. However,
only 8 bits of the IP ID field are occupied in
Rowland’s implementation; the rest are set to zero.
The method of transforming the ASCII characters
into a bit sequence is similar to a substitution cipher,
where the encoded value of the ASCII character
always produces same encoded value for the field.
This significantly increases probability of detection.
Rowland suggests that using XOR or actual
encipherment will produce a more random result
which seems to adhere more closely to the protocol
specification.

Figure 3. Internet Protocol Header Decode

Two more strategies, proposed by Kamran
Ashan, require that the sender and the recipient
normally communicate overtly [3]. Supplementary
covert information is hidden in their overtly delivered
messages. The first proposal takes advantage of
redundancy in the Internet Protocol header provided
by the Flags field. The Flags field in the IP header
contains three bits per packet. The first bit is
reserved. The second bit is called the Do Not
Fragment (DNF) bit. When set, it indicates to
intermediary systems that the packet must not be
fragmented. If the third bit is set, it signals that there
are more fragments in subsequent packets. The
settings of the flags should match the actual context
of the packet, yet there is rarely validation. In an
unfragmented datagram, all bits should be set to 0.

For Ashan’s first proposal to succeed, the
sender and the recipient must agree on maximum
datagram size, which is known as Maximum
Transmission Unit (MTU). Additionally, any
intermediary systems must not have a lower MTU. If
the size of the packet sent is smaller than the MTU of
all systems the packet traverses, then the value of DF
is irrelevant. Ashan sets DF to 1 to send a 1, and sets

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 5 Network Covert Channels

DF to 0 to send a 0. The recipient, knowing the
covert significance of the DF bit, stores the values in
a buffer and recomposes them into the message. The
MTU requirements of this simplistic proposal limit its
usefulness in communication across the Internet
where paths between hosts may be unpredictable.

 Ashan’s second proposal exploits concepts
from digital image watermarking to scramble the
message contents. As with Covert_TCP, the message
is delivered in the 16-bit IP Identification field. What
separates Ashan’s proposal from others is the
encoding algorithm. Ashan borrows the concept of
“toral automorphism systems” from digital
watermarking applications typically used to identify
protected images. Toral automorphism systems are
mathematical transformations using lattices that
deform an image and produce a new one unrelated to
the original. It is a complex algorithm for scrambling
producing a high level of randomization. Ashan uses
the algorithm to develop a look-up table and map
each letter to an 8 bit binary value. The selection of
the 8-bit mapping is highly random, possibly more
random than if they were encrypted. These 8 bits
occupy the first half of the IP ID field. The second
half is occupied by an independent, randomly
generated 8 bits which has no relation to the message.
Exploiting the IP ID field allows the sender and
recipient to communicate across the Internet.
However, both of Ashan’s proposals require that the
sender and recipient communicate overtly. While this
fails Bauer’s unlinkability test, the covert payload is
characterized by enough randomness to evade some
forms of statistical analysis.

The Internet Control Message Protocol
(ICMP) is a complement to the Internet Protocol that
allows conveyance of error messages and other
information at the network layer [15]. ICMP packets
are tunneled inside of IP datagrams. The first byte of
the datagram is an ICMP type field. There are fifteen
types of ICMP messages. The message type
determines the format of the remaining portion of
the ICMP data. This paper is primarily concerned
with ICMP echo and echo reply messages, types 0x8
and 0x0 respectively. These messages are used by the
command Packet Internet Groper (ping) to
determine whether a host is online and available.
ICMP is an integral part of the TCP/IP protocol
suite and is always implemented alongside IP. The
prevalence of ICMP in IP networks makes it a
relevant location to introduce potential covert
channels, yet ICMP may be blocked by firewalls
because of its abuse during reconnaissance and by
Internet worms.

Project Loki, published in Phrack magazine
by daemon9 and alhambra, demonstrates the
capabilities of ICMP for carrying covert payloads [2].
Loki, the Norse god of deceit and deception, was

known for his subversive behavior. The authors of
the tool claim that the god Loki masked evil intent in
seemingly good and appropriate actions, thus they
felt the name appropriate for their clandestine tool.
They take advantage of the data field in an ICMP
echo message to mask their malevolent payload. The
data field in an ICMP echo message is intended to
record route information or store timing records to
calculate round trip time. The data field by default is
typically 24 or 56 bytes long, depending on the host
operating system. However, the protocol allows it to
be much longer, thus yielding arbitrarily high
bandwidth. There is rarely inspection of the data
field by host operating systems, firewalls, or
intermediary routers, so this field can contain
arbitrary data. Loki uses this data field for
encapsulating its covert message.

Loki’s successor, Loki2, is the only actual
implementation of the concept [7]. The author,
daemon9, suggests three options for compilation of
the tool. The default option compiles an executable
that can be run as a visible daemon. The second
option allows it to be complied as a loadable kernel
module. For maximal stealth, they recommend
recompiling the operating system kernel with Loki-
enhanced ping. Loki2 utilizes encryption to augment
message encoding. Options include weak encoding
with XOR, and stronger cryptography with Diffie-
Hellmann and Blowfish. Loki2 was developed
primarily as a backdoor to tunnel shell commands
inside echo requests and replies. To accomplish this,
the code allows allocating a pseudo-terminal or piping
the commands into a shell.

If the message is correctly encoded in the
data field, it may go undetected. There are, however,
defenses to counter ICMP covert channels. The
simplest is to block ICMP traffic at choke points
along the network. However, since this will totally
preclude the legitimate troubleshooting uses of
ICMP, it should be used with prudence. Firewalls
can limit the systems allowed to use ICMP to a
trusted group, yet this too can be circumvented.
Since the sender of a corrupted ICMP echo only
wants to deliver a message and not determine if the
recipient is alive, the sender can spoof the source IP
address to be from a member of the trusted group.
The payload would reach its destination and the
owner of the spoofed IP would receive an unsolicited
echo reply. The authors of Loki state that the only
sure way to disable the ICMP covert channel is to
deny all ICMP traffic; this is not totally true. All
operating systems have default characteristics for
ICMP messages. For example, in Windows XP, the
data field is simply the letters of the English alphabet
in alphabetical order repeated to achieve the desired
packet size. A tcpdump of a Window XP ping is
shown in figure 4. Intrusion prevention systems can

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 6 Network Covert Channels

learn the default payload for common operating
systems and deny datagrams with anomalous
payloads.

Offset Hex Dump ASCII Dump

0x0000 4500 003c 0b5e 0000 4001 4472 0afe 0108 E..<.^..@.Dr....
0x0010 0a1e 14ce 0000 265c 0400 2b00 6162 6364 &\..+.abcd
0x0020 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqrst
0x0030 7576 7761 6263 6465 6667 6869 uvwabcdefghi

Figure 4. ICMP_ECHO Decode

4.3 The Transport Layer

Transport layer protocols build on the

service provided by IP to support a wide range of
applications. Two basic types of service are offered
in the Transport Layer. The first service consists of
reliable, connection-oriented transfer of a byte
stream. This is provided by the Transmission
Control Protocol (TCP). The second service consists
of best-effort connectionless transfer of individual
messages, which is provided by the User Datagram
Protocol (UDP). The simple UDP header, designed
for rapid delivery of messages, has only four fields for
potential covert message injection. Thus, most
research focuses on TCP. The twelve fields of the
TCP header include many which are rarely inspected
and others that exhibit high randomness. For
example, a 32-bit TCP sequence number identifies
the position of the first byte of the segment in the
overall stream of bytes. Sequence number generation
requires randomness as a mechanism to mitigate
session hijacking.

While Craig Rowland’s Covert_TCP
exploits IP ID fields by default, it can also hijack the
TCP Initial Sequence Number (ISN) for covert
payload delivery [16]. During the TCP three-way-
handshake, the originator of the connection sends a
SYN packet with a randomly derived sequence
number. This sequence number is called the Initial
Sequence Number (ISN). All subsequent TCP
sequence numbers of the same stream follow a
predictable increment. As previously stated,
Covert_TCP is a simple proof-of-concept tool with
little attention to detection avoidance. Thus, the ISN
crafted by Covert_TCP is simply the ASCII value of
the character to be encoded multiplied by 16777216.

A third method employed by Covert_TCP
eliminates direct communication between the sender
and recipient by exercising techniques from
reconnaissance and port scanning tools such as
Nmap. Covert_TCP bounces packets off a remote
site which is unaware that it is being used for illicit
purposes. This method is called the “TCP
Acknowledged Sequence Number Bounce.”
Covert_TCP forges the source IP address, the source
port, the destination IP address, the destination port,
and the initial sequence number and the segment.
Figure 5 shows how Eve could send a covert message

to Bob using the Covert_TCP ASN bounce. The
values assigned to the source and destination ports
are not important. The source IP address should be
spoofed to be that of the intended recipient of the
covert message. The destination address should be
the IP of a remote server that will remain unaware of
its role in message delivery. The same ISN craftwork
just described is used here as well.

The packet will be sent from the client’s
computer and routed to the destination address, the
address of the “bounce” server. If the bounce server
is listening on the destination port, it will reply with a
SYN/ACK. If it is not listening, it will respond with
a SYN/RST. The response, however, will be sent to
he spoofed source IP, which is the IP of the intended
recipient of the covert message. The response will
include an Acknowledged Sequence Number (ASN),
which is the ISN incremented by 1. The intended
recipient, passively listening for ACKs, knows to
subtract one from the ASN and divide by 16777216
to retrieve the ASCII character.

Figure 5. TCP ASN Bounce

There are drawbacks to Rowland’s
proposals. First, Covert_TCP tampers with values
used to provide reliability in TCP, mainly sequence
numbers and packet reassembly fields. This
tampering makes TCP function much like UDP.
Having lost TCP’s reliability mechanisms,
Covert_TCP slows packet transmission to one packet
per second to assure that they arrive in sequence.
This delay of one packet per second precludes
sending large volumes of covert information. There’s
an additional problem with the ASN bounce method.
Many firewalls and routers include anti-spoofing
filters that validate the source and destination
addresses of datagrams. If a packet is leaving a
protected network and the source IP does not belong
to that network, a firewall or router may simply drop
the datagram. Finally, using multiplication to encode
the message is simplistic and easily detected.

Joanna Rutkowska modifies the model to
support true anonymity between sender and receiver
with a concept called “passive covert channels” [17].

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 7 Network Covert Channels

In Rutkowska’s proposal, sequence numbers are only
modified on traffic normal traffic already created by
another user or process on the host. Rutkowska’s
application, called Nushu, never generates its own
traffic. This poses a unique problem: traffic leaving
the system already has a defined destination address.
Modification of this address would preclude delivery
of the overt message to the intended recipient, cause
errors in normal traffic on the system, and thus break
the channel. In Nushu, the traffic is not sent directly
to the intended recipient of the covert message, thus
the recipient must have control over some gateway in
the path between the sender and recipient of the
overt message. Ownership of a firewall, router, or
other egress point along the network path would
work well.

The Nushu sender is a complex process
which must store TCP state information in order to
maintain normal traffic flow. To avoid local
detection, the passive covert channel is hooked to the
Linux kernel’s socket handling modules. The primary
task of the Nushu covert channel module is to
continually modify sequence and acknowledgement
numbers from those generated by the operating
system kernel to a sequence containing the implanted
message. The module is required to modify both
sequence and acknowledgement numbers. If only the
sequence number were modified on outgoing
packets, then the operating system kernel would not
understand the acknowledgement number on the
corresponding SYN/ACK packet. Similarly,
sequence and acknowledgement numbers of all
subsequent packets in the TCP session must be
modified in order for the operating system kernel to
keep up with state information and allow
continuation of the byte stream.

As with Covert_TCP, Nushu subverts TCP
reliability mechanisms to transport covert messages,
however, Nushu redefines the meaning of bits in the
sequence and acknowledgement number fields to
maintain reliability. Both fields hold a 32-bit value
which normally only holds state information. Nushu
breaks the field into three bytes for covert data and
one byte for control and sequencing. The control
byte includes 6 bits for sequencing and 2 bits to mark
whether data is stored in the data bytes. Whereas the
operating system produced 232 possible sequence
numbers, Nushu only has 26 values for storing its
state information. Empty data bytes are quite
frequent since the delivery of covert messages may
not match the normal amount of traffic on the
system. The limited number of Nushu sequence
numbers and the high rate of empty data bytes
significantly increases odds of detection. Rutkowska
wants to avoid the predictability of the substitution
cipher used in Covert_TCP and thus uses a block

cipher to encrypt the initial sequence number so that
it looks like random data.

The sending Nushu process simply controls
TCP sequence information. It must be combined
with another process, such as a password sniffer, to
generate messages. Messages from the password
sniffer can be piped into Nushu. The receiving
process does not have to reside in kernel-space. It
can be implemented as a simple sniffer capturing all
packets that it observes. It can either reside on a
trusted gateway or use other mechanisms to force all
traffic to its network interface. This means that
communication occurs in one direction only, from
sender to recipient. This system would work well for
capturing information from a computer on a
protected network and delivering it to an external
host. Adding similar kernel modules to the recipient
may allow communication in the opposite direction,
thus making the tool capable of delivering commands
to the internal, protected host.

Local detection of Nushu sequence number
modification may be possible because of the
operating system process for socket handling. If a
sniffer such as tcpdump is run locally on the
compromised host, the sequence and
acknowledgement numbers will differ from their
value as they pass across the network. This
anomalous behavior occurs because the packet
capture functions call operating system handles that
display packet contents from the operating system
perspective, not Nushu’s perspective. Rutkowska
created an additional module that modifies the way
the kernel interprets packets. With this module, a
sniffer will call upon modified operating system
handles. Thus, a local sniffer will see the same
sequence and acknowledgement numbers that are
seen traversing the network.

4.4 The Application Layer

The application layer presents limitless

opportunities for delivery of covert data. The covert
payload can reside either within the protocol headers
or be delivered as a payload. Certain requirements
must be met before an application layer protocol can
provide a useful covert channel. First, use of the
protocol should be expected on the system. This
helps increase the anonymity set and provide existing
traffic to hide in. For example, if the tool hides data
in SMTP packets, then it would be advantageous to
use an SMTP server as sender or recipient.
Otherwise, the covert channel tool may generate
SMTP traffic on a system that is monitored and
prohibited from sending SMTP, thus triggering an
alarm. Similarly, the server may be restricted by a
firewall from sending SMTP, thus limiting the group
of recipients to those behind the same firewall.

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 8 Network Covert Channels

The HTTP protocol is a fertile field for
embedding covert messages. Even restrictive
organizations allow some HTTP traffic to pass from
internal hosts to Internet web servers. Inspection of
HTTP packets for protocol compliance requires
costly software and may break web applications
important for business. For example, HTTP can be
used as a mechanism for delivering streaming audio
and video, chat, and desktop sharing applications.
Strict filters that block non-compliant HTTP packets
will disable many of these services. Thus, permissive
application layer inspection policies allow room for
coercion.

Lee Bowyer introduces basic HTTP
steganography as a way to deliver covert messages
from Trojan horses past stateful inspection firewalls
[6]. Trojan horses are frequently utilized by attackers
to deliver usernames and password from
compromised systems residing behind a firewall.
Many Trojans deliver results and accept commands
from Internet Relay Chat (IRC) channels since the
IRC client is simple to implement. The global
availability of the channels and the distribution of the
servers make the attacker more difficult to track.
However, IRC is typically blocked by many enterprise
firewall policies. Bowyer advocates using HTTP for
delivery of stolen material. Bowyer suggests attaching
the covert message at the end of an HTTP GET
request to a web server controlled by the attacker.
The fake web server will drop the URL segment of
the GET request and parse only the tag, the portion
of the message following the question mark. For
pulling covert contents inside a firewall protected
network, Bowyer requests a normal looking web page
with covert messages embedded images. Bowyer
states that this is a very difficult hole to plug, as most
enterprises need to allow valid-looking HTTP traffic
to pass through their firewalls.

 A simple proof of concept tool, Reverse
WWW Shell, demonstrates how effective HTTP
covert channels can be at delivering a payload [20].
In the case of Reverse WWW Shell, the payload is an
actual shell executing on a “slave” system. The tool
developed by van Hauser shovels the shell through
what appears to be a normal HTTP web browser
request. The HTTP request, however, is actually a
call to Reverse WWW Shell “master” listening for
connections from the slave. The person controlling
the master can enter commands in the master console
and have them execute on the slave. The ability to
push a shell through TCP is not new. One of the
most functional socket tools, netcat, can accept
commands from a shell as input and forward
command output to a remote listener over a raw TCP
or UDP socket. Reverse WWW Shell, however, uses
HTTP headers and tags to mask the shell sent by the
slave. The slave call to the server looks like an HTTP

GET request to an e-commerce order form with a
long CGI tag. In the default configuration, the slave
generates HTTP headers similar to a Mozilla 4.0
compliant web browser accepting html and plaintext
files in the English language. The CGI tag is actually
the base-64 encoded standard output from the shell,
as shown in figure 6. The commands entered at the
master are sent to the slave masked as an HTTP
200/OK response. Both the master and server
components are included in one 260-line Perl script.
Everything is customizable, including purported web
browser capabilities, choice of shell to bind with,
proxy server authentication credentials, and web page
to request.

GET /cgi-bin/order?M5mAejTgZdgYOdgIO0BqFfVYTgjFLdgxEdb1He7 HTTP/1.0

Figure 6. Reverse WWW Shell Slave to Master

While Reverse WWW Shell succeeds in
delivering a backdoor over a covert channel, it is not
impervious to detection. The slave component must
generate its own HTTP traffic in order to deliver the
shell to the master. This activity increases the chance
of detection. To increase anonymity, the slave should
reside on a system known to generate many HTTP
requests, such as a public kiosk or the workstation of
the one employee who surfs the web all day.
Additionally, the slave makes a direct connection to
the master. This is easily detected by traffic analysis
attacks. As mentioned previously, in some cases the
fact that two parties are communicating is more
important then what they say. However, delivering
an interactive shell seems to necessitate direct
communication between slave and master. A passive
HTTP covert channel attempting to achieve a high
level of anonymity would limit the functionality of
the tool. The execution of commands at the master
and delivery of the results by the slave may be prone
to errors and delay without a direct connection. The
author of Reverse WWW Shell, van Hauser, did not
explore this possibility in his essay, but the next tool
introduces concepts that could make unlinkable
communication possible.

Matthias Bauer proposed a protocol called
the “Muted Posthorn,” which eliminates the
communication between sender and recipient of a
message [4]. While the Muted Posthorn may not be
capable of delivering interactive shells, it is very
stealthy in its delivery of messages. In Bauer’s
protocol, messages are delivered from one web server
to another web server via unsuspecting web browsers
acting upon standard HTTP mechanisms.

The protocol takes advantage of five
HTTP/HTML features: redirects, cookies, referrer
headers, elements in HTML code, and active content.
An HTTP redirect tells the web browser that the
requested document is available at another location.

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 9 Network Covert Channels

The redirect location can be the URL of a script
followed by a list of parameters. In the Muted
Posthorn, the URL links to another server complicit
in the covert communication and the parameters
carry the encoded message. The maximum capacity
of this channel is 1024 bytes. HTTP cookies can be
used to deliver messages between two servers in the
same cookie domain. Two servers are in the same
cookie domain if they belong to the same second
level domain. For example, if two web servers’
domain names end in “icann.org,” their top-level-
domain is “org,” their second level domain is
“icann,” and then they belong to the same cookie
domain, “icann.org.” When a web server that wants
to send a message, it must wait until it receives a
request from a web browser. The server sends the
web browser a Set-Cookie command with the cookie
domain and a key-value pair up to four kilobytes
long. The value can be an encoded covert message.
If the web browser then connects to another web
server in the same cookie domain, that server can
request the key-value pair in the cookie, and thus
retrieve the covert message. The client can easily be
forced to visit the recipient server with any number
of HTTP/HTML mechanisms. Referer headers
indicate the URI of the web page that linked to the
site in the current request. As with redirects, there is
a 1024 byte limit on the capacity of this channel.
Another mechanism, HTML elements, causes web
browsers to automatically request objects from web
servers. For example, the code to include an inline
image in a web page and the code to generate page
frames can force web browsers to request data from
different web servers without user consent. HTTP
commands such as redirects can be pushed through
HTML elements and escape inspection by web
content filters or other observers. For example, the
HTML code could include a <META HTTP-
EQUIV> tag calling a redirect command deep within
the HTML code. Even though the command is not
in an HTTP header field, the web browser will act
upon the meta-tag and visit the page indicated in the
redirect. The final mechanism, active content,
includes code executed by the client such as
JavaScript, ActiveX, and Macromedia Flash. Like
HTML elements, scripts constructed in these active
content languages can be used to force web browser
redirects, construct invisible forms, and force a client
to POST a message without user interaction. Bauer
proposes using banner advertisements with hidden
frames as a way to distribute the components among
many web servers.

The banner advertisements satisfy one of
four components of the Muted Posthorn system.
These corrupted advertisements are part of the “node
maintainer” entity. Node maintainers provide CGI
scripts which encode a covert message as contents of

a POST request. The encoded message includes both
a data payload and headers indicating further
processing actions. The possible actions include
storing a message in a mailbox, retrieving a message
from a mailbox, and forwarding the message to
another node. The banner advertisements are linked
to from other web pages that are unaware of their
role in the covert channel. These web pages are
called the “linkers”. The linker page simply contains
a reference to the URL of the node maintainer.
“Senders” and “receivers” represent the entities that
knowingly post and retrieve covert messages to the
node maintainers. These node maintainers host
mailboxes for the senders and retrievers. The
messages in the mailboxes are transferred from one
node to another via “hapless web surfers.” The web
surfers visit a web page they trust, but an
advertisement on the web page links to a script on
the node maintainer, which causes the surfer’s
browser to download the covert message and post it
to another node.

There are two commands in the protocol.
The command “To” identifies the node and mailbox
that are the ultimate target of the payload. The
command “Get” requests messages from a specific
mailbox on a certain node. Senders of messages and
requesters of mailboxes embed these commands in
standard HTTP GET requests that look like
unadulterated HTTP requests. Since all of the
transactions between senders, receivers, and
unsuspecting web surfers are embedded in standard
HTTP traffic, it can take advantage of anonymizing
web services such as the Onion Router and
Anonymizer. These services further enhance the
anonymity of the communication. The HTTP
headers are typically not modified by firewalls and
network address translation has no impact on the
message delivery.

The Muted Posthorn system is dependent
on a few factors to maintain anonymity. First, the
owners of the linker web pages must be willing to
link to the node maintainer site. This is one of the
advantages of deploying the message transfer scripts
in banner advertisements. The linker receives
monetary remuneration for linking to the banner
advertisements. Additionally, the linker sites must be
popular among web surfers. The number of web
surfers visiting a linker site directly correlates to the
speed a message is delivered from one node to
another. A larger number of hapless web surfers also
increases the anonymity set in which to hide.

5. Advanced Detection Mechanisms

A number of design flaws were highlighted

alongside discussions of the covert channel strategies
throughout this paper. Few of the mechanisms for

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 10 Network Covert Channels

detecting these flaws possessed novel, scientific
methodologies. While the specifications indicated
that certain header values should exhibit a high level
of randomness, the implementations are developed
by human programmers using known algorithms and
well-documented pseudorandom number generators.
It is, in fact, quite possible to predict the values of
fields which are intended to be random.

Stephen Murdoch defines a suite of tests
used to passively monitor network traffic and identify
steganography in the IP ID and TCP ISN fields [12].
The model is described as a “passive warden,” which
has the capability off observing all packets leaving its
network, yet not modifying them as would an “active
warden.” Murdoch explains that IP ID and TCP ISN
fields, while semi-structured, have some
unpredictability because of a randomly generated,
per-host secret and by use of cryptographic
functions. Murdoch details the algorithm for ISN
generation in the open source operating systems
Linux and OpenBSD. The description outlines hash
algorithms, re-keying intervals, and initialization traits.
These characteristics lead to well-defined behavior
that can be used to identify anomalies potentially
caused by steganography. Normal behavior for the
IP ID field includes use of a global counter for IP ID
that yields sequential values, a sequential per-host IP
ID, the fact that the MSB is toggled every 30,000
packets in OpenBSD, and the fact that within a re-
keying interval, the OpenBSD IP ID must not repeat.
Similar characteristics are outlined for the TCP ISN.
Murdoch does not specifically outline the testing
methodology or the statistical results of the
comparison of original packets and
steganographically modified packets. He does,
however, claim that with a large enough set of
packets, the tests proved that steganography can be
detected.

A subsequent paper by Eugene Tumoian
describes an elegant analysis platform based on
packet traces from tcpdump and neural network
models with Matlab [19]. Tumoian’s detection
method does not require careful study or knowledge
of ISN implementation details. A large number of
ISNs generated by an unadulterated, trusted
operating system stack are collected to form what is
known as a “training set.” The initial training set is
fed into the neural network in order to identify
thresholds that may identify ISNs not generated by
the trusted stack. If actual ISNs fall within the
boundaries of the threshold, the neural network will
continue learning from observed values. If the ISNs
significantly exceed the threshold, the ISN is
considered steganographically altered. In Tumoian’s
experiment, 1500 actual ISNs each are read from
multiple operating systems, including Linux and
Windows distributions. These are loaded into Matlab

using a neural network training script. For
monitoring of actual traffic, WinDump log files are
read one-by-one by the Matlab script. The results
show a high level of precision in detecting the
presence of covert channels and a low occurrence of
false-positives. Without a-priori knowledge of the
sender’s operating system, Tumoian’s neural network
can detect covert channels.

6. Conclusion and Future Work

Many of the concepts outlined in this report

discuss the simplicity of altering published protocols
for an illicit purpose. Two primary motivations were
discussed: delivering a secret message and sending
shell commands over a covert backdoor. The
underlying intent of these actions may be to evade
government scrutiny, to commit illegal acts, or
perhaps to perpetrate some benevolent purpose.
New specifications are frequently published by the
Internet Engineering Task Force (IETF) and the
Institute of Electrical and Electronics Engineers
(IEEE). It seems that little has changed since Steven
Bellovin raised awareness of flaws within protocol in
1989. While standards organizations frequently
incorporate mechanisms for protecting the
confidentiality, integrity, and authenticity of network
transmissions, opportunities for subversion of the
protocols increase. Some measures can be taken
during implementation of the protocols to assure that
they are not used for unintended purposes. For
example, for header fields with a limited number of
defined values, the implementation should validate
that no unintended values are sent. The same
validation can be done at various points along the
network path, such as routers, firewalls, and intrusion
analysis systems.

If preventative mechanisms are not
developed, new opportunities exist which increase
the range of possibility for protocol subversion. For
example, Internet Protocol version 6 is implemented
in almost all current operating systems and routers.
However, it is not widely used nor understood by
network administrators. For this reason, some
intrusion detection systems consider the mere
presence of IPv6 as a potential indication of a
compromise [10]. Another protocol which promises
widespread adoption is IEEE 802.16, also known as
WiMax. WiMax seems to pledge wireless
functionality similar to that found in 802.11
networks. With WiMax, strategies such as those used
in HICCUPS may deliver covert channels that are
broadcast over many square miles instead of just a
few hundred square feet. This would make physical
location of the communicating devices seemingly
impossible.

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 11 Network Covert Channels

References:

[1] AirDefense. Wireless LAN Security: What
Hackers Know that You Don’t. Online:
http://www.airdefense.net/

[2] Alhambra. “Project Loki: ICMP
Tunneling.” Phrack Magazine, Volume 7,
Issue 49, August 1996, at
http://www.phrack.org/phrack/49/P49-
06.

[3] Ashan, K. and D. Kundur. Practical data
hiding in TCP/IP. Proceedings ACM
Workshop on Multimedia Security, 2002.

[4] Bauer, M. New Covert Channels in HTTP:
Adding Unwitting Web Browsers to
Anonymity Sets. In Samarati P, Syverson
P, editors. Proceedings of the 2003 ACM
Workshop on Privacy in the Electronic
Society, 2003 Oct 30; Washington, DC.
ACM Press. p 72-78.

[5] Bellovin, S. 1989. Security Problems in the
TCP/IP Protocol Suite. ACM Computer
Communications Review, 19(2), March
1989.

[6] Bowyer, L. Firewall Bypass via protocol
Steganography. Online posting. 2002 Sep
22.
http://www.networkpenetration.com/prot
ocol_steg.html.

[7] Daemon9. LOKI2 implementation. Phrack
Magazine, 7, September 1997. Online
posting:
http://www.phrack.org/show.php?p=51&
a=6.

[8] EFF: Electronic Frontier Foundation.
Privacy – Crypto – Key Escrow 1993-4
(US): Clipper / EES / Capstone / Tessera
/ Skipjack Archive. March 13, 2003.
Online Posting:
http://www.eff.org/Privacy/Key_escrow/
Clipper/.

[9] Hintz, A. Covert channels in TCP and IP
headers. Presentation at DEFCON 10.
August 2-4, 2002.
http://www.defcon.org/images/defcon-
10/dc-10-presentations/dc10-hintz-
covert.ppt.

[10] Internet Security Systems. Signature
Database: Native usage of the IPv6
protocol has been detected on the network.
June 13, 2003. Online:
http://xforce.iss.net/xforce/xfdb/12275.

[11] Koops, B. Summary of International
Crypto Controls. January 2006. Online
posting:
http://rechten.uvt.nl/koops/cryptolaw/cls
-sum.htm.

[12] Murdoch, S. Embedding Covert Channels
into TCP/IP. 7th Information Hiding
Workshop. Barcelona. June 2005. pp 247-
261.

[13] National Institute of Standards and
Technology. Trusted Computer System
Evaluation Criteria. August 1983.

[14] Postel, J. RFC 791 - Internet Protocol.
[15] Postel, J. RFC 792 - Internet Control

Message Protocol.
[16] Rowland, C.H.: Covert channels in the

TCP/IP protocol suite. First Monday 2
(1997)
http://www.firstmonday.org/issues/issue2
_5/rowland/.

[17] Rutkowska, J. The implementation of
passive covert channels in the Linux kernel.
21st Chaos Communication Congress.
December 2004. Berlin.
http://www.ccc.de/congress/2004/fahrpla
n/event/176.en.html.

[18] Szczypiorski, K. 2003. HICCUPS: Hidden
Communication System for Corrupted
Networks. The Tenth International Multi-
Conference on Advanced Computer
Systems, 2003 Oct 22-24; Międzyzdroje,
Poland. pp 31-40.

[19] Tumoian, E. Network Based Detection of
Passive Covert Channels in TCP/IP.
IEEE Conference on Local Computer
Networks. 2005. pp802-809.

[20] van Hauser. Placing Backdoors through
Firewalls. Online Posting. May 3, 1999.
http://www.thc.org/papers/fw-backd.htm

