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Abstract:  Confidentiality, one of the primary goals of 
information security, is most frequently achieved utilizing 
cryptography.  There exist other methods to conceal information 
from unauthorized or undesired viewers.  One category of non-
cryptographic concealment techniques, called covert channels, can 
hide information locally on a system or mask traffic as it passes 
over a network. This report will explore the art of hiding data 
as it traverses a network.  This paper will analyze motivations 
for network covert channels, survey current data hiding research 
and tools, and evaluate countermeasures to detect and prevent 
network-based steganography.   
 
 
1.  Introduction 
 

Steganography is the practice of concealing 
information in channels that superficially appear 
benign.  The National Institute of Standards and 
Technology defines a covert channel as “any 
communication channel that can be exploited by a 
process to transfer information in a manner that 
violates the system’s security policy” [13].  In other 
words, a network covert channel is manipulation of a 
communication protocol to transfer information in a 
way outside the protocol’s specification.  In part, 
these channels exist because of undefined, optional, 
or permissive values allowed to be assigned to certain 
fields.  Steven Bellovin summarizes the issue in 
stating that “we are not concerned with flaws in 
particular implementations of the protocols … rather, 
we discuss generic problems with the protocols 
themselves” [5].  This paper will analyze motivations 
for using covert channels, define criteria used when 
evaluating covert channels, survey existing research 
and tools, and review mechanisms for detecting and 
preventing network-based steganography. 
 
2.  Motivations 
 

Covert network channels provide an 
alternative, somewhat subversive means of achieving 
confidentiality and maintaining anonymity.  There 
exist both illicit and honorable motivations for using 
network steganography.  For one, many countries 
maintain strict regulations over use of cryptography 
[11].  It is possible for citizens of some countries to 
be imprisoned if they encrypt messages and attempt 
to evade government detection.  Even in the United 
States, the federal government expressed interest in 
key escrow systems that would enable trusted 

agencies to decipher encrypted messages [8].  In some 
cases, the contents of the message are less meaningful 
to observers than the mere fact that two parties are 
communicating.  If the observer witnesses encrypted 
communications, they may become curious about the 
motivation for hiding something.  In this case, the 
best way for a message sender and recipient to avoid 
traffic analysis is to never communicate directly.  
Some covert channel techniques described in this 
report can be used by benevolent entities that wish to 
watermark communications from opposition 
organizations.  For example, a country can digitally 
watermark a network datagram as it leaves the 
network of one enemy.  They can observe datagrams 
entering other organizations network and thus 
determine who cooperates with whom. 

Covert channel tools are not attack tools; 
they are not used to break into systems.  In some 
scenarios, they can be used alongside an exploit tool 
to leech information off a system or to secretly 
deliver commands to a system.  For example, an 
attacker can compromise the web server of a popular 
banking site.  The usernames and password of the 
bank’s customers are much more valuable than 
simply defacing the web page.  The attacker can plant 
a password sniffing program on the site and use a 
covert channel tool to stealthily deliver credentials 
from the web server to another location.  Messages 
can be delivered on a scheduled interval, such as with 
a cron job, or they can be sent interactively, as with 
an email system.  The scenario works in reverse, as 
well.  The covert channel tool can be used to retrieve 
commands from an external site that are to be run on 
the compromised, internal server. 

 
3.  Evaluation Methodology. 
 

The criteria for evaluating covert channels 
are not inherently different from those used when 
evaluating open communication mechanisms, except 
in a few cases.  Bandwidth, ease of implementation, 
and range are still important traits.  However, the 
ways they are measured may differ.  Additional 
criteria include permissibility, probability of detection, 
and level of anonymity.  Bandwidth can be measured 
in term of bits per packet and bits per session.  For 
example, some systems encode a character in every 
frame that leaves a network.  Other systems, such as 
those based on TCP Initial Sequence Numbers, may 
only encode one character in each TCP session.  
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Application layer based channels may deliver large 
quantities of information in a single segment.  
Implementation factors include whether specialized 
hardware is required, operating system modules need 
to be modified, or control over specific systems in 
the network path is required.  As with the OSI layer 
in general, some protocols have limited range.  For 
example, Ethernet frames can not easily be tunneled 
across the Internet to remote hosts.  Similarly, covert 
channels based modifications of the Ethernet 
specification have limited range as well.  Even 
network layer covert channels face unique obstacles.   
For example, many protocols are not permitted to 
travel outside a firewall and leave a protected 
network.  Protocol headers may be modified or 
carefully inspected while the packet is in transit.  For 
example, Network Address Translation (NAT) 
typically replaces the source IP address from an RFC 
1918 address to a publicly routable address.  Firewalls 
and other devices may reject packets with spoofed 
addresses.  While there are many optional fields in the 
IP and TCP headers, Craig Rowland argues that the 
mandatory fields may be more likely to reach the 
destination intact as they are not stripped off by 
packet filtering mechanisms or damaged through 
fragmentation and reassembly [16].  Since covert 
channels are typically utilized to provide anonymity, 
ease of detection is an important characteristic.  In 
some cases, the tools can evade detection by a casual 
observer, such as a naïve network administrator.  
However, these tools may be discovered by a trained 
intrusion detection system or by an official dedicated 
to uncovering covert enemy communications.  

Bauer defines important qualities of covert 
channels when they are used for anonymous 
communication [4].  In order to increase anonymity, 
the covert messages must be merged with legitimate 
messages, either by directly injecting the covert 
message into the legitimate message or by assuring 
that there are enough legitimate messages on the 
network to hide among.  The communication 
between sender and receiver must be “unlinkable.”  
Unlinkable means that an observer can determine 
that messages are being delivered, but the observer 
can not tell who communicates with whom.  A 
stronger property, “unobservability,” indicates that 
the observer can not determine if messages are being 
delivered at all.  The term “anonymity sets” refers to 
the set of all possible subjects who might participate 
in the transmission or reception of covert messages.  
A larger the group of possible subjects increases the 
probability that the participants in the covert channel 
will remain anonymous.  Most strategies defined in 
this report are linkable; they require that the sender 
directly communicate with the recipient.  Messages 
may be reflected off a naïve third party to increase 
anonymity, yet these still may be detected as these 

linkable channels frequently generate their own 
network packets for hiding data.  Unlinkable systems 
typically wait to inject their data into packets naturally 
existing on a network.   
 
4.  Current Research and Tools 
 
4.1 The Data Link Layer 
 

Much network steganography development 
focuses above the data link layer of the OSI reference 
model.  There are reasons for this.  Data link layer 
headers offer limited benefit in wide-area 
communication.  The link layer headers are replaced 
each time a frame passes through a network layer 
device.  This means that for two systems to 
communicate covertly using link layer headers, they 
must be on the same local area network (LAN).  
Even if devices are on the same LAN, there remains 
the challenge of anonymity.  Most wired LANs 
switch packets instead of broadcasting them to all 
connected systems as on a hub.  This means that the 
sender, in order to deliver a message his target, must 
either send the message directly to the recipient, or 
intentionally broadcast the message to all hosts on a 
LAN.  While broadcast link layer traffic is not 
uncommon, it does not aide anonymity.   
Modification of data link layer headers typically 
requires low-level control of the network interface 
hardware.  HICCUPS, which stands for Hidden 
Communication System for Corrupted Networks, is 
not immune to this challenge.   

HICCUPS, by Krzysztof Szczypiorski, takes 
advantage of the implementation of data link layer 
headers in wireless LANs [18].  Wireless protocols, 
such as IEEE 802.11, require that all frames be 
broadcast over the airwaves since there is no direct 
physical connection between hosts.  While the 
destination hardware address may be unicast, the 
signal is sent from the wireless radio in all directions.  
Additionally, wireless data transmission is an 
imperfect medium.  Interference and noise are 
common in wireless communications and the 
protocols allow a certain level of distortion.  
HICCUPS usurps this flexibility and masks messages 
in wireless traffic that appears corrupted by 
interference.   

Szczypiorski enumerates three properties of 
a network environment that make it amenable to 
coercion.  First, the medium must be shared and the 
recipient must have a high probability of intercepting 
the message.  This is the only essential property for 
the HICCUPS proposal.  Second, an environment 
with a published algorithm for link layer cipher 
initialization is advantageous.  Third, the environment 
should provide some mechanism for validating 
message integrity, such as Cyclic Redundancy Check 
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(CRC).  In a network environment possessing these 
three properties, three hidden data channels can be 
introduced.  The first channel manipulates the 
initialization vector in the link layer cipher.  The 
second channel relies on forged link layer hardware 
addresses (MAC addresses).  The third channel co-
opts the data integrity mechanism.  All three 
properties exist in 802.11 networks with WEP 
encryption, thus 802.11 networks offer three 
channels for network steganography.  High error 
rates are common in wireless networks, with CRC 
error rates commonly reaching 25 percent.  This high 
tolerance for errors presents a greater opportunity for 
sending secret messages in corrupted headers. 

HICCUPS encoded messages can only be 
deciphered by stations belonging to the “hidden 
group.”  Membership in this hidden group is defined 
during the system initialization phase of HICCUPS 
operation.  During initialization, group members 
agree upon encoding and decoding schemes and 
choose whether to protect their transmissions with 
cryptography.  While the frames altered by HICCUPS 
will be broadcast over radio waves to all listeners, the 
decoded communication among group members may 
be unicast, multicast, or broadcast to stations which 
participate in the hidden group.  System initialization 
also includes incorporation of the traditional 
confidentially mechanism, cryptography.  
Enciphering data not only makes it more difficult for 
the eavesdropper to decode, but it also introduces 
randomness which makes the subversion more 
difficult to detect.  The procedures for recruitment 
into the hidden group and the procedures for 
managing key exchange are left undefined.  
Szczypiorski suggests using a key exchange algorithm 
such as Diffie-Hellman, but he warns that the key 
agreement process may expose the members of the 
hidden group if it is not carefully implemented.   

Encoding and transport of covert messages 
is implemented in the next two HICCUPS modes.  
“Basic mode” utilizes hidden data channels in 
network interface MAC addresses and cipher 
initialization vectors, as shown in figure 1.  The 
802.11 standard uses four 48-bit hardware MAC 
addresses for identifying the source, destination, 
transmitter, and receiver of wireless frames.  802.11 
networks with WEP encryption utilize RSA’s RC4 
cipher to generate initialization vectors.  The 
initialization vector is a 24 bit field.  There are a total 
of 216 bits per frame available for data hiding in basic 
mode.  Keep in mind that the system is based on 
purposely injecting seemingly meaningless data into 
the initialization vector and MAC addresses.  Thus, 
the initialization vector is never actually used for 
decipherment by a receiving station and the MAC 
addresses do not have to represent an actual device.  
The sending station can repeatedly send frame after 

frame with 216 bits of erroneous data which will only 
be understood by hidden group members.  This is 
still limited bandwidth in contrast to correctly 
functioning protocols, thus basic mode is used 
primarily for exchange of control messages. 

 

 
 
Figure 1.  HICCUPS Basic Mode 

 
The highest bandwidth is available in 

HICCUPS “corrupted frame mode.”  In this mode, 
the entire data payload can be used for delivery of 
covert messages.  The Frame Check Sequence (FCS) 
is manipulated to signal to hidden group members 
that a steganographic message is being delivered 
inside the data payload (figure 2).  Stations that do 
not belong to the hidden group will discard the 
corrupted frames assuming that they were damaged 
in transit.  Stations that do belong to the hidden 
group know the algorithm for creation of bad 
checksums and how to extract the hidden data. 
Overall, Szczypiorski estimates that the bandwidth 
available for steganography is 44 kilobits per second 
on an 802.11 b network and 216 kilobits per second 
on an 802.11 g network.   

 

 
 
Figure 2.  HICCUPS Corrupted Frame Mode 

 
While the HICCUPS proposal offers high 

bandwidth in contrast to other steganographic 
systems, it suffers from serious setbacks.  As 
indicated previously, link layer steganography may 
require low level control over network interfaces.  
Reception and decoding of steganographic messages 
can be handled by commercially available wireless 
cards in monitor mode, a special wireless case of 
promiscuous mode.  However, Szczypiorski could 
not find any card that allowed manipulation of CRC 
checksums on outgoing packets via an existing 
software mechanism.  This prohibited Szczypiorski 
from actually implementing the HICCUPS system.    

HICCUPS is not undetectable, either.  
Wireless intrusion detection systems (IDS) provide 
one mechanism for detecting intentional corruption 
of wireless frames [1].  For example, the IDS can 
track the source and destination hardware address of 
wireless frames.  The purported address can be 
validated against a published list of known 
organizationally unique identifiers, the first three 
octets of a MAC address.  Addresses not included in 
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the list can be tagged as anomalous and subject to 
further investigation.  More importantly, wireless IDS 
typically monitors network performance 
characteristics such as packet retries and CRC errors.  
As mentioned previously, a CRC error rate of 25 
percent is not uncommon in an area with a large 
amount of wireless traffic.  Rates exceeding 25 
percent, however, should trigger an alarm in the 
intrusion detection system.   If there are no 
interference sources in the same airspace as the 
wireless system, then frame tampering could be the 
cause. 

 
4.2 The Network Layer 
 

The network layer is dominated by the 
Internet Protocol (IP) and its complements ICMP, 
IGMP, ARP, and RARP.  The network layer provides 
for the transfer of data in the form of packets across 
a communication network.  IP is responsible for 
routing, the process of selecting a path across a 
network.  It makes wide area networking possible, 
which means the range of the packets can be global 
and across disparate network subsystems.  Because of 
this, network layer protocols are popular targets for 
data hiding. 

The Internet Protocol version 4 (IPv4) 
specification outlines 23 fields to carry routing, 
quality of service, and fragmentation information.  
Many of these fields have been hijacked to carry 
covert communications.  For example, the 8-bit Type 
of Service (ToS) field indicates delay, throughput, 
reliability, and cost requirements of the IP datagram.  
Any of these 8 bits can be used to carry a covert 
payload.  Since this field is used infrequently, setting 
it to any nonzero value significantly increases 
probability of detection.  Hintz suggests using only 
the delay bit to reduce odds of detection, but this 
decreases bandwidth to one bit per datagram [9].    

The 16-bit IP Identification field is a 
common target for developers of covert channel 
tools.  The IP ID field is intended to uniquely identify 
datagram fragments as they reach their destination.  
According to the Internet Protocol RFC, the field 
should be “unique for the source, destination pair 
and protocol for the time the datagram (or any 
fragment of it) could be alive in the internet” [14].   

Craig Rowland demonstrates characteristics 
of IP ID manipulation with his tool Covert_TCP 
[16].  This proof-of-concept tool limits its focus to 
analysis of header manipulation and not optimal data 
hiding strategies.  While the tool is not especially 
stealthy, it demonstrates the simplicity of usurping 
the IP ID field for covert message delivery.  
Covert_TCP simply replaces the 16-bit IP 
Identification field with a mathematical product of 
the ASCII value of the character to be encoded.  

Characters are read from a file and injected one by 
one into TCP SYN packets.  The value injected into 
the IP ID field is simply the ASCII value of the 
character multiplied by 256.  Figure 3 shows the 
Wireshark decode of an IP header forged by 
Covert_TCP.  The  Identification field is set to 
18432, which, when divided by 256 yields 72, the 
ASCII value for the letter ‘H.’  The recipient is 
passively listening for connections and thus never 
responds to the SYN requests, so a TCP three-way-
handshake is never completed.  Since establishment 
of a TCP session is not required, Covert_TCP has a 
potential bandwidth of 16-bits per packet.  However, 
only 8 bits of the IP ID field are occupied in 
Rowland’s implementation; the rest are set to zero.  
The method of transforming the ASCII characters 
into a bit sequence is similar to a substitution cipher, 
where the encoded value of the ASCII character 
always produces same encoded value for the field.  
This significantly increases probability of detection.  
Rowland suggests that using XOR or actual 
encipherment will produce a more random result 
which seems to adhere more closely to the protocol 
specification. 

 

 
 
Figure 3.  Internet Protocol Header Decode 
 

Two more strategies, proposed by Kamran 
Ashan, require that the sender and the recipient 
normally communicate overtly [3].  Supplementary 
covert information is hidden in their overtly delivered 
messages.  The first proposal takes advantage of 
redundancy in the Internet Protocol header provided 
by the Flags field.  The Flags field in the IP header 
contains three bits per packet.  The first bit is 
reserved.  The second bit is called the Do Not 
Fragment (DNF) bit.  When set, it indicates to 
intermediary systems that the packet must not be 
fragmented.  If the third bit is set, it signals that there 
are more fragments in subsequent packets.  The 
settings of the flags should match the actual context 
of the packet, yet there is rarely validation.  In an 
unfragmented datagram, all bits should be set to 0.   

For Ashan’s first proposal to succeed, the 
sender and the recipient must agree on maximum 
datagram size, which is known as Maximum 
Transmission Unit (MTU).  Additionally, any 
intermediary systems must not have a lower MTU.  If 
the size of the packet sent is smaller than the MTU of 
all systems the packet traverses, then the value of DF 
is irrelevant.  Ashan sets DF to 1 to send a 1, and sets 
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DF to 0 to send a 0.  The recipient, knowing the 
covert significance of the DF bit, stores the values in 
a buffer and recomposes them into the message.  The 
MTU requirements of this simplistic proposal limit its 
usefulness in communication across the Internet 
where paths between hosts may be unpredictable. 

  Ashan’s second proposal exploits concepts 
from digital image watermarking to scramble the 
message contents.  As with Covert_TCP, the message 
is delivered in the 16-bit IP Identification field.  What 
separates Ashan’s proposal from others is the 
encoding algorithm.  Ashan borrows the concept of 
“toral automorphism systems” from digital 
watermarking applications typically used to identify 
protected images.  Toral automorphism systems are 
mathematical transformations using lattices that 
deform an image and produce a new one unrelated to 
the original.  It is a complex algorithm for scrambling 
producing a high level of randomization.  Ashan uses 
the algorithm to develop a look-up table and map 
each letter to an 8 bit binary value.  The selection of 
the 8-bit mapping is highly random, possibly more 
random than if they were encrypted.  These 8 bits 
occupy the first half of the IP ID field.  The second 
half is occupied by an independent, randomly 
generated 8 bits which has no relation to the message.  
Exploiting the IP ID field allows the sender and 
recipient to communicate across the Internet.  
However, both of Ashan’s proposals require that the 
sender and recipient communicate overtly.  While this 
fails Bauer’s unlinkability test, the covert payload is 
characterized by enough randomness to evade some 
forms of statistical analysis.   

The Internet Control Message Protocol 
(ICMP) is a complement to the Internet Protocol that 
allows conveyance of error messages and other 
information at the network layer [15].  ICMP packets 
are tunneled inside of IP datagrams.  The first byte of    
the datagram is an ICMP type field.  There are fifteen 
types of ICMP messages.  The message type 
determines the format of the remaining portion of 
the ICMP data.  This paper is primarily concerned 
with ICMP echo and echo reply messages, types 0x8 
and 0x0 respectively.  These messages are used by the 
command Packet Internet Groper (ping) to 
determine whether a host is online and available.  
ICMP is an integral part of the TCP/IP protocol 
suite and is always implemented alongside IP.  The 
prevalence of ICMP in IP networks makes it a 
relevant location to introduce potential covert 
channels, yet ICMP may be blocked by firewalls 
because of its abuse during reconnaissance and by 
Internet worms.   

Project Loki, published in Phrack magazine 
by daemon9 and alhambra, demonstrates the 
capabilities of ICMP for carrying covert payloads [2].  
Loki, the Norse god of deceit and deception, was 

known for his subversive behavior.  The authors of 
the tool claim that the god Loki masked evil intent in 
seemingly good and appropriate actions, thus they 
felt the name appropriate for their clandestine tool.  
They take advantage of the data field in an ICMP 
echo message to mask their malevolent payload.  The 
data field in an ICMP echo message is intended to 
record route information or store timing records to 
calculate round trip time.  The data field by default is 
typically 24 or 56 bytes long, depending on the host 
operating system.  However, the protocol allows it to 
be much longer, thus yielding arbitrarily high 
bandwidth.  There is rarely inspection of the data 
field by host operating systems, firewalls, or 
intermediary routers, so this field can contain 
arbitrary data.  Loki uses this data field for 
encapsulating its covert message.   

Loki’s successor, Loki2, is the only actual 
implementation of the concept [7].  The author, 
daemon9, suggests three options for compilation of 
the tool.  The default option compiles an executable 
that can be run as a visible daemon.  The second 
option allows it to be complied as a loadable kernel 
module.  For maximal stealth, they recommend 
recompiling the operating system kernel with Loki-
enhanced ping.  Loki2 utilizes encryption to augment 
message encoding.  Options include weak encoding 
with XOR, and stronger cryptography with Diffie-
Hellmann and Blowfish.  Loki2 was developed 
primarily as a backdoor to tunnel shell commands 
inside echo requests and replies.  To accomplish this, 
the code allows allocating a pseudo-terminal or piping 
the commands into a shell.   

If the message is correctly encoded in the 
data field, it may go undetected.  There are, however, 
defenses to counter ICMP covert channels.  The 
simplest is to block ICMP traffic at choke points 
along the network.  However, since this will totally 
preclude the legitimate troubleshooting uses of 
ICMP, it should be used with prudence.  Firewalls 
can limit the systems allowed to use ICMP to a 
trusted group, yet this too can be circumvented.  
Since the sender of a corrupted ICMP echo only 
wants to deliver a message and not determine if the 
recipient is alive, the sender can spoof the source IP 
address to be from a member of the trusted group.  
The payload would reach its destination and the 
owner of the spoofed IP would receive an unsolicited 
echo reply.  The authors of Loki state that the only 
sure way to disable the ICMP covert channel is to 
deny all ICMP traffic; this is not totally true.  All 
operating systems have default characteristics for 
ICMP messages.  For example, in Windows XP, the 
data field is simply the letters of the English alphabet 
in alphabetical order repeated to achieve the desired 
packet size.  A tcpdump of a Window XP ping is 
shown in figure 4.  Intrusion prevention systems can 
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learn the default payload for common operating 
systems and deny datagrams with anomalous 
payloads. 

 
Offset   Hex Dump                                       ASCII Dump 
 
0x0000   4500 003c 0b5e 0000 4001 4472 0afe 0108        E..<.^..@.Dr.... 
0x0010   0a1e 14ce 0000 265c 0400 2b00 6162 6364        ......&\..+.abcd 
0x0020   6566 6768 696a 6b6c 6d6e 6f70 7172 7374        efghijklmnopqrst 
0x0030   7576 7761 6263 6465 6667 6869                  uvwabcdefghi 
 

Figure 4.  ICMP_ECHO Decode 
 

4.3 The Transport Layer 
 
Transport layer protocols build on the 

service provided by IP to support a wide range of 
applications.  Two basic types of service are offered 
in the Transport Layer.  The first service consists of 
reliable, connection-oriented transfer of a byte 
stream.  This is provided by the Transmission 
Control Protocol (TCP).  The second service consists 
of best-effort connectionless transfer of individual 
messages, which is provided by the User Datagram 
Protocol (UDP).  The simple UDP header, designed 
for rapid delivery of messages, has only four fields for 
potential covert message injection.  Thus, most 
research focuses on TCP.  The twelve fields of the 
TCP header include many which are rarely inspected 
and others that exhibit high randomness.  For 
example, a 32-bit TCP sequence number identifies 
the position of the first byte of the segment in the 
overall stream of bytes.  Sequence number generation 
requires randomness as a mechanism to mitigate 
session hijacking.    

While Craig Rowland’s Covert_TCP 
exploits IP ID fields by default, it can also hijack the 
TCP Initial Sequence Number (ISN) for covert 
payload delivery [16].  During the TCP three-way-
handshake, the originator of the connection sends a 
SYN packet with a randomly derived sequence 
number.  This sequence number is called the Initial 
Sequence Number (ISN).  All subsequent TCP 
sequence numbers of the same stream follow a 
predictable increment.  As previously stated, 
Covert_TCP is a simple proof-of-concept tool with 
little attention to detection avoidance.  Thus, the ISN 
crafted by Covert_TCP is simply the ASCII value of 
the character to be encoded multiplied by 16777216.   

A third method employed by Covert_TCP 
eliminates direct communication between the sender 
and recipient by exercising techniques from 
reconnaissance and port scanning tools such as 
Nmap.  Covert_TCP bounces packets off a remote 
site which is unaware that it is being used for illicit 
purposes.  This method is called the “TCP 
Acknowledged Sequence Number Bounce.”  
Covert_TCP forges the source IP address, the source 
port, the destination IP address, the destination port, 
and the initial sequence number and the segment.  
Figure 5 shows how Eve could send a covert message 

to Bob using the Covert_TCP ASN bounce.  The 
values assigned to the source and destination ports 
are not important.  The source IP address should be 
spoofed to be that of the intended recipient of the 
covert message.  The destination address should be 
the IP of a remote server that will remain unaware of 
its role in message delivery.  The same ISN craftwork 
just described is used here as well.   

The packet will be sent from the client’s 
computer and routed to the destination address, the 
address of the “bounce” server.  If the bounce server 
is listening on the destination port, it will reply with a 
SYN/ACK.  If it is not listening, it will respond with 
a SYN/RST.  The response, however, will be sent to 
he spoofed source IP, which is the IP of the intended 
recipient of the covert message.  The response will 
include an Acknowledged Sequence Number (ASN), 
which is the ISN incremented by 1.  The intended 
recipient, passively listening for ACKs, knows to 
subtract one from the ASN and divide by 16777216 
to retrieve the ASCII character.   

 

 
 
Figure 5.  TCP ASN Bounce 
 

There are drawbacks to Rowland’s 
proposals.  First, Covert_TCP tampers with values 
used to provide reliability in TCP, mainly sequence 
numbers and packet reassembly fields.  This 
tampering makes TCP function much like UDP.  
Having lost TCP’s reliability mechanisms, 
Covert_TCP slows packet transmission to one packet 
per second to assure that they arrive in sequence.  
This delay of one packet per second precludes 
sending large volumes of covert information.  There’s 
an additional problem with the ASN bounce method.  
Many firewalls and routers include anti-spoofing 
filters that validate the source and destination 
addresses of datagrams.  If a packet is leaving a 
protected network and the source IP does not belong 
to that network, a firewall or router may simply drop 
the datagram.  Finally, using multiplication to encode 
the message is simplistic and easily detected.  

Joanna Rutkowska modifies the model to 
support true anonymity between sender and receiver 
with a concept called “passive covert channels” [17].  
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In Rutkowska’s proposal, sequence numbers are only 
modified on traffic normal traffic already created by 
another user or process on the host.  Rutkowska’s 
application, called Nushu, never generates its own 
traffic.  This poses a unique problem: traffic leaving 
the system already has a defined destination address.  
Modification of this address would preclude delivery 
of the overt message to the intended recipient, cause 
errors in normal traffic on the system, and thus break 
the channel.  In Nushu, the traffic is not sent directly 
to the intended recipient of the covert message, thus 
the recipient must have control over some gateway in 
the path between the sender and recipient of the 
overt message.  Ownership of a firewall, router, or 
other egress point along the network path would 
work well.   

The Nushu sender is a complex process 
which must store TCP state information in order to 
maintain normal traffic flow.  To avoid local 
detection, the passive covert channel is hooked to the 
Linux kernel’s socket handling modules.  The primary 
task of the Nushu covert channel module is to 
continually modify sequence and acknowledgement 
numbers from those generated by the operating 
system kernel to a sequence containing the implanted 
message.  The module is required to modify both 
sequence and acknowledgement numbers.  If only the 
sequence number were modified on outgoing 
packets, then the operating system kernel would not 
understand the acknowledgement number on the 
corresponding SYN/ACK packet.  Similarly, 
sequence and acknowledgement numbers of all 
subsequent packets in the TCP session must be 
modified in order for the operating system kernel to 
keep up with state information and allow 
continuation of the byte stream.   

As with Covert_TCP, Nushu subverts TCP 
reliability mechanisms to transport covert messages, 
however, Nushu redefines the meaning of bits in the 
sequence and acknowledgement number fields to 
maintain reliability.  Both fields hold a 32-bit value 
which normally only holds state information.  Nushu 
breaks the field into three bytes for covert data and 
one byte for control and sequencing.  The control 
byte includes 6 bits for sequencing and 2 bits to mark 
whether data is stored in the data bytes.  Whereas the 
operating system produced 232 possible sequence 
numbers, Nushu only has 26 values for storing its 
state information.  Empty data bytes are quite 
frequent since the delivery of covert messages may 
not match the normal amount of traffic on the 
system.   The limited number of Nushu sequence 
numbers and the high rate of empty data bytes 
significantly increases odds of detection.  Rutkowska 
wants to avoid the predictability of the substitution 
cipher used in Covert_TCP and thus uses a block 

cipher to encrypt the initial sequence number so that 
it looks like random data.    

The sending Nushu process simply controls 
TCP sequence information.  It must be combined 
with another process, such as a password sniffer, to 
generate messages.  Messages from the password 
sniffer can be piped into Nushu.  The receiving 
process does not have to reside in kernel-space.  It 
can be implemented as a simple sniffer capturing all 
packets that it observes.  It can either reside on a 
trusted gateway or use other mechanisms to force all 
traffic to its network interface.  This means that 
communication occurs in one direction only, from 
sender to recipient.   This system would work well for 
capturing information from a computer on a 
protected network and delivering it to an external 
host.  Adding similar kernel modules to the recipient 
may allow communication in the opposite direction, 
thus making the tool capable of delivering commands 
to the internal, protected host.   

Local detection of Nushu sequence number 
modification may be possible because of the 
operating system process for socket handling.  If a 
sniffer such as tcpdump is run locally on the 
compromised host, the sequence and 
acknowledgement numbers will differ from their 
value as they pass across the network.  This 
anomalous behavior occurs because the packet 
capture functions call operating system handles that 
display packet contents from the operating system 
perspective, not Nushu’s perspective.  Rutkowska 
created an additional module that modifies the way 
the kernel interprets packets.  With this module, a 
sniffer will call upon modified operating system 
handles.  Thus, a local sniffer will see the same 
sequence and acknowledgement numbers that are 
seen traversing the network. 

 
4.4 The Application Layer 

 
The application layer presents limitless 

opportunities for delivery of covert data.  The covert 
payload can reside either within the protocol headers 
or be delivered as a payload.  Certain requirements 
must be met before an application layer protocol can 
provide a useful covert channel.  First, use of the 
protocol should be expected on the system.  This 
helps increase the anonymity set and provide existing 
traffic to hide in.  For example, if the tool hides data 
in SMTP packets, then it would be advantageous to 
use an SMTP server as sender or recipient.  
Otherwise, the covert channel tool may generate 
SMTP traffic on a system that is monitored and 
prohibited from sending SMTP, thus triggering an 
alarm.  Similarly, the server may be restricted by a 
firewall from sending SMTP, thus limiting the group 
of recipients to those behind the same firewall.   



© SANS Institute 2006, Author retains full rights.

©
 S

AN
S 

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Raymond Sbrusch Page 8 Network Covert Channels 

The HTTP protocol is a fertile field for 
embedding covert messages.  Even restrictive 
organizations allow some HTTP traffic to pass from 
internal hosts to Internet web servers.  Inspection of 
HTTP packets for protocol compliance requires 
costly software and may break web applications 
important for business.  For example, HTTP can be 
used as a mechanism for delivering streaming audio 
and video, chat, and desktop sharing applications.  
Strict filters that block non-compliant HTTP packets 
will disable many of these services.  Thus, permissive 
application layer inspection policies allow room for 
coercion. 

Lee Bowyer introduces basic HTTP 
steganography as a way to deliver covert messages 
from Trojan horses past stateful inspection firewalls 
[6].  Trojan horses are frequently utilized by attackers 
to deliver usernames and password from 
compromised systems residing behind a firewall.  
Many Trojans deliver results and accept commands 
from Internet Relay Chat (IRC) channels since the 
IRC client is simple to implement.  The global 
availability of the channels and the distribution of the 
servers make the attacker more difficult to track.  
However, IRC is typically blocked by many enterprise 
firewall policies.  Bowyer advocates using HTTP for 
delivery of stolen material.  Bowyer suggests attaching 
the covert message at the end of an HTTP GET 
request to a web server controlled by the attacker.  
The fake web server will drop the URL segment of 
the GET request and parse only the tag, the portion 
of the message following the question mark.  For 
pulling covert contents inside a firewall protected 
network, Bowyer requests a normal looking web page 
with covert messages embedded images. Bowyer 
states that this is a very difficult hole to plug, as most 
enterprises need to allow valid-looking HTTP traffic 
to pass through their firewalls. 

  A simple proof of concept tool, Reverse 
WWW Shell, demonstrates how effective HTTP 
covert channels can be at delivering a payload [20].  
In the case of Reverse WWW Shell, the payload is an 
actual shell executing on a “slave” system.  The tool 
developed by van Hauser shovels the shell through 
what appears to be a normal HTTP web browser 
request.  The HTTP request, however, is actually a 
call to Reverse WWW Shell “master” listening for 
connections from the slave.  The person controlling 
the master can enter commands in the master console 
and have them execute on the slave.  The ability to 
push a shell through TCP is not new.  One of the 
most functional socket tools, netcat, can accept 
commands from a shell as input and forward 
command output to a remote listener over a raw TCP 
or UDP socket.  Reverse WWW Shell, however, uses 
HTTP headers and tags to mask the shell sent by the 
slave.  The slave call to the server looks like an HTTP 

GET request to an e-commerce order form with a 
long CGI tag.  In the default configuration, the slave 
generates HTTP headers similar to a Mozilla 4.0 
compliant web browser accepting html and plaintext 
files in the English language.  The CGI tag is actually 
the base-64 encoded standard output from the shell, 
as shown in figure 6.  The commands entered at the 
master are sent to the slave masked as an HTTP 
200/OK response.  Both the master and server 
components are included in one 260-line Perl script.  
Everything is customizable, including purported web 
browser capabilities, choice of shell to bind with, 
proxy server authentication credentials, and web page 
to request.   
 
GET /cgi-bin/order?M5mAejTgZdgYOdgIO0BqFfVYTgjFLdgxEdb1He7  HTTP/1.0 

 
Figure 6.  Reverse WWW Shell Slave to Master 
 

While Reverse WWW Shell succeeds in 
delivering a backdoor over a covert channel, it is not 
impervious to detection.  The slave component must 
generate its own HTTP traffic in order to deliver the 
shell to the master.  This activity increases the chance 
of detection.  To increase anonymity, the slave should 
reside on a system known to generate many HTTP 
requests, such as a public kiosk or the workstation of 
the one employee who surfs the web all day.  
Additionally, the slave makes a direct connection to 
the master.  This is easily detected by traffic analysis 
attacks.  As mentioned previously, in some cases the 
fact that two parties are communicating is more 
important then what they say.   However, delivering 
an interactive shell seems to necessitate direct 
communication between slave and master.  A passive 
HTTP covert channel attempting to achieve a high 
level of anonymity would limit the functionality of 
the tool.  The execution of commands at the master 
and delivery of the results by the slave may be prone 
to errors and delay without a direct connection.  The 
author of Reverse WWW Shell, van Hauser, did not 
explore this possibility in his essay, but the next tool 
introduces concepts that could make unlinkable 
communication possible. 

Matthias Bauer proposed a protocol called 
the “Muted Posthorn,” which eliminates the 
communication between sender and recipient of a 
message [4].  While the Muted Posthorn may not be 
capable of delivering interactive shells, it is very 
stealthy in its delivery of messages.  In Bauer’s 
protocol, messages are delivered from one web server 
to another web server via unsuspecting web browsers 
acting upon standard HTTP mechanisms.   

The protocol takes advantage of five 
HTTP/HTML features: redirects, cookies, referrer 
headers, elements in HTML code, and active content.  
An HTTP redirect tells the web browser that the 
requested document is available at another location.  
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The redirect location can be the URL of a script 
followed by a list of parameters.  In the Muted 
Posthorn, the URL links to another server complicit 
in the covert communication and the parameters 
carry the encoded message.  The maximum capacity 
of this channel is 1024 bytes.  HTTP cookies can be 
used to deliver messages between two servers in the 
same cookie domain.  Two servers are in the same 
cookie domain if they belong to the same second 
level domain.  For example, if two web servers’ 
domain names end in “icann.org,” their top-level-
domain is “org,” their second level domain is 
“icann,” and then they belong to the same cookie 
domain, “icann.org.”  When a web server that wants 
to send a message, it must wait until it receives a 
request from a web browser.  The server sends the 
web browser a Set-Cookie command with the cookie 
domain and a key-value pair up to four kilobytes 
long.  The value can be an encoded covert message.  
If the web browser then connects to another web 
server in the same cookie domain, that server can 
request the key-value pair in the cookie, and thus 
retrieve the covert message.  The client can easily be 
forced to visit the recipient server with any number 
of HTTP/HTML mechanisms.  Referer headers 
indicate the URI of the web page that linked to the 
site in the current request.  As with redirects, there is 
a 1024 byte limit on the capacity of this channel.  
Another mechanism, HTML elements, causes web 
browsers to automatically request objects from web 
servers.  For example, the code to include an inline 
image in a web page and the code to generate page 
frames can force web browsers to request data from 
different web servers without user consent.  HTTP 
commands such as redirects can be pushed through 
HTML elements and escape inspection by web 
content filters or other observers.  For example, the 
HTML code could include a <META HTTP-
EQUIV> tag calling a redirect command deep within 
the HTML code.  Even though the command is not 
in an HTTP header field, the web browser will act 
upon the meta-tag and visit the page indicated in the 
redirect.    The final mechanism, active content, 
includes code executed by the client such as 
JavaScript, ActiveX, and Macromedia Flash.  Like 
HTML elements, scripts constructed in these active 
content languages can be used to force web browser 
redirects, construct invisible forms, and force a client 
to POST a message without user interaction.   Bauer 
proposes using banner advertisements with hidden 
frames as a way to distribute the components among 
many web servers. 

The banner advertisements satisfy one of 
four components of the Muted Posthorn system.  
These corrupted advertisements are part of the “node 
maintainer” entity.  Node maintainers provide CGI 
scripts which encode a covert message as contents of 

a POST request.  The encoded message includes both 
a data payload and headers indicating further 
processing actions.  The possible actions include 
storing a message in a mailbox, retrieving a message 
from a mailbox, and forwarding the message to 
another node.  The banner advertisements are linked 
to from other web pages that are unaware of their 
role in the covert channel.  These web pages are 
called the “linkers”.  The linker page simply contains 
a reference to the URL of the node maintainer.  
“Senders” and “receivers” represent the entities that 
knowingly post and retrieve covert messages to the 
node maintainers.  These node maintainers host 
mailboxes for the senders and retrievers.  The 
messages in the mailboxes are transferred from one 
node to another via “hapless web surfers.”  The web 
surfers visit a web page they trust, but an 
advertisement on the web page links to a script on 
the node maintainer, which causes the surfer’s 
browser to download the covert message and post it 
to another node. 

There are two commands in the protocol.  
The command “To” identifies the node and mailbox 
that are the ultimate target of the payload.  The 
command “Get” requests messages from a specific 
mailbox on a certain node.  Senders of messages and 
requesters of mailboxes embed these commands in 
standard HTTP GET requests that look like 
unadulterated HTTP requests.  Since all of the 
transactions between senders, receivers, and 
unsuspecting web surfers are embedded in standard 
HTTP traffic, it can take advantage of anonymizing 
web services such as the Onion Router and 
Anonymizer.  These services further enhance the 
anonymity of the communication.  The HTTP 
headers are typically not modified by firewalls and 
network address translation has no impact on the 
message delivery.   

The Muted Posthorn system is dependent 
on a few factors to maintain anonymity.  First, the 
owners of the linker web pages must be willing to 
link to the node maintainer site.  This is one of the 
advantages of deploying the message transfer scripts 
in banner advertisements.  The linker receives 
monetary remuneration for linking to the banner 
advertisements.  Additionally, the linker sites must be 
popular among web surfers.  The number of web 
surfers visiting a linker site directly correlates to the 
speed a message is delivered from one node to 
another.  A larger number of hapless web surfers also 
increases the anonymity set in which to hide. 

 
5.  Advanced Detection Mechanisms 

 
A number of design flaws were highlighted 

alongside discussions of the covert channel strategies 
throughout this paper.  Few of the mechanisms for 
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detecting these flaws possessed novel, scientific 
methodologies.  While the specifications indicated 
that certain header values should exhibit a high level 
of randomness, the implementations are developed 
by human programmers using known algorithms and 
well-documented pseudorandom number generators.  
It is, in fact, quite possible to predict the values of 
fields which are intended to be random.   

Stephen Murdoch defines a suite of tests 
used to passively monitor network traffic and identify 
steganography in the IP ID and TCP ISN fields  [12].  
The model is described as a “passive warden,” which 
has the capability off observing all packets leaving its 
network, yet not modifying them as would an “active 
warden.”  Murdoch explains that IP ID and TCP ISN 
fields, while semi-structured, have some 
unpredictability because of a randomly generated, 
per-host secret and by use of cryptographic 
functions.  Murdoch details the algorithm for ISN 
generation in the open source operating systems 
Linux and OpenBSD.  The description outlines hash 
algorithms, re-keying intervals, and initialization traits.  
These characteristics lead to well-defined behavior 
that can be used to identify anomalies potentially 
caused by steganography.  Normal behavior for the 
IP ID field includes use of a global counter for IP ID 
that yields sequential values, a sequential per-host IP 
ID, the fact that the MSB is toggled every 30,000 
packets in OpenBSD, and the fact that within a re-
keying interval, the OpenBSD IP ID must not repeat.   
Similar characteristics are outlined for the TCP ISN.  
Murdoch does not specifically outline the testing 
methodology or the statistical results of the 
comparison of original packets and 
steganographically modified packets.  He does, 
however, claim that with a large enough set of 
packets, the tests proved that steganography can be 
detected.   

A subsequent paper by Eugene Tumoian 
describes an elegant analysis platform based on 
packet traces from tcpdump and neural network 
models with Matlab [19]. Tumoian’s detection 
method does not require careful study or knowledge 
of ISN implementation details.   A large number of 
ISNs generated by an unadulterated, trusted 
operating system stack are collected to form what is 
known as a “training set.”  The initial training set is 
fed into the neural network in order to identify 
thresholds that may identify ISNs not generated by 
the trusted stack.  If actual ISNs fall within the 
boundaries of the threshold, the neural network will 
continue learning from observed values.  If the ISNs 
significantly exceed the threshold, the ISN is 
considered steganographically altered.  In Tumoian’s 
experiment, 1500 actual ISNs each are read from 
multiple operating systems, including Linux and 
Windows distributions.  These are loaded into Matlab 

using a neural network training script.  For 
monitoring of actual traffic, WinDump log files are 
read one-by-one by the Matlab script.  The results 
show a high level of precision in detecting the 
presence of covert channels and a low occurrence of 
false-positives.   Without a-priori knowledge of the 
sender’s operating system, Tumoian’s neural network 
can detect covert channels.           

 
6. Conclusion and Future Work 

 
Many of the concepts outlined in this report 

discuss the simplicity of altering published protocols 
for an illicit purpose.  Two primary motivations were 
discussed: delivering a secret message and sending 
shell commands over a covert backdoor.  The 
underlying intent of these actions may be to evade 
government scrutiny, to commit illegal acts, or 
perhaps to perpetrate some benevolent purpose.  
New specifications are frequently published by the 
Internet Engineering Task Force (IETF) and the 
Institute of Electrical and Electronics Engineers 
(IEEE).  It seems that little has changed since Steven 
Bellovin raised awareness of flaws within protocol in 
1989.  While standards organizations frequently 
incorporate mechanisms for protecting the 
confidentiality, integrity, and authenticity of network 
transmissions, opportunities for subversion of the 
protocols increase.  Some measures can be taken 
during implementation of the protocols to assure that 
they are not used for unintended purposes.  For 
example, for header fields with a limited number of 
defined values, the implementation should validate 
that no unintended values are sent.  The same 
validation can be done at various points along the 
network path, such as routers, firewalls, and intrusion 
analysis systems. 

If preventative mechanisms are not 
developed, new opportunities exist which increase 
the range of possibility for protocol subversion.  For 
example, Internet Protocol version 6 is implemented 
in almost all current operating systems and routers.  
However, it is not widely used nor understood by 
network administrators.  For this reason, some 
intrusion detection systems consider the mere 
presence of IPv6 as a potential indication of a 
compromise [10].  Another protocol which promises 
widespread adoption is IEEE 802.16, also known as 
WiMax.  WiMax seems to pledge wireless 
functionality similar to that found in 802.11 
networks.  With WiMax, strategies such as those used 
in HICCUPS may deliver covert channels that are 
broadcast over many square miles instead of just a 
few hundred square feet.  This would make physical 
location of the communicating devices seemingly 
impossible.
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