
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

Incident Identification Through Long Tail Analysis

GIAC (GCUX) Gold Certification

Author: Joshua Lewis, Joshua.d.Lewis@gmail.com

Advisor: Rob VandenBrink

Accepted: February 1st, 2016

Template Version September 2014

Abstract

Incident identification is one of the most challenging steps in the incident response

process. If an incident cannot be detected, it cannot be contained. Long tail analysis is

an effective incident detection method to supplement existing incident detection

techniques. The long tail analysis framework utilizes a simple assumption that

compromised hosts represent a subset of the enterprise asset population. In a

homogenous environment, where all assets are nearly identical, differences between

systems can be used to identify potentially compromised assets. Realistically, most

organizations have a heterogeneous environment and struggle with configuration drift,

resulting in a limited ability to easily compare systems. This research extends the Kansa

Windows PowerShell incident response framework to Linux operating systems, and

utilizes long tail analysis to detect outliers across homogenous and heterogeneous

environments.

Incident Identification Through Outlier Analysis 2

Joshua Lewis, Joshua.D.Lewis@gmail.com

1. Background

Standardization of enterprise IT infrastructure provides significant benefits such

as a consistent user experience, reduced maintenance effort, and lower support costs.

Utilizing an enterprise IT architecture to obtain standardization, business use cases can be

consistently translated into reusable implementation patterns. Unfortunately, many

enterprise IT teams struggle to find the resources necessary to build a comprehensive

architecture, keep pace with the relentless technology evolution, remain connected to

constantly changing business use cases, and ensure consistent adoption of the technology

standards. Additional IT resources or cloud based deployment models, such as Platform

as a Service, may partially alleviate some of the standardization challenges. However,

the reality is that a significant number of heterogeneous systems will continue to exist for

the foreseeable future.

The lack of standardization of the IT environment not only complicates

administration, it impairs the enterprise security posture. One of the most significant side

effects of a non-standard IT environment is a reduced ability to detect security incidents.

In a homogenous environment, anomaly analysis tools can be reliably deployed to

monitor deviations from the baseline. In a heterogeneous environment, there is no

baseline or consistent normal state, causing anomaly analysis tools to produce significant

false positives.

Beyond anomaly analysis tools, the operating system security tool ecosystem

generally consists of three categories of capabilities: configuration management, file

integrity monitoring, and signature based detection. Configuration management tools

such as Puppet and Chef have been developed to assist with the application of IT and

security standards. These tools apply standards based on an established baseline and can

eliminate configuration drift. However, some organizations may not have the necessary

financial resources or understanding of each business system to identify the implications

of the configuration changes. The second operating system security capability category

focuses on file integrity monitoring. File integrity monitoring solutions such as AIDE

and Tripwire monitor critical system configuration files and binaries. These tools

provide the ability to alert on sophisticated zero-day exploits or stealthy configuration

changes by comparing the operational state to a known checksum baseline. However,

Incident Identification Through Outlier Analysis 3

Joshua Lewis, Joshua.D.Lewis@gmail.com

implementing file integrity monitoring post system deployment in a non-standard

environment may result in the whitelisting of potentially malicious configurations or

binaries. The third operating system security capability category focuses on signature

detection. Signature based detection identifies malicious actions by recognizing a set of

previously seen characteristics or patterns that were determined to be malicious.

Signature based detection is typically very reliable and can help classify an incident.

However, signature based detection is easily foiled, does not alert on patterns that have

not been previously analyzed, and is difficult to obtain a comprehensive signature

coverage for all malicious operating system and application permutations in a

heterogeneous environment.

Configuration management, file integrity monitoring, and signature detection

tools provide a substantial ability to detect sophisticated incidents. The use of these

capabilities in non-standard environments reduces the effectiveness and can be difficult

to administrate. However, long tail analysis can be utilized to establish a baseline for

heterogeneous environments and verify the baseline for homogeneous environments.

With an accurate baseline, anomaly analysis tools can be reliably utilized to supplement

the existing incident detection approaches. Long tail analysis operates on the premise

that malicious configurations or binaries should be less frequent than benign

configurations or binaries. Therefore, forensic artifacts can be collected across the

enterprise environment, sorted based on the number of occurrences, and analyzed to

determine outliers that may indicate an incident. Long tail analysis is an effective

method to determine outliers, however a security analyst must have a firm grasp of the

forensic artifacts that are being collected to truly confirm if the outlier is a false positive

or an incident. The identification of outliers through long tail is helpful for organizations

that do not have a strong configuration management capability, and can identify a

malicious state that has been whitelisted. From an attacker’s standpoint, long tail

analysis can be thwarted by compromising large portions of the environment, but this will

result in an increased footprint and greater chance of detection through other incident

identification techniques.

Long tail anomaly analysis is a good supplement, not a replacement, for existing

incident identification approaches. The Kansa Incident Response Framework (Hull,

Incident Identification Through Outlier Analysis 4

Joshua Lewis, Joshua.D.Lewis@gmail.com

2014) pioneered the use of long tail analysis to identify outliers. This framework uses a

series of PowerShell scripts to collect forensic artifacts from Windows operating systems.

Each artifact can be collected in parallel leveraging PowerShell remoting, which enables

simultaneous artifact collection across massive host populations. After the artifacts are

collected, the results of each artifact are merged together and can be opened in Microsoft

Excel or imported into a database for long tail sorting and outlier identification. At the

time this research was conducted, the author was unaware of any open source or

commercial products that provided a similar capability for Linux or Unix operating

systems.

The goal of this research is to champion the use of long tail analysis as a simple

and effective incident detection and investigation prioritization technique. Additionally,

this research extends the Kansa Incident Response Framework capabilities to Linux and

Unix operating systems. Specifically, this research is laser focused on parallel OS and

application forensic artifact collection, parsing, and outlier identification for Red Hat and

Cent OS. Red Hat and Cent OS were chosen based on their prominent enterprise market

share and popularity. However, this framework can be easily ported to other Linux or

Unix distributions. Additionally, network based long tail analysis will not be covered

within the scope of this research.

2. Long tail analysis framework

2.1. Artifact collection phase: conceptual design

The long tail analysis framework is divided into two phases, the artifact collection

(section 2.1) and the artifact analysis phase (section 2.2). Each phase of the framework is

described in the context of a conceptual design to introduce the high level processes and

considerations. Beyond the conceptual design, proof-of-concept scripts are included

appendix 5.1.2 - 5.1.5. Reference Figure 1 for a graphical view of the overall long tail

analysis framework.

Incident Identification Through Outlier Analysis 5

Joshua Lewis, Joshua.D.Lewis@gmail.com

Figure 1 - Long tail analysis framework overview

The artifact collection phase is supported by two processes, the artifact extraction

(2.1.1) and the artifact gathering process (2.1.2). These processes are designed to

extract forensic artifacts from a population of remote systems and gather the extracted

artifacts from each remote host for analysis on a central server.

2.1.1. Artifact extraction process

The first step in the artifact extraction process is to determine what forensic

artifacts should be collected. The initial selection of forensic artifacts should be based on

the operating systems and applications (e.g. Sendmail, Apache, Bind, etc.) used in the

organization. Within each operating system and application, artifacts should be identified

that indicate exploitation, persistence, or privilege escalation. Some forensic artifacts

may not be suitable for long tail analysis (e.g. the analysis of logic within a script).

Therefore, long tail analysis should supplement, not replace, existing incident detection

techniques. Additionally, long tail analysis is not intended for incident investigation, and

should not be utilized to collect evidence such as memory or disk images. An example of

forensic artifacts for Red Hat and Cent OS operating systems are listed in Table 1.

Appendix 5.1.1 provides an explanation for each artifact listed in Table 1, to include

commands utilized to extract the artifact, and what to look for in the output.

Incident Identification Through Outlier Analysis 6

Joshua Lewis, Joshua.D.Lewis@gmail.com

Table 1: Example forensic artifacts for long tail analysis on Red Hat and Cent OS

Forensic artifact Category of actions detected

List of listening ports Persistence

List of running processes Exploitation, persistence

List of services and service state Persistence

List of kernel modules Persistence

List of setuid and setgid files Privilege escalation

List of open but unlinked files Persistence

List of regular files in the /dev directory Persistence

List of files that start with dots or spaces Persistence

List of directories that start with dots Persistence

List and hash of files in bin directories Privilege escalation, persistence

List of immutable files Persistence

List of crontab entries Persistence

List and hash of scripts executed by run-

parts

Persistence

List of users allowed to make changes to

cron

Persistence

List of user accounts Persistence

List of user accounts with null passwords Persistence

List of uid 0 user accounts Persistence

List of SSH authorized_keys for the root

account

Persistence

Hash of sudoers file Persistence, privilege escalation

Pam configuration Persistence

SSHd configuration Persistence

List of .rhost files Persistence

List of hosts.equiv files Persistence

List of X*.hosts files Persistence

List default run level and init entries Persistence

List and hash of run level 3&5 startup and

kill scripts

Persistence

Incident Identification Through Outlier Analysis 7

Joshua Lewis, Joshua.D.Lewis@gmail.com

 After the forensic artifacts have been selected for the long tail analysis

investigation, the next step is to ensure that the output of these artifacts can be trusted.

Attackers have been known to replace operating system binaries that are used for incident

identification (e.g. the ps command) or modify binary shared system libraries to hide

their malicious artifacts. Rootkits that replace binaries or system libraries can be

subverted by temporarily copying statically or dynamically linked binaries from the

analysis server to the remote endpoint to run the artifact extraction commands. These

statically or dynamically linked binaries are intended to be used solely by the artifact

extraction script, do not overwrite the native operating system binaries, and are deleted

after the results are extracted. Statically linked binaries can be created using the gcc –

static flag (Wright, 2010). However statically linked binaries are operating system and

kernel version specific, and would require that each binary be statically compiled with

each operating system and kernel version in an enterprise (Pogue, Altheide, & Haverkos,

2008). Depending on the operating system and kernel version standardization in the

environment, two options can be utilized. The first option is to statically compile all

forensic artifact extraction binaries for each operating system and kernel version used in

the enterprise environment. This option may be feasible for homogenous environments,

and can provide a higher level of assurance. The second option is to compile

dynamically linked forensic artifact extraction binaries for each operating system within

the enterprise environment. This option may be more feasible for heterogeneous

environments, but provides a lower level of assurance since the shared libraries on the

system being analyzed will be used in conjunction with the trusted binary. However,

both options provide a higher level of assurance than utilizing the binaries and the shared

libraries on the systems being analyzed. For example, the binaries need to extract the

forensic artifacts from Table 1 are listed in Table 2.

Hash of rc.local file Persistence

RPM package verification Exploitation, persistence, privilege

escalation

Incident Identification Through Outlier Analysis 8

Joshua Lewis, Joshua.D.Lewis@gmail.com

Table 2: Example binaries for forensic artifact extraction

Binaries need to extract forensic artifacts from Table 1

netstat cat

egrep sha256sum

sed lsmod

ps rpm

chkconfig lsattr

hostname awk

find tr

grep echo

sh sort

tar rm

 After the trusted dynamically or statically linked binaries have been used to obtain

the artifacts, the last step in the artifact extraction process is to parse the results. The

comparison of the forensic artifacts across multiple hosts requires the output files to

utilize a consistent format. Leverage native command output options or tools, such as

grep and awk, to remove unnecessary fields and headers that will cause long tail

calculation errors. Additionally, utilize tools such as sed and tr to store the output in a

consistent delimited format, such as a CSV, to easily compare the results and enable

integration with other tools. Finally, append the hostname and artifact extraction run

time to each line in the results. The hostname and run time columns can be ignored

during the long tail calculations, but they can be used to quickly trace an outlier back to

the original host that generated the artifact.

 Based on the artifact selection, use of trusted binaries, and artifact parsing logic,

the final step in this process is to automate the artifact extraction. Leverage a script to

execute the trusted binaries, parse the output, and write the results of each artifact to a

local or remote file. Writing files to local storage may overwrite forensic evidence in

unallocated space. Consider writing the extracted artifact files to a remote share or

server. Reference appendix 5.1.2 for an example artifact extraction script.

Incident Identification Through Outlier Analysis 9

Joshua Lewis, Joshua.D.Lewis@gmail.com

2.1.2. Artifact gathering process

The second process within the artifact collection phase is the artifact gathering

process. The artifact gathering process sets up the authentication to the remote endpoint,

establishes the investigation methodology, and outlines the logic to automate the process

with a script.

The first step in the artifact gathering process is to setup the authentication for the

remote endpoints. Copy and remote command execution operations are orchestrated by

SCP and SSH with strong public and private key authentication. The SCP and SSH

public and private keys can be created using the ssh-keygen command. During the key

generation process, ensure that a password is used to encrypt the private key at rest.

After the ssh-keygen command completes, edit the public key to add restrictions for how

the key can be used. For example, the public key will not be used for X11 forwarding, so

the “no-X11-forwarding” option can be set to prevent this activity. After the public key

has the appropriate options set, copy the key into the root account authorized_keys file on

each remote endpoint that will be evaluated with the long tail analysis framework.

Finally, leverage ssh-agent on the analysis server to load the decrypted private key in

memory and automatically perform the authentication for each command. The ssh-agent

program provides the ability to utilize encrypted private keys on disk, without

continuously re-entering the password each time a command is executed. However, since

ssh-agent stores a decrypted copy of the SSH private key in memory, ensure that the

analysis server is a single role server that is appropriately hardened and has limited

administrator access. Reference section 5.1.3 for an example implementation

walkthrough for setting up SSH authentication and ssh-agent.

Once the authentication for the copy and remote command execution is setup, the

next step is to determine the investigation methodology. The long tail analysis

framework can be executed based on a targeted or macro methodology. Running the

long tail analysis framework against a targeted set of similar assets (e.g. Web servers)

provides the ability to spot service specific logic outliers. For example, a running Apache

service may have a high rate of occurrence across the macro enterprise environment,

however the Apache service should be disabled on DNS servers as part of the

configuration hardening process. A low rate of occurrence of running Apache services

Incident Identification Through Outlier Analysis 10

Joshua Lewis, Joshua.D.Lewis@gmail.com

across the DNS server population indicates a misconfiguration or a potential compromise.

Inversely, running the long tail analysis framework on the macro enterprise assets

provides a larger population that smooths out legitimate outliers. For example, an SSH

client patch may be released and slowly applied to the enterprise assets. The long tail

analysis framework will highlight the patched and unpatched SSH binary hashes as

frequent, while a trojanized SSH binary on a compromised server will have a hash with a

low rate of occurrence. Targeted and macro long tail analysis methodologies should both

be used in conjunction to effectively spot outliers.

After the authentication and investigation methodology have been established, the

final step is to automate the artifact gathering process with a script. Within the artifact

gathering script, source the ssh-agent environment variables to be able to utilize ssh-agent

to authenticate the SSH and SCP commands. Since the long tail analysis framework may

be ran on a massive enterprise host population, the parallel-ssh (Chun & McNabb, 2012)

program is used to invoke multiple instances of SSH and SCP at the same time. Parallel-

ssh reads a text file containing a list of target host names, and can be configured to

simultaneously connect to an arbitrary number of hosts. Next, ensure that a directory

structure (e.g. /results/current) is setup on the analysis server to capture the extracted

artifacts from each host. If the current directory already contains extracted artifacts from

the host that is being evaluated, move the previous artifact results into a historical

directory (e.g. /results/historical/<insert host name>/<insert last run time of analysis>/).

Next, copy the trusted binaries and the artifact extraction files from the analysis server to

the remote host. Execute the artifact extraction script on the remote host and copy the

results back to the current results directory on the analysis server (e.g. /results/current).

The last step in the artifact gathering script is to remove the artifact extraction script,

trusted binaries, and results from the remote host. Copying the trusted binaries and

artifact execution script to the remote host and deleting them each time the long tail

analysis framework is run, reduces the probability that an attacker will be alerted that

analysis activities are being conducted. Even upon detection, the short duration of this

analysis limits their ability to modify the binaries or scripts in response. Reference

section 5.1.4 for an example script that implements the results gathering process.

Incident Identification Through Outlier Analysis 11

Joshua Lewis, Joshua.D.Lewis@gmail.com

2.2. Artifact analysis phase: conceptual design

The second phase of the long tail analysis framework focuses on analyzing the

results of the extracted artifacts gathered from each of the remote endpoints. Using the

analysis server, the first step in this process is to concatenate like artifacts (e.g.

host1.localdomain_01-18-2016.08.25_kernelModules.csv, host2.localdomain_01-18-

2016.08.25_kernelModules.csv, etc.) from the results of each host into a combined file

(e.g. currentKernelModulesCombined.csv). Using the combined file, display the

appropriate columns that should be used for the long tail calculation. The rate of

occurrence of an artifact is calculated based the full contents of a line. Each extracted

artifact line contains fields that should not be displayed for the long tail calculation (e.g.

hostname, date, etc.), and are intended to provide the ability to trace an outlier back to a

host for further investigation. After the appropriate artifacts are displayed, the data

should be grouped based on duplicate lines. Next, the number of lines within the

duplicate grouping is counted, the duplicated lines are removed, and unique lines are

prefixed by the count of the lines within each duplicate group. Finally, the data can be

sorted in ascending order to display the least frequent occurrences first. Since the

combined artifact file is in a consistently delimited format (e.g. CSV), the rate of

occurrence calculation can be performed with a script or using pivot tables in Microsoft

Excel. Reference section 5.1.5 for an example script that implements the long tail

analysis process.

 After the artifact rate of occurrence has been calculated, the final step in the

analysis phase is to interpret the results. Artifacts that have a low rate of occurrence do

not immediately indicate a compromise. A low artifact rate of occurrence can stem from

a small sample size that is not representative of the larger asset population, a

configuration error, a one-off system, or a compromise. Long tail analysis is helpful to

quickly spot outliers, where a large number of artifacts are present (e.g. kernel modules).

However, long tail analysis merely helps focus investigation efforts, and an analyst needs

to understand the underlying artifacts to differentiate a false positive from a compromise.

Reference section 5.1.1 for walk through of common Red Hat and Cent OS artifact

explanations.

Incident Identification Through Outlier Analysis 12

Joshua Lewis, Joshua.D.Lewis@gmail.com

2.3. Long tail analysis limitations

The long tail analysis framework adds a significant capability to supplement

existing incident detection methods. However, long tail analysis is not well suited for

some types of artifacts such as script logic. Additionally, long tail analysis will not detect

rootkits that load a kernel module to mask their existence from the forensic artifact

collection tools used in this framework. The benefits and limitations of this framework

should be considered based on the needs of the enterprise and the incident detection

strategy.

3. Future research

The long tail analysis framework presented in this research establishes a parallel

outlier analysis capability for Red Hat and Cent OS operating systems that can be scaled

to massive enterprise asset populations. The example implementation scripts in appendix

5.1.2 - 5.1.5 make extensive use of binary path variables to limit the effort required to

port this capability to other Linux or Unix variants. Additionally, each forensic artifact

is captured in a CSV delimited format and enables data to easily be imported into a

database for scalability and increased usability with a web application. Future research

should focus on enhancing the long tail analysis framework by adding the capability to

analyze multiple Linux or Unix distributions, integrating the capability with a database,

and using the the output from multiple long tail analysis investigations to build a

historical analysis capability to spot deviations over time.

Incident Identification Through Outlier Analysis 13

Joshua Lewis, Joshua.D.Lewis@gmail.com

4. References

Chun, B., & McNabb, A. (2012, February 2). parallel-ssh. Retrieved from

code.google.com: https://code.google.com/p/parallel-ssh/

Hull, D. (2014, June 2). Kansa. Retrieved from GitHub:

https://github.com/davehull/Kansa

Katherine, W., & Joseph, M. (2001). Mastering Unix. Alameda, CA: Sybex Inc.

Retrieved from http://csweb.cs.wfu.edu/~torgerse/Kokua/SGI/007-2862-

005/sgi_html/ch05.html

Kerrisk, M. (2015, July 23). Linux Programmer's Manual. Retrieved from man7.org:

http://man7.org/linux/man-pages/man5/hosts.equiv.5.html

Murdoch, D. (2014). Blue Team Handbook: Incident Response Edition (2.0 ed.).

Pogue, C., Altheide, C., & Haverkos, T. (2008). Unix and Linux Forensic Analysis DVD

Toolkit. Burlington, MA: Syngress Publishing, Inc.

Pomeranz, H. (2015). Hardening Linux/Unix Systems. Eugene, OR: The SANS Intitute.

Red Hat. (n.d.). 13.2.4 Using Key-Based Authentication. Retrieved from redhat.com:

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-ssh-

configuration-keypairs.html

Red Hat. (n.d.). 19.10. Managing Hosts. Retrieved from redhat.com:

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/3/html/System_Administration_Guide/s1-

network-config-hosts.html

Incident Identification Through Outlier Analysis 14

Joshua Lewis, Joshua.D.Lewis@gmail.com

Red Hat. (n.d.). 2.3. Configuring sudo Access. Retrieved from redhat.com:

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux_OpenStack_Platform/2/html/Getting_Started_

Guide/ch02s03.html

Red Hat. (n.d.). Chapter 39. Automated Tasks. Retrieved from redhat.com:

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/ch-

autotasks.html

Red Hat. (n.d.). Chapter 40. Kernel Modules. Retrieved from redhat.com:

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/3/html/System_Administration_Guide/ch-

kernel-modules.html

Red Hat. (n.d.). Red Hat Enterprise Linux 3: Introduction to System Administration.

Retrieved from redhat.com: https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/3/html/Introduction_to_System_Administrati

on/s1-acctsgrps-rhlspec.html

Red Hat. (n.d.). Red Hat Enterprise Linux 3: Reference Guide. Retrieved from

redhat.com: https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/3/html/Reference_Guide/s1-boot-init-

shutdown-sysv.html

rpm.org. (n.d.). Maximum RPM: Taking the Red Hat Package Manager to the Limit.

Retrieved from rpm.org: http://www.rpm.org/max-rpm/s1-rpm-verify-

what-to-verify.html

Incident Identification Through Outlier Analysis 15

Joshua Lewis, Joshua.D.Lewis@gmail.com

SANS Institute. (n.d.). Intrusion Discovery Cheat Sheet for Linux. Retrieved from

sans.org: https://pen-testing.sans.org/resources/downloads

Wright, C. (2010, March 9). Building a UNIX/Linux Incident response / Forensic Disk.

Retrieved from digital-forensics.sans.org: https://digital-

forensics.sans.org/blog/2010/03/09/building-a-unixlinux-incident-

response-forensic-disk/

Zeltser, L. (2015, January). Security Incident Survey Cheat Sheet for Server

Administrators. Retrieved from zeltser.com: https://zeltser.com/security-

incident-survey-cheat-sheet/

5. Appendix

5.1.1. Artifact explanation

The artifacts captured in the table below are derived from the authors previous experience responding to incidents. These

artifacts are not meant to capture all relevant forensic data points, but are provided as a sample for the types of analysis that should be

conducted. Organizational specific artifacts can easily be added into the long tail analysis example implementation scripts.

Artifact

Category

Artifact Command Artifact Rationale and Considerations

Ports List listening

ports

netstat -ln Listening network sockets that are outside the normal parameters

for the asset function (e.g. HTTP listening on a DNS server) may

indicate a configuration error or the presence of backdoor

utilities. Additionally, obscure listening ports (e.g. 4444) may

indicate unauthorized or malicious software. netstat displays the

listening sockets (-l) based on port number (-n).

Processes List running

processes

ps –Ao

“comm,pid,ppid,start,user”

Processes can be used to find malicious programs or

administration activities. Process anomalies can be discovered

by looking for processes that utilize tricky process names (e.g.

kthread vs. kthreadd), processes started in the wrong user

context (e.g. init started by any user except root), uncommon

processes (e.g. rktdaemon), and process with the wrong parent

process ID (e.g. init started by the sendmail process). ps

displays all processes (-A) with a format (-o) of command,

process ID, parent process ID, time process was started, and user

(“comm,pid,ppid,start,user”).

Incident Identification Through Outlier Analysis 17

Joshua Lewis, Joshua.D.Lewis@gmail.com

Services List services

and state

(on/off)

chkconfig --list Services are used to run scripts and applications in the

background, and can be utilized by attackers for persistence.

Run level 3 (full multiuser with networking) and run level 5 (full

multiuser with networking and X windows) are the most

commonly used run levels. chkconfig lists the services and the

service status (on/off) for each run level (--list). Reference the

start and stop scripts for additional information on the

functionality of each service (e.g. head –n 15

/etc/rc3.d/S24nfslock).

Kernel

modules

List loaded

kernel

modules

lsmod Kernel modules provide the Linux kernel with a modular design

and enable the kernel to be dynamically or manually modified at

runtime by loading and unloading modules (Red Hat, n.d.).

Attackers can leverage kernel modules to perform low level

rootkit functionality or obtain low level access (e.g. access to all

memory). The lsmod command lists the loaded kernel modules

and what each kernel module is used by.

Files List setuid

and setgid

files

find / -perm -2000 –o –

perm -4000

setuid and setgid files are permissions granted to executables

that allow executable owners or groups to temporarily run

privileged functions as unprivileged users. Attackers commonly

upload setuid or setgid files to escalate privileges or modify

existing binaries for stealthy persistence. The find command is

used to locate files in the root directory (/) with the setuid (-perm

-4000) or (-o) setgid (-perm -2000).

Open but

unlinked files

lsof +L1

(SANS Institute, n.d.)

Each file within an operating system should normally have one

or more links. In the past, attackers have started a program then

immediately deleted the binary from disk to make the recovery

of the original binary more difficult. However, unlinked binaries

can be recovered from the /proc virtual file system. lsof lists

open files with a link count of zero (+L1).

Incident Identification Through Outlier Analysis 18

Joshua Lewis, Joshua.D.Lewis@gmail.com

Regular files

in the /dev

directory

find /dev –type f Character and block files are typically found in the /dev

directory (Pomeranz, 2015). A limited number of regular files (-

type f) normally exist in the /dev directory. Regular files in the

/dev directory should be fairly consistent between systems. The

find command is used to locate regular files (-type f) in the dev

directory (/dev).

Files that start

with dots or

spaces

find / \(-name “ *” –o –

name “.*” \)

(SANS Institute, n.d.)

Attackers commonly utilize file names that start with a space or

a dot for obfuscation. Files that start with a space may allow a

file to co-exist and blend in with a similar named file. Similarly,

files that start with a dot are hidden from the default ls command

(utilize the –a flag to display all entries). The find command

locates all files in the rood directory (/) with a name that begins

with a space (-name “ *”) or (-o) a name that begins with a dot (-

name “.*”).

Directories

that start with

dots

find / -type d –name .* Attackers commonly utilize directories that start with a dot for

obfuscation. Directories that start with a dot are hidden from the

default ls command (utilize the –a flag to display all entries).

The find command locates all files in the root directory (/) that

are directories (-type d) and begin with a dot (.*).

List and hash

of files in the

bin directories

sha256sum /bin/* /sbin/*

/usr/bin/*

The /bin, /sbin, and /usr/bin directories contain core binaries and

libraries. These files should be relatively consistent across

systems (e.g. files are in these directories and the file contents).

In the past, attackers have trojanized commonly used binaries

(e.g. ls) or added additional binaries to these directories. The

sha256sum command creates a SHA 256 hash of each file in the

/bin/*, /sbin*, and /usr/bin/* directories. This can be utilized to

find unauthorized or trojanized binaries.

Incident Identification Through Outlier Analysis 19

Joshua Lewis, Joshua.D.Lewis@gmail.com

List of

immutable

files

lsattr –R / In previous incidents, attackers have set the immutable file

permission to prevent a malicious file from being deleted by

administrators that are unfamiliar with immutable files. Even

with root permissions, files that have the immutable bit set

cannot be deleted without removing the immutable bit.

Immutable permissions occur infrequently in a normal operating

system build. Immutable files should be considered anomalous

unless an organization uses this as a common system

administration technique. The lsattr command displays a list file

attributes, recursively (-R) for the root directory (/). Files that

have the immutable permission set are listed as “----i----------“.

Tasks List crontab

entries

cat /etc/crontab

/etc/cron.d/*

Cron is a method to schedule commands and scripts to run at

periodic intervals (Red Hat, n.d.). Attackers commonly use cron

for persistence. The cat command is used to read the crontab

(/etc/crontab) and all shell scripts located in the cron.d

(/etc/cron.d/*) directory. This can be utilized to find

unauthorized cron jobs or shell scripts.

List and hash

scripts

executed by

run-parts

sha256sum

/etc/cron.daily/*

/etc/cron.hourly/*

/etc/cron.monthly/*

Within the crontab, Red Hat includes a “run-parts” cron job that

executes any shell script under the /etc/cron.daily,

/etc/cron.weekly, and /etc/cron.monthly directories (Red Hat,

n.d.). The sha256sum command creates a SHA 256 hash of each

file within the /etc/cron.daily/*, /etc/cron.weekly/*, and

/etc/cron.monthly/* directories. This can be utilized to find

unauthorized cron shell scripts.

List users

allowed to

make changes

to cron

cat /etc/cron.allow If a cron.allow file exists, then users who are allowed to run cron

jobs must be listed in this file. Users that are not in the

cron.allow file are not allowed to run cron jobs. If a cron.allow

file does not exist, Linux and Unix operating systems look for a

cron.deny file. Any user listed in the cron.deny file is not

Incident Identification Through Outlier Analysis 20

Joshua Lewis, Joshua.D.Lewis@gmail.com

allowed to run cron jobs. Users not listed in the cron.deny file

are permitted to run cron jobs. If a cron.allow or cron.deny file

does not exist, then all users are allowed to run cron jobs by

default (Red Hat, n.d.). The presence of cron.allow, cron.deny

or entries within each of these files may indicate anomalous

activity. The cat command is used to read the contents of the

/etc/cron.allow file if it exists. This can be utilized to find

unauthorized cron.allow files or entries.

List users

denied from

making

changes to

cron

cat /etc/cron.deny If a cron.allow file exists, then users who are allowed to run cron

jobs must be listed in this file. Users that are not in the

cron.allow file are not allowed to run cron jobs. If a cron.allow

file does not exist, Linux and Unix operating systems look for a

cron.deny file. Any user listed in the cron.deny file is not

allowed to run cron jobs. Users not listed in the cron.deny file

are permitted to run cron jobs. If a cron.allow or cron.deny file

does not exist, then all users are allowed to run cron jobs by

default (Red Hat, n.d.). The presence of cron.allow, cron.deny

or entries within each of these files may indicate anomalous

activity. The cat command is used to read the contents of the

/etc/cron.deny file if it exists. This can be utilized to find

unauthorized cron.deny files or entries.

Authentication List user

accounts

cat /etc/passwd User accounts provide access to an operating system or

application. In previous incidents, attackers have created

additional user accounts for persistent access. The first column

in the /etc/passwd file contains a list of all operating system user

accounts. The cat command is used to read the password

(/etc/passwd) file to obtain the current list of user accounts. This

can be used to find unauthorized user accounts.

Incident Identification Through Outlier Analysis 21

Joshua Lewis, Joshua.D.Lewis@gmail.com

List user

accounts with

a null

password

awk -F: '($2 == "") {print

$1}' /etc/shadow

(Murdoch, 2014)

Blank (null) account passwords should not normally occur

within an enterprise managed operating system. The presence of

a user account with a null password may indicates anomalous

activity and should be investigated. The awk command is used

to read the /etc/shadow file (/etc/shadow), by separating the

fields by a colon (-F:), and print the username in field one

({print $1}) where the password in field two is blank {$2== “”).

A password field with a value of “*” indicates an account is

disabled, and a password field with a value of “!!” indicates that

a password has not been set and the account cannot be used to

login.

SSH

authorized_ke

ys for the root

account

cat

/root/.ssh/authorized_keys

The /<user account>/.ssh/authorized_keys file lists public keys

that are allowed to utilize SSH on an operating system (Red Hat,

n.d.). In previous incidents, attackers have added their own

public keys to the authorized_keys files for persistent access.

The cat command is utilized to list the contents for the

authorized SSH public keys for the root account

(/root/.ssh/authorized_keys). This can be utilized to find

unauthorized public keys that are allowed to authentication to

the operating system.

Hash of

sudoers file

sha256sum /etc/sudoers Sudo provides the ability to delegate the use of privileged

commands to unprivileged users without the use of the root

account (Red Hat, n.d.). The /etc/sudoers configuration file is

used to determine the privileged commands that can be ran by

users. In an enterprise environment, this file tends to be

consistent across related systems or business units. Attackers

could utilize the sudoers file to maintain privileged access with

an unprivileged account. Deviations in the sudoers files could

indicate malicious activity and should be investigated. The

sha256sum command is used to create a SHA 256 hash of the

Incident Identification Through Outlier Analysis 22

Joshua Lewis, Joshua.D.Lewis@gmail.com

/etc/sudoers file. This can be utilized to find configuration

changes made to the sudoers file.

List of .rhost

files

find / -name .rhosts The .rhosts and file is used for insecure host/IP based

authentication (Pomeranz, 2015). .rhosts files should not be

used in an enterprise environment. Attackers may setup rhost

authentication to hide in plain sight, or leverage a compromised

machine with rhost authentication to move laterally across the

network. The find command is used to locate .rhost files (-name

.rhosts) in the root directory (/). This can be utilized to find

unauthorized .rhosts files.

List of

hosts.equiv

files

find /etc -name hosts.equiv

(Murdoch, 2014)

The hosts.equiv file allows users and hosts to utilize legacy

commands such as rcp, rsh, and rlogin (Kerrisk, 2015). The

legacy r* commands do not utilize encryption. The presence of

the hosts.equiv file may indicate a configuration error or an

attacker attempting to hide in plain sight. The find command is

utilized to locate hosts.equiv files (-name hosts.equiv) in the /etc

directory (/etc). This can be utilized to find unauthorized

hosts.equiv files.

List of

X0.hosts files

find /etc -name X*.hosts

(Murdoch, 2014)

The X*.hosts file is used for X server host authentication

(Katherine & Joseph, 2001). Host based authentication can by

trivially defeated using DNS poisoning. Attackers may setup

X*.hosts authentication to hide in plain sight, or leverage a

compromised machine with X*.hosts to move laterally across

the network. Alternative methods should be used to remotely

access X serveries, such as X11 forwarding over SSH. The find

command is utilized to locate X*.hosts files (-name X*.hosts) in

the /etc directory (/etc). This can be utilized to find

unauthorized X*.hosts files.

Incident Identification Through Outlier Analysis 23

Joshua Lewis, Joshua.D.Lewis@gmail.com

Startup List the

default

runlevel

cat /etc/inittab Red Hat uses the SysV runlevel system to determine which start

and kill scripts are ran by init (Red Hat, n.d.). The typical run

level for Red Hat systems is run level three or run level five.

Systems that use alternate run levels may be caused by a

configuration error, system maintenance, or an attacker trying to

hide in plain site by running services from a run that is not

monitored by system administrators. The cat command is used

to read the inittab file (/etc/inittab) to determine the current run

level (e.g. id:5:initdefault:). This can be used to identify the

default run level of the operating system.

List and hash

of run level

3&5 startup

and kill

scripts

sha256sum /etc/rc3.d/*

/etc/rc5.d/*

Red Hat uses the SysV runlevel system to determine which start

and kill scripts are ran by init (Red Hat, n.d.). The init runlevel

scripts reside in the /etc/rc*.d/* directories. Init scripts that start

with a “K” are used to kill a service, and scripts that begin with a

“S” are used to start a service. Scripts that do not begin with a

“K” or an “S” are ignored. The sha256sum command creates a

SHA 256 hash of each script in the /etc/rc3.d/* and /etc/rc5.d/*

directories. This can be used to identify new scripts that an

attacker has added or made changes to an existing script.

DNS List the local

DNS host file

entries

cat /etc/hosts

(Zeltser, 2015)

The hosts file is used by the operating system for local DNS

resolution. This file is checked prior to using DNS servers for

name resolution (Red Hat, n.d.). An attacker may attempt to

modify this file to perform man-in-the-middle or denial of

service attacks. The cat command is used to read the hosts file

(/etc/hosts). This can be used to identify unauthorized name

resolution entries.

List DNS

servers used

cat /etc/resolv.conf The resolv.conf file lists the current DNS servers. An attacker

may attempt to configure alternate DNS servers to perform man-

in-the-middle or denial of service attacks. The cat command is

Incident Identification Through Outlier Analysis 24

Joshua Lewis, Joshua.D.Lewis@gmail.com

used to read the contents of the resolv.conf file

(/etc/resolv.conf). This can be used to identify the use of

unauthorized DNS servers.

Packages Verify RPM

packages

rpm –Va

(SANS Institute, n.d.)

The rpm package manager can be used to verify an installed

package with information about the package from the rpm

database. Specifically, rpm can be used to verify package file

attributes (size, hash, permission, type, owner, group), package

dependencies, and run a verification script (rpm.org, n.d.). The

rpm command can be ran with the verification option (-V) for all

packages (-a). This can be utilized to find package files that

have changed since they were built. However, this may output a

large number of changes that may not be malicious. Each

change should be verified on a case by case basis.

5.1.2. Artifact extraction script

The artifact extraction script automates the extraction of the defined long tail

analysis artifacts listed in section 5.1.1. This script should be copied over to the remote

endpoint that is being analyzed and ran locally. Additional organizational specific

application or operating system specific artifacts can easily be added to this script.

#!/bin/bash

Copyright Joshua Lewis, 2016.

Version 1.0

Permission to use and distribute this script permitted as long as the

copyright is preserved and referenced

Use of this script at your own risk, no warrany is implied

#Define path to trusted binaries

BINPATH="/root/analysis/tools"

#Define path for output

OUTPATH="/root/analysis/results"

#Set date and time the analysis was ran

DATETIME=$(date +%m-%d-%Y.%H.%M)

#Make directory results

mkdir $OUTPATH

################### Ports ###################

#$BINPATH/echo "### Capture listenging ports "

$BINPATH/netstat -ln | $BINPATH/egrep -v '^unix|Active|Proto' |

$BINPATH/sed -e 's@^@'"$($BINPATH/hostname)"\ '@' | $BINPATH/awk '{

print $5,$2,$1}' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_netstat.csv

################### Process ###################

#$BINPATH/echo "### Capture running processes "

$BINPATH/ps -Ao "comm,pid,ppid,start,user" | $BINPATH/grep -v ^COMMAND

|$BINPATH/sed -e 's@^@'"$($BINPATH/hostname)"\ '@' | $BINPATH/awk '{

print $2,$3,$4,$5,$6,$1}' | $BINPATH/tr -s " " "," >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_processListing.csv

################### Services ###################

#$BINPATH/echo "### Capture run level 3 & 5 services "

$BINPATH/chkconfig --list | $BINPATH/awk '{print $1,$5,$7}'|

$BINPATH/sed -e 's@$@'\ "$(hostname)"'@'| $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_runLevel3And5Services.csv

################### Kernel modules ###################

#$BINPATH/echo "### Capture kernel modules "

$BINPATH/lsmod | $BINPATH/awk '{print $1,$2}'| $BINPATH/tr -s ' ' ','|

$BINPATH/sed -e 's@$@',"$($BINPATH/hostname)"'@' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_kernelModules.csv

################### Files ###################

#$BINPATH/echo "### Capture setuid and setgid files "

Incident Identification Through Outlier Analysis 26

Joshua Lewis, Joshua.D.Lewis@gmail.com

$BINPATH/find / -perm -2000 -o -perm -4000 -exec $BINPATH/sh -c 'echo

"$0"' {} \; 2>/dev/null | $BINPATH/sed -e 's@$@'\

"$($BINPATH/hostname)"'@'| $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_setUidAndSetGidFiles.csv

#$BINPATH/echo "### Capture open but unlinked files "

The idea to collect this artifact derived from the SANS Intrusion

Discovery Cheat Sheet for Linux (https://pen-

testing.sans.org/resources/downloads)

$BINPATH/lsof +L1 | $BINPATH/awk '{print $1,$2,$3,$10}'|$BINPATH/tr -s

' ' ','| $BINPATH/sed -e 's@$@',"$($BINPATH/hostname)"'@' |

$BINPATH/grep -v 'COMMAND,PID,USER,NAME,'>

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_open_unlinked_files.csv

#$BINPATH/echo "### Capture regular files in the /dev directory "

The idea to collect this artifact derived from SANS 506 Securing

Linux/Unix by Hal Pomeranz

$BINPATH/find /dev -type f | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' >$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_regularFilesInDev.csv

#$BINPATH/echo "### Capture files that start with a dots or spaces "

The idea to collect this artifact derived from the SANS Intrusion

Discovery Cheat Sheet for Linux (https://pen-

testing.sans.org/resources/downloads)

$BINPATH/find / \(-name " *" -o -name ".*" \) -exec sh -c 'echo "$0"'

{} \; | $BINPATH/sed -e 's@$@',"$($BINPATH/hostname)"'@'

>$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_dotAndSpaceFiles.csv

#$BINPATH/echo "### Capture directories that start with a dots "

$BINPATH/find / -type d -name .* | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' >$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_dotDirectories.csv

#$BINPATH/echo "### Capture list and hash of files in the bin

directories "

$BINPATH/sha256sum /bin/* /sbin/* /usr/bin/* 2>/dev/null | $BINPATH/sed

-e 's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_hashOfFilesInBinDirectories.csv

#$BINPATH/echo "### Capture list of immutable files "

$BINPATH/lsattr -R / 2>/dev/null | $BINPATH/grep -e '----i-' |

$BINPATH/sed -e 's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' '

',' > $OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_chattrFiles.csv

################### Tasks ###################

#$BINPATH/echo "### Capture crontab "

$BINPATH/cat /etc/crontab /etc/cron.d/* | $BINPATH/grep -Ev

'^SHELL=/bin/bash|^PATH=/sbin|^MAILTO=root|^HOME=/|^#' | $BINPATH/sed -

s '/^$/d'| $BINPATH/sed -e 's/$/,/'| $BINPATH/sed -e

's@$@'"$($BINPATH/hostname)"'@' >$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_crontabAndCron.d.csv

#$BINPATH/echo "### Capture shell scripts executed by run-parts daily,

hourly, monthly "

Incident Identification Through Outlier Analysis 27

Joshua Lewis, Joshua.D.Lewis@gmail.com

$BINPATH/sha256sum /etc/cron.daily/* /etc/cron.hourly/*

/etc/cron.monthly/* | $BINPATH/sed -e 's@$@'\

"$($BINPATH/hostname)"'@'| $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_run-

partsDailyHourlyMonthly.csv

#$BINPATH/echo "### Capture cron allow settings "

$BINPATH/cat /etc/cron.allow 2>/dev/null | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_cronAllow.csv

#$BINPATH/echo "### Capture cron deny settings "

$BINPATH/cat /etc/cron.deny 2>/dev/null | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_cronDeny.csv

################### Authentication ###################

#$BINPATH/echo "### Capture user accounts "

$BINPATH/cat /etc/passwd | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@'>$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_userAccts.csv

The idea to collect this artifact derived from the "Blue Team

Handbook: Incident Response Edition" by Don Murdoch

#$BINPATH/echo "### Capture user accounts with a null password "

$BINPATH/awk -F: '($2 == "") {print $1}' /etc/shadow | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_accountsWithNullPasswd.csv

#$BINPATH/echo "### Capture SSH authorized_keys for the root account "

$BINPATH/cat /root/.ssh/authorized_keys | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' >$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_rootSshAuthKeys.csv

#$BINPATH/echo "### Capture hash of sudoers file "

$BINPATH/sha256sum /etc/sudoers | $BINPATH/sed -e 's@$@'\

"$($BINPATH/hostname)"'@'| $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_sudoersFile.csv

#$BINPATH/echo "### Capture the list of .rhost files "

$BINPATH/find / -name .rhosts | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' > $OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_rhostFiles.csv

The idea to collect this artifact derived from the "Blue Team

Handbook: Incident Response Edition" by Don Murdoch

#$BINPATH/echo "### Capture the list of hosts.equiv files "

$BINPATH/find /etc -name hosts.equiv | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' > $OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_hosts.equivFiles.csv

The idea to collect this artifact derived from the "Blue Team

Handbook: Incident Response Edition" by Don Murdoch

#$BINPATH/echo "### Capture the list of X0.hosts files "

Incident Identification Through Outlier Analysis 28

Joshua Lewis, Joshua.D.Lewis@gmail.com

$BINPATH/find /etc -name X0.hosts | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' > $OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_X0.hostsFiles.csv

#TODO add UID 0 accounts in /etc/passwd

#TODO add list of groups

#TODO add Pam configuration

#TODO add /etc/ssh/sshd_config

################### Startup ###################

#$BINPATH/echo "### Capture default runlevel "

$BINPATH/cat /etc/inittab | $BINPATH/grep -Ev '^#' | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' >$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_inittab.csv

#$BINPATH/echo "### Capture the list and hash of run level 3 & 5

startup and kill scripts "

$BINPATH/sha256sum /etc/rc3.d/* /etc/rc5.d/* | $BINPATH/sed -e 's@$@'\

"$($BINPATH/hostname)"'@'| $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_runlevel3And5StartKillScripts.csv

##TODO add /etc/rc.local

################### DNS ###################

The idea to collect this artifact derived from the Security Incident

Survey Cheat Sheet for Server Administrators

(https://zeltser.com/security-incident-survey-cheat-sheet/)

#$BINPATH/echo "### Capture host file entries "

$BINPATH/cat /etc/hosts | $BINPATH/grep -ve $($BINPATH/hostname) |

$BINPATH/grep -v '::1' | $BINPATH/awk '{print $1,$2}' | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_etcHosts.csv

The idea to collect this artifact derived from the Security Incident

Survey Cheat Sheet for Server Administrators

(https://zeltser.com/security-incident-survey-cheat-sheet/)

#$BINPATH/echo "### Capture DNS servers used "

$BINPATH/cat /etc/resolv.conf | $BINPATH/grep -Ev '^#' | $BINPATH/sed -

e 's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo $DATETIME)_resolv.confEntries.csv

################### Packages ###################

The idea to collect this artifact derived from the SANS Intrusion

Discovery Cheat Sheet for Linux (https://pen-

testing.sans.org/resources/downloads)

#$BINPATH/echo "### Capture RPM package verification "

$BINPATH/rpm -Va 2>/dev/null | $BINPATH/sort | $BINPATH/grep -v

'prelink' | $BINPATH/awk '{ print $1,$3}' | $BINPATH/sed -e

's@$@',"$($BINPATH/hostname)"'@' | $BINPATH/tr -s ' ' ',' >

$OUTPATH/$($BINPATH/hostname)_$(echo

$DATETIME)_rpmPackageVerification.csv

Incident Identification Through Outlier Analysis 29

Joshua Lewis, Joshua.D.Lewis@gmail.com

5.1.3. Setup public and private key authentication

Public and private keys provide a strong authentication mechanism to authenticate

to a remote endpoint. Building and using the keys can be setup on the analysis server

using the following steps:

 Step 1: Generate public and private keys

o Run ssh-keygen –t rsa –b 4096

o Ensure a bit length of 4096+ is utilized

Figure 2 - Generate public and private keys

 Step 2: Restrict how the public key can be utilized (Pomeranz, 2015)

o no-pty: prevents an interactive shell

o no-port-forwarding: prevents TCP port forwarding

o no-X11-forwarding: prevents forwarding of the X11 protocol

Incident Identification Through Outlier Analysis 30

Joshua Lewis, Joshua.D.Lewis@gmail.com

Figure 3 - Set restrictions on how public keys can be utilized

 Step 3: Copy the public key to the authorized_keys file for each remote host to be

evaluated with the long tail analysis framework

o scp /home/sans/.ssh/frequencyAnalysisKeys.pub

root@webserver:/root/.ssh

o ssh root@webserver “cat /root/.ssh/frequencyAnalysisKeys.pub >>

/root/.ssh/authorized_keys”

Figure 4 - Copy public key to remote hosts

 Step 4: Make a copy of the private key and rename as id_rsa

o cp frequencyAnalysisKeys id_rsa

Figure 5 - Configure the private key

 Step 5: Setup ssh-agent

o ssh and scp natively communicate with ssh-agent through the

SSH_AUTH_SOCK variable (Pomeranz, 2015)

Incident Identification Through Outlier Analysis 31

Joshua Lewis, Joshua.D.Lewis@gmail.com

o Utilize the script below to run ssh-agent to output the shellcode for the

SSH_AUTH_SOCK and SSH_AGENT_PID environment variables to a

file, then run ssh-add to load the encrypted private keys in memory

o Run this script each time the analysis server is restarted

#!/bin/bash

#This script re-sets the ssh-agent environment variables and loads the

encrypted private keys into memory.

#RUN THIS SCRIPT AFTER EACH RESTART

#Script derived from SANS 506 Securing Linux/Unix by Hal Pomeranz

#remove previous versions of the ssh-agent file

rm -f $HOME/.ssh/ssh-agent

#run the ssh-agent command to get shellcode the SSH_AUTH_SOCK and

SSH_AGENT_PID, then output this to a file

ssh-agent | grep -v echo > $HOME/.ssh/ssh-agent

#set the permissions on the ssh-agent file

chmod 700 $HOME/.ssh/ssh-agent

#source this file so that the environment variables remain available

. $HOME/.ssh/ssh-agent

#force ssh-agent to load the private keys in memory; will be prompted

to enter passwords for encrypted private keys

ssh-add

 Step 6: Run updateSSH.sh script to update the ssh-agent file created in step 5

Figure 6 - Update ssh-agent file to be sourced in scripts

 Step 7: Source ssh-agent file in analysis server scripts that require ssh-agent

authentication

Incident Identification Through Outlier Analysis 32

Joshua Lewis, Joshua.D.Lewis@gmail.com

Figure 7 - Source ssh-agent file in scripts

5.1.4. Gather artifacts script

The gather artifacts script automates the parallel execution of the remote artifact

extraction script and the parallel collection of the artifacts extracted from the remote

endpoints. Parallel SSH and SCP are achieved using the parallel-ssh (Chun & McNabb,

2012) program. Download parallel-ssh from https://code.google.com/p/parallel-ssh/, and

place the unzipped folder in the current working directory defined in the script variables.

Additionally, ensure that the trusted binaries and artifact extraction script is placed in an

analysis.tgz tarball in the current working directory (reference section 5.1.6 for additional

details). Finally, ensure that a host.txt file exists in the current working directory that

lists each remote endpoint that should be analyzed (format the file: root@<insert host

name>, one entry per line).

#!/bin/bash

Copyright Joshua Lewis, January 2016.

Version 1.0

Permission to use and distribute this script permitted as long as the

copyright is preserved and referenced

Use of this script at your own risk, no warrany is implied

################### Setup variables ###################

#Define path to local binaries

LOCALPSCP=/home/sans/Desktop/pssh-2.3.1/bin/pscp

LOCALPSSH=/home/sans/Desktop/pssh-2.3.1/bin/pssh

LOCALSSH=/usr/bin/ssh

LOCALMKDIR=/bin/mkdir

LOCALTAR=/bin/tar

LOCALRM=/bin/rm

LOCALECHO=/bin/echo

LOCALLS=/bin/ls

LOCALMV=/bin/mv

LOCALGREP=/bin/grep

LOCALAWK=/bin/awk

LOCALSORT=/bin/sort

LOCALUNIQ=/usr/bin/uniq

Incident Identification Through Outlier Analysis 33

Joshua Lewis, Joshua.D.Lewis@gmail.com

LOCALHEAD=/usr/bin/head

LOCALTEE=/usr/bin/tee

LOCALIFCONFIG=/sbin/ifconfig

LOCALCUT=/bin/cut

LOCALSSHKEYSCAN=/usr/bin/ssh-keyscan

LOCALCHOWN=/bin/chown

#Define working directories and file variables

LOCALWORKINGDIR=/home/sans/Desktop

SCRIPANDTOOLSTAR=analysis.tgz

TARGETS=hosts.txt

FREQUENCYANALYSISKNOWNHOST=frequencyAnalysisKnownHost

FREQUENCYANALYSISRUNLOG=frequencyAnalysisRunLog.txt

ARTIFACTCOLLECTIONSCRIPT=artifactExtraction.sh

LOCALRESULTSDIR=/home/sans/Desktop/results

LOCALHISTORICALDIR=/home/sans/Desktop/results/historical

LOCALCURRENTDIR=/home/sans/Desktop/results/current

REMOTEROOTDIR=/root

REMOTEWORKINGDIR=/root/analysis

#Error handling to make sure the hosts.txt file exists

if [! -f "$LOCALWORKINGDIR/$TARGETS"]; then

 $LOCALECHO "## <error>"

 $LOCALECHO "host.txt file not present in $LOCALWORKINGDIR. Create

this file and add \"roo@host\" entries, one per line"

 $LOCALECHO "## </error>"

 exit 255

fi

#Define network interface used to connect to remote machines

LOCALNETIF=eth3

#Define other runtime variables

DATETIME=$(date +%m-%d-%Y.%H.%M)

REMOTERESULTSTAR="${DATETIME}_results.tgz"

CURRENTUSER=$(whoami)

################### Setup SSH agent ###################

#Sourcing the ssh-agent file. This file contains the SSH_AUTH_SOCK

variable to allow ssh-agent to pass the keys that are loaded in memory

. $HOME/.ssh/ssh-agent

################### Clean up local results directory to prep for

historical analysis ###################

Check for previous host evaluation results, move any previous results

to <local working directory>/results/historical/<host>/<last run time

of analysis>

$LOCALMKDIR $LOCALRESULTSDIR 2>/dev/null

$LOCALMKDIR $LOCALCURRENTDIR 2>/dev/null

cd $LOCALCURRENTDIR

if [[$($LOCALLS | $LOCALGREP .csv)]] ; then

 while $LOCALLS *.csv &>/dev/null; do

 HOSTLASTRUN=$($LOCALLS | $LOCALGREP .csv | $LOCALAWK -F "_"

'{print $1}' | $LOCALHEAD -1)

 DATELASTRUN=$($LOCALLS | $LOCALGREP .csv | $LOCALAWK -F "_"

'{print $2}' | $LOCALHEAD -1)

 $LOCALMKDIR $LOCALHISTORICALDIR 2>/dev/null

Incident Identification Through Outlier Analysis 34

Joshua Lewis, Joshua.D.Lewis@gmail.com

 $LOCALMKDIR $LOCALHISTORICALDIR/$($LOCALECHO $HOSTLASTRUN)

2>/dev/null

 $LOCALMKDIR $LOCALHISTORICALDIR/$($LOCALECHO

$HOSTLASTRUN)/$DATELASTRUN 2>/dev/null

 $LOCALMV $($LOCALECHO $HOSTLASTRUN)*.csv

$LOCALHISTORICALDIR/$HOSTLASTRUN/$DATELASTRUN

 done

fi

################### Copy tar artifact collection and tools to remote

host ###################

cd $LOCALWORKINGDIR

#Copy tar of artifact collection script and tools

#Using parallel scp (pscp) -h (lists of hosts to run scp in parallel) -

p (amount of parallel hosts at the same time); output results to

console and to a log file

$LOCALPSCP -h $LOCALWORKINGDIR/$TARGETS -p 25

$LOCALWORKINGDIR/$SCRIPANDTOOLSTAR $REMOTEROOTDIR/$SCRIPANDTOOLSTAR

#Copy statically or dynamically linked, trusted tar, cp, and rm

binaries to handle the extraction of the artifact collection script

#Using parallel scp (pscp) -h (lists of hosts to run scp in parallel) -

p (amount of parallel hosts at the same time); output results to

console and to a log file

$LOCALPSCP -h $LOCALWORKINGDIR/$TARGETS -p 25 $LOCALWORKINGDIR/tar

$REMOTEROOTDIR/tar

$LOCALPSCP -h $LOCALWORKINGDIR/$TARGETS -p 25 $LOCALWORKINGDIR/rm

$REMOTEROOTDIR/rm

################### Run artifact collection script on remote host

###################

#Untar artifact collection script and tools, run the script, tar the

results

#Using parallel ssh (pssh) -h (lists of hosts to run scp in parallel) -

p (amount of parallel hosts at the same time); output results to

console and to a log file

$LOCALPSSH -h $LOCALWORKINGDIR/$TARGETS -p 25 -t 600 "(cd

$REMOTEROOTDIR; $REMOTEROOTDIR/tar -xzpf $SCRIPANDTOOLSTAR; cd

$REMOTEWORKINGDIR; ./$ARTIFACTCOLLECTIONSCRIPT 2>/dev/null; cd

$REMOTEWORKINGDIR/results; $REMOTEROOTDIR/tar -czf

\$(hostname)_$REMOTERESULTSTAR *)"

################### Copy the artifact collection results back to the

local host and cleanup ###################

#Copy remote host results back to the local host

$LOCALMKDIR $LOCALHISTORICALDIR 2>/dev/null

#pssh-2.3.1 does not support the copy of files from a remote machine to

a local machine, this section is a temp workaround

#Get the IP address of the interface used to connect to the remote

machines, build a entry to be added to the known_hosts file on remote

machines

$LOCALSSHKEYSCAN $($LOCALIFCONFIG $LOCALNETIF | $LOCALGREP 'inet addr:'

| $LOCALCUT -d: -f2 | $LOCALAWK '{ print $1}') >

$LOCALWORKINGDIR/$FREQUENCYANALYSISKNOWNHOST

#copy the entry to be added to the known_hosts file to the remote

machines

Incident Identification Through Outlier Analysis 35

Joshua Lewis, Joshua.D.Lewis@gmail.com

$LOCALPSCP -h $LOCALWORKINGDIR/$TARGETS -p 25

$LOCALWORKINGDIR/$FREQUENCYANALYSISKNOWNHOST $REMOTEROOTDIR/.ssh

#add the entry to the known_hosts file on the remote machines

$LOCALPSSH -h $LOCALWORKINGDIR/$TARGETS -p 25 "cat

$REMOTEROOTDIR/.ssh/$FREQUENCYANALYSISKNOWNHOST >>

$REMOTEROOTDIR/.ssh/known_hosts"

#ssh into the remote host using ssh-agent forwarding, then scp the

results back to the analysis server

$LOCALPSSH -h $LOCALWORKINGDIR/$TARGETS -X -A -p 25 "scp

$REMOTEWORKINGDIR/results/*_$REMOTERESULTSTAR root@$($LOCALIFCONFIG

$LOCALNETIF | $LOCALGREP 'inet addr:' | $LOCALCUT -d: -f2 | $LOCALAWK

'{ print $1}'):$LOCALCURRENTDIR"

#reset file permissions for the /results/current/* files

$LOCALSSH root@127.0.0.1 "$LOCALCHOWN $CURRENTUSER

/$LOCALCURRENTDIR/*.tgz"

#Cleanup files on the remote host

#Note that deleting and re-creating these files/directories overwrites

unallocated space. The tradeoff of leaving these

files in place is that an attacker may be able to see what artifacts

are being collected and/or modify the local scripts.

$LOCALPSSH -h $LOCALWORKINGDIR/$TARGETS -p 25 "($REMOTEROOTDIR/rm -rf

$REMOTEWORKINGDIR; $REMOTEROOTDIR/rm -f $SCRIPANDTOOLSTAR;

$REMOTEROOTDIR/rm -f tar; $REMOTEROOTDIR/rm -f rm)" | $LOCALTEE -a

$LOCALWORKINGDIR/$FREQUENCYANALYSISRUNLOG

#Untar local results and delete tar

cd $LOCALCURRENTDIR

for i in *.tgz; do $LOCALTAR -xzf $i &>/dev/null; done

$LOCALRM -f $LOCALCURRENTDIR/*.tgz

5.1.5. Long tail analysis script

The long tail analysis script automates the parsing and rate of occurrence

calculation for the collected artifacts from remote endpoints. This script is ran on the

analysis server after all of the artifact gathering scripts have completed.

#!/bin/bash

Copyright Joshua Lewis, 2016.

Version 1.0

Permission to use and distribute this script permitted as long as the

copyright is preserved and referenced

Use of this script at your own risk, no warrany is implied

################### Setup variables ###################

#Define path to local binaries

LOCALECHO=/bin/echo

LOCALCLEAR=/usr/bin/clear

LOCALAWK=/bin/awk

LOCALCAT=/bin/cat

LOCALMKDIR=/bin/mkdir

LOCALSORT=/bin/sort

LOCALUNIQ=/usr/bin/uniq

#Define working directories

Incident Identification Through Outlier Analysis 36

Joshua Lewis, Joshua.D.Lewis@gmail.com

LOCALCURRENTRESULTSDIR=/home/sans/Desktop/results/current

LOCALFREQUENCYDIR=/home/sans/Desktop/results/frequency_analysis

#Reusable commands

##TODO Clean up the case statements by substituting some of the common

sequences of multiple commands with a variable

################### Determine artifact to perform frequency analysis

###################

$LOCALCLEAR

$LOCALECHO "Select a number 1-27 to perform artifact frequency

analysis"

$LOCALECHO "[1] Frequency of listening ports"

$LOCALECHO "[2] Frequency of running processes"

$LOCALECHO "[3] Frequency of run level 3 & 5 services"

$LOCALECHO "[4] Frequency of kernel modules"

$LOCALECHO "[5] Frequency of setuid and setgid files"

$LOCALECHO "[6] Frequency of open but unlinked files"

$LOCALECHO "[7] Frequency of regular files in the /dev directory"

$LOCALECHO "[8] Frequency of files that start with a dots or spaces"

$LOCALECHO "[9] Frequency of directories that start with a dots"

$LOCALECHO "[10] Frequency of list and hash of files in the bin

directories"

$LOCALECHO "[11] Frequency of list of immutable files"

$LOCALECHO "[12] Frequency of cron entries"

$LOCALECHO "[13] Frequency of run-parts daily, hourly, monthly entries"

$LOCALECHO "[14] Frequency of cron allow settings"

$LOCALECHO "[15] Frequency of cron deny settings"

$LOCALECHO "[16] Frequency of user accounts"

$LOCALECHO "[17] Frequency of user accounts with a null password"

$LOCALECHO "[18] Frequency of SSH authorized_keys for the root account"

$LOCALECHO "[19] Frequency of hash of sudoers file"

$LOCALECHO "[20] Frequency of the list of .rhost files"

$LOCALECHO "[21] Frequency of the list of hosts.equiv files"

$LOCALECHO "[22] Frequency of the list of X0.hosts files"

$LOCALECHO "[23] Frequency of default runlevels"

$LOCALECHO "[24] Frequency of the list and hash of run level 3 & 5

startup and kill scripts"

$LOCALECHO "[25] Frequency of host file entries"

$LOCALECHO "[26] Frequency of DNS servers used"

$LOCALECHO "[27] Frequency of RPM package verification"

$LOCALECHO -n "Enter number, the press [ENTER]: "

read ARTIFACTTOEVALNUM

##TODO Add parsing for additional artifacts

1) UID 0 accounts

2) List of groups

3) Pam configuration

4) SSHd_config

4) /etc/rc.local

################### Analyze artifacts based on user input

###################

$LOCALMKDIR $LOCALCURRENTRESULTSDIR 2>/dev/null

cd $LOCALCURRENTRESULTSDIR

$LOCALMKDIR $LOCALFREQUENCYDIR 2>/dev/null

case $ARTIFACTTOEVALNUM in

1)

Incident Identification Through Outlier Analysis 37

Joshua Lewis, Joshua.D.Lewis@gmail.com

 #Find the frequency for listening ports

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*netstat*.csv >

$LOCALFREQUENCYDIR/currentNetstatCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentNetstatCombined.csv | $LOCALSORT | $LOCALUNIQ

-c | $LOCALSORT -n > $LOCALFREQUENCYDIR/netstatFrequency

 less $LOCALFREQUENCYDIR/netstatFrequency

 ;;

2)

 ##TODO Capture the PPID in this as well so that process name, user

and PPID can help identify start anomalies for processes trying to hide

in plane site

 #Find the frequency for running processes

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*processListing*.csv >

$LOCALFREQUENCYDIR/currentProcessListingCombined.csv

 $LOCALAWK -F ',' '{print $1,$5}'

$LOCALFREQUENCYDIR/currentProcessListingCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/processListingFrequency

 less $LOCALFREQUENCYDIR/processListingFrequency

 ;;

3)

 #Find the frequency for run level 3 & 5 services

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*runLevel3And5Services*.csv >

$LOCALFREQUENCYDIR/currentRunLevel3And5ServicesCombined.csv

 $LOCALAWK -F ',' '{print $1,$2,$3}'

$LOCALFREQUENCYDIR/currentRunLevel3And5ServicesCombined.csv |

$LOCALSORT | $LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/runLevel3And5ServicesFrequency

 less $LOCALFREQUENCYDIR/runLevel3And5ServicesFrequency

 ;;

4)

 #Find the frequency for kernel modules

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*kernelModules*.csv >

$LOCALFREQUENCYDIR/currentKernelModulesCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentKernelModulesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/kernelModulesFrequency

 less $LOCALFREQUENCYDIR/kernelModulesFrequency

 ;;

5)

 #Find the frequency for setuid and setgid files

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*setUidAndSetGidFiles*.csv >

$LOCALFREQUENCYDIR/currentsetUidAndSetGidFilesCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentsetUidAndSetGidFilesCombined.csv | $LOCALSORT

| $LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/setUidAndSetGidFilesFrequency

 less $LOCALFREQUENCYDIR/setUidAndSetGidFilesFrequency

 ;;

6)

Incident Identification Through Outlier Analysis 38

Joshua Lewis, Joshua.D.Lewis@gmail.com

 #Find the frequency for open but unlinked files

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*open_unlinked_file*.csv >

$LOCALFREQUENCYDIR/currentOpenUnlinkedFilesCombined.csv

 $LOCALAWK -F ',' '{print $1,$4}'

$LOCALFREQUENCYDIR/currentOpenUnlinkedFilesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/openUnlinkedFilesFrequency

 less $LOCALFREQUENCYDIR/openUnlinkedFilesFrequency

 ;;

7)

 #Find the frequency for regular files in the /dev directory

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*regularFilesInDev*.csv >

$LOCALFREQUENCYDIR/currentregularFilesInDevCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentregularFilesInDevCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/regularFilesInDevFrequency

 less $LOCALFREQUENCYDIR/regularFilesInDevFrequency

 ;;

8)

 #Find the frequency for files that start with a dots or spaces

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*dotAndSpaceFiles*.csv >

$LOCALFREQUENCYDIR/currentdotAndSpaceFilesCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentdotAndSpaceFilesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/dotAndSpaceFilesFrequency

 less $LOCALFREQUENCYDIR/dotAndSpaceFilesFrequency

 ;;

9)

 #Find the frequency for directories that start with a dots

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*dotDirectories*.csv >

$LOCALFREQUENCYDIR/currentdotDirectoriesCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentdotDirectoriesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/dotDirectoriesFrequency

 less $LOCALFREQUENCYDIR/dotDirectoriesFrequency

 ;;

10)

 #Find the frequency for list and hash of files in the bin

directories

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*hashOfFilesInBinDirectories*.csv

> $LOCALFREQUENCYDIR/currenthashOfFilesInBinDirectoriesCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currenthashOfFilesInBinDirectoriesCombined.csv |

$LOCALSORT | $LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/hashOfFilesInBinDirectoriesFrequency

 less $LOCALFREQUENCYDIR/hashOfFilesInBinDirectoriesFrequency

 ;;

11)

 #Find the frequency for list of immutable files

Incident Identification Through Outlier Analysis 39

Joshua Lewis, Joshua.D.Lewis@gmail.com

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*chattrFiles*.csv >

$LOCALFREQUENCYDIR/currentchattrFilesCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentchattrFilesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n > $LOCALFREQUENCYDIR/chattrFilesFrequency

 less $LOCALFREQUENCYDIR/chattrFilesFrequency

 ;;

12)

 #Find the frequency for cron entries

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*crontabAndCron*.csv >

$LOCALFREQUENCYDIR/currentcrontabAndCronCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentcrontabAndCronCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/crontabAndCronFrequency

 less $LOCALFREQUENCYDIR/crontabAndCronFrequency

 ;;

13)

 #Find the frequency for run-parts daily, hourly, monthly entries

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*run-partsDailyHourlyMonthly*.csv

> $LOCALFREQUENCYDIR/currentrun-partsDailyHourlyMonthlyCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}' $LOCALFREQUENCYDIR/currentrun-

partsDailyHourlyMonthlyCombined.csv | $LOCALSORT | $LOCALUNIQ -c |

$LOCALSORT -n > $LOCALFREQUENCYDIR/run-partsDailyHourlyMonthlyFrequency

 less $LOCALFREQUENCYDIR/run-partsDailyHourlyMonthlyFrequency

 ;;

14)

 #Find the frequency for cron allow settings

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*cronAllow*.csv >

$LOCALFREQUENCYDIR/currentcronAllowCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentcronAllowCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n > $LOCALFREQUENCYDIR/cronAllowFrequency

 less $LOCALFREQUENCYDIR/cronAllowFrequency

 ;;

15)

 #Find the frequency for cron deny settings

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*cronDeny*.csv >

$LOCALFREQUENCYDIR/currentcronDenyCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentcronDenyCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n > $LOCALFREQUENCYDIR/cronDenyFrequency

 less $LOCALFREQUENCYDIR/cronDenyFrequency

 ;;

16)

 #Find the frequency for user accounts

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*userAccts*.csv >

$LOCALFREQUENCYDIR/currentuserAcctsCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentuserAcctsCombined.csv | $LOCALSORT |

Incident Identification Through Outlier Analysis 40

Joshua Lewis, Joshua.D.Lewis@gmail.com

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/cronuserAcctsFrequency

 less $LOCALFREQUENCYDIR/cronuserAcctsFrequency

 ;;

17)

 #Find the frequency for user accounts with a null password

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*accountsWithNullPasswd*.csv >

$LOCALFREQUENCYDIR/currentaccountsWithNullPasswdCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentaccountsWithNullPasswdCombined.csv |

$LOCALSORT | $LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/accountsWithNullPasswdFrequency

 less $LOCALFREQUENCYDIR/accountsWithNullPasswdFrequency

 ;;

18)

 #Find the frequency for SSH authorized_keys for the root account

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*rootSshAuthKeys*.csv >

$LOCALFREQUENCYDIR/currentrootSshAuthKeysCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentrootSshAuthKeysCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/rootSshAuthKeysFrequency

 less $LOCALFREQUENCYDIR/rootSshAuthKeysFrequency

 ;;

19)

 #Find the frequency for hash of sudoers file

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*sudoersFile*.csv >

$LOCALFREQUENCYDIR/currentsudoersFileCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentsudoersFileCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n > $LOCALFREQUENCYDIR/sudoersFileFrequency

 less $LOCALFREQUENCYDIR/sudoersFileFrequency

 ;;

20)

 #Find the frequency for list of .rhost files

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*rhostFiles*.csv >

$LOCALFREQUENCYDIR/currentrhostFilesCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentrhostFilesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n > $LOCALFREQUENCYDIR/rhostFilesFrequency

 less $LOCALFREQUENCYDIR/rhostFilesFrequency

 ;;

21)

 #Find the frequency for the list of hosts.equiv files

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*hosts.equivFiles*.csv >

$LOCALFREQUENCYDIR/currenthosts.equivFilesCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currenthosts.equivFilesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/hosts.equivFilesFrequency

 less $LOCALFREQUENCYDIR/hosts.equivFilesFrequency

 ;;

Incident Identification Through Outlier Analysis 41

Joshua Lewis, Joshua.D.Lewis@gmail.com

22)

 #Find the frequency for the list of X0.hosts files

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*X0.hostsFiles*.csv >

$LOCALFREQUENCYDIR/currentX0.hostsFilesCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentX0.hostsFilesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/X0.hostsFilesFrequency

 less $LOCALFREQUENCYDIR/X0.hostsFilesFrequency

 ;;

23)

 #Find the frequency for default runlevels

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*inittab*.csv >

$LOCALFREQUENCYDIR/currentinittabCombined.csv

 $LOCALAWK -F ',' '{print $1}'

$LOCALFREQUENCYDIR/currentinittabCombined.csv | $LOCALSORT | $LOCALUNIQ

-c | $LOCALSORT -n > $LOCALFREQUENCYDIR/inittabFrequency

 less $LOCALFREQUENCYDIR/inittabFrequency

 ;;

24)

 #Find the frequency for the list and hash of run level 3 & 5

startup and kill scripts

 $LOCALCLEAR

 $LOCALCAT

$LOCALCURRENTRESULTSDIR/*runlevel3And5StartKillScripts*.csv >

$LOCALFREQUENCYDIR/currentrunlevel3And5StartKillScriptsCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentrunlevel3And5StartKillScriptsCombined.csv |

$LOCALSORT | $LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/runlevel3And5StartKillScriptsFrequency

 less $LOCALFREQUENCYDIR/runlevel3And5StartKillScriptsFrequency

 ;;

25)

 #Find the frequency for the host file entries

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*etcHosts*.csv >

$LOCALFREQUENCYDIR/currentetcHostsCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentetcHostsCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n > $LOCALFREQUENCYDIR/etcHostsFrequency

 less $LOCALFREQUENCYDIR/etcHostsFrequency

 ;;

26)

 #Find the frequency for the DNS servers used

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*resolv.confEntries*.csv >

$LOCALFREQUENCYDIR/currentresolv.confEntriesCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentresolv.confEntriesCombined.csv | $LOCALSORT |

$LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/resolv.confEntriesFrequency

 less $LOCALFREQUENCYDIR/resolv.confEntriesFrequency

 ;;

27)

 #Find the frequency for RPM package verification

Incident Identification Through Outlier Analysis 42

Joshua Lewis, Joshua.D.Lewis@gmail.com

 $LOCALCLEAR

 $LOCALCAT $LOCALCURRENTRESULTSDIR/*rpmPackageVerification*.csv >

$LOCALFREQUENCYDIR/currentrpmPackageVerificationCombined.csv

 $LOCALAWK -F ',' '{print $1,$2}'

$LOCALFREQUENCYDIR/currentrpmPackageVerificationCombined.csv |

$LOCALSORT | $LOCALUNIQ -c | $LOCALSORT -n >

$LOCALFREQUENCYDIR/rpmPackageVerificationFrequency

 less $LOCALFREQUENCYDIR/rpmPackageVerificationFrequency

 ;;

*)

 echo "Value entered outside of options 1-27. Try again"

 ;;

esac

5.1.6. Putting it all together

 Step 1: Create a tar file called “analysis” that contains the trusted binaries and

artifact extraction script that will be copied over to the remote endpoint

o mkdir -p /home/sans/Desktop/analysis /home/sans/Desktop/analysis/tools

o cd /home/sans/desktop

o copy statically linked or trusted binaries and scripts into the analysis folder

 /bin/netstat

 /bin/egrep

 /bin/sed

 /bin/ps

 /sbin/chkconfig

 /bin/hostname

 /bin/find

 /bin/cat

 /usr/bin/sha256sum

 /sbin/lsmod

 /usr/sbin/lsof

 /bin/rpm

 /usr/bin/lsattr

 /bin/awk

 /usr/bin/tr

 /bin/grep

 /bin/echo

 /bin/sh

Incident Identification Through Outlier Analysis 43

Joshua Lewis, Joshua.D.Lewis@gmail.com

 /bin/sort

 /bin/tar

 /bin/rm

o tar –czf analysis.tgz analysis

Figure 8 – Long tail analysis framework environment setup

 Step 2: Run the updateSSH script

Figure 9 - Update ssh-agent file

Incident Identification Through Outlier Analysis 44

Joshua Lewis, Joshua.D.Lewis@gmail.com

 Step 3: Test ssh-agent with a remote endpoint

o Source the ssh-agent file in the current terminal window

 . /home/sans/.ssh/ssh-agent

o ssh root@webserver1 uptime

Figure 10 - Test ssh-agent authentication

 Step 4: Run the gather artifacts script

Figure 11 - Run the gather artifacts script

 Step 5: Review the updated directory structure

Incident Identification Through Outlier Analysis 45

Joshua Lewis, Joshua.D.Lewis@gmail.com

Figure 12: Updated directory structure

 Step 6: Run the long tail analysis script

Incident Identification Through Outlier Analysis 46

Joshua Lewis, Joshua.D.Lewis@gmail.com

Figure 13 - Running the long tail analysis script

 Step 7: Tracing an outlier back to a host

Figure 14 - Identifying outliers for investigation

Incident Identification Through Outlier Analysis 47

Joshua Lewis, Joshua.D.Lewis@gmail.com

Figure 15 - Tracing an outlier back to a host

