
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

An Introduction To File Integrity Checking
On Unix Systems

With an Example Deployment Using the No-Cost Samhain File Integrity Checker

By

Del Armstrong

Submitted in partial fulfillment of the requirements of the GIAC GCUX certification

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents

1 Introduction..4
1.1 Goals of this paper ...4

2 File Integrity Checkers ..4
2.1 Why Use File Integrity Checkers ...4
2.2 How File Integrity Checkers Work ..5
2.3 Common Features..5

2.3.1 Cryptographic One-Way Hashes..5
2.3.2 File Attributes ..6
2.3.3 Database Protection/Verification..11
2.3.4 Protection Against OS Corruption ...12
2.3.5 Protection Against Debuggers ..12

2.4 Some Commonly Used Integrity Checkers..12
2.4.1 Tripwire..12
2.4.2 Other Commonly Used Programs ..13

2.5 The Samhain Package..13
2.5.1 Samhain..15
2.5.2 Yule ..15

3 Building A Samhain Infrastructure ..16
3.1 Analysis and Architecture Design ..16
3.2 Assumed Environment ..18

3.2.1 Network..19
3.2.2 Yule Server ..19
3.2.3 Machines Running Samhain...21

3.3 Installing Yule..21
3.3.1 Building the Yule Server ..21
3.3.2 Installing the Yule Software ...22
3.3.3 Selecting Features To Use ..23
3.3.4 Configuring Yule...23

3.4 Installing Samhain ...23
3.4.1 Selecting features to use..24
3.4.2 Building Samhain ..24
3.4.3 Configuring Samhain ..24
3.4.4 Optimizing Samhain..25

3.5 Maintenance ...26
3.6 Operations ..26

3.6.1 Monitoring Events...27
3.6.2 Monitoring the Yule Server and Samhain Clients.......................................28
3.6.3 Updating Samhain Configuration Files..30
3.6.4 Updating Samhain Data Files ...31
3.6.5 Future Enhancements..32

References ..33
Appendix A - An Exemplary Installation..35
Appendix B – Yule Server Configuration File ..65
Appendix C – Samhain Configuration File for ‘chief’..68

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

Appendix D – Samhain Configuration File for ‘skipper’..74
Appendix E – Samhain Configuration File on ‘schleicher’79

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

1 Introduction

1.1 Goals of this paper

This paper is an introduction to file integrity checking. It also outlines how to establish a
host file integrity checking capability across multiple heterogeneous Unix systems, using
the no-cost Samhain file system integrity checker as an example. This paper is based on
Samhain 1.7.6.

This paper will discuss the security issues unique to the Samhain system, and it will show
an exemplary Samhain configuration.

This paper is not a how-to on configuring a generic host securely, and it’s not an all-
encompassing document covering the myriad ways to configure Samhain. (Samhain is an
incredibly rich program with a large number of configuration options.)

2 File Integrity Checkers

File integrity checkers are host-based tools used to verify that the files on a host have not
been tampered with. By detecting unauthorized file modifications, a file integrity
checker may be able to raise the alarm when a host has been compromised.

2.1 Why Use File Integrity Checkers

Having a “Defense in Depth” is a critical part of any serious security architecture. The
term Defense in Depth means that multiple layers of defense have been established with
each layer providing a backup defense in case the layers outside it are defeated. A file
integrity checker is an important part of a Defense in Depth; it serves to raise the alarm if
the outer layers of defense have been penetrated. A file integrity checker does not
prevent an attack, but by detecting unauthorized changes to computer’s file system, a file
integrity checker may detect a successful intrusion of a host.

Malicious hackers have developed numerous techniques to hide their activity on a
compromised machine. If a machine without a file integrity checker is compromised, a
careful attacker’s activity on the machine may never by detected, greatly increasing the
amount of damage that may be done over the course of the compromise.

In the event of a compromise, a file integrity checker can help identify which files may
have been damaged during the compromise, thus helping in the cleanup.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

2.2 How File Integrity Checkers Work

Generally, file integrity checkers work in two phases. The first phase consists of
generating a database made up of cryptographically strong hashes for all the critical files
on a host. You can think of these hashes as being a unique fingerprint for each file; it’s
impossible to change the file without changing its fingerprint. The database usually also
contains additional file information such as size, ownership, permissions and
modification dates for each file.

In the second phase, once an initial copy of this database is built (the Initial Baseline) the
same calculation is periodically recalculated for the same critical files on the host. If a
file has been tampered with (let’s say by an attacker who has compromised the host), one
of these characteristics will have changed. Detecting these changes will allow the
tampered file to be identified, providing a warning of the system compromise.

If an attacker succeeds in compromising a machine he/she will sometimes attempt to
subvert any file integrity checker on the compromised machine. Some file integrity
checkers take steps to protect their integrity. For example, some file integrity checkers
cryptographically sign the initial baseline, and then periodically check the baseline for
tampering. Some file integrity checkers will monitor the OS kernel to detect tampering
with the system I/O routines (which could be used to hide changes from the integrity
checker).

Finally, if a file is modified by an authorized person, a new hash needs to be calculated
for the file and the database must be updated with the new information for the modified
file (otherwise the file integrity checker will flag the modified file as having been
tampered with).

2.3 Common Features

There are several features commonly found in file integrity checkers. Some of the
features are related to the ability of the checker to detect changes, and some are related to
protecting the checker against being subverted by attackers.

2.3.1 Cryptographic One-Way Hashes

A one-way hash is a calculation that takes some data as input and produces a unique
value as output. The utility of a one-way hash lies in the uniqueness of the output value.
A good one-way hash will effectively “fingerprint” the input data; if one bit of the input
data changes, the hash will generate a new, unique, output value.

Another important characteristic of one-way hashes is that the original input data cannot
be derived from the output value (hence the adjective “one-way”). The terms
“checksums”, “message digest” and “hashes” are sometimes used to refer to this class of
algorithms, especially when the one-way characteristic is not an important feature.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

Some hashes commonly used in file integrity checkers are:

• CRC-32: Cyclic Redundancy Checks (CRC) are commonly used to detect errors
in data transmission. CRC-32 requires the least amount of processing of the
algorithms listed here (i.e. it’s fast), but it’s insecure and can be fooled. It should
only be used in situations requiring minimal security.

• HAVAL: HAVAL is a derivative of the popular MD5 algorithm. It can be

configured to be more or less secure than MD5, and therefore to run faster or
slower than MD5.

• SHA-1 (Secure Hash Algorithm): SHA-1 is the NIST standard message digest

algorithm, developed by the NSA. Both SHA-1 and MD5 are enhancements to
an older algorithm called MD4 (which had a known weakness). Since the NSA
has kept the development process of SHA-1 secret, there is some worry that it
may still share some of MD4’s problems. However no weakness has been found
in SHA-1, and the NSA is generally regarded as very good at cryptography.
SHA-1 is a bit slower than MD5.

• MD5: MD5 is an enhancement to MD4. Unlike SHA-1, the design decisions

leading to MD5 have been publicized … allowing for a more thorough analysis.
It was developed by the RSA Corporation, a well known cryptography vendor.
MD5 has been a very popular hashing algorithm, although a theoretical weakness
has been found. Due to this theoretical weakness, SHA-1 is becoming more
popular.

• TIGER: TIGER is a relatively new algorithm, which has been designed for high

speed on modern 32 bit and 64 bit hardware. Unlike SHA-1 and MD5, it is not
derived from MD4. It is faster then SHA-1 and MD5. TIGER currently has no
known vulnerabilities.

Different hashes provide different tradeoffs between speed and cryptographic
strength. A hash that is very strong (cryptographically) but runs too slowly, is just as
useless as a very weak hash that runs quickly. Currently, TIGER probably provides
the best balance between speed and cryptographic strength for use by a file integrity
checker.

2.3.2 File Attributes

In addition to maintaining a hash to verify the contents of critical files, most file integrity
checkers also keep track of the various file attributes maintained by the host operating
system. In the Unix world, these attributes include:

2.3.2.1 Inode Number

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

 This is a unique integer that can be used to index into a data structure (known as an
“inode”) that specifies many of the attributes of an active file on a file system. If a
file’s inode number changes, that means the file has been deleted and a new file
created using the same name as the old one. The terms “inode” and “inode number”
are sometimes used interchangeably.

2.3.2.2 Type

Indicates whether the file is a data file, or a special file such as a named pipe or an
interface to a device (character special file, block special file …). Special files
contain no data and take up no disk space.

2.3.2.3 Owner

Unix associates a unique owner (a Unix account) to each file.

2.3.2.4 Group

Unix supports an object that collects multiple Unix accounts into a single entity,
known as a “group”. Unix associates a single group with every file.

2.3.2.5 Permissions

Unix enforces access rights by dividing the world into three classes of users (really
four), and giving each class some combination of three types of access.

The three classes of users are:

1. Owner: The putative owner of the file. This is the user account that was used
to create the file.

2. Group: This is the Unix group that is associated with the file. All the user
accounts that make up this group will be given access to this file as specified
by the “group permissions”.

3. Other: This class of users is everybody who doesn’t fall into the Owner or
Group classification (with the exception of root, see the next class).

4. root: While not formally a class of users, the root account is effectively a
separate class of user. root is a special Unix account, often known as the
“super user” account. File access for the root account isn’t explicitly specified
in the file permissions because it is the same for every file on the computer;
root has complete and unrestricted access to a file.

 The three types of access granted to each class are:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

1. Read: This type of access grants classes of users the ability to read the
contents of a file. Note that the ability to execute a program or script
contained in a file requires a different type of access.

2. Write: Write access grants a class of users the ability to modify the file in any
way.

3. Execute: This is the type of access required to run a program or script.

There are additional flags that are associated with a file in the permissions field.

§ SUID: This flag known as the “Set User ID” flag is normally set on a file

containing a program to run. When such a program is executed, Unix will
treat the running program as though it was run via the user account identified
as the “owner” of the file. A common use of this flag is to grant root’s access
rights to non-root users while running a particular program.

§ SGID: This is the “Set Group ID” flag. It is analogous to the SUID flag,
except that while the program is running, it is granted the access rights of
“group” associated with the file (not the “owner” as in SUID).

§ The Sticky Bit: This flag has different meanings depending on whether the file
it’s associated with is a directory or an executable program.

• Directories: When the sticky bit is set for a directory, deletion of files
in the directory is limited to the “owner” of the files, even if others
have write access to the directory. This is a deviation from the normal
behavior that allows anybody with write access to a directory to delete
files in that directory. The flag is commonly used for the shared
directory /tmp.

• Executables: On an executable file, setting the sticky bit will cause
shareable text segments in a program to persist in memory after the
program has terminated. This is a performance optimization that can
increase the startup speed for some often used programs.

2.3.2.6 Additional Attributes

Under some versions of Unix, files can have additional attributes. The most
interesting are “append only” and “immutable”. “append only” specifies that the
file can only be appended to; once data has been written to the file it cannot be
deleted or modified. The second, “immutable”, means the file cannot be modified
at all. Both of these attributes (and the other, similar ones) apply even to root.
Some versions of Unix only permit modification of these attributes when the
operating system is running in a special mode that requires physical access to the
computer.

2.3.2.7 Timestamps

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

Three dates are associated with each file. They are the date and time the file’s data
was last modified, when the file’s attributes (including its data) was last modified
and the time it was last read.

2.3.2.8 Size

How large the file is, in bytes. Special files will be zero bytes in size.

2.3.2.9 Reference Count

A single file can be referred to via multiple names using a mechanism called
“links”. The reference count keeps track of how many names refer to the same
file.

2.3.2.10 Link Name

If a filename is a link to another file, this attribute is the name of the file the link
“points to”.

2.3.2.11 Device Numbers

The physical device on which a file resides is indexed by a “major device
number” combined with a “minor device number”.

2.3.2.12 Examples

Using the Unix ‘ls’ command, we can see some examples of these
characteristics.

chief: ls -li /etc/passwd
17772 -rw-r--r-- 1 root wheel 733 Mar 17 23:28 /etc/passwd

In this example:

• The inode number is 17772
• The file permissions are ‘-rw--r--r--‘, which translates to:

o The file is a plain file (‘-rw-r--r--‘)
o Owner has Read and Write access (‘-rw-r--r--‘)
o Group has Read access (‘-rw-r--r--‘)
o Others have Read access (‘-rw-r--r--‘)

• The reference count on the file is 1 (i.e. there are no other files linked to it)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

• The file owner is the root account
• The file group is the wheel group
• The file is 733 bytes long
• The file was last modified at 23:28 on March 17 (within the last year)
• This information is about the file /etc/passwd

chief: ls -li /dev/tty
14564 crw-rw-rw- 1 root wheel 1, 0 Apr 18 11:18 /dev/tty

In this example:

• The inode number is 14564
• The file permissions are ‘crw-rw-rw-’, which translates to:

o The file is a character special file (‘crw-rw-rw-’)
o Owner has Read and Write access (‘crw-rw-rw-’)
o Group has Read and Write access (‘crw-rw-rw-’)
o Others have Read and Write access (‘crw-rw-rw-‘)

• The reference count on the file is 1 (i.e. there are no other files linked to it)
• The file owner is the root account
• The file group is the wheel group
• The file is 0 bytes long (since it’s a special file)
• The file was last modified at 11:18 on April 18 (within the last year)
• This information is about the file /dev/tty

chief: ls -lio /etc/passwd
17772 -rw-r--r-- 1 root wheel schg 733 Mar 17 23:28 /etc/passwd

In this final example:

• The inode number is 17772
• The file permissions are ‘-rw--r--r--‘, which translates to:

o The file is a plain file (‘-rw-r--r--‘)
o Owner has Read and Write access (‘-rw-r--r--‘)
o Group has Read access (‘-rw-r--r--‘)
o Others have Read access (‘-rw-r--r--‘)

• The reference count on the file is 1 (i.e. there are no other files linked to it)
• The file owner is the root account
• The file group is the wheel group
• The immutable attribute is set (‘schg’ – OpenBSD semantics)
• The file is 733 bytes long
• The file was last modified at 23:28 on March 17 (within the last year)
• This information is about the file /etc/passwd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

2.3.3 Database Protection/Verification

One feature all file integrity checkers have in common is that they maintain a database of
file hashes and/or file attribute information. This database is a natural target for any
attacker since, if an attacker can covertly modify the database, he/she will be able to
modify critical system files undetected.

There are three primary techniques used to protect the file information database. The
first is to maintain the database on read-only media. For example storing the database on
a floppy (with the write protect tab enabled) or a CD-ROM can ensure that only those
with physical access to the computer can modify the file information database. This
technique works well for a small number of computers or on computers that see
infrequent changes. However, since the media must be manipulated or replaced every
time the file information database is updated, this technique can become very time
consuming for some environments.

Some sites approximate this technique by using a NFS mounted file-system that has been
exported read-only. From a security perspective, this is a sub-optimal technique since
NFS is a complicated package with a rich history of security problems. Using a NFS
server to protect the file information database lowers the overall security of the file
integrity checker to the security level of the NFS server.

A second technique is to conduct cryptographic verification of the file information
database via either a one-way hash or a cryptographic signature (such as PGP signing the
database). This technique allows the file information database be maintained more
efficiently since the physical media does not need to be manipulated. It does however
significantly increase the complexity of the file integrity checker software.

A third technique is to maintain the database remotely on a dedicated server via a secure
protocol. Unlike the case of using a NFS server, in this case a dedicated server can be
hardened to a very high degree since it needs only support a secure protocol designed to
communicate with the file integrity checker. This technique can also offer operational
advantages if multiple machines are to be protected. If the file integrity checker is
implemented as a client of a remote file information database server, then updates to the
file information database can be implemented in a natural and efficient way.

Many file integrity checkers are also controlled via a configuration file that specifies
which files are to be checked along with other operational details. Maintaining these
configuration files on a central server allows changes to be easily propagated to
numerous clients.

Some file integrity verification systems combine both the second and third techniques (i.e
cryptographic verification and remote database servers). However, the majority do not
protect themselves against corruption of the database, and rely on the user to implement a
protection scheme based on read-only media or offline backups.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

2.3.4 Protection Against OS Corruption

In addition to attacking the file integrity checker by corrupting its database, another way
to subvert the checker is to modify the operating system routines used to access a file. In
some versions of Unix it’s possible to load new kernel-level routines while the system is
still running. This capability is often referred to as loadable kernel modules (LKM). In
effect, an attacker can replace the operating system routines used to access a file. This
technique allows an attacker to fool a file integrity checker since the replaced routine can
be designed to feed misleading data to a checker.

Some file integrity checkers monitor the operating system to detect when new LKM’s
have been installed. This allows the file integrity checker to raise an alarm when this
potentially malicious activity occurs.

2.3.5 Protection Against Debuggers

Some operating systems support debugging utilities such as ‘ptrace’, which are
capable of taking control of a running program. This ability can be used to subvert a file
integrity checker. A few file integrity checkers are capable of protecting themselves
against this attack.

2.4 Some Commonly Used Integrity Checkers

There are numerous programs that attempt to verify the file integrity of systems. They
range from simple, hacked together shell scripts to very sophisticated and complex
client/server based systems with graphical user front-ends and relational database back-
ends.

2.4.1 Tripwire

The best known file integrity program is Tripwire. Tripwire was the first successful
effort to build a robust file integrity checker for Unix systems. It was originally written
in 1992 by Gene Kim. At the time, Gene Kim was a student a Purdue under the
supervision of Gene Spafford.

The original Tripwire, also known as the “Academic Source Release” (ASR) features a
robust set of supported hash functions, the ability to examine file attributes, and a good
configuration capability. It was also freely available. Its reporting capabilities are
limited in that it can only write results to the screen. It has no database protection or
verification capability. This version of Tripwire is still freely available.

A derivative of the ASR is the “Tripwire Open Source, Linux Edition” which is the ASR
updated and tweaked to run under Linux. This version is also freely available.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

Finally, the company “Tripwire, Inc.” was formed by Gene Kim and others to provide a
commercial version of Tripwire. The commercial version of Tripwire is much more
sophisticated and has been updated to the state-of-the-art in file integrity checking. It
allows central administration of Tripwire on all the machines running it, it has features to
protect its configuration and database files against tampering and it provides a very
friendly graphical front end and a powerful report generating capability. This
commercial version of Tripwire has also been ported to Windows.

2.4.2 Other Commonly Used Programs

The first file integrity checker was probably a script similar to:

#!/bin/sh
ls –lR / > /tmp/current-files
diff /etc/baseline-files /tmp/current-files

Although this script probably still sees a lot of use, Tripwire and other programs have
advanced the state of the art. Some other freely available file integrity checkers are:
AIDE, FCHECK, SigTree, ViperDB, Sentinel, Claymore (AKA triplight), MD5-tool,
Jverify and mtree. Most of these programs are simple checkers along the Tripwire ASR
model, although SigTree provides the ability to protect its configuration via PGP
signatures.

Although technically not a dedicated file integrity checker, rdist can be used in “byte
compare” mode to compare a filesystem against a remote “authoritative” identical
filesystem. Other package distribution tools, such as RPM and pkg_info, can also be
used to verify portions of a file system.

Even further afield, md5 and SHA-1 checksums for the critical files in a number of Unix
operating systems are available at http://www.knowngoods.org/. These checksums can be
used to verify that the system files on a machine are unchanged from those distributed
with the operating system.

Sun provides a tool to generate MD5 checksums that can be submitted against a database
of checksums for all the files in Sun’s Solaris distributions. The web site

http://sunsolve.sun.com/pub-cgi/fileFingerprints.pl
uses this tool to allow verification of all the system files on a machine running Solaris.

2.5 The Samhain Package

Since this paper will use an exemplary Samhain configuration to demonstrate the use of a
file integrity checker, Samhain is described in more detail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

The Samhain package is a no-cost file integrity checker written by Rainer Wichmann. It
contains a number of features to enhance its security and ability to resist tampering - even
if the host it’s monitoring becomes compromised. Some of these features include:

• File Integrity Checker
o The usual file attribute and hash checks
o Will search for new SUID executables anywhere on disk
o Detects loadable kernel module rootkits (Linux and FreeBSD only)
o Powerful configuration capabilities

• Centralized Administration
o Logging to a central server via encrypted and authenticated connections
o Can log to a relational database (PostgreSQL/MySQL)
o Checksum database(s) and client configuration can be stored on a remote

server
o HTML status page for clients

• Tamper resistance
o Database and configuration files can be PGP signed
o Logfile entries and e-mail reports are signed
o Support for stealth operation

§ Hiding and sanitizing of executables
§ Encryption of database and log files
§ Configs hidden via steganography

o Remote server for database and configuration files
o Runs in daemon mode

• Additional Features
o Optional monitoring of login/logout events
o Multiple logging facilities
o Graphical, Web-based, front end is available separately

No other file integrity checker offers such a complete menu of features. The Stealth
capabilities and the additional event monitoring (LKM attacks, login/logout events, and
new SUID file creation) are unique to Samhain. Few other file integrity checkers have a
client/server capability or cryptograpically signed database and configuration files. None
of the no-cost options, including Tripwire ASR, come close to matching Samhain in
terms of flexability or features.

The Samhain package consists of two components, the actual file integrity checker,
named Samhain, and a separate program that serves as the remote
log/configuration/database server, named Yule. For clarity, in this paper, the term
Samhain refers just to the file integrity checker and the term Samhain package refers to
the entire Samhain distribution.

Using Yule is optional. Also optional is which of the three services provided by Yule
(logs, configuration files, database files) the file integrity checker uses.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

A separately available package named Beltane provides a graphical interface to Samhain
and Yule.

In combination, Samhain and Yule can be configured in a variety of ways.

2.5.1 Samhain
Samhain generates the data used to check the integrity of the system. Samhain is capable
of running in either a stand-alone mode or as a client in a client-server configuration
using Yule as a log/configuration/database server.

In addition to monitoring file integrity, Samhain can also be configured to monitor
logins/logouts. Samhain is also capable of monitoring all filesystems for new
SUID/SGID files.

Under some versions of Unix, Samhain has additional functionality. Under Linux and
FreeBSD, Samhain has the ability to monitor the kernel for LKM based rootkits. Under
Linux, Samhain can be configured to report if somebody attempts to debug it via ptrace.

Finally, Samhain can be run either on a one-shot basis (e.g. from cron) or as a daemon.
Running as a daemon is generally preferable since this protects it from being tampered
with between runs. Also when run as a daemon, Samhain will report a change from the
baseline only once (greatly reducing “noise”).

2.5.2 Yule
Yule acts as a log server for Samhain. Yule can accept logs from multiple machines
running Samhain (multiple clients). As mentioned earlier, the use of Yule is optional;
Samhain is fully capable of running standalone on the machine it monitors. In addition,
Yule also provides the capability to remotely serve configuration files and databases to
Samhain clients.

Yule will only communicate with clients that have been registered with it (i.e. clients
which have been defined in its configuration file). The client registration process
includes establishing a shared secret to be used for mutual authentication between the
client and the Yule server. This shared secret is also required to establish a unique
session key used to encrypt all communication between the client and the Yule server.
The communication is encrypted using the Rijndael encryption algorithm with a 192 bit
key. Rijndael was selected in 2000 by the NIST as the new Advanced Encryption
Standard and is a fast and powerful encryption algorithm.

 Using Yule to accept logs and serve configuration/database files is advantageous for
several reasons:

• Sending logs to a remote host helps to protect the logs from being tampered with
if the machine being monitored has been compromised.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

• A machine dedicated to running Yule can be configured with a much more
aggressive security stance than a general-purpose machine (which is where these
files would otherwise reside).

• Having multiple clients log to one server greatly simplifies the task of managing
and monitoring multiple Samhain installations.

• Having multiple clients retrieve configuration files and databases from one
machine simplifies administration of these files.

• The logs and databases should be archived. Having them hosted on a central
server greatly simplifies that task.

3 Building A Samhain Infrastructure
This section discusses building an exemplary file integrity checker based on the Samhain
package. Appendix A of this document provides a record of an installation based on the
discussion on this section.

The first step in building a Samhain infrastructure, and one of the most important, is to
analyze the threat environment the Samhain package will be deployed in and then design
an appropriate system architecture.

3.1 Analysis and Architecture Design
As mentioned previously, the Samhain package is a very flexible and rich utility that can
be configured in a variety of ways. Samhain can quickly be configured to run in a mode
equivalent to Tripwire ASR. With more effort (and complexity) Samhain can be
configured to run in an ultra-paranoid mode that is very difficult for intruders to detect or
subvert. There are advantages and costs associated with these choices as well as the
numerous other ways to configure Samhain.

Because of this range of potential configurations, the very first step to installing Samhain
is to conduct a thorough analysis of the machines/networks to be protected by Samhain.
You need to decide what your threat environment is. More importantly, you need to
determine what resources (both hardware and staff time) you have available to build and
manage a Samhain deployment.

A file integrity checker is a last line of defense. Its only function is to detect when a host
has been successfully compromised, and the attacker has begun making changes on the
system. Typically, the attacker will have achieved root access by the time a file integrity
checker notices his/her activity. This means that the threat environment the Samhain
checker operates in is potentially quite hostile. You should assume that when you need it
the most, an attacker has already achieved root access on the box running Samhain.

The threat environment that Yule operates in may be a bit more benign. Yule can be run
on a dedicated machine, which allows the machine to be considerably more hardened
than most hosts. There is no initial presumption that the Yule server has been
compromised. On the other hand, a Yule server presents a very valuable target to an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

attacker sophisticated enough to realize that Samhain is being used and who understands
the value of the data on a Yule server.

The effort required to manage the Samhain checker can be substantial. There are three
aspects to managing an individual checker:

• The output must be monitored and analyzed.
• Authorized changes must be integrated into configs and databases.
• As new machines are acquired, they must have Samhain installed and configured.

All of these activities are labor intensive. The first two require some knowledge and
experience to differentiate between benign and hostile changes. It’s very common for
integrity checkers to generate a numerous false alarms, especially on machines with a lot
of activity. Determining which file changes to ignore is a critical activity, making the
wrong choice can lead either to undetected compromises or to time-consuming false
alarms.

Although the effort to manage a Yule server can also be substantial, it is often more
efficient to make a single change on the Yule server and then propagate it to numerous
Samhain clients. This is why in a large environment, using Yule offers a significant
operational advantage.

Once you’ve done an analysis of your needs and available resources, you can begin to
make design decisions regarding how to deploy Samhain.

As with most risk/benefit analysis, the conclusion you come to will be based on your
analysis of the tradeoffs between risk and cost. Here is one possible set of tradeoffs.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

3.2 Assumed Environment

Here we describe the hardware/software environment that we assume for this example.

For the purposes of this example, we’ll assume a moderate security requirement across
many machines. Factors that go into this decision include the fact that the machines to be
checked are behind a strong firewall, and limited administrative resources are available to
manage numerous Samhain clients.

On the network used to develop this example, one machine was dedicated to acting as a
Yule server. That machine was running OpenBSD. The machines running Samhain
were running various versions of Linux and OpenBSD.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

3.2.1 Network
The network assumed in this paper is a generic IPv4 network. There is no need for
clients and servers to be in the same broadcast network, however the logfile server and
each of the client machines must be able to communicate via TCP. If there is an
intervening firewall, it must permit the clients to open a TCP session to the server on port
49777 (or some other port if desired). By current network standards, the network need
not be very fast, a 10 MB Ethernet is more than adequate. Communication between two
Samhain clients and a Yule server has been demonstrated across an ISDN connection
with acceptable performance.

3.2.2 Yule Server
The machine running the Yule server does not need to be a particularly fast machine.
The Yule server is primarily an I/O limited service, although it does do some
cryptographic calculations to authenticate clients and their requests. The areas where
hardware can limit a Yule server are disk storage and backup capabilities.

Yule will run under any of the current batch of Unix like operating systems. Yule
requires an ANSI C compiler such as gcc, and a Posix compliant operating system. Since
the Yule server is an attractive target for an attacker, it’s important to configure it in as
secure a way as possible. A dedicated server running the most recent version of
OpenBSD is a good candidate for the Yule server. By default, OpenBSD will install in a
minimalist, secure fashion. Other operating systems can also be used, but care must be
taken to configure them in a secure way.

A Yule server can end up storing a fair amount of data in the form of raw logs from
clients. In addition to reporting changes in files, clients may be configured to report
login/logout events, some kernel events and, perhaps most space consuming of all,
regular timestamps and status reports. Since each log entry is cryptographically signed,
log entries can be much more verbose than might be expected. Also, the log messages
tend to be fairly verbose. For example here is a random sample of log entries collected
over a minute:

 <TCP> : [2003-03-14T19:10:47-0700] client=<chief>, msg=<INFO : [2003-03-14T19:10:47-0700] msg=<Checking logins>>
35EF2A46FF5AB10CC4967318FF7005C1D1F64FBFF1FD9A0D
MARK : [2003-03-14T19:10:49-0700] msg=<---- TIMESTAMP ---->
62536848F89C22DC39D56D4EB296E5C5B0B480C320381734
<TCP> : [2003-03-14T19:10:49-0700] client=<chief>, msg=<MARK : [2003-03-14T19:10:48-0700] msg=<---- TIMESTAMP ----
>>
CC1BC739BAB6E413FE874D53AC4F493F62FBF5DA9ABB1409
<TCP> : [2003-03-14T19:10:58-0700] client=<schleicher>, msg=<MARK : [2003-03-14T19:10:58-0700] msg=<Memory used:
max.=
3d792022, current=3d764565>>
58C29725551505AADB6D338378F5B28E1661E2F0EAFBB510
<TCP> : [2003-03-14T19:11:09-0700] client=<chief>, msg=<MARK : [2003-03-14T19:11:08-0700] msg=<---- TIMESTAMP ----
>>
367720009ED874F3199F5DC8D2697548CDF03889F0BBC362
<TCP> : [2003-03-14T19:11:29-0700] client=<chief>, msg=<MARK : [2003-03-14T19:11:28-0700] msg=<---- TIMESTAMP ----
>>
4412E3BA4EFC4ED952A8AEDBED9B6236C2B2E499659DCC93
<TCP> : [2003-03-14T19:11:38-0700] client=<skipper>, msg=<INFO : [2003-03-14T19:11:37-0700] msg=<Checking>,
path=</boot
>>
1C57018C82A7093F0D14A2202E110E9BBE0B4B9B88DDB966

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

Running a default configuration, a fairly quiescent Linux host can generate over 8MB of
log entries per day. The amount of disk space a Yule server should be configured with
varies, but the more space the better. This data needs to be accessible, and it eventually
needs to be archived.

The Yule server in this particular example is also required to serve the configuration and
database files to the Samhain clients. These files do not require much disk space, but
they should be backed-up on a regular basis (especially the data files).

Due to these backup requirements a Yule server should be equipped with either a tape
drive or a CD burner.

The Yule server should be run on a dedicated host; the host it’s running on should not be
running any other network accessible services, with two possible exceptions, explained
below.

The Yule server will probably require remote access. Remote access to the Yule server
should be restricted to those with a clear need. Access should be via SSH, and sshd
should be locked down as much as possible. At a minimum, sshd should be configured to
use tcp_wrappers, and the tcp_wrappers configuration should limit sshd connections to
only those hosts that require it. Those authorized to access the Yule server remotely
should use the SSH public-key authentication method rather than the Unix password
authentication method.

Yule supports an optional web-based graphical management interface (named Beltan). In
order to use this interface, you’ll need to run MySQL and the Apache web server on the
computer running Yule. As with SSH, Apache should be configured as securely as
possible, for example by limiting which machines can connect to it and requiring all users
to authenticate themselves.

Beltane is not part of the exemplary installation presented here. Taking advantage of
Beltane requires adding substantial complication to the Yule installation, which in this
case in inappropriate. For an installation of this scale, Beltane doesn’t add real
functionality, but the complexity it requires substantially impacts the overall security of
the Yule server.

No other services besides SSH, Yule and possibly HTTPS should be provided by the
Yule server. This should be regularly checked with pro-active scanners such as nmap or
Nessus.

Naturally, the machine running Yule should be running the Samhain checker. However
the configuration for the checker should specify a reporting method other than just
logging to the Yule server. Samhain on the Yule server should use an out-of-band
technique, such as email, to report significant events on the server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

Since the Yule server is storing sensitive data, it should be placed in a secure physical
environment. Physical access to the machine should be restricted, the BIOS should be
password protected and should restrict the boot devices to only the boot hard disk. In
addition, all backup media from this host should be stored in a secure location.

3.2.3 Machines Running Samhain
Samhain is capable of adversely impacting the machine it runs on; it is both disk I/O
intensive and computationally intensive since it calculates a hash for every file.
However, Samhain provides configuration options to adjust the priority at which the
checker runs (via ‘nice’), how I/O intensive it is, as well as how often it rechecks things
when it’s running in daemon mode. By taking advantage of these configuration options,
Samhain can be configured to have minimal impact on the machine it monitors. On the
network used to develop this example, Samhain was run on a 120 MhZ Pentium (24MB
ram) dedicated firewall/DNS server with no adverse result.

The Samhain checker requires a POSIX compliant Unix to run. Building Samhain
requires the standard compilers and libraries included in most Unix distributions.
Approximately 8MB is disk space is required to build the client. The compiled client
requires less than 600K of disk space.

It’s best if Samhain is installed and the initial baseline is built, when a machine has a
fresh operating system installed and before the machine is accessible on a network. This
may not be practical, but every effort should be taken to ensure that the initial baseline is
built on a ‘clean’ machine.

3.3 Installing Yule

3.3.1 Building the Yule Server
In this example, the Yule server is a dedicated server running OpenBSD 3.1. OpenBSD
was selected due to its strong default security stance. The hardware used in this example
is a Pentium based computer with 256 MB of ram and 40 GB of disk space.
Computationally, this hardware is overkill for the Yule server. 40 GB is an adequate
amount of disk space. The machine used in this example did not have a backup
capability so none is demonstrated.

OpenBSD is best installed using the CD set distributed by openbsd.org
(http://www.openbsd.org/orders.html). The CD set comes with installation instructions,
and the income from selling the CDs helps fund development of OpenBSD.

Install OpenBSD using the defaults given in the installation instructions. Do not select
the install sets:

• game32.tgx
• xbase32.tgz
• xshare32.tgz
• xfont32.tgx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

• xserv32.tgx

These install sets are not required for a dedicated Yule server. The rest of the OpenBSD
installation can be done as described in the installation instructions.

After OpenBSD is installed, the gpg (GNU version of PGP) package needs to be installed
if PGP signing of databases and configuration files is going to be used. To install gpg:

pkg_add –v ftp://ftp.openbsd.org/pub/OpenBSD/3.2/packages/i386/gnupg-1.0.7.tgz

If you’re unfamiliar with using gpg, a good resource is:
http://www.gnupg.org/(en)/documentation/

Although not required, it’s a good practice to add a user account ‘yule’ for the Yule
daemon to run under. If this account is missing, Yule will run under the ‘daemon’
account instead.

adduser -group USER -shell nologin -batch yule

The default OpenBSD installation will require no additional hardening (although there
are many additional steps which can be used to provide additional security).

3.3.2 Installing the Yule Software
There are several steps to be followed when installing Yule. Most of the work is
preparation and setup. Actually building and installing Yule is pretty straightforward.

The very first step is to download and verify the Samhain package from the Samhain
home site: http://www.la-samhna.de/samhain/index.html .

Once the tar file has been downloaded, unpack it unto a working directory. It will unpack
into two files, a compressed tar archive and a PGP signature file. The PGP signature file
will contain a PGP signature of the compressed tar file as signed by Rainer Wichmann.

You can download the public key for Rainer Wichmann via the instructions at:
 http://www.la-samhna.de/samhain/s_rkey.html .

After you’ve added Rainer Wichmann’s key to your PGP keyring, you should verify the
key you received with the PGP fingerprint:

 EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57 1F6C

(This fingerprint is based on a key obtained from a pgp.net keyserver in Jan of 2003.)

Once you’ve verified the distribution you received, unpack the compressed tar archive.
You may wish to save this tar archive for building Samhain clients on other machines.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

Now begins the most critical phase of the entire installation. Sit down and study the
manual included in the Samhain package distribution. The manual is provided both in
postscript form, and as a series of web pages (MANUAL-1_7.ps and MANUAL-
1_7.html.tgz).

This paper is not a replacement for reading the manual, only the manual included in the
Samhain package will give you the numerous details required to successfully run
Samhain.

3.3.3 Selecting Features To Use

The next part of installing Yule is to select which features to use. Unlike Samhain, Yule
does not have many compile options. Compile options are selected during the
‘Configure’ process. Suggested options are:

--enable-ptrace --enable-static --enable-network=server

Note: the enable-ptrace option causes Yule to crash under OpenBSD, however it is
recommended for use on Linux machines.

Building and installing the Yule server is done with the usual ‘make’ followed by ‘make
install’.

The Yule and Samhain distributions also provide the make targets ‘make install-
user’ and ‘make install-boot’. The first will install Yule to run as the user
‘yule’ and the second will install scripts to start Yule and Samhain when a machine boots.

Note: for both Yule and Samhain, ‘make install’ will remove read access for
‘others’ from /etc. This is a bug that will break many things, and you should change the
permissions to restore read access right away.

3.3.4 Configuring Yule
The Yule server is configured via changes to the configuration file, ‘/etc/yulerc’. The
default Yule configuration is pretty good. You might consider enabling daemon mode
for Yule by adjusting the line:
 Daemon=no
To:
 Daemon=yes

3.4 Installing Samhain

The Samhain client is built from the same distribution used to build Yule. If you’ve
already downloaded and verified the Samhain distribution to build Yule, simply do a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

‘make clean’ and proceed to build the Samhain client. Otherwise first follow the
download and verification procedures described for installing Yule.

3.4.1 Selecting features to use

Which features to use when compiling Samhain is determined largely by the results of the
analysis and architecture design process. Some of the compile-time options to consider
using are:

--enable-network=client (This option creates the Samhain client rather than Yule)
--enable-static (Compiling as a static executable is more secure)
--enable-suidcheck (Search entire filesystem for rogue SUIG/SGID files)
--enable-login-watch (Keep track of new logins and logouts)
--enable-db-reload (Reload database on HUP signal, eases administration)
--with-gpg=/usr/local/bin/gpg (Use the PGP program gpg to authenticate configs
and database file)
--with-logserver=127.0.0.1 (Use the Yule server at the given IP address)
--enable-base=1887410363,10649531 (Use the given values to generate key used to
authenticate log entries)
--with-config-file=REQ_FROM_SERVER/etc/samhainrc (Where to get config files)
--with-data-file=REQ_FROM_SERVER/etc/data.samhain (Where to get data files)
--with-recipient=name@some-email-address (Default email address to use)
--with-kcheck=SYSTEM_MAP (Check for attempts to subvert kernel)
--enable-ptrace (Abort if attempt is made to attach debugger)
--enable-stealth=XOR_VAL (Enable stealth options, obfuscate strings in executable)
--enable-install-name=NAME (Hide Samhain by renaming files to NAME)

There are numerous other configuration options, mostly designed to deal with specific
issues or provide less commonly used features.

3.4.2 Building Samhain

Building the Samhain client is the same as building Yule. Issue the command ‘make’,
and install with ‘make install’. You must be root to install.

3.4.3 Configuring Samhain

Samhain and Yule use a shared secret to authenticate and encrypt their communications.
If the Samhain client is to be used with Yule, the Samhain executable must have this
password installed and the Yule configuration file must also include this password. This
is a requirement for all Samhain clients to communicate with a Yule server.

The password must consist of 16 hexadecimal characters. You can use the command:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

yule --gen-password

to generate a random password. You can embed this password in the Samhain executable
with the samhain_setpwd command. For example:

samhain_setpwd /usr/local/sbin/samhain new 77C9CEFC65770CCD
INFO old password found
INFO replaced: f7c312aaaa12c3f7 by: 77c9cefc65770ccd
INFO finished

In order for Yule to recognize the password for a client, a hash of the password must be
added to the Yule configuration file, ‘yulerc’. Use the Yule ‘-P’ option to convert the
hex password into a string to add to the Yule configuration. Take the output from this
command, replace the string ‘HOSTNAME’ with the hostname that the Samhain client will
run on and add to the bottom of the yulerc file. Here is an example of the output from
‘yule –P’:

yule -P 77C9CEFC65770CCD
Client=HOSTNAME@0052C56C8641A615@2C72F87F5547613DB7B8461532452AB67A4F43
598DEFFD1AA0CBD5A326EEE0B1F2395F146861F1729D82BC54C19
E7AED45A5A85E9CE3641E7D2C6C5F9A8BE8CB8587807B97B96B2A83856BEBCA5649F80D
0D7A4235F4773DD62E68A36215369AE2F483377CC3AF54E467A8E
0146BB37AF43C737766D68467AB54D6242C556821

If when you built Samhain, you specified using PGP to verify the config and database
files, the config file must be signed using the gpg ‘—clearsign’ before Samhain can use
it. The account used to run Samhain must have the public key needed to verify this key
in its default keyring.

Complete the installation by building a baseline database. Build a baseline by invoking
the Samhain client with the ‘–t init’ option. The baseline will be placed in the location
specified via the ‘--with-data-file’ option when Samhain was built.

When using PGP to verify the database, after the baseline database has been created and
copied to the Yule server, it also must be PGP signed in the same manner as the config
file.

You can now run Samhain in check mode, using the ‘-t check’ option. It’s a good idea
to verify the correct operation of the Samhain checker by making a trivial modification to
a critical file.

3.4.4 Optimizing Samhain
On most machines, Samhain will run with minimal impact. However there is a potential
for Samhain to impact low end or heavily loaded machines. Samhain impacts a machine
in two ways:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

• Computationally as it calculates the fingerprint for each file
• Increased I/O load as it reads the contents of all the files it checks

You can reduce Samhain’s impact on a machine by taking the following steps:

• Used MD5 instead of TIGER to fingerprint files. This is controlled by the
DigestAlgo option in the Samhain configuration file. Using MD5 will speed
up fingerprinting by about 20%.

• Renice Samhain (i.e. adjust the priority the OS assigns to running Samhain). This
can be controlled via the SetNiceLevel option in the Samhain configuration
file. See the Unix man page on the ‘nice’ command for more information on
nice levels.

• Reduce the maximum I/O rate Samhain allows itself. You can accomplish this by
reducing the SetIOLimit parameter in the Samhain Configuration file.

• Throttle back the SUID file checker. In the Samhain configuration file, lower
SuidCheckFps, which controls how many files-per-second the SUID checker
will check.

On operating systems that support it, consider turning on the ‘immutable’ bit for the
Samhain executable. This won’t improve performance, but it will enhance the security of
Samhain.

3.5 Maintenance

Samhain and Yule are complex systems that require ongoing maintenance. There are two
aspects of maintaining these systems: keeping up with updates and maintaining the config
and data files.

The first step to maintaining Samhain and Yule is to subscribe to the samhain-announce
mailing list. You can subscribe at http://www.la-samhna.de/elist.html. This list will keep
you informed of new versions, and most importantly, inform you of any security updates.
Given that Samhain and Yule can be critical to your security stance, it’s important that
you stay informed regarding any security problems that may arise with these programs.

Although it is outside the scope of this paper, it’s important to backup the configuration
and database files residing on the Yule server.

3.6 Operations

As with all aspects of Samhain, there are many choices in how you choose to use it in
production. Samhain is capable of operating in a sophisticated and complex way, or of
operating in a simple and easy to manage way.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

While it’s easy to be seduced by all the bells and whistles available in Samhain, erring on
the side of simplicity will lead to the most secure installation. The bells and whistles are
best reserved only for those situations that require them.

In the example presented here, we stick to using simple techniques to monitor and
manage the Samhain installation. The techniques used here are suitable for small and
medium sized Samhain installation, probably on the order of 25 clients or less.

There are two primary tasks associated with running a Samhain installation:

1. Monitoring the events generated by the clients.
2. Updating the configuration and data files to maintain a good signal to noise ratio

in the events generated by the clients.

3.6.1 Monitoring Events

In the Samhain installation used for this example, there is one primary source of
information to monitor. All the Samhain clients are logging to the Yule server, and the
Yule server is combining all the input streams into one log file:
/var/log/yule/yule_log.

This is very convenient, since only one file needs to be monitored. Yule does have the
ability to maintain separate log files for each client, controlled by the
UseSeparateLogs configuration option in yulerc.

By default, serious events are labled with a severity of ‘CRIT’, which stands for critical.
By monitoring the combined input stream for events with a critical serverity, you can be
sure to catch any potential security events.

The primary tools used for monitoring the log file in this example are tail and grep.
To monitor the Yule log file for ‘critical’ events, issue the command:

tail –f /var/log/yule/yule_log | grep CRIT

You can use additional grep commands to trim the output. For example, to ignore the
numerous messages about ‘POLICY ADDED’ when reloading a Samhain configuration
file, use the following command to monitor the log file:

tail –f /var/log/yule/yule_log | grep CRIT | grep –v ‘POLICY ADDED’

In the installation used in this example, the command above is run in a small window that
is continuously logged-in to the Yule server.

Each logged event takes two lines in the log file, the first line contains the event and the
second line is a verification signature. The signature can be checked with the ‘-L’ option
to Samhain.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

The log entry below is a simple informational entry. It consists of two lines. The first
line contains:

• The protocol used to send the entry to Yule (TCP)
• The date and time the log entry was received
• The client logging the event (skipper)
• The severity of the event (INFO)
• The time of the event as seen by the client
• Additional info (the event is notification that Samhain is checking the files in

/boot)
The second line is a signature of the event.

<TCP> : [2003-05-02T00:19:51-0600] client=<skipper>, msg=<INFO : [2003-05-
02T00:19:51-0600] msg=<Checking>, path=</boot>>
C7110026372393F31A54B8C543CE7B53E4F130D1968954D8

This next log entry is a Critical event entry. It alerts to the appearance of an unexpected
SUID file named /usr/X11R6/bin/xmcd-

• The protocol used to send the entry to Yule (TCP)
• The date and time the log entry was received
• The client logging the event (schleicher)
• The severity of the event (CRIT)
• The time of the event as seen by the client
• Additional info (the event is notification that Samhain has found an unexpected

SUIR/SGID file name /usr/X11R6/bin/xmcd-)
The second line is a signature of the event.

<TCP> : [2003-05-02T00:24:26-0600] client=<schleicher>, msg=<CRIT : [2003-05-
02T00:24:23-0600] msg=<POLICY SUIDCHK suid/sgid file not in database>,
path=</usr/X11R6/bin/xmcd->>
879FCE4A69A6311EFEF591A160FD030310117F11F1EAD1B1

Determining which events are significant requires some knowledge of the normal activity
on the system being monitored. In general, if the files being monitored are selected with
some care, then any ‘critical’ change noticed by Samhain should be investigated. Over
time experience will show which file modifications are normal, and which are abnormal
and should be investigated.

 Some changes are obviously of concern, for example changes to important executables
should be taken very seriously. Other changes may require more investigation, especially
if the purpose of the modified file is unfamiliar. As another example, the appearance of a
new SUID file is a very serious event, which should be investigated immediately.

3.6.2 Monitoring the Yule Server and Samhain Clients
In addition to monitoring the output from the Samhain clients for important events, it’s
important to be aware of potential problems with the Yule server and the Samhain clients.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

The Yule server maintains a file of status information for both itself and the clients using
it. This file is formatted as HTML, and is suitable for displaying in any web browser.

S A M H A I N

Server Status
Current time: 21-04-2003 13:46:21
Startup time: 14-03-2003 19:03:03

Connections: (maximum 57 simultaneously)
open 2
total 1625183

Last connection: 21-04-2003 13:46:20

Clients
chief.domain-name.com Message [2003-04-21T13:46:20-0600]

 POLICY [2003-04-21T13:45:59-0600]

 File transfer [2003-04-20T21:32:33-0600]

 Started [2003-04-20T21:31:52-0600]

schleicher.domain-name.com Message [2003-04-21T13:46:11-0600]

skipper.domain-name.com POLICY [2003-04-21T13:46:20-0600]

 Message [2003-04-21T13:45:55-0600]

 File transfer [2003-04-21T12:49:02-0600]

 Exited [2003-03-17T17:01:30-0700]

 Started [2003-03-17T16:30:34-0700]

 PANIC [2003-03-17T16:22:26-0700]

 FAILED [2003-03-17T16:21:04-0700]

This file is updated continuously and will refresh every couple of minutes in most web
browsers.

It is not recommended that a web server run on the Yule server in order to make this file
available. Rather, run a web browser on the Yule server. For example, configure ssh to
pass X-Window traffic back to the originating workstation and then view the file with a
graphical web browser such as Mozilla or Opera. Lynx also does a fine job of
monitoring the file, although it will need to be refreshed manually to view updates.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

3.6.3 Updating Samhain Configuration Files
As was mentioned earlier, Samhain alert messages can be pretty verbose. For example,
here’s the type of log entry generated by a change to /etc/passwd:

<TCP> : [2003-04-20T14:51:58-0600] client=<skipper>, msg=<CRIT : [2003-04-
20T14:51:57-0600] msg=<POLICY [ReadOnly]>, path=</etc/passwd>, size_old=<906>
size_new=<916> ctime_old=<[2003-03-12T04:48:32]>, ctime_new=<[2003-04-20T20:41:25]>,
mtime_old=<[2003-03-12T04:48:32]>, mtime_new=<[2003-04-20T20:41:25]>,
chksum_old=<87359801E60DDB11224D1DFC2D292E89CE9487CAF2CAAE33>,
chksum_new=<C2AD9B5ECA2A4A914463001D3D8DA560363370F2B805F508>, >

Not only are the messages verbose, there’s also a lot of noise in the default configuration.
For example, in one sample of 331208 messages, only 550 actually involved potentially
unauthorized activity. The remaining messages were status messages of various sorts.
The 550 potentially important messages were repeated warnings about unexpected SUID
files, e.g.:

<TCP> : [2003-04-16T12:02:47-0600] client=<skipper>, msg=<CRIT : [2003-04-
16T12:02:47-0600] msg=<POLICY SUIDCHK suid/sgid file not in database>,
path=</usr/local/bin/ssh1>>
<TCP> : [2003-04-16T12:02:48-0600] client=<skipper>, msg=<CRIT : [2003-04-
16T12:02:47-0600] msg=<POLICY SUIDCHK suid/sgid file not in database>,
path=</usr/local/bin/ssh>>

As you use Samhain, you will inevitably need to adjust the configuration files or the
database files. When using Yule to serve the config files, making a change is a three-
step process:

• Change the config file on the Yule server.
• Sign the modified file using PGP
• On the Samhain client machine, issue a HUP signal to the Samhain checker. This

will cause Samhain to reload its configuration from the modified file.

It will also be necessary to adjust the database on a regular basis. As critical files are
updated or modified you will want to update the database file so that Samhain is aware of
the new attributes and hashes for these files.

With a new installation, it’s best to monitor the logs files closely to get a picture of what
sort of changes occur on your network. The logs will probably be pretty noisy - full of
warnings about normal activity. As you get experience with using Samhain in your
environment, you should update the Samhain configurations to minimize the number of
false alarms you get.

In this case, the messages about unexpected SUID files are occurring because the
configuration file for the host ‘skipper’ does not include a check for the directory
/usr/local/bin. As a result, any suid files in /usr/local/bin are flagged as unexpected suid
files. Worse yet, the files in /usr/local/bin are not being monitored for unauthorized
changes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

To resolve issues like this, the configuration file for the host must be updated. To update
the configuration file for the Samhain daemon on skipper:

1. Edit the file ‘/var/lib/yule/rc.FQDN’ (where FQDN is the full domain
name of the host)

2. To specify checking all of /usr/local except /usr/local/src:
a. Add ‘dir=-1/usr/local/src’ immediately after the line with

‘[IgnoreAll]’
b. Add ‘dir=4/usr/local’ immediately after the line with

‘[ReadOnly]’
3. For clarity, remove the PGP signature lines at the start and end of the file. This is

optional; the lines can be left in with no ill effect.
4. Re-sign the file, e.g.: gpg --clearsign /var/lib/yule/rc.FQDN
5. Install the signed file:

 mv /var/lib/yule/rc.FQDN.asc /var/lib/yule/rc.FQDN
6. On the host running Samhain, make Samhain reload it’s configuration by sending

it the ‘HUP’ signal: kill –HUP `cat /var/run/samhain.pid`

Note that when you reload the configuration file, Samhain will generate a ‘POLICY
ADDED’ event for every file in the database, e.g.:

<TCP> : [2003-04-20T17:18:46-0600] client=<skipper>, msg=<CRIT : [2003-04-
20T17:18:44-0600] msg=<POLICY ADDED>, path=</usr/bin/allcm>>
CF94AE7C4D1AE8044D66C49A9541D233BD2E5C8A8D8E72AA

3.6.4 Updating Samhain Data Files

In addition to adding or deleting files from the configuration file, sometimes the attributes
of a file being monitored will change and the file information database will need to be
updated.

Updating the database is not a time critical activity, since Samhain will only report on a
file change once each time it’s run. So typically this means that a given change will be
reported when it’s discovered, and then once every time the host reboots. However, over
time these changes add up, and it’s productive to update the database to prevent a flurry
of reports every time a machine reboots.

To update the data file for a host, issue the command:

samhain –t update –l none

on the host to be updated. This will create a local, updated version of the file attribute
database. The file must now be copied to the Yule server, signed with PGP, and installed
where Yule can find it. This is done using the same process used to install the initial
baseline.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

On the client host:

skipper:~ 78% sudo /usr/local/sbin/samhain.new -t update -l none
INFO : [2003-04-21T15:37:40-0600] msg=<Downloading configuration file>
INFO : [2003-04-21T15:37:41-0600] msg=<Session key negotiated>
INFO : [2003-04-21T15:37:42-0600] msg=<File download completed>
skipper:~ 79% sudo scp /etc/data.samhain dela@chief:/tmp/

Now that the new database has been copied to the Yule server, it needs to be signed and
put in place. On the Yule server:

chief: gpg --clearsign /tmp/data.samhain
gpg: Warning: using insecure memory!
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@somedomain.com>"
1024-bit DSA key, ID DB9FA9A2, created 2000-10-20
Enter passphrase:
chief: sudo mv /tmp/data.samhain.asc /var/lib/yule/file.skipper.somedomain.com
chief: sudo chown root.wheel /var/lib/yule/file.skipper.somedomain.com

The updated database is ready. The next time the Samhain client on the host restarts, it
will use this updated database. Note: once started, the Samhain client maintains an image
of the database in memory, so it won’t use the updated database until its restarted.

3.6.5 Future Enhancements
One of the strengths of Samhain is the varied ways in which it can report changes. Some
of these reporting techniques include email, user written scripts, logging to a SQL
database and the Beltane graphical front end . Once you’ve gotten a handle on what’s
normal activity, you should consider whether these advanced reporting capabilities are
appropriate to your situation. In Appendix C, a Samhain configuration is shown which
reports Critical events via email.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

References

• Samhain Home Page - http://www.la-samhna.de/samhain/index.html
• The Samhain Manual (included in Samhain distribution)
• Practical Unix & Internet Security, 3rd Edition

by Simson Garfinkel, Alan Schwartz, Gene Spafford. Especially Chapter 20.
• Applied Cryptography: Protocols, Algorithms, and Source Code in C,

Second Edition by Bruce Schneier
• Basic File Integrity Checking by Jeremy Rauch -

http://www.securityfocus.com/infocus/1408
• The Design of a System Integrity Monitor: Tripwire. Gene Kim and E. H.

Spafford; Department of Computer Sciences, Purdue University; CSD-TR-93-
071; Coast TR 93-01; 1993 - http://www.cerias.purdue.edu/homes/spaf/tech-
reps/9371.ps

• Experiences with Tripwire: Using Integrity Checkers for Intrusion
Detection. Gene H. Kim and E. H. Spafford; PROCEEDINGS OF THE
SYSTEMS ADMINISTRATION, NETWORKING AND SECURITY
CONFERENCE III (SANS); Washington DC; Coast TR 94-03; 1994. -
http://www.cerias.purdue.edu/homes/spaf/tech-reps/9412.ps

• Tripwire Users Manual. Available from the Tripwire open-source distribution
site - http://sourceforge.net/projects/tripwire/

• Bypassing Integrity Checking Systems by halflife; Phrack Magazine Volume 7,
Issue 51 September 01, 1997, article 09 of 17
http://www.phrack.org/show.php?p=51&a=9

• OpenBSD home Page - http://www.openbsd.org/
• Building a Secure Mobile OpenBSD Workstation, GCUX Practical by Curtis Collicutt -

http://www.giac.org/practical/GCUX/Curtis_Collicutt_GCUX.pdf
• LinuxSecurity.com Home Page - http://www.linuxsecurity.com/
• AIDE Home Page - http://www.cs.tut.fi/~rammer/aide.html
• FCHECK Home Page - http://www.geocities.com/fcheck2000/fcheck.html
• SigTree Download - http://www.discord.org/~lippard/software/sigtree.tgz
• ViperDB Home Page - http://panorama.sth.ac.at/viperdb/
• Sentinel Home Page - http://zurk.sourceforge.net/zfile.html
• Claymore Home Page - http://freshmeat.net/projects/triplight/?topic_id=43
• MD5-tool Home Page -http://razor.bindview.com/tools/desc/md5-

tool_readme.html
• Jverify Home Page -

http://freshmeat.net/projects/jverify/?topic_id=43%2C150%2C253
• Mtree – See ‘man mtree’ on most BSD based systems
• Aide: Poor Man’s File Integrity Checker by Tapan Meshram - GSEC 0690

May 1, 2001 - http://www.sans.org/rr/audit/aide.php
• Standard Cryptographic Algorithm Naming, a useful page on hashing algorithms

- http://www.users.zetnet.co.uk/hopwood/crypto/scan/md.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

• Tiger hash algorithm home page:
http://www.cs.technion.ac.il/~biham/Reports/Tiger/

• RFC 1321, The MD5 Message-Digest Algorithm by R. Rivest:
http://www.ietf.org/rfc/rfc1321.txt

• HAVAL — A One-Way Hashing Algorithm with Variable Length of Output.
Yuliang Zheng, Josef Pieprzyk and Jennifer Seberry; Department of Computer Science,
University of Wollongong - http://www.calyptix.com/files/haval-paper.pdf

• National Institute of Standards FIPS PUB 180-1 (SHA)
http://www.itl.nist.gov/fipspubs/fip180-1.htm

• Unix Security Checklist V2.0. CERT. -
http://www.cert.org/tech_tips/usc20_full.html

• GNU Privacy Guard Home Page - http://www.gnupg.org/
• Beltane Home Page - http://www.la-samhna.de/beltane/index.html
• Advanced Encryption Standard Home Page (Rijndael) -

http://csrc.nist.gov/CryptoToolkit/aes/
• NMAP Home Page - http://www.insecure.org/
• Nessus Home Page - http://www.nessus.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

Appendix A - An Exemplary Installation

In this example, we go through the complete process of installing Samhain and Yule,
showing the command that were issued and the output from those commands. This
Appendix was generated by going through a complete installation, using the Unix ‘script’
command to record the installation. The record was then edited to remove extraneous
commands/output, clarify the output or obfuscate private information.

Comments and explanations will be in an italic font, commands issued will be in a Bold
Courier font, and output will be in a Courier font.

In some places, the font-size will be reduced to minimize word wrap. But in some places
word wrap is unavoidable.

The installation is the same installation described in section 3. There is a dedicated
server running Yule, and two client machines running the Samhain checker (in this
instance running as a client). The Yule server, named ‘chief’, is running OpenBSD 3.1.
The two clients are named ‘skipper’ and ‘schleicher’, and are running different version of
Linux.

Although it is desirable to work as an unprivileged user and use ‘sudo’ for root access, in
this example are work is done as root (for clarity). Since future maintenance will be done
as the unprivileged user ‘dela’, the PGP private key for ‘dela’ is used to sign the
configuration and data file.

First we install Yule on the Yule server (a computer named ‘chief’).

Download the distribution

Chief# wget -nv http://www.la-samhna.de/samhain/samhain-current.tar.gz
22:536:38 URL:http://www.la-samhna.de/samhain/samhain-current.tar.gz
[792495/792495] -> "samhain-current.tar.gz.1" [1]

Unpack the distribution

chief# cd /usr/local/src
chief# mkdir samhain-1.7.6
chief# cd samhain-1.7.6
chief# zcat ~/samhain-current.tar.gz | tar xf -
chief# ls
samhain-1.7.6.tar.gz samhain-1.7.6.tar.gz.asc

Verify the distribution using PGP. First download the key

chief# wget -nv http://www.la-samhna.de/samhain/s_rkey.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

23:01:20 URL:http://www.la-samhna.de/samhain/s_rkey.html [13627/13627]
-> "s_rkey.html" [1]

Now import the developer’s public key into the keyring

chief# gpg --import s_rkey.html
gpg: key 0F571F6C: public key imported
gpg: Total number processed: 1
gpg: imported: 1

Now verify the key against the known fingerprint (see section 3.3.2)

chief# gpg --fingerprint | grep 'EF6C'
 Key fingerprint = EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57
1F6C

Finally, verify the distribution tar file

chief# gpg --verify samhain-1.7.6.tar.gz.asc samhain-1.7.6.tar.gz
gpg: Signature made Thu Apr 24 12:06:53 2003 MDT using DSA key ID 0F571F6C
gpg: Good signature from "Rainer Wichmann <rwichmann@la-samhna.de>"
gpg: aka "Rainer Wichmann <rwichmann@hs.uni-hamburg.de>"
Could not find a valid trust path to the key. Let's see whether we
can assign some missing owner trust values.
No path leading to one of our keys found.
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
gpg: Fingerprint: EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57 1F6C

Unpack the tar file

chief# zcat samhain-1.7.6.tar.gz | tar xf -
chief# cd samhain-1.7.6

Before we configure Yule, create the ‘yule’ user account. This account will be noticed by
the configuration script and used by Yule.

chief# adduser
Use option ``-silent'' if you don't want to see all warnings and
questions.
Reading /etc/shells
Check /etc/master.passwd
Check /etc/group
Ok, let's go.
Don't worry about mistakes. I will give you the chance later to correct
any input.
Enter username [a-z0-9_-]: yule
Enter full name []: Yule Daemon
Enter shell csh ksh nologin sh tcsh [csh]: nologin
Uid [1004]:
Login group yule [yule]:
Login group is ``yule''. Invite yule into other groups: guest no
[no]: no
Enter password []:
Set the password so that user cannot logon? (y/n) [n]: y

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

Name: yule
Password: ****
Fullname: Yule Daemon
Uid: 1004
Gid: 1004 (yule)
Groups: yule
HOME: /home/yule
Shell: /sbin/nologin
OK? (y/n) [y]: y
Added user ``yule''
Copy files from /etc/skel to /home/yule
Add another user? (y/n) [y]: n
Goodbye!

The ‘yule’ account needs to have a PGP keyring with the public key needed to verify the
signature on the configuration and data files. We just copy the public keyring from the
account used to sign these files into place.

chief# mkdir ~yule/.gnupg
chief# cp ~/.gnupg/pubring.gpg ~yule/.gnupg
chief# chown -R yule:yule ~yule/.gnupg

Now we run configure to set up for building Yule

chief# ./configure --enable-static --enable-network=server
checking for a BSD-compatible install... /usr/bin/install -c
checking whether make sets ${MAKE}... yes
checking build system type... i386-unknown-openbsd3.1
checking host system type... i386-unknown-openbsd3.1
checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking how to run the C preprocessor... gcc -E
checking for a BSD-compatible install... /usr/bin/install -c
checking whether ln -s works... yes
checking for gawk... no
checking for mawk... no
checking for nawk... nawk
checking for hostname... /bin/hostname
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... no
checking for unistd.h... yes
checking for sys/types.h... (cached) yes
checking for sys/stat.h... (cached) yes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

checking for stdlib.h... (cached) yes
checking for string.h... (cached) yes
checking for memory.h... (cached) yes
checking for strings.h... (cached) yes
checking for inttypes.h... (cached) yes
checking for stdint.h... (cached) no
checking for unistd.h... (cached) yes
checking for host-specific issues... none
checking for dirent.h that defines DIR... yes
checking for library containing opendir... none required
checking whether sys/types.h defines makedev... yes
checking whether time.h and sys/time.h may both be included... yes
checking whether stat file-mode macros are broken... no
checking for sys_siglist declaration in signal.h or unistd.h... yes
checking for stddef.h... yes
checking for sys/vfs.h... no
checking for sys/select.h... yes
checking for sys/socket.h... yes
checking for netinet/in.h... yes
checking for regex.h... yes
checking for glob.h... yes
checking for paths.h... yes
checking utmpx.h usability... no
checking utmpx.h presence... no
checking for utmpx.h... no
checking for struct statfs.f_flags... no
checking for special C compiler options needed for large files... no
checking for _FILE_OFFSET_BITS value needed for large files... no
checking for _LARGE_FILES value needed for large files... no
checking for strftime... yes
checking for memcmp... yes
checking for memcpy... yes
checking for memmove... yes
checking for memset... yes
checking for getpwent... yes
checking for endpwent... yes
checking for gettimeofday... yes
checking for strlcat... yes
checking for strlcpy... yes
checking for strstr... yes
checking for strchr... yes
checking for strerror... yes
checking for strsignal... yes
checking for seteuid... yes
checking for setreuid... yes
checking for setresuid... no
checking for lstat... yes
checking for getwd... yes
checking for getcwd... yes
checking for ptrace... yes
checking for usleep... yes
checking for setpriority... yes
checking for inet_aton... yes
checking for gethostbyname... yes
checking for setutent... no
checking for setrlimit... yes
checking for uname... yes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

checking for statfs... yes
checking for va_copy()... no
checking for __va_copy()... no
checking whether va_lists can be copied by value... yes
checking for vsnprintf... yes
checking for working vsnprintf... (cached) yes
checking for mlock... yes
checking whether mlock is broken... no
checking how to get filesystem type... 4.4BSD/OSF
checking for gethostbyname in -lnsl... no
checking for socket in -lsocket... no
checking for gethostbyname in -lnsl... (cached) no
checking for res_search in -lsocket... no
checking for res_search in -lresolv... yes
checking for working long double with more range or precision than
double... no
checking for long long typedef... yes
checking for ptrdiff_t... yes
checking for size_t... yes
checking for char *... yes
checking size of char *... 4
checking for size_t... (cached) yes
checking size of size_t... 4
checking for unsigned long... yes
checking size of unsigned long... 4
checking for unsigned int ... yes
checking size of unsigned int ... 4
checking for unsigned short... yes
checking size of unsigned short... 2
checking whether struct tm is in sys/time.h or time.h... time.h
checking whether struct stat has a st_flags field... yes
checking whether st_flags field is useful... yes
checking for gcc option to accept ANSI C... none needed
checking for inline... inline
checking for an ANSI C-conforming const... yes
checking whether byte ordering is bigendian... no
checking signal.h usability... yes
checking signal.h presence... yes
checking for signal.h... yes
checking for SI_USER in signal.h... yes
checking for SA_SIGINFO in signal.h... yes
checking whether sa_sigaction is supported... yes
checking for mpz_init in -lgmp... yes
checking gmp.h usability... yes
checking gmp.h presence... yes
checking for gmp.h... yes
checking which random module to use... default
checking whether /dev/random exists... yes
checking for user yule... yes
checking base key setting .. collecting entropy... 1355145055
1883250792
checking key position... 2
configure: creating ./config.status
config.status: creating Makefile
config.status: creating samhain-install.sh
config.status: creating samhain.spec
config.status: creating init/samhain.startLSB

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

config.status: creating init/samhain.startLinux
config.status: creating init/samhain.startGentoo
config.status: creating init/samhain.startFreeBSD
config.status: creating init/samhain.startSolaris
config.status: creating init/samhain.startHPUX
config.status: creating init/samhain.startIRIX
config.status: creating rules.deb
config.status: creating deploy.sh
config.status: creating scripts/samhain.spec
config.status: creating scripts/redhat_i386.client.spec
config.status: creating config.h
config.status: executing default commands
 samhain has been configured as follows:
 System binaries: /usr/local/sbin
 Configuration file: /etc/yulerc
 Manual pages: /usr/local/man
 Data: /var/lib/yule
 PID file: /var/run/yule.pid
 Log file: /var/log/yule/yule_log
 Base key: 1355145055,1883250792

Configuration is done, now compile the server

chief# make
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o encode ./encode.c
encode 0 config.h
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o samhain_setpwd ./samhain_setpwd.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o mkhdr ./mkhdr.c
creating sh_MK.h
./encode 0 samhain.c --> x_samhain.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o samhain.o -c x_samhain.c
./encode 0 sh_unix.c --> x_sh_unix.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_unix.o -c x_sh_unix.c
./encode 0 sh_utils.c --> x_sh_utils.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_utils.o -c x_sh_utils.c
./encode 0 sh_error.c --> x_sh_error.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_error.o -c x_sh_error.c
./encode 0 sh_files.c --> x_sh_files.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_files.o -c x_sh_files.c
./encode 0 sh_getopt.c --> x_sh_getopt.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_getopt.o -c x_sh_getopt.c
./encode 0 sh_readconf.c --> x_sh_readconf.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_readconf.o -c x_sh_readconf.c
./encode 0 sh_tiger0.c --> x_sh_tiger0.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_tiger0.o -c x_sh_tiger0.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

./encode 0 sh_tiger1.c --> x_sh_tiger1.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_tiger1.o -c x_sh_tiger1.c
./encode 0 sh_tiger2.c --> x_sh_tiger2.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_tiger2.o -c x_sh_tiger2.c
./encode 0 sh_tiger1_64.c --> x_sh_tiger1_64.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_tiger1_64.o -c
x_sh_tiger1_64.c
./encode 0 sh_tiger2_64.c --> x_sh_tiger2_64.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_tiger2_64.o -c
x_sh_tiger2_64.c
./encode 0 sh_hash.c --> x_sh_hash.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_hash.o -c x_sh_hash.c
./encode 0 sh_mail.c --> x_sh_mail.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_mail.o -c x_sh_mail.c
./encode 0 sh_mem.c --> x_sh_mem.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_mem.o -c x_sh_mem.c
./encode 0 sh_entropy.c --> x_sh_entropy.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_entropy.o -c x_sh_entropy.c
./encode 0 sh_forward.c --> x_sh_forward.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_forward.o -c x_sh_forward.c
./encode 0 sh_modules.c --> x_sh_modules.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_modules.o -c x_sh_modules.c
./encode 0 sh_utmp.c --> x_sh_utmp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_utmp.o -c x_sh_utmp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSYSTEMMAP="/boot/System.map" -o kern_head
./kern_head.c -lgmp -lresolv
./kern_head > sh_ks.h
encode 0 sh_ks.h
./encode 0 sh_kern.c --> x_sh_kern.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_kern.o -c x_sh_kern.c
./encode 0 sh_suidchk.c --> x_sh_suidchk.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_suidchk.o -c x_sh_suidchk.c
./encode 0 sh_srp.c --> x_sh_srp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_srp.o -c x_sh_srp.c
./encode 0 sh_fifo.c --> x_sh_fifo.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_fifo.o -c x_sh_fifo.c
./encode 0 sh_tools.c --> x_sh_tools.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_tools.o -c x_sh_tools.c
./encode 0 sh_html.c --> x_sh_html.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_html.o -c x_sh_html.c
./encode 0 sh_gpg.c --> x_sh_gpg.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_gpg.o -c x_sh_gpg.c
./encode 0 sh_cat.c --> x_sh_cat.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_cat.o -c x_sh_cat.c
./encode 0 sh_calls.c --> x_sh_calls.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_calls.o -c x_sh_calls.c
./encode 0 sh_extern.c --> x_sh_extern.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_extern.o -c x_sh_extern.c
./encode 0 sh_database.c --> x_sh_database.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_database.o -c x_sh_database.c
./encode 0 sh_err_log.c --> x_sh_err_log.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_err_log.o -c x_sh_err_log.c
./encode 0 sh_err_console.c --> x_sh_err_console.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_err_console.o -c
x_sh_err_console.c
./encode 0 sh_err_syslog.c --> x_sh_err_syslog.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_err_syslog.o -c
x_sh_err_syslog.c
./encode 0 sh_schedule.c --> x_sh_schedule.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o sh_schedule.o -c x_sh_schedule.c
./encode 0 bignum.c --> x_bignum.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o bignum.o -c x_bignum.c
./encode 0 trustfile.c --> x_trustfile.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o trustfile.o -c x_trustfile.c
./encode 0 rijndael-alg-fst.c --> x_rijndael-alg-fst.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o rijndael-alg-fst.o -c
x_rijndael-alg-fst.c
./encode 0 rijndael-api-fst.c --> x_rijndael-api-fst.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o rijndael-api-fst.o -c
x_rijndael-api-fst.c
./encode 0 slib.c --> x_slib.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o slib.o -c x_slib.c
./encode 0 zAVLTree.c --> x_zAVLTree.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -o zAVLTree.o -c x_zAVLTree.c
gcc -O -static -o yule -static samhain.o sh_unix.o sh_utils.o
sh_error.o sh_files.o sh_getopt.o sh_readconf.o sh_tiger0.o
sh_tiger1.o sh_tiger2.o sh_tiger1_64.o sh_tiger2_64.o sh_hash.o
sh_mail.o sh_mem.o sh_entropy.o sh_forward.o sh_modules.o sh_utmp.o
sh_kern.o sh_suidchk.o sh_srp.o sh_fifo.o sh_tools.o sh_html.o
sh_gpg.o sh_cat.o sh_calls.o sh_extern.o sh_database.o sh_err_log.o

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

sh_err_console.o sh_err_syslog.o sh_schedule.o bignum.o trustfile.o
rijndael-alg-fst.o rijndael-api-fst.o slib.o zAVLTree.o -lgmp -
lresolv
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o sstrip ./sstrip.c

Now install the Yule server

chief# make install
 /usr/bin/install -c -s -m 700 samhain_setpwd
/usr/local/sbin/yule_setpwd
 ./sstrip /usr/local/sbin/yule_setpwd
 /usr/bin/install -c -s -m 700 yule /usr/local/sbin/yule
 ./sstrip /usr/local/sbin/yule
/bin/sh ./mkinstalldirs /usr/local/man/man8
/bin/sh ./mkinstalldirs /usr/local/man/man5
 /usr/bin/install -c -m 644 ./samhain.8 /usr/local/man/man8/yule.8
 /usr/bin/install -c -m 644 ./samhainrc.5 /usr/local/man/man5/yulerc.5
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_SERVER -DSH_IDENT=\"yule\" -DTRUST_MAIN -
DSL_ALWAYS_TRUSTED=0 -o trustfile ./trustfile.c
mkdir /var/log/yule
mkdir /var/lib/yule
./samhain-install.sh --destdir= --express --verbose install-data
 cp yulerc samhainrc.pre
 mv -f samhainrc.pre samhainrc.install
 /usr/bin/install -c -m 600 samhainrc.install /etc/yulerc
 chown yule /etc/yulerc
 checking whether paths are trustworthy
 configuration file /etc/yulerc ... OK
 state directory /var/run ... OK
 state directory /var/log/yule ... OK
 data directory /var/lib/yule ... OK

 The server will run as user yule if started with
 root privileges, otherwise as the user of the parent
 process (use --enable-identity=USER to change).
 You may want to use: make install-user
 - to add the user yule (if not existing already)
 - to chown the data directory /var/lib/yule
 - to chown the log file directory /var/log/yule
 - to chown the configuration file /etc/yulerc

 You can use 'samhain-install.sh uninstall' for uninstalling
 i.e. you might consider saving that script for future use
 Use 'make install-boot' if you want yule to start on system boot

Configure Yule to use the ‘yule’ account

chief# make install-user
 chown root /var/lib/yule
 chmod 755 /var/lib/yule
 chown yule /etc/yulerc
 chown yule /var/log/yule
chief#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

Adding Yule to the boot configuration is not supported for OpenBSD, so we do it by hand
here. Just adding a few lines to the end of rc.local is sufficient. (Note, end the input to
the ‘cat’ command with a <control>-D)

chief# cat >> /etc/rc.local
Start Yule (Samhain) daemon
if [-x /usr/local/sbin/yule]; then
 echo -n ' yule'; /usr/local/sbin/yule -D
chief#

Now we arrange to rotate the Yule log file using the OpenBSD ‘newsyslog’ command.
We add one line to the end of the newsyslog config file (it’s wrapped here).

chief# cat >> /etc/newsyslog.com
/var/log/yule/yule_log yule.wheel 640 2 10000 * Z
/var/run/yule.pid SIGABRT

The basic install of yule is completed. Now we need to install the Samhain checker on the
Yule server. For ease of future maintenance, we’ll configure the Samhain checker to
obtain its configuration and database files ‘remotely’ from the machine it’s running on.
This will allow maintenance on the checker using the same techniques that will be used
for maintenance on the other client Samhain checkers.

We build Samhain from the same distribution we used to build Yule. So first we clean the
remnants from building Yule.

chief# make clean
rm -f core *.o
test -z "encode config_xor.h depend-gen sh_ks.h sh_ks_xor.h kern_head
internal.h sh_MK.h trustfile sstrip" || rm -f encode config_xor.h
depend-gen sh_ks.h sh_ks_xor.h kern_head internal.h sh_MK.h trustfile
sstrip
chief#

Configure Samhain. Under OpenBSD the ‘enable-pcheck’ option causes Samhain to
crash, so we exclude that option. (Note: This ‘configure’ command was typed as one line,
but is displayed here word-wrapped.)

chief# ./configure --enable-network=client --enable-static --enable-
suidcheck --enable-login-watch --enable-db-reload --with-
gpg=/usr/local/bin/gpg --with-logserver=127.0.0.1 --with-config-
file=REQ_FROM_SERVER/etc/samhainrc --with-data-
file=REQ_FROM_SERVER/etc/data.samhain
checking for a BSD-compatible install... /usr/bin/install -c
checking whether make sets ${MAKE}... yes
checking build system type... i386-unknown-openbsd3.1
checking host system type... i386-unknown-openbsd3.1
checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking how to run the C preprocessor... gcc -E
checking for a BSD-compatible install... /usr/bin/install -c
checking whether ln -s works... yes
checking for gawk... no
checking for mawk... no
checking for nawk... nawk
checking for hostname... /bin/hostname
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... no
checking for unistd.h... yes
checking for sys/types.h... (cached) yes
checking for sys/stat.h... (cached) yes
checking for stdlib.h... (cached) yes
checking for string.h... (cached) yes
checking for memory.h... (cached) yes
checking for strings.h... (cached) yes
checking for inttypes.h... (cached) yes
checking for stdint.h... (cached) no
checking for unistd.h... (cached) yes
checking for host-specific issues... none
checking for dirent.h that defines DIR... yes
checking for library containing opendir... none required
checking whether sys/types.h defines makedev... yes
checking whether time.h and sys/time.h may both be included... yes
checking whether stat file-mode macros are broken... no
checking for sys_siglist declaration in signal.h or unistd.h... yes
checking for stddef.h... yes
checking for sys/vfs.h... no
checking for sys/select.h... yes
checking for sys/socket.h... yes
checking for netinet/in.h... yes
checking for regex.h... yes
checking for glob.h... yes
checking for paths.h... yes
checking utmpx.h usability... no
checking utmpx.h presence... no
checking for utmpx.h... no
checking for struct statfs.f_flags... no
checking for special C compiler options needed for large files... no
checking for _FILE_OFFSET_BITS value needed for large files... no
checking for _LARGE_FILES value needed for large files... no
checking for strftime... yes
checking for memcmp... yes
checking for memcpy... yes
checking for memmove... yes
checking for memset... yes
checking for getpwent... yes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 46

checking for endpwent... yes
checking for gettimeofday... yes
checking for strlcat... yes
checking for strlcpy... yes
checking for strstr... yes
checking for strchr... yes
checking for strerror... yes
checking for strsignal... yes
checking for seteuid... yes
checking for setreuid... yes
checking for setresuid... no
checking for lstat... yes
checking for getwd... yes
checking for getcwd... yes
checking for ptrace... yes
checking for usleep... yes
checking for setpriority... yes
checking for inet_aton... yes
checking for gethostbyname... yes
checking for setutent... no
checking for setrlimit... yes
checking for uname... yes
checking for statfs... yes
checking for va_copy()... no
checking for __va_copy()... no
checking whether va_lists can be copied by value... yes
checking for vsnprintf... yes
checking for working vsnprintf... (cached) yes
checking for mlock... yes
checking whether mlock is broken... no
checking how to get filesystem type... 4.4BSD/OSF
checking for gethostbyname in -lnsl... no
checking for socket in -lsocket... no
checking for gethostbyname in -lnsl... (cached) no
checking for res_search in -lsocket... no
checking for res_search in -lresolv... yes
checking for working long double with more range or precision than
double... no
checking for long long typedef... yes
checking for ptrdiff_t... yes
checking for size_t... yes
checking for char *... yes
checking size of char *... 4
checking for size_t... (cached) yes
checking size of size_t... 4
checking for unsigned long... yes
checking size of unsigned long... 4
checking for unsigned int ... yes
checking size of unsigned int ... 4
checking for unsigned short... yes
checking size of unsigned short... 2
checking whether struct tm is in sys/time.h or time.h... time.h
checking whether struct stat has a st_flags field... yes
checking whether st_flags field is useful... yes
checking for gcc option to accept ANSI C... none needed
checking for inline... inline
checking for an ANSI C-conforming const... yes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 47

checking whether byte ordering is bigendian... no
checking signal.h usability... yes
checking signal.h presence... yes
checking for signal.h... yes
checking for SI_USER in signal.h... yes
checking for SA_SIGINFO in signal.h... yes
checking whether sa_sigaction is supported... yes
checking for mpz_init in -lgmp... yes
checking gmp.h usability... yes
checking gmp.h presence... yes
checking for gmp.h... yes
checking which random module to use... default
checking whether /dev/random exists... yes
checking for user samhain... no
checking for user daemon... yes
checking base key setting .. collecting entropy... 1882964237
1885642707
checking key position... 2
configure: creating ./config.status
config.status: creating Makefile
config.status: creating samhain-install.sh
config.status: creating samhain.spec
config.status: creating init/samhain.startLSB
config.status: creating init/samhain.startLinux
config.status: creating init/samhain.startGentoo
config.status: creating init/samhain.startFreeBSD
config.status: creating init/samhain.startSolaris
config.status: creating init/samhain.startHPUX
config.status: creating init/samhain.startIRIX
config.status: creating rules.deb
config.status: creating deploy.sh
config.status: creating scripts/samhain.spec
config.status: creating scripts/redhat_i386.client.spec
config.status: creating config.h
config.status: executing default commands
 samhain has been configured as follows:
 System binaries: /usr/local/sbin
 Configuration file: REQ_FROM_SERVER/etc/samhainrc
 Manual pages: /usr/local/man
 Data: /etc
 PID file: /var/run/samhain.pid
 Log file: /var/log/samhain_log
 Base key: 1882964237,1885642707
chief#

Save the Base key for use later on.

chief# echo '1882964237,1885642707' > ~/save-this-key

Build the Samhain client

chief# make
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o encode ./encode.c
encode 0 config.h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 48

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o samhain_setpwd ./samhain_setpwd.c
./config.status
config.status: creating Makefile
config.status: creating samhain-install.sh
config.status: creating samhain.spec
config.status: creating init/samhain.startLSB
config.status: creating init/samhain.startLinux
config.status: creating init/samhain.startGentoo
config.status: creating init/samhain.startFreeBSD
config.status: creating init/samhain.startSolaris
config.status: creating init/samhain.startHPUX
config.status: creating init/samhain.startIRIX
config.status: creating rules.deb
config.status: creating deploy.sh
config.status: creating scripts/samhain.spec
config.status: creating scripts/redhat_i386.client.spec
config.status: creating config.h
config.status: config.h is unchanged
config.status: executing default commands
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o mkhdr ./mkhdr.c
creating sh_MK.h
./encode 0 samhain.c --> x_samhain.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o samhain.o -c x_samhain.c
./encode 0 sh_unix.c --> x_sh_unix.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_unix.o -c x_sh_unix.c
./encode 0 sh_utils.c --> x_sh_utils.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_utils.o -c x_sh_utils.c
./encode 0 sh_error.c --> x_sh_error.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_error.o -c x_sh_error.c
./encode 0 sh_files.c --> x_sh_files.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_files.o -c x_sh_files.c
./encode 0 sh_getopt.c --> x_sh_getopt.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_getopt.o -c x_sh_getopt.c
./encode 0 sh_readconf.c --> x_sh_readconf.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_readconf.o -c x_sh_readconf.c
./encode 0 sh_tiger0.c --> x_sh_tiger0.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger0.o -c x_sh_tiger0.c
./encode 0 sh_tiger1.c --> x_sh_tiger1.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger1.o -c x_sh_tiger1.c
./encode 0 sh_tiger2.c --> x_sh_tiger2.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger2.o -c x_sh_tiger2.c
./encode 0 sh_tiger1_64.c --> x_sh_tiger1_64.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger1_64.o -c
x_sh_tiger1_64.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 49

./encode 0 sh_tiger2_64.c --> x_sh_tiger2_64.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger2_64.o -c
x_sh_tiger2_64.c
./encode 0 sh_hash.c --> x_sh_hash.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_hash.o -c x_sh_hash.c
./encode 0 sh_mail.c --> x_sh_mail.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_mail.o -c x_sh_mail.c
./encode 0 sh_mem.c --> x_sh_mem.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_mem.o -c x_sh_mem.c
./encode 0 sh_entropy.c --> x_sh_entropy.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_entropy.o -c x_sh_entropy.c
./encode 0 sh_forward.c --> x_sh_forward.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_forward.o -c x_sh_forward.c
./encode 0 sh_modules.c --> x_sh_modules.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_modules.o -c x_sh_modules.c
./encode 0 sh_utmp.c --> x_sh_utmp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_utmp.o -c x_sh_utmp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSYSTEMMAP="/boot/System.map" -o kern_head
./kern_head.c -lgmp -lresolv
./kern_head > sh_ks.h
encode 0 sh_ks.h
./encode 0 sh_kern.c --> x_sh_kern.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_kern.o -c x_sh_kern.c
./encode 0 sh_suidchk.c --> x_sh_suidchk.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_suidchk.o -c x_sh_suidchk.c
x_sh_suidchk.c: In function `filesystem_type_uncached':
x_sh_suidchk.c:1029: warning: unused variable `flags'
./encode 0 sh_srp.c --> x_sh_srp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_srp.o -c x_sh_srp.c
./encode 0 sh_fifo.c --> x_sh_fifo.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_fifo.o -c x_sh_fifo.c
./encode 0 sh_tools.c --> x_sh_tools.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tools.o -c x_sh_tools.c
./encode 0 sh_html.c --> x_sh_html.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_html.o -c x_sh_html.c
./encode 0 sh_gpg.c --> x_sh_gpg.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_gpg.o -c x_sh_gpg.c
./encode 0 sh_cat.c --> x_sh_cat.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_cat.o -c x_sh_cat.c
./encode 0 sh_calls.c --> x_sh_calls.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 50

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_calls.o -c x_sh_calls.c
./encode 0 sh_extern.c --> x_sh_extern.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_extern.o -c x_sh_extern.c
./encode 0 sh_database.c --> x_sh_database.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_database.o -c x_sh_database.c
./encode 0 sh_err_log.c --> x_sh_err_log.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_err_log.o -c x_sh_err_log.c
./encode 0 sh_err_console.c --> x_sh_err_console.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_err_console.o -c
x_sh_err_console.c
./encode 0 sh_err_syslog.c --> x_sh_err_syslog.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_err_syslog.o -c
x_sh_err_syslog.c
./encode 0 sh_schedule.c --> x_sh_schedule.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_schedule.o -c x_sh_schedule.c
./encode 0 bignum.c --> x_bignum.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o bignum.o -c x_bignum.c
./encode 0 trustfile.c --> x_trustfile.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o trustfile.o -c x_trustfile.c
./encode 0 rijndael-alg-fst.c --> x_rijndael-alg-fst.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o rijndael-alg-fst.o -c
x_rijndael-alg-fst.c
./encode 0 rijndael-api-fst.c --> x_rijndael-api-fst.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o rijndael-api-fst.o -c
x_rijndael-api-fst.c
./encode 0 slib.c --> x_slib.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o slib.o -c x_slib.c
./encode 0 zAVLTree.c --> x_zAVLTree.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o zAVLTree.o -c x_zAVLTree.c
gcc -O -static -o samhain -static samhain.o sh_unix.o sh_utils.o
sh_error.o sh_files.o sh_getopt.o sh_readconf.o sh_tiger0.o
sh_tiger1.o sh_tiger2.o sh_tiger1_64.o sh_tiger2_64.o sh_hash.o
sh_mail.o sh_mem.o sh_entropy.o sh_forward.o sh_modules.o sh_utmp.o
sh_kern.o sh_suidchk.o sh_srp.o sh_fifo.o sh_tools.o sh_html.o
sh_gpg.o sh_cat.o sh_calls.o sh_extern.o sh_database.o sh_err_log.o
sh_err_console.o sh_err_syslog.o sh_schedule.o bignum.o trustfile.o
rijndael-alg-fst.o rijndael-api-fst.o slib.o zAVLTree.o -lgmp -
lresolv
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o sstrip ./sstrip.c

Install Samhain

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 51

chief# make install
/usr/bin/install -c -s -m 700 samhain_setpwd
/usr/local/sbin/samhain_setpwd
 ./sstrip /usr/local/sbin/samhain_setpwd
 /usr/bin/install -c -s -m 700 samhain /usr/local/sbin/samhain
 ./sstrip /usr/local/sbin/samhain
/bin/sh ./mkinstalldirs /usr/local/man/man8
/bin/sh ./mkinstalldirs /usr/local/man/man5
 /usr/bin/install -c -m 644 ./samhain.8 /usr/local/man/man8/samhain.8
 /usr/bin/install -c -m 644 ./samhainrc.5
/usr/local/man/man5/samhainrc.5
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -DSH_IDENT=\"daemon\" -DTRUST_MAIN
-DSL_ALWAYS_TRUSTED=0 -o trustfile ./trustfile.c
./samhain-install.sh --destdir= --express --verbose install-data
 cp samhainrc.freebsd samhainrc
You need to sign the config file now
 /usr/local/bin/gpg -a --clearsign samhainrc
gpg: no default secret key: secret key not available
gpg: samhainrc: clearsign failed: secret key not available
./samhain-install.sh: ERROR: cannot find signed file samhainrc.asc
 ERROR: Failed to install the configuration file to
REQ_FROM_SERVER/etc/samhainrc. You need to install the configuration
file manually.
 You can use 'samhain-install.sh uninstall' for uninstalling
 i.e. you might consider saving that script for future use
 Use 'make install-boot' if you want samhain to start on system boot

chief#

The Samhain install procedure changes the permission on /etc, causing some other
utilities to break. Here we fix the problem.

chief# ls -ld /etc/
drwx------ 22 root wheel 3072 Apr 26 16:14 /etc/
chief# chmod 755 /etc

Sign and install the Samhain configuration file. We put it where Yule will be able to find
it so that Yule can serve it to the Samhain client when requested.

chief# gpg -a --clearsign --homedir ~dela/.gnupg samhainrc

You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DBF5B7A2, created 2000-10-20

chief#
chief# cp ./samhainrc.asc /var/lib/yule/rc.chief.sekurity.org
chief#

Install the shared secret used by Samhain and Yule to securely communicate. First
generate a password.

chief# /usr/local/sbin/yule --gen-password
85117D8F397EC0F4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 52

Next, install the password in the Samhain executable. (Note: This command was typed as
one line, but is shown word-wrapped.)

chief# /usr/local/sbin/samhain_setpwd /usr/local/sbin/samhain new
85117D8F397EC0F4
INFO old password found
INFO replaced: f7c312aaaa12c3f7 by: 85117d8f397ec0f4
INFO finished
chief# ls -l /usr/local/sbin/samhain*
-rwx------ 1 root wheel 487424 Apr 26 16:21 /usr/local/sbin/samhain
-rwx------ 1 root wheel 487424 Apr 26 16:33
/usr/local/sbin/samhain.new
-rwx------ 1 root wheel 12288 Apr 26 16:21
/usr/local/sbin/samhain_setpwd
chief# mv /usr/local/sbin/samhain.new /usr/local/sbin/samhain

Finally, install the same key (converted to an ASCII format) in the Yule configuration file.
(Note: This command was typed as one line, but is shown word-wrapped.)

chief# /usr/local/sbin/yule -P 85117D8F397EC0F4 | sed
s/HOSTNAME/chief.some-domain.com/ >> /etc/yulerc

Now start Yule, and check the logs to confirm that it’s running OK

chief# /usr/local/sbin/yule -D
chief# ls -l /var/log/yule
total 3
-rw-r----- 1 yule wheel 447 Apr 26 16:42 yule.html
-rw-r----- 1 yule wheel 647 Apr 26 16:41 yule_log
-rw-r--r-- 1 yule wheel 5 Apr 26 16:41 yule_log.lock
chief# cat /var/log/yule/yule_log
[SOF]
ERROR : [2003-04-26T16:41:53-0600] msg=<Service failure>,
service=<console>, obj=</dev/console>
021DF17A03822C7E0F88DB8CBE439A6029C89EF829B28920[2003-04-26T16:41:53-
0600]
ALERT : [2003-04-26T16:41:53-0600] msg=<START>, program=<Yule>,
userid=<1004>, path=</etc/yulerc>,
hash=<08711294D18B0FDC707C9624DB40BCD82BFA187DDDC075A1>
3CAB3A6D94AD2FBDC43EB2BD3807C569F9B19C294BA32F6F
WARN : [2003-04-26T16:41:53-0600] msg=<Using insecure memory>
5657BE44E09347212B7B4E553DB4279FE8A2C8A6C2847FAF
(Note: the next line is the one we’re looking for)
MARK : [2003-04-26T16:41:53-0600] msg=<Server up, simultaneous
connections: 57>, socket_id=<3>
0D999F4F020A706BD40FB507E4BF369D4AF0B1E1CDB17243
chief#

Now that Yule is running, we need to get Samhain running on the Yule server. First we
tweak the default Samhain configuration file.

Edit the configuration file, and re-sign it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 53

chief# emacs /var/lib/yule/rc.chief.some-domain.com
chief# gpg -a --clearsign --homedir ~dela/.gnupg
/var/lib/yule/rc.chief.some-domain.com
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DB3A37A2, created 2000-10-20
Enter passphrase:

chief# mv /var/lib/yule/rc.chief.some-domain.com.asc
/var/lib/yule/rc.chief.some-domain.com

Now, build the initial baseline

chief# /usr/local/sbin/samhain -t init
INFO : [2003-04-26T17:15:25-0600] msg=<Downloading configuration file>
INFO : [2003-04-26T17:15:26-0600] msg=<Session key negotiated>
INFO : [2003-04-26T17:15:27-0600] msg=<File download completed>
chief#

The baseline is built. Sign it and put it where Yule can find it so that it will be able to
serve it to the Samhain client.

chief# gpg -a --clearsign --homedir ~dela/.gnupg /etc/data.samhain
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DB83A7A2, created 2000-10-20
Enter passphrase:

chief# mv /etc/data.samhain.asc /var/lib/yule/file.chief.some-
domain.com

Now start the Samhain client

chief# /usr/local/sbin/samhain -t check -D
INFO : [2003-04-26T17:30:36-0600] msg=<Downloading configuration file>
INFO : [2003-04-26T17:30:37-0600] msg=<Session key negotiated>
INFO : [2003-04-26T17:30:38-0600] msg=<File download completed>
chief#

We need to tweak the Samhain config file a bit. Edit and re-sign it and then HUP the
Samhain daemon to cause it to reload the config file.

chief# emacs /var/lib/yule/rc.chief.some-domain.com
chief# gpg -a --clearsign --homedir ~dela/.gnupg
/var/lib/yule/rc.chief.some-domain.com
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DB83A7A2, created 2000-10-20
Enter passphrase:

chief# mv /var/lib/yule/rc.chief.some-domain.com.asc
/var/lib/yule/rc.chief.some-domain.com
chief# kill -HUP `cat /var/run/samhain.pid`

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 54

Test the configuration with a minor change.

chief# touch /etc/passwd
chief# date
Sat Apr 26 18:16:49 MDT 2003

Here we see the log message from when the Samhain daemon detected the change.
Notice that it took a bit over 1.5 hours for Samhain to notice the change.

chief# grep /etc/passwd /var/log/yule/yule_log
<TCP> : [2003-04-26T19:50:18-0600] client=<chief>, msg=<DEBUG :
[2003-04-26T19:50:17-0600] msg=<Checksum>,
chk=<A8D9FD8BF996DC4B6F73FB426F76BCE96445B0AB8788BC7D>,
path=</etc/passwd.conf>>
<TCP> : [2003-04-26T19:50:19-0600] client=<chief>, msg=<DEBUG :
[2003-04-26T19:50:18-0600] msg=<Checksum>,
chk=<E114806C425B2EFF8872FCEBB47983D1D12A9EBF43A3761A>,
path=</etc/passwd>>
(Note: This next line is the entry we care about)
<TCP> : [2003-04-26T19:50:20-0600] client=<chief>, msg=<CRIT :
[2003-04-26T19:50:19-0600] msg=<POLICY [ReadOnly]>, path=</etc/passwd>,
ctime_old=<[2003-04-26T21:26:01]>, ctime_new=<[2003-04-27T00:14:54]>,
mtime_old=<[2003-04-26T21:26:01]>, mtime_new=<[2003-04-27T00:14:54]>, >

Now we install Samhain on a different machine. This machine, named ‘skipper’, is a
Linux workstation that will be a client of the Yule server.

Since we’re using the same download used in the installations above, there is no need to
verify the distribution. The distribution is already unpacked on the target machine.

[root@skipper samhain-1.7.6]# uname -a
Linux skipper 2.2.12-20 #1 Mon Sep 27 10:25:54 EDT 1999 i586 unknown
[root@skipper samhain-1.7.6]#

Begin building Samhain by running configure. The value used for ‘enable-base’ is the
value generated when building Samhain on the Yule server. This will allow Samhain on
the Yule server to verify logs generated by this copy of Samhain. We will use the same
‘base’ on all copies of Samhain used on this network, so that logs can all be verified by
the copy of Samhain running on the Yule server.

[root@skipper samhain-1.7.6]# ./configure --enable-network=client --
enable-static --enable-suidcheck --enable-login-watch
--enable-db-reload --with-gpg=/usr/local/bin/gpg --with-
logserver=192.168.1.10 --with-config-file=REQ_FROM_SERVER/etc/samh
ainrc --with-data-file=REQ FROM_SERVER/etc/data.samhain --with-
kcheck=/boot/System.map-2.2.12-20 --enable-ptrace --enable-
base='1882964237,1885642707'
checking for a BSD-compatible install... /usr/bin/install -c
checking whether make sets ${MAKE}... yes
checking build system type... i586-pc-linux-gnu
checking host system type... i586-pc-linux-gnu
checking for gcc... gcc
checking for C compiler default output... a.out

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 55

checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking how to run the C preprocessor... gcc -E
checking for a BSD-compatible install... /usr/bin/install -c
checking whether ln -s works... yes
checking for gawk... gawk
checking for hostname... /bin/hostname
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... yes
checking for unistd.h... yes
checking for sys/types.h... (cached) yes
checking for sys/stat.h... (cached) yes
checking for stdlib.h... (cached) yes
checking for string.h... (cached) yes
checking for memory.h... (cached) yes
checking for strings.h... (cached) yes
checking for inttypes.h... (cached) yes
checking for stdint.h... (cached) yes
checking for unistd.h... (cached) yes
checking for host-specific issues... LINUX use ioctl to get e2fs flags
checking linux/module.h usability... yes
checking linux/module.h presence... yes
checking for linux/module.h... yes
checking linux/unistd.h usability... yes
checking linux/unistd.h presence... yes
checking for linux/unistd.h... yes
checking for dirent.h that defines DIR... yes
checking for library containing opendir... none required
checking whether sys/types.h defines makedev... yes
checking whether time.h and sys/time.h may both be included... yes
checking whether stat file-mode macros are broken... no
checking for sys_siglist declaration in signal.h or unistd.h... yes
checking for stddef.h... yes
checking for sys/vfs.h... yes
checking for sys/select.h... yes
checking for sys/socket.h... yes
checking for netinet/in.h... yes
checking for regex.h... yes
checking for glob.h... yes
checking for paths.h... yes
checking utmpx.h usability... yes
checking utmpx.h presence... yes
checking for utmpx.h... yes
checking for struct statfs.f_flags... no
checking for special C compiler options needed for large files... no
checking for _FILE_OFFSET_BITS value needed for large files... 64

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 56

checking for _LARGE_FILES value needed for large files... no
checking for strftime... yes
checking for memcmp... yes
checking for memcpy... yes
checking for memmove... yes
checking for memset... yes
checking for getpwent... yes
checking for endpwent... yes
checking for gettimeofday... yes
checking for strlcat... no
checking for strlcpy... no
checking for strstr... yes
checking for strchr... yes
checking for strerror... yes
checking for strsignal... yes
checking for seteuid... yes
checking for setreuid... yes
checking for setresuid... yes
checking for lstat... yes
checking for getwd... yes
checking for getcwd... yes
checking for ptrace... yes
checking for usleep... yes
checking for setpriority... yes
checking for inet_aton... yes
checking for gethostbyname... yes
checking for setutent... yes
checking for setrlimit... yes
checking for uname... yes
checking for statfs... yes
checking for va_copy()... no
checking for __va_copy()... yes
checking whether va_lists can be copied by value... yes
checking for vsnprintf... yes
checking for working vsnprintf... (cached) yes
checking for mlock... yes
checking whether mlock is broken... no
checking how to get filesystem type... 4.3BSD
checking for gethostbyname in -lnsl... yes
checking for socket in -lsocket... no
checking for gethostbyname in -lnsl... (cached) yes
checking for res_search in -lsocket... no
checking for res_search in -lresolv... yes
checking for working long double with more range or precision than
double... no
checking for long long typedef... yes
checking for ptrdiff_t... yes
checking for size_t... yes
checking for char *... yes
checking size of char *... 4
checking for size_t... (cached) yes
checking size of size_t... 4
checking for unsigned long... yes
checking size of unsigned long... 4
checking for unsigned int ... yes
checking size of unsigned int ... 4
checking for unsigned short... yes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 57

checking size of unsigned short... 2
checking whether struct tm is in sys/time.h or time.h... time.h
checking whether struct stat has a st_flags field... no
checking for gcc option to accept ANSI C... none needed
checking for inline... inline
checking for an ANSI C-conforming const... yes
checking whether byte ordering is bigendian... no
checking signal.h usability... yes
checking signal.h presence... yes
checking for signal.h... yes
checking for SI_USER in signal.h... yes
checking for SA_SIGINFO in signal.h... yes
checking whether sa_sigaction is supported... no
checking for mpz_init in -lgmp... yes
checking gmp.h usability... yes
checking gmp.h presence... yes
checking for gmp.h... yes
checking which random module to use... default
checking whether /dev/random exists... yes
checking for user samhain... no
checking for user daemon... yes
checking base key setting... 1882964237 1885642707
checking key position... 3
configure: WARNING: --with-gpg: cannot determine TIGER192 checksum of
/usr/local/bin/gpg
configure: creating ./config.status
config.status: creating Makefile
config.status: creating samhain-install.sh
config.status: creating samhain.spec
config.status: creating init/samhain.startLSB
config.status: creating init/samhain.startLinux
config.status: creating init/samhain.startGentoo
config.status: creating init/samhain.startFreeBSD
config.status: creating init/samhain.startSolaris
config.status: creating init/samhain.startHPUX
config.status: creating init/samhain.startIRIX
config.status: creating rules.deb
config.status: creating deploy.sh
config.status: creating scripts/samhain.spec
config.status: creating scripts/redhat_i386.client.spec
config.status: creating config.h
config.status: executing default commands
 samhain has been configured as follows:
 System binaries: /usr/local/sbin
 Configuration file: REQ_FROM_SERVER/etc/samhainrc
 Manual pages: /usr/local/man
 Data: /etc
 PID file: /var/run/samhain.pid
 Log file: /var/log/samhain_log
 Base key: 1882964237,1885642707

Now that configure is done, use the ‘make’ command to build Samhain.

[root@skipper samhain-1.7.6]# make
gcc -O2 -Wall -W -fno-strength-reduce -fno-omit-frame-pointer -o
depend-gen ./depend-gen.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 58

update depend.dep ...
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o encode ./encode.c
encode 0 config.h
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o samhain_setpwd ./samhain_setpwd.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o mkhdr ./mkhdr.c
creating sh_MK.h
./encode 0 samhain.c --> x_samhain.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o samhain.o -c x_samhain.c
./encode 0 sh_unix.c --> x_sh_unix.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_unix.o -c x_sh_unix.c
./encode 0 sh_utils.c --> x_sh_utils.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_utils.o -c x_sh_utils.c
./encode 0 sh_error.c --> x_sh_error.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_error.o -c x_sh_error.c
./encode 0 sh_files.c --> x_sh_files.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_files.o -c x_sh_files.c
./encode 0 sh_getopt.c --> x_sh_getopt.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_getopt.o -c x_sh_getopt.c
./encode 0 sh_readconf.c --> x_sh_readconf.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_readconf.o -c x_sh_readconf.c
./encode 0 sh_tiger0.c --> x_sh_tiger0.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger0.o -c x_sh_tiger0.c
./encode 0 sh_tiger1.c --> x_sh_tiger1.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger1.o -c x_sh_tiger1.c
./encode 0 sh_tiger2.c --> x_sh_tiger2.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger2.o -c x_sh_tiger2.c
./encode 0 sh_tiger1_64.c --> x_sh_tiger1_64.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger1_64.o -c
x_sh_tiger1_64.c
./encode 0 sh_tiger2_64.c --> x_sh_tiger2_64.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tiger2_64.o -c
x_sh_tiger2_64.c
./encode 0 sh_hash.c --> x_sh_hash.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_hash.o -c x_sh_hash.c
./encode 0 sh_mail.c --> x_sh_mail.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_mail.o -c x_sh_mail.c
./encode 0 sh_mem.c --> x_sh_mem.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_mem.o -c x_sh_mem.c
./encode 0 sh_entropy.c --> x_sh_entropy.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 59

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_entropy.o -c x_sh_entropy.c
./encode 0 sh_forward.c --> x_sh_forward.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_forward.o -c x_sh_forward.c
./encode 0 sh_modules.c --> x_sh_modules.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_modules.o -c x_sh_modules.c
./encode 0 sh_utmp.c --> x_sh_utmp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_utmp.o -c x_sh_utmp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSYSTEMMAP="/boot/System.map-2.2.12-20" -o
kern_head ./kern_head.c -lgmp -lnsl -lnsl -lresolv
./kern_head > sh_ks.h
encode 0 sh_ks.h
./encode 0 sh_kern.c --> x_sh_kern.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_kern.o -c x_sh_kern.c
./encode 0 sh_suidchk.c --> x_sh_suidchk.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_suidchk.o -c x_sh_suidchk.c
./encode 0 sh_srp.c --> x_sh_srp.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_srp.o -c x_sh_srp.c
./encode 0 sh_fifo.c --> x_sh_fifo.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_fifo.o -c x_sh_fifo.c
./encode 0 sh_tools.c --> x_sh_tools.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_tools.o -c x_sh_tools.c
./encode 0 sh_html.c --> x_sh_html.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_html.o -c x_sh_html.c
./encode 0 sh_gpg.c --> x_sh_gpg.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_gpg.o -c x_sh_gpg.c
./encode 0 sh_cat.c --> x_sh_cat.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_cat.o -c x_sh_cat.c
./encode 0 sh_calls.c --> x_sh_calls.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_calls.o -c x_sh_calls.c
./encode 0 sh_extern.c --> x_sh_extern.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_extern.o -c x_sh_extern.c
./encode 0 sh_database.c --> x_sh_database.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_database.o -c x_sh_database.c
./encode 0 sh_err_log.c --> x_sh_err_log.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_err_log.o -c x_sh_err_log.c
./encode 0 sh_err_console.c --> x_sh_err_console.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_err_console.o -c
x_sh_err_console.c
./encode 0 sh_err_syslog.c --> x_sh_err_syslog.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 60

gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_err_syslog.o -c
x_sh_err_syslog.c
./encode 0 sh_schedule.c --> x_sh_schedule.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o sh_schedule.o -c x_sh_schedule.c
./encode 0 bignum.c --> x_bignum.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o bignum.o -c x_bignum.c
./encode 0 trustfile.c --> x_trustfile.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o trustfile.o -c x_trustfile.c
./encode 0 rijndael-alg-fst.c --> x_rijndael-alg-fst.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o rijndael-alg-fst.o -c
x_rijndael-alg-fst.c
./encode 0 rijndael-api-fst.c --> x_rijndael-api-fst.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o rijndael-api-fst.o -c
x_rijndael-api-fst.c
./encode 0 slib.c --> x_slib.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o slib.o -c x_slib.c
./encode 0 zAVLTree.c --> x_zAVLTree.c
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -o zAVLTree.o -c x_zAVLTree.c
gcc -O -static -o samhain -static samhain.o sh_unix.o sh_utils.o
sh_error.o sh_files.o sh_getopt.o sh_readconf.o sh_tiger0.o sh_tiger1.o
sh_tiger2.o sh_tiger1_64.o sh_tiger2_64.o sh_hash.o sh_mail.o sh_mem.o
sh_entropy.o sh_forward.o sh_modules.o sh_utmp.o sh_kern.o sh_suidchk.o
sh_srp.o sh_fifo.o sh_tools.o sh_html.o sh_gpg.o sh_cat.o sh_calls.o
sh_extern.o sh_database.o sh_err_log.o sh_err_console.o sh_err_syslog.o
sh_schedule.o bignum.o trustfile.o rijndael-alg-fst.o rijndael-api-
fst.o slib.o zAVLTree.o -lgmp -lnsl -lnsl -lresolv
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -o sstrip ./sstrip.c

Now install Samhain via ‘make install’

[root@skipper samhain-1.7.6]# make install
 /usr/bin/install -c -s -m 700 samhain_setpwd
/usr/local/sbin/samhain_setpwd
 ./sstrip /usr/local/sbin/samhain_setpwd
 /usr/bin/install -c -s -m 700 samhain /usr/local/sbin/samhain
 ./sstrip /usr/local/sbin/samhain
/bin/sh ./mkinstalldirs /usr/local/man/man8
/bin/sh ./mkinstalldirs /usr/local/man/man5
 /usr/bin/install -c -m 644 ./samhain.8 /usr/local/man/man8/samhain.8
 /usr/bin/install -c -m 644 ./samhainrc.5
/usr/local/man/man5/samhainrc.5
gcc -DHAVE_CONFIG_H -I. -I. -O2 -Wall -W -fno-strength-reduce -fno-
omit-frame-pointer -DSH_WITH_CLIENT -DSH_IDENT=\"daemon\" -DTRUST_MAIN
-DSL_ALWAYS_TRUSTED=0 -o trustfile ./trustfile.c
./samhain-install.sh --destdir= --express --verbose install-data
 cp samhainrc.linux samhainrc
You need to sign the config file now

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 61

 /usr/local/bin/gpg -a --clearsign samhainrc
gpg: no default secret key: secret key not available
gpg: samhainrc: clearsign failed: secret key not available
./samhain-install.sh: ERROR: cannot find signed file samhainrc.asc
 ERROR: Failed to install the configuration file to
REQ_FROM_SERVER/etc/samhainrc. You need to install the configuration
file manually.
 You can use 'samhain-install.sh uninstall' for uninstalling
 i.e. you might consider saving that script for future use
 Use 'make install-boot' if you want samhain to start on system boot

We have the same problem as before, the permissions on /etc need to be fixed after the
install.

[root@skipper samhain-1.7.6]# chmod 755 /etc

Install the scripts which will start Samhain when the machine is booting. This version of
Linux is supported by ‘install-boot’ so we don’t have to do this by hand.

[root@skipper samhain-1.7.6]# make install-boot
./samhain-install.sh --destdir= --express --verbose install-boot
 Redhat based system detected
 /usr/bin/install -c -m 700 init/samhain.startLinux
/etc/rc.d/init.d/samhain
 cd /etc/rc.d/rc2.d/ && ln -f -s /etc/rc.d/init.d/samhain S99samhain
 cd /etc/rc.d/rc2.d/ && ln -f -s /etc/rc.d/init.d/samhain K10samhain
 cd /etc/rc.d/rc3.d/ && ln -f -s /etc/rc.d/init.d/samhain S99samhain
 cd /etc/rc.d/rc3.d/ && ln -f -s /etc/rc.d/init.d/samhain K10samhain
 cd /etc/rc.d/rc4.d/ && ln -f -s /etc/rc.d/init.d/samhain S99samhain
 cd /etc/rc.d/rc4.d/ && ln -f -s /etc/rc.d/init.d/samhain K10samhain
 cd /etc/rc.d/rc5.d/ && ln -f -s /etc/rc.d/init.d/samhain S99samhain
 cd /etc/rc.d/rc5.d/ && ln -f -s /etc/rc.d/init.d/samhain K10samhain
installing init scripts completed

Copy the Samhain configuration file to the Yule server where the Yule daemon can find it.

[root@skipper ~]# scp /usr/local/src/samhain-1.7.6/samhainrc
chief:/var/lib/yule/rc.skipper.some-domain.com
root@chief's password:
samhainrc 100%
|**
*| 7522 00:00

Log into the Yule server. First tweak, sign and install the configuration file for the
Samhain client.

chief# emacs /var/lib/yule/rc.skipper.some-domain.com
chief# gpg -a --clearsign --homedir ~dela/.gpg
/var/lib/yule/rc.skipper.some-domain.com
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DB83A7A2, created 2000-10-20
Enter passphrase:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 62

chief# mv /var/lib/yule/rc.skipper.some-domain.com.asc
/var/lib/yule/rc.skipper.some-domain.com

Next, we need to generate a shared secret for the client and server for use to secure their
communications.

chief# /usr/local/sbin/yule --gen-password
80D7AAB3F245D417

Install this new key in the Yule server configuration file. Look at the last line of yulerc to
verify the addition. We also HUP the Yule daemon to cause it to reload it’s configuration
file.

chief# /usr/local/sbin/yule -P 80D7AAB3F245D417 | sed
s/HOSTNAME/skipper.some-domain.com/ >> /etc/yulerc
chief# tail -1 /etc/yulerc
Client=skipper.some-
domain.com@FB87EE16A0DCCFA8@E7FBFF70CFB39DEEE747684EE39D294AD1EB826DC1E
14C8B1886CFD486D4515AE37FEAD5D68D22FC961F37DEF3FFD8BE7CFA7A8EDA8328411A
1AD53F7BC652B341640EB3255FF3EA8F5F3B851EB8D223CB4554F7A542D68D301DC4802
E29889E718B8FD8DCB91FD4EFE238100B22E2C125392C4EF1333A8BE4EE75DCF14046A
chief# kill -HUP `cat /var/run/yule.pid`

Now return to the Samhain client to finish installing the shared secret.

[root@skipper ~]# /usr/local/sbin/samhain_setpwd
/usr/local/sbin/samhain new 80D7AAB3F245D417
INFO old password found
INFO replaced: f7c312aaaa12c3f7 by: 80d7aab3f245d417
INFO finished
[root@skipper /root]# mv /usr/local/sbin/samhain.new
/usr/local/sbin/samhain
mv: overwrite `/usr/local/sbin/samhain'? y
[root@skipper /root]#

Build the intial baseline.

[root@skipper /root]# /usr/local/sbin/samhain -t init
INFO : [2003-04-26T21:21:24-0600] msg=<Downloading configuration
file>
INFO : [2003-04-26T21:21:25-0600] msg=<Session key negotiated>
INFO : [2003-04-26T21:21:26-0600] msg=<File download completed>
[root@skipper /root]#

Copy the basline data file to the Yule server.

[root@skipper /root]# scp /etc/data.samhain
chief:/var/lib/yule/file.skipper.some-domain.com
root@chief's password:
data.samhain 100%
|**
*| 4011 KB 00:04

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 63

On the yule server, sign the data file for the client.

chief# gpg -a --clearsign --homedir ~dela/.gnupg
/var/lib/yule/file.skipper.some-domain.com
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DB83A7A2, created 2000-10-20
Enter passphrase:

chief# mv /var/lib/yule/file.skipper.some-domain.com.asc
/var/lib/yule/file.skipper.some-domain.com

On the Samhain client, complete the installation by starting Samhain in check mode

[root@skipper /root]# /usr/local/sbin/samhain -D -t check
INFO : [2003-04-26T22:20:25-0600] msg=<Downloading configuration
file>
INFO : [2003-04-26T22:20:26-0600] msg=<Session key negotiated>
INFO : [2003-04-26T22:20:27-0600] msg=<File download completed>
[root@skipper /root]#

Start installation of the Samhain client on the next machine (named ‘schleicher’). The
new machine is also running Linux, so the installation will consist of copying the
already-build Samhain client from the first Linux client to this machine, and installing it.

First copy the executable to the new client.

[root@skipper /root]# scp /usr/local/sbin/samhain
schleicher:/usr/local/sbin/
samhain 100%
|**
*| 600 KB 00:06
[root@skipper /root]#

Since we’re using the same executable, we can use the same ‘base key’ on both Linux
machines. However the Yule server needs to have an entry for each client in its
configuration file. So we make a copy of the line for the Linux client we just finished, and
change the name of the client to that of the new Linux client.

chief# tail -1 /etc/yulerc | sed s/skipper/schleicher/ >> /etc/yulerc

HUP the Yule server so that it will find the new configuration file.

chief# kill -HUP `cat /var/run/yule.pid `

On the Yule server, make a Samhain configuration file for the new client based on the
configuration file for the original Linux Client. It’s already signed, so we don’t have to
re-sign it.

chief# cp /var/lib/yule/rc.skipper.some-domain.com
/var/lib/yule/rc.schleicher.some-domain.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 64

On the new client, build the initial baseline.

[root@schleicher /root]# /usr/local/sbin/samhain -t init
INFO : [2003-04-26T23:05:06-0600] msg=<Downloading configuration file>
INFO : [2003-04-26T23:05:09-0600] msg=<Session key negotiated>
INFO : [2003-04-26T23:05:10-0600] msg=<File download completed>
[root@schleicher /root]#

Copy the initial baseline to the Yule server.

[root@schleicher /root]# scp /etc/data.samhain
chief:/var/lib/yule/file.schleicher.some-domain.com
data.samhain 100%
|**
*| 3082 KB 00:37

On the Yule server, the initial baseline needs to be PGP signed.

chief# gpg -a --clearsign --homedir ~dela/.gnupg
/var/lib/yule/file.schleicher.some-domain.com
You need a passphrase to unlock the secret key for
user: "Del Armstrong (Work) <del_armstrong@some-domain.com>"
1024-bit DSA key, ID DB83A7A2, created 2000-10-20
Enter passphrase:

chief# mv /var/lib/yule/file.schleicher.some-domain.com.asc
/var/lib/yule/file.schleicher.some-domain.com

Back on the new Samhain client, add code to start the Samhain client upon booting. This
machine is configured differently than the other Linux machine in this respect, so the
simplest way to accomplish this is to update ‘rc.local’ on this machine.

[root@schleicher /root]# cat >> /etc/rc.d/rc.local
Start samhain
/usr/local/sbin/samhain -D -t check
[root@schleicher /root]#

Finally, start the Samhain client in check mode

[root@schleicher /root]# /usr/local/sbin/samhain -D -t check
INFO : [2003-04-27T01:48:31-0600] msg=<Downloading configuration file>
INFO : [2003-04-27T01:48:33-0600] msg=<Session key negotiated>
INFO : [2003-04-27T01:48:34-0600] msg=<File download completed>

That completes the exemplary installation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 65

Appendix B – Yule Server Configuration File

Configuration file template for yule.

NOTE: This is a log server-only configuration file TEMPLATE.

NOTE: The log server ('yule') will look for THAT configuration file
that has been defined at compile time with the configure option
./configure --with-config-file=FILE
The default is "/usr/local/etc/.samhainrc" (NOT "yulerc").

-- empty lines and lines starting with '#' are ignored
-- you can PGP clearsign this file -- samhain will check (if compiled
with support) or otherwise ignore the signature
-- CHECK mail address

To each log facility, you can assign a threshold severity. Only
reports with at least the threshold severity will be logged
to the respective facility (even further below).

[Log]
set threshold severity for log facilities
values: debug, info, notice, warn, mark, err, crit, alert, none.
'mark' is used for timestamps.

By default, everything equal to and above the threshold is logged.
The specifiers '*', '!', and '=' are interpreted as
'all', 'all but', and 'only', respectively (like syslogd(8) does,
at least on Linux).

MailSeverity=*
MailSeverity=!warn
MailSeverity==crit

MailSeverity=crit
PrintSeverity=info
LogSeverity=warn
SyslogSeverity=none

[Misc]
whether to become a daemon process
Daemon=yes

the maximum time between client messages (seconds)
(this is a server-only option; the default is 86400 sec = 1 day

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 66

SetClientTimeLimit=1800

Only highest-level (alert) reports will be mailed immediately,
others will be queued. Here you can define, when the queue will
be flushed (Note: the queue is automatically flushed after
completing a file check).

maximum time till next mail (seconds)
SetMailTime=86400

maximum number of pending mails
SetMailNum=10

where to send mail to
SetMailAddress=root@localhost

mail relay host
SetMailRelay=relay.yourdomain.de

The binary. Setting the path will allow
samhain to check for modifications between
startup and exit.

SamhainPath=/usr/local/bin/yule

where to get time from
SetTimeServer=localhost

timer for time stamps
SetLoopTime=60

trusted users (root and the effective user are always trusted)
TrustedUser=bin

This is a sample registry entry for a client at host 'HOSTNAME'. This
entry
is valid for the default password.
You are STRONGLY ADVISED to reset te password (see the README) and
compute your own entries using 'samhain -P <password>'

Usually, HOSTNAME should be a fully qualified hostname, no numerical
address.
-- exception: if the client (samhain) cannot determine the
fully qualified hostname of its host,
the numerical address may be required.
You will know if you get a message like:
'BAD_CLIENT what.ever.it.is -- unregistered host'

First entry is for challenge/response, second one for SRP
authentication.

[Clients]

Client=HOSTNAME@00000000@C39F0EEFBC64E4A8BBF72349637CC07577F714B420B628
82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 67

Client=HOSTNAME@8F81BA58956F8F42@8932D08C49CA76BD843C51EDD1D6640510FA03
2A7A2403E572BBDA2E5C6B753991CF7E091141D20A2499C5CD3E14C1639D17482E14E15
48E5246ACF4E7193D524CDDAC9C9D6A9A36C596B4ECC68BEB0C5BB7082224946FC98E3A
DE214EA1343E2DA8DF4229D4D8572AD8679228928A787B6E5390D3A713102FFCC9D0B21
88C92
Client=chief.some-
domain.com@2A9AD1AD86F968A5@C8A4E520F57A98E06503CF61A1323CC9D5D12215048
E3CD680A1A119AC762514343FA38B46B04CCD08A37225347C8FC0109E5C9100A0DAE27E
F26F6832AAFB1648C6DEC9995B87B3770FECA4A6527E57414DC36C0BE5C343550A0FBA1
DE20B075CE80C5F8DB86983E79D6B6625CB62F0336C1293609E2819184A80FC36B74037
Client=skipper.some-
domain.com@FB87EE16A0DCCFA8@E7FBFF70CFB39DEEE747684EE39D294AD1EB826DC1E
14C8B1886CFD486D4515AE37FEAD5D68D22FC961F37DEF3FFD8BE7CFA7A8EDA8328411A
1AD53F7BC652B341640EB3255FF3EA8F5F3B851EB8D223CB4554F7A542D68D301DC4802
E29889E718B8FD8DCB91FD4EFE238100B22E2C125392C4EF1333A8BE4EE75DCF14046A
Client=schleicher.some-
domain.com@FB87EE16A0DCCFA8@E7FBFF70CFB39DEEE747684EE39D294AD1EB826DC1E
14C8B1886CFD486D4515AE37FEAD5D68D22FC961F37DEF3FFD8BE7CFA7A8EDA8328411A
1AD53F7BC652B341640EB3255FF3EA8F5F3B851EB8D223CB4554F7A542D68D301DC4802
E29889E718B8FD8DCB91FD4EFE238100B22E2C125392C4EF1333A8BE4EE75DCF14046A

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 68

Appendix C – Samhain Configuration File for ‘chief’

Since chief is the yule server, this configuration has been modified to report critical
events out-of-band via email.

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

FreeBSD Configuration file for samhain.

-- empty lines and lines starting with '#' are ignored
-- boolean options can be Y/N or T/F or 1/0
-- you can PGP clearsign this file -- samhain will check (if compiled
with support) or otherwise ignore the signature
-- CHECK mail address

To each log facility, you can assign a threshold severity. Only
reports with at least the threshold severity will be logged
to the respective facility (even further below).

SETUP for file system checking:
(i) There are several policies, each has its own section. Put files
into the section for the appropriate policy (see below).
(ii) To each policy, you can assign a severity (further below).
(iii) To each log facility, you can assign a threshold severity. Only
reports with at least the threshold severity will be logged
to the respective facility (even further below).

[Attributes]

for these files, only changes in permissions and ownership are
checked

file=/usr/compat/linux/etc
file=/usr/compat/linux/etc/ld.so.cache

dir=/var/mail
dir=/var/spool/lp/tmp
dir=/var/tmp
dir=/var/dt/tmp
dir=/tmp

[LogFiles]

for these files, changes in signature, timestamps, and size are
ignored

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 69

file=/var/run/utmp

[GrowingLogFiles]

for these files, changes in signature, timestamps, and increase in
size
are ignored

file=/var/log/wtmp
file=/var/log/messages
file=/var/log/maillog
file=/var/log/lastlog
file=/var/log/cron
file=/var/log/auth.log

[IgnoreAll]
for these files, no modifications are reported

dir=/usr/share/man
dir=/usr/share/games
dir=/usr/share/misc
dir=/usr/X11R6/man

[IgnoreNone]

for these files, all modifications (even access time) are reported
- you may create some interesting-looking file (like
/etc/safe_passwd),
just to watch whether someone will access it ...

[ReadOnly]
for these files, only access time is ignored

dir=/bin
dir=/boot
dir=3/etc
dir=/sbin
dir=1/stand
dir=/stand/etc
dir=/stand/modules
dir=/usr
dir=2/var/cron

file=/kernel
dir=/modules

dir=4/home/usr-local/
dir=4/home/local/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 70

[EventSeverity]
Here you can assign severities to policy violations.
If this severity exceeds the treshold of a log facility (see below),
a policy violation will be logged to that facility.

Severity for verification failures.

SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=crit
SeverityIgnoreNone=crit
SeverityAttributes=crit

We have a file in IgnoreAll that might or might not be present.
Setting the severity to 'info' prevents messages about deleted/new
file.

SeverityIgnoreAll=info

Files : file access problems
Dirs : directory access problems
Names : suspect (non-printable) characters in a pathname
SeverityFiles=crit
SeverityDirs=crit
SeverityNames=warn

[Log]
Set threshold severity for log facilities
Values: debug, info, notice, warn, mark, err, crit, alert, none.
'mark' is used for timestamps.

By default, everything equal to and above the threshold is logged.
The specifiers '*', '!', and '=' are interpreted as
'all', 'all but', and 'only', respectively (like syslogd(8) does,
at least on Linux).
MailSeverity=*
MailSeverity=!warn
MailSeverity==crit

MailSeverity=crit
#MailSeverity=none
PrintSeverity=none
##LogSeverity=warn
LogSeverity=none
SyslogSeverity=none
#SyslogSeverity=crit
#ExportSeverity=none
ExportSeverity=debug

Check the filesystem for SUID/SGID binaries
##[SuidCheck]
##every 24 hrs=86400
##SuidCheckActive=1
##SuidCheckInterval=86400

Directory to exclude

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 71

#SuidCheckExclude=/net/localhost

Limit on files per second

#SuidCheckFps=250

[Kernel]

Settings this to 1/true/yes will activate the check for loadable
kernel module rootkits (Linux only)

#KernelCheckActive=1
#KernelCheckInterval = 20

[Utmp]

0 to switch off, 1 to activate logging of login/logout events

##LoginCheckActive=0
LoginCheckActive=1

Severity for logins, multiple logins, logouts

SeverityLogin=info
SeverityLoginMulti=warn
SeverityLogout=info

interval for login/logout checks

LoginCheckInterval=60

[Misc]

whether to become a daemon process
(this is not honoured on database initialisation)

Daemon=yes

whether to test signature of files (init/check/none)
- if 'none', then we have to decide this on the command line -

ChecksumTest=check

Set nice level (-19 to 19, see 'man nice'),
and I/O limit (kilobytes per second) to reduce load on host

#SetNiceLevel=17
#SetIOLimit=500
SetNiceLevel=17
SetIOLimit=500

Custom format for message header

%S severity
%T timestamp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 72

%C class

%F source file
%L source line

MessageHeader="%S %T %F:%L "

the maximum time between client messages (seconds)
(this is a server-only option; the default is 86400 sec = 1 day

SetClientTimeLimit=1800

time till next file check (seconds) 900=15 mins, 7200=2hrs
SetFilecheckTime=7200

The default is 'TRUE' (= report only new policy violations).
Setting this to 'FALSE' will generate a report for any policy
violation (old and new ones) each time the daemon checks the file
system.

ReportOnlyOnce=FALSE

Only highest-level (alert) reports will be mailed immediately,
others will be queued. Here you can define, when the queue will
be flushed (Note: the queue is automatically flushed after
completing a file check).

maximum time till next mail (seconds) 86400=1day
SetMailTime=86400

maximum number of queued mails
SetMailNum=10

where to send mail to
#SetMailAddress=root@localhost
SetMailAddress=del_armstrong@yahoo.com

mail relay host
SetMailRelay=relay.yourdomain.de
SetMailRelay=pop.dnvr.qwest.net

Syslog: lets log to local2 not AUTHPRIV, since authlog is extensively
used by other daemons.
SyslogFacility=LOG_LOCAL2

The binary. Setting the path will allow
samhain to check for modifications between
startup and exit.

SamhainPath=/usr/local/sbin/samhain
SamhainPath=/usr/sbin/samhain

where to get time from
SetTimeServer=www.yourdomain.de

where to export logs to
SetLogServer=localhost

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 73

timer for time stamps
SetLoopTime=20

trusted users (root and the effective user are always trusted)
TrustedUser=bin

everything below is ignored
[EOF]

This would be the proper syntax for parts that should only be
included for certain hosts.
You may enclose anything in a @HOSTNAME/@end bracket, as long as the
result still has the proper syntax for the config file.
You may have any number of @HOSTNAME/@end brackets.
HOSTNAME should be the fully qualified 'official' name
(e.g. 'nixon.watergate.com', not 'nixon'), no aliases.
No IP number - except if samhain cannot determine the
fully qualified hostname.

@HOSTNAME
file=/foo/bar
@end

These are two examples for conditional inclusion/exclusion
of a machine based on the output from 'uname -srm'
$Linux:2.*.7:i666
file=/foo/bar3
$end

!$Linux:2.*.7:i686
file=/foo/bar2
$end

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (OpenBSD)
Comment: For info see http://www.gnupg.org

IDBB8QE+ra+pV9bf7NufV6IRAtp2AKCFJkkWKhYsK1rSYvh4HvSo2EA+/QCfUx8J
0lIIuc6UUvHJ18BMIlbFG0Y=
=537u
-----END PGP SIGNATURE-----

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 74

Appendix D – Samhain Configuration File for ‘skipper’

Notice that in this configuration files, old PGP signatures have been left in the file.
Allowing old signatures to ‘build up’ has no impact, other than poor aesthetics.

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

- -----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hash: SHA1

default config file for samhain
signature checking with the setup below takes 110 seconds on a 500MHz
Celeron

-- empty lines and lines starting with '#' are ignored
-- you can PGP clearsign this file -- samhain will check (if compiled
with support) or otherwise ignore the signature
-- CHECK mail address, log server IP address (if remote logging)

(i) There are several policies, each has its own section. Put files
into the section for the appropriate policy (see below).
(ii) To each policy, you can assign a severity (further below).
(iii) To each log facility, you can assign a threshold severity. Only
reports with at least the threshold severity will be logged
to the respective facility (even further below).

[Attributes]

for these files, only changes in permissions and ownership are
checked

file=/etc/mtab
file=/etc/ssh_random_seed
file=/etc/asound.conf
file=/etc/resolv.conf
file=/etc/localtime
file=/etc/ioctl.save
file=/etc

[LogFiles]

for these files, changes in signature, timestamps, and size are
ignored

file=/var/run/utmp
file=/etc/motd

This would be the proper syntax for parts that should only be
included for certain hosts.
You may enclose anything in a @HOSTNAME/@end bracket, as long as the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 75

result still has the proper syntax for the config file.
You may have any number of @HOSTNAME/@end brackets.
HOSTNAME should be the fully qualified 'official' name
(e.g. 'nixon.watergate.com', not 'nixon'). No aliases. No IP
number.

@HOSTNAME
file=/foo/bar
@end

[GrowingLogFiles]

for these files, changes in signature, timestamps, and increase in
size
are ignored

file=/var/log/warn
file=/var/log/messages
file=/var/log/wtmp
file=/var/log/faillog

[IgnoreAll]

for these files, no modifications are reported

file=/etc/resolv.conf.pcmcia.save

Added 4/20/03 - DA

dir=-1/usr/local/src

These files change every reboot, and are unlikely
to be of use to an attacker

file=/etc/issue.net
file=/etc/issue
file=/etc/HOSTNAME
file=/etc/aliases.db
file=/etc/mail/mailertable.db
file=/etc/mail/domaintable.db
file=/etc/mail/access.db
file=/etc/mail/virtusertable.db

[IgnoreNone]

for these files, all modifications (even access time) are reported
- you may create some interesting-looking file (like
/etc/safe_passwd),
just to watch whether someone will access it ...

[ReadOnly]

for these files, only access time is ignored

dir=/usr/bin
dir=/bin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 76

dir=/sbin
dir=/usr/sbin
dir=/lib
dir=3/etc
dir=/boot

Added 4/20/03 - DA

dir=4/usr/local
dir=3/usr/X11
dir=4/usr/lib

[EventSeverity]

Here you can assign severities to policy violations
if this severity exceeds the treshold of a log facility (see below),
a policy violation will be logged to that facility

severity for verification failures

SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=crit
SeverityIgnoreNone=crit
SeverityAttributes=crit

SeverityIgnoreAll=info

Files : file access problems
Dirs : directory access problems
Names : suspect (non-printable) characters in a pathname

SeverityFiles=crit
SeverityDirs=crit
SeverityNames=warn

[Log]
set threshold severity for log facilities
values: debug, info, notice, warn, mark, err, crit, alert, none.
'mark' is used for timestamps.

By default, everything equal to and above the threshold is logged.
The specifiers '*', '!', and '=' are interpreted as
'all', 'all but', and 'only', respectively (like syslogd(8) does,
at least on Linux).

MailSeverity=*
MailSeverity=!warn
MailSeverity==crit

MailSeverity=none
PrintSeverity=none
LogSeverity=none
SyslogSeverity=none
ExportSeverity=info

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 77

[Utmp]
0 to switch off, 1 to activate

LoginCheckActive=0

Severity for logins, mltiple logins, logouts

SeverityLogin=info
SeverityLoginMulti=warn
SeverityLogout=info

interval for login/logout checks

LoginCheckInterval=60

[Misc]
whether to become a daemon process
Daemon=yes

the maximum time between client messages (seconds)
(this is a log server-only option; the default is 86400 sec = 1 day

SetClientTimeLimit=1800

time till next file check (seconds)
SetFilecheckTime=600

Only highest-level (alert) reports will be mailed immediately,
others will be queued. Here you can define, when the queue will
be flushed (Note: the queue is automatically flushed after
completing a file check).

maximum time till next mail (seconds)
SetMailTime=86400

maximum number of pending mails
SetMailNum=10

where to send mail to
SetMailAddress=dela@gblx.net

mail relay host
SetMailRelay=relay.yourdomain.de
SetMailRelay=pop.dnvr.qwest.net

The binary. Setting the path will allow
samhain to check for modifications between
startup and exit.

SamhainPath=/usr/local/bin/samhain
SamhainPath=/usr/local/sbin/samhain

where to get time from
SetTimeServer=localhost

where to export logs to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 78

SetLogServer=localhost
SetLogServer=192.168.1.10

timer for time stamps
SetLoopTime=60

trusted users (root and the effective user are always trusted)
TrustedUser=bin

whether to test signature of files
- if 'none', then we have to decide this on the command line -

##ChecksumTest=check
ChecksumTest=none

everything below is ignored
[EOF]
- -----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (OpenBSD)
Comment: For info see http://www.gnupg.org

IDBB8QE+pDmDV9bf7NufV6IRAr7aAJ9LfSzetKZE9n+jk2r6+eu8zCXvWACeMaEZ
gFNz4kqhGTmXga6zYVagSl0=
=DwZJ
- -----END PGP SIGNATURE-----
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (OpenBSD)
Comment: For info see http://www.gnupg.org

IDBB8QE+q0yVV9bf7NufV6IRAm39AJ9tYAWDJ6G8tAdA1L7dvUpu3TLJlwCeIGxq
lbY8qtw0nFUkhBylBpza1IM=
=UD+S
-----END PGP SIGNATURE-----

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 79

Appendix E – Samhain Configuration File on ‘schleicher’

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

- -----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

- - -----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hash: SHA1

default config file for samhain
signature checking with the setup below takes 110 seconds on a 500MHz
Celeron

-- empty lines and lines starting with '#' are ignored
-- you can PGP clearsign this file -- samhain will check (if compiled
with support) or otherwise ignore the signature
-- CHECK mail address, log server IP address (if remote logging)

(i) There are several policies, each has its own section. Put files
into the section for the appropriate policy (see below).
(ii) To each policy, you can assign a severity (further below).
(iii) To each log facility, you can assign a threshold severity. Only
reports with at least the threshold severity will be logged
to the respective facility (even further below).

[Attributes]

for these files, only changes in permissions and ownership are
checked

file=/etc/mtab
file=/etc/ssh_random_seed
file=/etc/asound.conf
file=/etc/resolv.conf
file=/etc/localtime
file=/etc/ioctl.save
file=/etc

[LogFiles]

for these files, changes in signature, timestamps, and size are
ignored

file=/var/run/utmp
file=/etc/motd

This would be the proper syntax for parts that should only be
included for certain hosts.
You may enclose anything in a @HOSTNAME/@end bracket, as long as the
result still has the proper syntax for the config file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 80

You may have any number of @HOSTNAME/@end brackets.
HOSTNAME should be the fully qualified 'official' name
(e.g. 'nixon.watergate.com', not 'nixon'). No aliases. No IP
number.

@HOSTNAME
file=/foo/bar
@end

[GrowingLogFiles]

for these files, changes in signature, timestamps, and increase in
size
are ignored

file=/var/log/warn
file=/var/log/messages
file=/var/log/wtmp
file=/var/log/faillog

[IgnoreAll]

for these files, no modifications are reported

file=/etc/resolv.conf.pcmcia.save

Added 4/20/03 - DA

dir=-1/usr/local/src

These files change every reboot, and are unlikely
to be of use to an attacker

file=/etc/issue.net
file=/etc/issue
file=/etc/HOSTNAME
file=/etc/aliases.db
file=/etc/mail/mailertable.db
file=/etc/mail/domaintable.db
file=/etc/mail/access.db
file=/etc/mail/virtusertable.db

[IgnoreNone]

for these files, all modifications (even access time) are reported
- you may create some interesting-looking file (like
/etc/safe_passwd),
just to watch whether someone will access it ...

[ReadOnly]

for these files, only access time is ignored

dir=/usr/bin
dir=/bin
dir=/sbin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 81

dir=/usr/sbin
dir=/lib
dir=3/etc
dir=/boot

Added 4/20/03 - DA

dir=4/usr/local
dir=3/usr/X11
dir=4/usr/lib

[EventSeverity]

Here you can assign severities to policy violations
if this severity exceeds the treshold of a log facility (see below),
a policy violation will be logged to that facility

severity for verification failures

SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=crit
SeverityIgnoreNone=crit
SeverityAttributes=crit

SeverityIgnoreAll=info

Files : file access problems
Dirs : directory access problems
Names : suspect (non-printable) characters in a pathname

SeverityFiles=crit
SeverityDirs=crit
SeverityNames=warn

[Log]
set threshold severity for log facilities
values: debug, info, notice, warn, mark, err, crit, alert, none.
'mark' is used for timestamps.

By default, everything equal to and above the threshold is logged.
The specifiers '*', '!', and '=' are interpreted as
'all', 'all but', and 'only', respectively (like syslogd(8) does,
at least on Linux).

MailSeverity=*
MailSeverity=!warn
MailSeverity==crit

MailSeverity=none
PrintSeverity=none
LogSeverity=none
SyslogSeverity=none
ExportSeverity=info

[Kernel]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 82

Setings this to 1/true/yes will activate the check for loadable
kernel module rootkits (Linux only)

KernelCheckActive=0
KernelCheckInterval = 20

[Utmp]
0 to switch off, 1 to activate

LoginCheckActive=0

Severity for logins, mltiple logins, logouts

SeverityLogin=info
SeverityLoginMulti=warn
SeverityLogout=info

interval for login/logout checks

LoginCheckInterval=60

[Misc]
whether to become a daemon process
Daemon=yes

the maximum time between client messages (seconds)
(this is a log server-only option; the default is 86400 sec = 1 day

SetClientTimeLimit=1800

time till next file check (seconds)
SetFilecheckTime=600

Only highest-level (alert) reports will be mailed immediately,
others will be queued. Here you can define, when the queue will
be flushed (Note: the queue is automatically flushed after
completing a file check).

maximum time till next mail (seconds)
SetMailTime=86400

maximum number of pending mails
SetMailNum=10

where to send mail to
SetMailAddress=dela@gblx.net

mail relay host
SetMailRelay=relay.yourdomain.de
SetMailRelay=pop.dnvr.qwest.net

The binary. Setting the path will allow
samhain to check for modifications between
startup and exit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 83

SamhainPath=/usr/local/bin/samhain
SamhainPath=/usr/local/sbin/samhain

where to get time from
SetTimeServer=localhost

where to export logs to
SetLogServer=localhost
SetLogServer=192.168.1.10

timer for time stamps
SetLoopTime=60

trusted users (root and the effective user are always trusted)
TrustedUser=bin

whether to test signature of files
- if 'none', then we have to decide this on the command line -

##ChecksumTest=check
ChecksumTest=none

everything below is ignored
[EOF]
- - -----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (OpenBSD)
Comment: For info see http://www.gnupg.org

IDBB8QE+pDmDV9bf7NufV6IRAr7aAJ9LfSzetKZE9n+jk2r6+eu8zCXvWACeMaEZ
gFNz4kqhGTmXga6zYVagSl0=
=DwZJ
- - -----END PGP SIGNATURE-----
- -----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (OpenBSD)
Comment: For info see http://www.gnupg.org

IDBB8QE+q0yVV9bf7NufV6IRAm39AJ9tYAWDJ6G8tAdA1L7dvUpu3TLJlwCeIGxq
lbY8qtw0nFUkhBylBpza1IM=
=UD+S
- -----END PGP SIGNATURE-----
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (OpenBSD)
Comment: For info see http://www.gnupg.org

IDBB8QE+q2ToV9bf7NufV6IRAjf7AJ9sZdfv6BLKxC3iDb1mLSM+WdlhkgCeNPu+
YFwReelrpgUQviMfAgOXdxg=
=3Wg7
-----END PGP SIGNATURE-----

