
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

James Seddon
GIAC Certified UNIX Security Administrator (GCUX) Practical Assignment
Version 1.9

Forensic UNIX Initial Response Script and CDROM – Collect the
evidence that will be lost by disconnection or shutdown

Summary

 The first few minutes of an information security incident are often
the most critical. The initial response often dictates what actions are available
for the company down the road. Unfortunately, without preparation, you are
likely to limit your options and lose evidence you will wish you had saved.
Often the first actions management or the situation suggest will destroy
evidence that can never be recovered again. This paper aims to provide you
with the background and tools to prepare an initial response to the incident
that will give you the most options as the investigation continues. The script
was written for and using Red Hat Linux 8.0. However, many of the same
commands will work on other systems and the philosophy and procedures will
certainly apply to every system. The idea behind this paper is to be able to
quickly collect the information that will be lost if management orders the
compromised system to be shutdown or disconnected before a proper
forensic evaluation is completed. With that data easily and quickly captured,
you are free to follow the management decision and proceed with a more
detailed analysis later if appropriate.

Real World Example

 Let us start with an example from the real world. This example is
not intended to be a model or checklist of incident handling. Indeed, this is
NOT the way that I would do it again. It is merely intended to provide you with
an example situation that the script and CDROM in this paper would be well-
suited for. Indeed, it was the situation that prompted the thinking that led to
this paper.

I was working on very important system administrator stuff at my
office in San Diego when I got the phone call. It was a fairly tech-savvy user
at the branch office in Santa Clara. He reported that a partner company was
having trouble connecting to the Santa Clara Office FTP server through the
Internet. I began the usual troubleshooting. I asked if the FTP server was on.
He said it was. I then pinged the FTP server and it was responding, so I tried
to connect with a FTP client and was told that the maximum number of users
had already connected. That is when I started to feel funny. This FTP server
was only used for a handful partner companies. It was rare for even two
users to be connected at the same time.

 So I logged on to the server with telnet (it was an old installation
and did not have SSH installed). I had just gotten the shell prompt when I
was suddenly disconnected. A second attempt to login resulted in the same

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

disconnection. I had the user log on to the console and he was successful, so
we could at least get a prompt that way. While he was doing that, he reported
that there was an excessive amount of disk activity. Especially unusual when
it seemed no authorized users were connected to it.

 I reviewed the background and details about the server. Often the
background of a machine can give clues as to what might be possible. It had
been installed by one of the users (not the IT department) a few years ago. It
was running a default installation of Linux (Red Hat 5) that was several
versions out of date. It had never been patched or updated. It was exposed
to the Internet and was not protected by any firewall protection or anti-virus. It
had been scheduled for replacement for a long time and was not on a list of IT
department maintained servers.

 I now suspected that the machine had been compromised. The
version of Linux that it was running had several well-known vulnerabilities that
would allow someone to remotely take full control of the machine. As it was a
default installation, had never been patched, and was facing the Internet, it
seemed likely that someone scanning the Internet for vulnerable machines
had found it, compromised it, and was now using it for who knows what. The
other possibility was that there was a system problem that was eating up
system resources (causing the hard drive activity), and preventing remote
connections. I thought compromise was more likely. So what was the system
doing? Was it being used to attack other systems? Who was connected to
it?

 Now came the time to call my boss. I reported what was
happening and what I saw as our options. I told him Option 1 would be to try
to investigate what was happening, find out how the machine was
compromised, and what it was doing right now. Option 2 would be to take the
machine down, and wipe the disk clean. Then install a secure operating
system, protect it with a firewall, and keep it up to date. While we were
speaking, the FTP server kept churning away with multiple unknown people
connected to it. I knew that if we powered down the machine, we would lose
important evidence, but the longer it was left on, the more damage could be
caused. What would we do?

Many Questions in the First 5 Minutes

 The clock starts with the first sign of trouble. Something has
indicated that a system compromise may have occurred. The system logs
maybe showed tell-tail signs; mysterious files were appearing; the machine
was just behaving strangely; people were connecting to the machine that had
no business being connected.. You, as the first IT department representative
on scene, have several questions already.

 Is it real? This could be a false alarm. Authorized access or
system behavior that only looks like an intrusion? It could be a malfunction or
bug in the system that is causing the strange behavior. Is it unauthorized but
harmless? Is an employee storing a few music files temporarily before

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

burning them to a CDRW?

 What is happening? How did they gain access to the system?
Where is the security breach? On this machine or another one? What
exactly are they doing? Are they deleting files? Sharing files? Launching
attacks on other systems?

 Is harm being done to the machine as we stand here and think?
Are company secrets leaving by the second while we ask ourselves these
questions? Or are we looking at the echoes of an event that is now distant
history. Is our machine actively involved in attacking other hosts?

 Who is doing it? Company employee? Ex-employee?
Contractor? Stranger from the outside? A lone hacker or is a group at work
here? Not a human at all but some Internet worm or virus?

 Why are they doing it? Simple cyber joy riding? Using the
company's machine to attack other hosts? Setting up a base from which to
communicate and share files with other hackers? Is this a sophisticated
attacker supplying trade secrets to your competitor?

 What are we going to do about it? Nothing and hope it is not
serious? Quickly power down the system? Try to close the security hole?
Unplug the network cable? Notify upper management? Notify customers?
Reinstall everything? Try to figure out who did this? Or just stop the attack?
Try to criminally prosecute the offenders? Many people will need to be
involved in the decision. Management will have to decide if systems can be
taken down for analysis or if it is critical that systems remain up. Legal
counsel will have to decide if any laws or agreements require notification of
customers or partners. IS staff will have their recommendations on how to
close the security gap and recover the system.

All of these discussions and decisions will take more than a few
minutes to resolve and yet you must do something now. Often, there is great
pressure to hit one of the following panic buttons. Sometimes the pressure
comes from management wishing to stop the loss or the liability.

Panic Button Number 1: Pull the power plug on the system.
Panic Button Number 2: Pull the network cable out of the back.

 Either certainly may put a stop to whatever is happening on the
system. No more data will leave the system. File deletion may stop. If the
system is attacking other hosts, that will be stopped. It will also:

1.Alert the intruder that someone noticed.
2.Destroy evidence that may never be recovered such as:

a) Active network connections.
b) Processes that are running at the time and what

files they have open.
c) File modification/access dates.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

d) Some files themselves.
e) Anything in the swap or /proc space.

Panic Button Number 3: Start entering commands on the system.
Often this temptation is hard to resist. You have a natural urge to confirm
your suspicions before you invest any more time on it. You would hate to
sound the alarm, or spend more time away from the six other things you are
working on, if it is really nothing. However, entering commands on the system
without a plan may make it harder to determine what is going on. Also, as
there is some information that can only be retrieved once, you may not be in a
position to record the results of your commands in a manner that will allow
court or administrative action later. You do not want to do anything that will
limit your options later.

 Probably the biggest reason you do not want to just start entering
commands on a possibly compromised system is that you can not trust the
results the commands give you. One common tactic that UNIX hackers take
is to install a root kit as soon as they have compromised the system. A root
kit replaces system utilities like ps, or ls with trojanized versions. These
versions will give exactly the same results as the real utilities, with the
exception that they will hide the hacker’s activities. For example, a trojanized
netstat may show all network connections EXCEPT those coming from the
hacker's machine. A trojanized ps may show every process EXCEPT the
hackers keyboard logger. The trojanzied ls may show every file EXCEPT the
hackers password log. Thus, everything will look normal with no suspicious
activity.

 There are certainly more options besides these 3 panic buttons
that you could take during an intrusion. You might consider blocking the
intruders’ IP addresses at your firewall, assuming you could quickly determine
them. This has it’s own implications as you may be blocking legitimate
addresses if there’s spoofing involved. There also could be other logs you
could check; remote syslog servers, firewall logs, intrusion detection logs, etc.
There are many other options and a full discussion of incident handling could
(and does) fill volumes. This script is for the situation where the administrator
on scene does not know anything more than the system is likely compromised
and management wants it shutdown or unplugged to stop the damage. In this
case, there is not much time for analysis.

When thinking about what actions you might take initially, it pays
to think about what your ultimate goal might be. In their presentation on
“Investigating Computer Security” at Interop2002, Kevin Mandia and Chris
Prosise from Foundstone, Inc. offer four reasonable possibilities for response:

1. Ignore the incident.
2. Defend against further attacks by implementing technical

remedies. This would include things like applying a software
fix to close the security hole that allowed the compromise. It
might include reinstalling the operating system to make sure
the attackers have left no back doors. Perhaps something as

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

simple as adding a firewall rule might stop the attacks. The
point here is that no effort is made to closely determine what
damage was done by whom and when. Just fix the problem
and get back to work. This is the response I have most often
seen in the real world.

3. Defend against further attacks by implementing technical
remedies AND collecting evidence for criminal arrest or
civil remedies. This decision might be based on the amount of
damage done, or legal requirements to notify non-company
personnel.

4. Perform surveillance and counterintelligence data
gathering. In this case, you would not close the security hole
or try to stop the attackers. You would setup surveillance
methods and tools in order to gather as much information as
possible about who the attackers are and what they are doing.
The ultimate goal of which would be to prosecute or take other
remedies against them. The downside of course is that the
damage may continue while you watch.

 One problem is that you may not be able to determine in those
first few minutes how much damage has been done or how much information
has been lost. For instance, you may not discover until it is accessed days
later that critical data has been deleted or modified; data that you did not think
was compromised at first. Or you may not realize that your customers'
account numbers were compromised. So it may not be apparent at the
beginning that an investigation is warranted.

 Mandia and Prosise go on to say that whatever response or
actions you take in those first five minutes must:

1. Support responses 2, 3, and 4.
2. Be forensically sound.
3. Be simple and efficient.
4. Provide an accurate snapshot for decision makers.
5. Support civil, administrative, or criminal action.

 There is a lot to do and think about in those first few minutes.
Unfortunately, there is a lot of heat/pressure from the situation. As time
passes, more damage may be done to your company, more damage may be
done to the evidence, etc. The questions listed so far are going to take some
time to work through. Unfortunately, because of the potential of ongoing
damage or harm, there is often a great deal of pressure to hit one of the panic
buttons.

 Ideally, the company has developed an Incident Response (IR)
Plan. Putting this plan together would force the company to think through the
questions listed in this section in advance. Once the plan is in place, the
company already knows who needs to be notified, who is responsible for what
actions, where the company’s priorities are, etc. While the development of an
IR Plan is not the focus of this paper, it is vital for your company. There are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

many resources that can assist you in this process. One is a web-based
guide by the Carnegie Mellon Computer Emergency Response Team
Coordination Center. The URL is listed in the references.

So what do you do?

 The key thing is that you DO NOT want to do anything that would
limit your options down the road. In other words, you want your initial
response to support any follow-on action that management may decide to
take. Fortunately, if you plan on preserving everything to a level that will
stand up in a court, then you are ready for any eventuality.

 With some advance preparation, you will be able to capture the
volatile information that will be lost by disconnecting the network cable or
powering down the system. You will also capture it in a manner that will hold
up under the scrutiny of legal or administrative action. Once that volatile data
and evidence has been captured, you are free to power down the system and
decide what action to take next. You will not have closed any options, or
destroyed evidence that can never be recovered again. Often, the information
gathered in this initial response, will help you determine the extent of the
compromise.

First Response Script Strategies

 A good solution is to prepare a CDROM in advance of the
compromise. This CDROM will contain trusted versions of system utilities.
Versions that you know have not been compromised. Also on the CDROM is
a script that uses those utilities to gather the most volatile evidence to
floppies; the evidence that will be lost when you power down or disconnect
the system. At the first sign of compromise, you run the script on the
CDROM. Then you have much more freedom to shutdown the system and
take the time to decide what to do next. In addition, the script can give you
the initial assessment of how serious the compromise might be.

 The initial response CDROM will contain the following:

1. Shared libraries from a trusted source (if you do not use
statically linked tools). More about this later.

2. BASH shell from a trusted source.
3. System tools from a trusted source.
4. Initial response script using those tools.
5. MD5 checksums of the script. MD5 is an algorithm that can

parse any file, and generate an alphanumeric checksum or
“signature” of that file. A file that is different by even one
character will have a different signature.

The MD5 algorithm is described in Internet Engineering Task

Force Request for Comments (IETF RFC) 1321. There it says in the
executive summary:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The algorithm takes as input a message of arbitrary length
and produces as output a 128 -bit "fingerprint" or "message
digest" of the input. It is conjectured that it is
computationally infeasible to produce two messages having
the same message digest, or to produce any message having
a given prespecified target message digest.

 This allows you to prove at a later date (in court for example) that
the script you ran is the one you say you ran. It also helps you prove that
your evidence has not been tampered with by comparing the MD5 checksum,
or signature, generated when it was collected with the MD5 checksum
generated in court. When they match, you can be confident that the files are
the same.

 Any investigation also needs the following:

1. Floppies to hold the data generated by the script.
2. Note pad for taking notes.
3. Lockable box to hold notes/floppy as evidence.
4. Results of test runs of script against key systems before

compromise to provide baseline.
5. A printout of the script and a printout of the MD5 checksum.

Why a CDROM? There are lots of options for the location of the

script when you run it. You could put the script on a floppy or on a file server
and run it from the compromised machine over the network. So why use a
CDROM? Because it is:

1. A read-only format that will allow you to prove later what
script/commands were run.
2. Portable. Most modern systems have CDROM's.
3. Big enough to hold all shared libraries to allow you to establish
a trusted shell and run trusted programs.

Why a script? Once you have the CDROM with your tools, you

could just use it to start entering commands to figure out what is going on. So
why write a script in advance? A script provides you with:

1. Automatic documentation. You do not have to remember what
commands you entered or in what order. MD5 and read/only
media can prove you ran what you say you ran.
2. Fast results. The script can execute and record the evidence
much faster than you could by typing. So fast that perhaps the
most vigilant intruder will not be aware that someone is looking
until it is too late.
3. An easy-to-baseline toolkit. You can easily run the exact set of
commands multiple times per system to establish baselines from
which to compare.
4. A testable toolkit. You can thoroughly test the script in
advance. Once the bugs are worked out, you do not have to
worry about making a mistake in the heat of battle.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5. An initial response that does not require forensic expertise.
Since the script can be run with a single command, any end user
can run it. You can quickly gather the volatile evidence, then
shutdown the system without being on site (as long as each site
has a copy of the CD).

Why floppies? Why not just store the evidence on the system

itself? Because:

1. You want to avoid writing to the victim system. Anything you
write affects the modification times and could overwrite important
data.
2. They are portable. You can easily move them from system to
system.
3. They are easily controlled. You can lock them up, label them,
and even put the write-protect tab in effect.
4. You could burn the data to a CD when you are done for added
protection.

 While this paper is not about writing company policies, it is
important to mention the minimum requirements for this strategy to be
effective. At a minimum, you must set the following policies regarding
suspected compromise:

1. No more commands are entered on the system.
2. No more logins/connections to the system.
3. Only IT department personnel unplug/shutdown the network or
system.
4. Before system is unplugged or shut down, the initial response
script must be run.
5. Discussions with appropriate technical and management staff
will be held to discuss the next courses of action.

 The key part of this policy is that you must get the word out to the
users. Not just the usual memo in the mailboxes that no one reads, but
actually understood to the point that six months from now, when the
suspected compromise occurs, the user will remember not to shut down the
machine. One user or manager on scene that unplugs the network cable or
shuts down the system at the first sign of trouble will make all your advance
work useless.

 Now for the script where the actual work will be performed. You
must decide on what tools need to be run. The order of the commands is
important. You want to capture the most volatile evidence first, and then
move on to the less volatile. In fact, this article only focuses on the evidence
so volatile that it will be lost if you power down the system or disconnect the
network. It is also intended to help you get a better idea if there is an actual
compromise in progress. Who is connected and from where, what programs
are running, etc...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 This script is not the end of the investigation by any means. Much
work needs to be done after this script is run. To do a proper investigation,
you would have to account for each program running on the machine, do a
scan for backdoors or mysterious files, look for strange account creation,
check log files for evidence, etc. However, much of this work could be done
after powering down the system or doing a forensic duplication. As it will take
a long time to perform this investigation, you can take your time and do it
right. We are going to focus on the first few minutes, when you do not have
time to look anything up and have to do something fast before management
insists that the compromised machine be shutdown.

The importance of a trusted environment.

It was mentioned earlier that one of the reasons you would not
want to just start entering commands on a compromised system is that you
would not be able to trust the results. If a root kit has been installed, ps may
not list all processes; it may be hiding the hacker’s key logger. So all we need
to do is copy a trusted version of ps to our CDROM and we are done, right?
Unfortunately, it is not that easy. In order to have a trusted program, you
must have a trusted shell from which to run it, the trusted program itself, and
trusted versions of any shared libraries it is using.

 Common system calls are often made by several utilities in the
same ways. A common tactic programmers take when writing code, even
system utilities, is putting code common to more than one program in a
shared library. Then in the original program, all you need is a link to the
shared code. This brings several advantages. The first is that your programs
and utilities can be much smaller than if you included that common code in
each of them. Another advantage is that you can make changes to the
shared libraries to keep up with changes and improvements in the operating
system without recompiling the programs that use them.

 In reality, the link in the original program to the shared code is
really a link to a “linker” program. In Red Hat Linux 8.0, the linker program is
called ld-linux.so.2. This linker program checks versions and other services,
goes to the actual shared library and returns the code to the program that
asked for it. The path is hard-coded into programs that use it. While you will
be able to bring all the shared libraries that might be used on your CDROM,
the one thing you will not be able to specify to run from your trusted CDROM
is ld-linux.so.2. However, you could run a MD5 checksum against the ld-
linux.so.2 file on the system and compare it to a trusted version to ensure the
file has not been tampered with.

 The other solution to this is to use statically compiled utilities that
do not use any shared code. That way you can trust the whole program. Hal
Pomeranz has posted a page on statically linking programs you compile
under Solaris. This is helpful as Solaris does not include a compiler by
default. His page can be found here:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.deer-run.com/~hal/sol-static.txt

 In some cases, it will not be possible to use statically compiled
utilities. Either the source code is not available, or the system does not have
a complier installed. So how does one find out which, if any, shared libraries
a program uses? The command ldd lists which shared libraries are required
for the program specified. For instance, the command, “ldd /bin/ls” will show
you what shared libraries are required by /bin/ls. In addition, it will show you
the path to the specific shared library that will actually get used if the
command is executed. This will be useful to demonstrate that the trusted
shared libraries will be used rather than those on the compromised machine.

 So for each utility that your first response script is going to use,
you must have a trusted copy of any shared library that it uses. Fortunately,
all 15+ tools in this script only call eight shared libraries between them. It
turns out that most system utilities share a small set of shared libraries. It is
not hard to copy those eight shared libraries to the response CDROM.

 In the interest of exploring every possible area of exploitation, it
should be noted that the script is recording the evidence to a floppy attached
to the machine. If the machine is compromised and the intruder becomes
aware of your evidence collection, it is conceivable that he or she could
attempt to modify your evidence there. As the script completes in a relatively
short period of time, this risk may be low. One way to help mitigate this risk
might be to sign your evidence using PGP in addition to the MD5 checksum.
That capability would make a good addition to the script.

Finally, the Script

 What follows is a listing of each command (in bold) in the script
along with an explanation of why it was included, what evidence it is
collecting, and example output of the command (directly after the command
and in a different font). To obtain the output, I simply cut/pasted the contents
of the *.txt evidence file created by each command. The example output is
from the machine used to develop the script and is not a compromised
machine. As such, this would be a good example of using the script to test
and baseline a system. Keep in mind that this paper is not about forensic
analysis. There is not a lot of discussion on how to interpret the data
collected by this script. However, there is some discussion in explaining what
evidence each command collects and why it is important.

The first commands set the environment variables necessary to
ensure that the trusted versions of our shared libraries are used and not any
on the compromised system. It also sets the default path to be our CDROM
tools instead of system tools to ensure that only the trusted programs are run.
The LD_LIBRARY_PATH variable tells the linker program where to look for
the shared libraries before looking in the default location. This will let us
substitute trusted copies of the shared libraries instead of those on the
compromised system. After this environment is set, the only code that is run

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that is not on our trusted CDROM is the linker program ld-linux.so.2. This we
can verify has not been modified with a MD5 checksum.

#Set environment variables and establish trusted shell
PATH="/mnt/cdrom/bin"
LD_LIBRARY_PATH="/mnt/cdrom/lib"
export PATH
export LD_LIBRARY_PATH

 These first commands provide no output.

 The next line of the script records the date and time that we
started.

date > /mnt/floppy/startdate.txt
Output:
Tue Apr 8 14:38:56 PDT 2003

 Next we will record that we are operating in a trusted environment
by showing that our evidence floppies are initially empty. Otherwise someone
might make the argument that our evidence did not come from the
compromised system.

ls -al /mnt/floppy > /mnt/floppy/startdirempty.txt
Output:
total 11
drwxr-xr-x 2 root root 4096 Apr 8 14:38 .
drwxr-xr-x 4 root root 4096 Dec 1 08:40 ..

Now, in order to help prove that we are running only trusted code,

we record on our evidence floppies the environment variables that pertain. In
addition, we run the ldd command against our own trusted toolset on the
CDROM. The results of that command will show that only trusted shared
libraries are used.

echo $PATH > /mnt/floppy/path.txt
Output:
/mnt/cdrom/bin
echo $LD_LIBRARY_PATH > /mnt/floppy/libpath.txt
Output:
/mnt/cdrom/lib
ldd /mnt/cdrom/bin/* > /mnt/floppy/ldd.txt
Output:
/mnt/cdrom/bin/date:
 libpthread.so.0 => /mnt/cdrom/li b/libpthread.so.0 (0x40013000)
 librt.so.1 => /mnt/cdrom/lib/librt.so.1 (0x40044000)
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/echo:
 libc.so.6 => /mnt/cdrom/lib/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/finger:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/ifconfig:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/mnt/cdrom/bin/last:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/ldd:
 not a dynamic executable
/mnt/cdrom/bin/lddlibc4:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/ld-linux.so.2:
 statically linked
/mnt/cdrom/bin/ls:
 libtermcap.so.2 => /mnt/cdrom/lib/libtermcap.so .2 (0x40013000)
 libacl.so.1 => /mnt/cdrom/lib/lib acl.so.1 (0x40018000)
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 libattr.so.1 => /mnt/cdrom/lib/libattr .so.1 (0x4001e000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/lsof :
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/md5sum:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/more:
 libtermcap.so.2 => /mnt/cdrom/lib/libtermcap.so.2 (0x40013000)
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/netstat:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/ps:
 libproc.so.2.0.7 => /mnt/cdrom/lib/libproc.so.2. 0.7 (0x40013000)
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/rm:
 libacl.so.1 => /mnt/cdrom/lib/lib acl.so.1 (0x40013000)
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 libattr.so.1 => /mnt/cdrom/lib/libattr .so.1 (0x4001a000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/top:
 libproc.so.2.0.7 => /mnt/cdrom/lib/libproc.so.2.0. 7 (0x40013000)
 libncurses.so.5 => /mnt/cdrom/lib/libncurses.so.5 (0x40020000)
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)
/mnt/cdrom/bin/who:
 libc.so.6 => /mnt/cdrom/lib/libc. so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld -linux.so.2 (0x40000000)

 The output lists the binary (i.e. /mnt/cdrom/bin/who:) followed by a
listing of the libraries required (the files with “so” in the file name) and the
physical path to the library. This demonstrates that with the exception of ld-
linux.so as discussed above, all code that is running resides on the CDROM.

 We now record the MD5 checksum of our script. This will allow us
to prove later that the commands listed were the same as those actually run.

md5sum /mnt/cdrom/script > /mnt/floppy/scriptmd5.txt
Output:
c010087fb7e3aa5444a77f6587bdd6b7 script

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Now that we have established and demonstrated that we have a
trusted shell and are running trusted utilities, we can begin to collect evidence.
We begin by collecting the most volatile evidence first. We list information
about which processes are running. The ps command lists running
processes. The “a” option lists all processes, even those owned by other
users. The “u” option specifies a user-oriented format. The “x” option lists all
processes without a controlling terminal. The “w” option specifies wide output
which will not truncate the line if the information gets too long. This
combination should show us all the processes that are running.

ps -auxww > /mnt/floppy/ps.txt
Output:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 1336 480 ? S 12:20 0:04 init
root 2 0.0 0.0 0 0 ? SW 12:20 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SW 12:20 0:00 [kapmd]
root 4 0.0 0.0 0 0 ? SWN 12:20 0:00 [ksoftirqd_CPU0]
root 5 0.0 0.0 0 0 ? SW 12:20 0:00 [kswapd]
root 6 0.0 0.0 0 0 ? SW 12:20 0:00 [bdflush]
root 7 0.0 0.0 0 0 ? SW 12:20 0:00 [kupdated]
root 8 0.0 0.0 0 0 ? SW 12:21 0:00 [mdrecoveryd]
root 12 0.0 0.0 0 0 ? SW 12:21 0:00 [kjournald]
root 68 0.0 0.0 0 0 ? SW 12:21 0:00 [khubd]
root 161 0.0 0.0 0 0 ? SW 12:21 0:00 [kjournald]
root 407 0.0 0.1 1400 536 ? S 12:21 0:00 syslogd -m 0
root 411 0.0 0.1 1336 428 ? S 12:21 0:00 klogd -x
rpc 428 0.0 0.1 1484 532 ? S 12:21 0:00 portmap
rpcuser 447 0.0 0.2 1528 728 ? S 12:21 0:00 rpc.statd
root 503 0.0 0.2 1456 644 ? S 12:21 0:00 /sbin/cardmgr
root 541 0.0 0.1 1328 476 ? S 12:21 0:00 /usr/sbin/apmd -p 10 -w
5 -W -P /etc/sysconfig/apm-scripts/apmscript
root 630 0.0 0.4 3276 1468 ? S 12:22 0:00 /usr/sbin/sshd
root 677 0.0 0.2 2092 904 ? S 12:22 0:00 xinetd -stayalive -
reuse -pidfile /var/run/xinetd.pid
lp 691 0.0 0.3 4352 1072 ? S 12:22 0:00 lpd Waiting
root 711 0.0 0.7 5040 2268 ? S 12:22 0:00 sendmail: accepting
connections
smmsp 721 0.0 0.6 4856 2048 ? S 12:22 0:00 sendmail: Queue
runner@01:00:00 for /var/spool/clientmqueue
root 731 0.0 0.1 1372 428 ? S 12:22 0:00 gpm -t ps/2 -m
/dev/mouse
root 740 0.0 0.1 1512 612 ? S 12:22 0:00 crond
xfs 771 0.0 1.0 4532 3244 ? S 12:22 0:00 xfs -droppriv -daemon
daemon 789 0.0 0.1 1368 520 ? S 12:22 0:00 /usr/sbin/atd
root 798 0.0 0.1 1316 404 tty1 S 12:22 0:00 /sbin/mingetty tty1
root 799 0.0 0.1 1316 404 tty2 S 12:22 0:00 /sbin/mingetty tty2
root 800 0.0 0.1 1316 404 tty3 S 12:22 0:00 /sbin/mingetty tty3
root 801 0.0 0.1 1316 404 tty4 S 12:22 0:00 /sbin/mingetty tty4
root 802 0.0 0.1 1316 404 tty5 S 12:22 0:00 /sbin/mingetty tty5
root 803 0.0 0.1 1316 404 tty6 S 12:22 0:00 /sbin/mingetty tty6
root 804 0.0 0.9 12752 2936 ? S 12:22 0:00 /usr/bin/gdm-binary -
nodaemon
root 849 0.0 1.0 13472 3468 ? S 12:22 0:00 /usr/bin/gdm-binary -
nodaemon
root 850 18.7 2.8 19960 9256 ? S< 12:22 25:39 /usr/X11R6/bin/X :0 -
auth /var/gdm/:0.Xauth
root 859 0.0 2.5 16260 8100 ? S 12:22 0:00 /usr/bin/gnome-session
root 917 0.0 0.3 2900 992 ? S 12:22 0:00 /usr/bin/ssh-agent
/etc/X11/xinit/Xclients
root 928 0.0 1.3 7820 4376 ? S 12:22 0:01 /usr/libexec/gconfd-2 9
root 930 0.0 0.5 2880 1656 ? S 12:22 0:00 esd -terminate -nobeeps
-as 2 -spawnfd 13
root 939 0.0 0.6 5588 2200 ? S 12:22 0:00 /usr/libexec/bonobo-
activation-server --ac-activate --ior-output-fd=15
root 941 0.0 1.9 11724 6132 ? S 12:22 0:01 /usr/bin/metacity --sm-
client-id=default1
root 943 0.0 2.2 16024 7220 ? S 12:22 0:01 gnome-settings-daemon -
-oaf-activate-iid=OAFIID:GNOME_SettingsDaemon --oaf-ior-fd=12
root 947 0.0 0.3 2616 1268 ? S 12:22 0:00 fam
root 954 0.0 3.2 18020 10456 ? S 12:22 0:02 gnome-panel --sm-
client-id default2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

root 956 0.0 4.4 36232 14236 ? S 12:22 0:05 nautilus --no-default-
window --sm-client-id default3
root 958 0.3 1.7 14324 5700 ? S 12:22 0:31 magicdev --sm-client-id
default4
root 961 0.0 1.2 10444 3844 ? S 12:23 0:00 pam-panel-icon --sm-
client-id default0
root 963 0.6 3.9 21940 12596 ? S 12:23 0:56 /usr/bin/python
/usr/bin/rhn-applet-gui --sm-client-id default5
root 964 0.0 0.1 1364 476 ? S 12:23 0:00
/sbin/pam_timestamp_check -d root
root 972 4.8 3.0 18220 9612 ? S 12:34 6:01 /usr/bin/gnome-terminal
root 973 2.0 0.4 4212 1536 pts/0 S 12:34 0:04 bash
root 26590 0.0 0.4 4200 1512 pts/1 S 13:33 0:00 bash
root 27908 0.0 0.2 3396 736 pts/1 S 13:33 0:00 man ./grave-robber.1
root 27909 0.0 0.3 3812 964 pts/1 S 13:33 0:00 sh -c (cd
/home/shared/tct/tct-1.11/man/man1/./.. && (echo ".pl 1100i"; /bin/cat
'/home/shared/tct/tct-1.11/man/man1/./grave-robber.1'; echo; echo ".pl \n(nlu+10") |
/usr/bin/gtbl | /usr/bin/nroff -c -mandoc | /usr/bin/less -isr)
root 27910 0.0 0.3 3812 1012 pts/1 S 13:33 0:00 sh -c (cd
/home/shared/tct/tct-1.11/man/man1/./.. && (echo ".pl 1100i"; /bin/cat
'/home/shared/tct/tct-1.11/man/man1/./grave-robber.1'; echo; echo ".pl \n(nlu+10") |
/usr/bin/gtbl | /usr/bin/nroff -c -mandoc | /usr/bin/less -isr)
root 27915 0.0 0.1 1708 616 pts/1 S 13:33 0:00 /usr/bin/less -isr
root 2443 0.0 0.2 2740 772 pts/0 R 14:38 0:00 ps -auxww

 The “proc” directory tree is a virtual tree that contains information
about which processes are running. The Man Page Proc (5) says, “/proc is a
pseudo-filesystem which is used as an interface to kernel data structures
rather than reading and interpreting /dev/kmem.” A plethora of information
about processes can be found in this tree that can not be gleaned from a ps
listing. Under the /proc directory is a directory for each process with the
Process Identification (PID) as the name of the directory. In each of these
PID directories are multiple files that describe that process. There is a file
called “cmdline” that contains the exact command line used to launch the
process. A link called “cwd” is a link to the current working directory of the
process. A link called “exe” is a link to the executable file for the process.
Other detailed information can be found that will help determine exactly what
a process is doing and how it was launched. It can help you determine which
processes might have been started by an intruder to modify or monitor system
behavior.

 A great explanation of the /proc space is in the book “Running
LINUX” by Welsh, Dalheimer and Kaufman listed in the references on pages
147-149.

The first of the two commands does a recursive listing of the
“proc” tree to show all links and processes. The next command does a more
on each file to show the contents of each file. These commands (especially
the second one) could take a long time to complete and take up a lot of floppy
disk space to store the results. You may want to test this command a few
times before including it on your CDROM.

#ls -alR /proc > /mnt/floppy/ls -proc.txt
Output (Truncated to save space):
/proc:
total 4
dr-xr-xr-x 69 root root 0 Apr 8 05:20 .
drwxr-xr-x 21 root root 4096 Apr 8 14:50 ..
dr-xr-xr-x 3 root root 0 Apr 8 15:59 1
dr-xr-xr-x 3 root root 0 Apr 8 15:59 12
dr-xr-xr-x 3 root root 0 Apr 8 15:59 161
dr-xr-xr-x 3 root root 0 Apr 8 15:59 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

dr-xr-xr-x 3 root root 0 Apr 8 15:59 2461
dr-xr-xr-x 3 root root 0 Apr 8 15:59 2527
dr-xr-xr-x 3 root root 0 Apr 8 15:59 2616
/proc/2461:
total 0
dr-xr-xr-x 3 root root 0 Apr 8 15:59 .
dr-xr-xr-x 70 root root 0 Apr 8 05:20 ..
-r--r--r-- 1 root root 0 Apr 8 15:59 cmdline
lrwxrwxrwx 1 root root 0 Apr 8 15:59 cwd -> /home/shared/tct/tct-
1.11/man/man1
-r-------- 1 root root 0 Apr 8 15:59 environ
lrwxrwxrwx 1 root root 0 Apr 8 15:59 exe -> /usr/bin/gedit
dr-x------ 2 root root 0 Apr 8 15:59 fd
-r--r--r-- 1 root root 0 Apr 8 15:59 maps
-rw------- 1 root root 0 Apr 8 15:59 mem
-r--r--r-- 1 root root 0 Apr 8 15:59 mounts
lrwxrwxrwx 1 root root 0 Apr 8 15:59 root -> /
-r--r--r-- 1 root root 0 Apr 8 15:59 stat
-r--r--r-- 1 root root 0 Apr 8 15:59 statm
-r--r--r-- 1 root root 0 Apr 8 15:59 status
/proc/2461/fd:
total 0
dr-x------ 2 root root 0 Apr 8 15:59 .
dr-xr-xr-x 3 root root 0 Apr 8 15:59 ..
lrwx------ 1 root root 64 Apr 8 15:59 0 -> /dev/pts/1
lrwx------ 1 root root 64 Apr 8 15:59 1 -> /dev/pts/1
lrwx------ 1 root root 64 Apr 8 15:59 10 -> socket:[75927]
lrwx------ 1 root root 64 Apr 8 15:59 11 -> socket:[75930]
lrwx------ 1 root root 64 Apr 8 15:59 12 -> socket:[75932]
lrwx------ 1 root root 64 Apr 8 15:59 13 -> socket:[75935]
lrwx------ 1 root root 64 Apr 8 15:59 14 -> socket:[75939]

#more `find /proc` > /mnt/floppy/moreproc.txt
Output (Truncated to /proc/2461/cmdline to save space):
/proc/2461/cmdline:
 gedit

 The command lsof lists open files. The “d rtd” option tells it to list
by file descriptor type “rtd.” This lists processes that are running “chroot’d”
and what directory that are now rooted in.

lsof -d rtd > /mnt/floppy/lsof-rtd.txt
Output:
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
init 1 root rtd DIR 3,2 4096 2 /
keventd 2 root rtd DIR 3,2 4096 2 /
kapmd 3 root rtd DIR 3,2 4096 2 /
ksoftirqd 4 root rtd DIR 3,2 4096 2 /
kswapd 5 root rtd DIR 3,2 4096 2 /
bdflush 6 root rtd DIR 3,2 4096 2 /
kupdated 7 r oot rtd DIR 3,2 4096 2 /
mdrecover 8 root rtd DIR 3,2 4096 2 /
kjournald 12 root rtd DIR 3,2 4096 2 /
khubd 68 root rtd DIR 3,2 4096 2 /
kjournald 161 root rtd DIR 3,2 4096 2 /
syslogd 407 root rtd DIR 3,2 4096 2 /
klogd 411 root rtd DIR 3,2 4096 2 /
portmap 428 rpc rtd DIR 3,2 4096 2 /
rpc.statd 447 rpcuser rtd DIR 3,2 4096 2 /
cardmgr 503 root rtd DIR 3,2 4096 2 /
apmd 541 root rtd DIR 3,2 4096 2 /
sshd 630 root rtd DIR 3,2 4096 2 /
xinetd 677 root rtd DIR 3,2 4096 2 /
lpd 691 lp rtd DIR 3,2 4096 2 /
sendmail 711 root rtd DIR 3,2 4096 2 /

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sendmail 721 smmsp rtd DIR 3,2 4096 2 /
gpm 731 root rtd DIR 3,2 4096 2 /
crond 740 root rtd DIR 3,2 4096 2 /
xfs 771 xfs rtd DIR 3,2 4096 2 /
atd 789 daemon rtd DIR 3,2 4096 2 /
mingetty 798 root rtd DIR 3,2 4096 2 /
mingetty 799 root rtd DIR 3,2 4096 2 /
mingetty 800 root rtd DIR 3,2 4096 2 /
mingetty 801 root rtd DIR 3,2 4096 2 /
mingetty 802 root rtd DIR 3,2 4096 2 /
mingetty 803 root rtd DIR 3,2 4096 2 /
gdm-binar 804 root rtd DIR 3,2 4096 2 /
gdm-binar 849 root rtd DIR 3,2 4096 2 /
X 850 root rtd DIR 3,2 4096 2 /
gnome-ses 859 root rtd DIR 3,2 4096 2 /
ssh-agent 917 root rtd DIR 3,2 4096 2 /
gconfd-2 928 root rtd DIR 3,2 4096 2 /
esd 930 root rtd DIR 3,2 4096 2 /
bonobo-ac 939 root rtd DIR 3,2 4096 2 /
metacity 941 root rtd DIR 3,2 4096 2 /
gnome-set 943 root rtd DIR 3,2 4096 2 /
fam 947 root rtd DIR 3,2 4096 2 /
gnome-pan 954 root rtd D IR 3,2 4096 2 /
nautilus 956 root rtd DIR 3,2 4096 2 /
magicdev 958 root rtd DIR 3,2 4096 2 /
pam-panel 961 root rtd DIR 3,2 4096 2 /
rhn-apple 963 root rtd DIR 3,2 4096 2 /
pam_times 964 root rtd DIR 3,2 4096 2 /
nautilus 965 root rtd DIR 3,2 4096 2 /
nautilus 966 root rtd DIR 3,2 4096 2 /
nautilus 967 root rtd DIR 3,2 4096 2 /
nautilus 968 root rtd DIR 3,2 4096 2 /
gnome-ter 972 root rtd DIR 3,2 4096 2 /
bash 973 root rtd DIR 3,2 4096 2 /
bash 2397 root rtd DIR 3,2 4096 2 /
lsof 2444 root rtd DIR 3,2 4096 2 /
lsof 2445 root rtd DIR 3,2 4096 2 /
bash 26590 root rtd DIR 3,2 4096 2 /
man 27908 root rtd DIR 3,2 4096 2 /
sh 27909 root rtd DIR 3,2 4096 2 /
sh 27910 root rtd DIR 3,2 4096 2 /
less 27915 root rtd DIR 3,2 4096 2 /

 The top command lists processes in order of CPU usage. The “b”
option specifies batch mode so it does not accept command line input and the
“n1” option specifies one iteration then an exit. We just take a snapshot of
what processes are currently using the most CPU time. This may be helpful
in determining what is happening to the system.

top -b -n1 > /mnt/floppy/top.txt
Output:
 2:38pm up 2:18, 1 user, load average: 0.27, 0.21, 0.33
62 processes: 61 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 26.4% user, 5.3% system, 2.5% nice, 65.6% idle
Mem: 320080K av, 304700K used, 15380K free, 0K shrd, 9476K buff
Swap: 650152K av, 0K used, 650152K free 229932K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
 850 root 5 -10 17708 9256 3792 S < 3.8 2.8 25:39 X
 2446 root 15 0 1060 1060 828 R 2.8 0.3 0:00 top
 958 root 15 0 5704 5700 4800 S 1.9 1.7 0:31 magicdev

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1 root 15 0 480 480 428 S 0.0 0.1 0:04 init
 2 root 15 0 0 0 0 SW 0.0 0.0 0:00 keventd
 3 root 15 0 0 0 0 SW 0.0 0.0 0:00 kapmd
 4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 ksoftirqd_CPU0
 5 root 15 0 0 0 0 SW 0.0 0.0 0:00 kswapd
 6 root 25 0 0 0 0 SW 0.0 0.0 0:00 bdflush
 7 root 15 0 0 0 0 SW 0.0 0.0 0:00 kupdated
 8 root 24 0 0 0 0 SW 0.0 0.0 0:00 mdrecoveryd
 12 root 15 0 0 0 0 SW 0.0 0.0 0:00 kjournald
 68 root 16 0 0 0 0 SW 0.0 0.0 0:00 khubd
 161 root 15 0 0 0 0 SW 0.0 0.0 0:00 kjournald
 407 root 15 0 536 536 456 S 0.0 0.1 0:00 syslogd
 411 root 15 0 428 428 376 S 0.0 0.1 0:00 klogd
 428 rpc 15 0 532 532 460 S 0.0 0.1 0:00 portmap
 447 rpcuser 16 0 728 728 640 S 0.0 0.2 0:00 rpc.statd
 503 root 15 0 644 644 488 S 0.0 0.2 0:00 cardmgr
 541 root 15 0 476 476 428 S 0.0 0.1 0:00 apmd
 630 root 17 0 1468 1468 1224 S 0.0 0.4 0:00 sshd
 677 root 15 0 904 904 772 S 0.0 0.2 0:00 xinetd
 691 lp 15 0 1072 1072 924 S 0.0 0.3 0:00 lpd
 711 root 15 0 2268 2268 1664 S 0.0 0.7 0:00 sendmail
 721 smmsp 15 0 2052 2048 1560 S 0.0 0.6 0:00 sendmail
 731 root 15 0 428 428 380 S 0.0 0.1 0:00 gpm
 740 root 15 0 612 612 540 S 0.0 0.1 0:00 crond
 771 xfs 15 0 3244 3244 884 S 0.0 1.0 0:00 xfs
 789 daemon 15 0 520 520 464 S 0.0 0.1 0:00 atd
 798 root 15 0 404 404 356 S 0.0 0.1 0:00 mingetty
 799 root 15 0 404 404 356 S 0.0 0.1 0:00 mingetty
 800 root 15 0 404 404 356 S 0.0 0.1 0:00 mingetty
 801 root 15 0 404 404 356 S 0.0 0.1 0:00 mingetty
 802 root 15 0 404 404 356 S 0.0 0.1 0:00 mingetty
 803 root 15 0 404 404 356 S 0.0 0.1 0:00 mingetty
 804 root 15 0 2936 2936 2816 S 0.0 0.9 0:00 gdm-binary
 859 root 15 0 8104 8100 6212 S 0.0 2.5 0:00 gnome-session
 917 root 15 0 992 992 800 S 0.0 0.3 0:00 ssh-agent
 928 root 15 0 4376 4376 1908 S 0.0 1.3 0:01 gconfd-2
 930 root 15 0 1656 1656 368 S 0.0 0.5 0:00 esd
 939 root 15 0 2200 2200 1804 S 0.0 0.6 0:00 bonobo-activati
 941 root 15 0 6132 6132 5060 S 0.0 1.9 0:01 metacity
 943 root 15 0 7224 7220 5732 S 0.0 2.2 0:01 gnome-settings-
 947 root 15 0 1268 1268 1040 S 0.0 0.3 0:00 fam
 954 root 15 0 10460 10M 8124 S 0.0 3.2 0:02 gnome-panel
 956 root 15 0 14240 13M 9440 S 0.0 4.4 0:05 nautilus
 961 root 15 0 3844 3844 3240 S 0.0 1.2 0:00 pam-panel-icon
 963 root 15 0 12596 12M 8576 S 0.0 3.9 0:56 rhn-applet-gui
 964 root 15 0 476 476 416 S 0.0 0.1 0:00 pam_timestamp_c
 972 root 15 0 9616 9612 6764 S 0.0 3.0 6:01 gnome-terminal
 973 root 15 0 1536 1536 1356 S 0.0 0.4 0:04 bash
26590 root 15 0 1512 1512 1152 S 0.0 0.4 0:00 bash
27908 root 16 0 736 736 448 S 0.0 0.2 0:00 man
27909 root 17 0 964 964 888 S 0.0 0.3 0:00 sh
27915 root 15 0 616 616 500 S 0.0 0.1 0:00 less

 Having captured information about the currently running
processes that will be lost with a reboot or power-down, we move on to the
next volatile set of information; the network connections.

 The netstat command lists network connections. The “a” option
specifies both active connections and those ports that are listening or open for
a connection. This can often be a superb clue as to whether or not back
doors have been installed. The “p” option (not supported by Solaris or a few
other Unix versions) will list which processes are holding the ports open. This
can be the clue to identify which process is a backdoor. The “inet” option
specifies raw, udp, and tcp socket information.

netstat -ap --inet > /mnt/floppy/netstat.txt
Output:
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tcp 0 0 *:32768 *:* LISTEN 447/rpc.statd
tcp 0 0 localhost.localdo:32769 *:* LISTEN 677/xinetd
tcp 0 0 *:printer *:* LISTEN 691/lpd Waiting
tcp 0 0 *:sunrpc *:* LISTEN 428/portmap
tcp 0 0 *:x11 *:* LISTEN 850/X
tcp 0 0 *:ssh *:* LISTEN 630/sshd
tcp 0 0 localhost.localdom:smtp *:* LISTEN 711/sendmail: accep
udp 0 0 *:32768 *:* 447/rpc.statd
udp 0 0 *:sunrpc *:* 428/portmap

 This next command will also list which processes are holding
open which network ports. This can be useful on systems that do not support
the “p” option of netstat. The lsof command lists open files and the “i” option
specifies the files that designate open network connections. The “+M” option
will list any portmapping associated with the open ports. This can help
explain what the ports are used for and whether or not they should be of any
concern.

lsof +M -i > /mnt/floppy/lsof-Mi.txt
Ouput:
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 428 rpc 3u IPv4 828 UDP *:sunrpc[portmapper]
portmap 428 rpc 4u IPv4 829 TCP *:sunrpc[portmapper] (LISTEN)
rpc.statd 447 rpcuser 4u IPv4 896 UDP *:32768[status]
rpc.statd 447 rpcuser 6u IPv4 899 TCP *:32768[status] (LISTEN)
sshd 630 root 3u IPv4 1358 TCP *:ssh (LISTEN)
xinetd 677 root 5u IPv4 1420 TCP localhost.localdomain:32769[sgi_fam] (LISTEN)
lpd 691 lp 6u IPv4 1455 TCP *:printer (LISTEN)
sendmail 711 root 4u IPv4 1517 TCP localhost.localdomain:smtp (LISTEN)
X 850 root 1u IPv4 1706 TCP *:x11 (LISTEN)
fam 947 root 0u IPv4 1420 TCP localhost.localdomain:32769[sgi_fam] (LISTEN)
fam 947 root 1u IPv4 1420 TCP localhost. localdomain:32769[sgi_fam] (LISTEN)
fam 947 root 2u IPv4 1420 TCP localhost.localdomain:32769[sgi_fam] (LISTEN)

 The ifconfig command will list the configuration of all network
interfaces. This could be useful in determining if additional virtual interfaces
have been set up by any hackers or are listening on unexpected IP
addresses. Additionally, the ifconfig command will show the “PROMISC”
flag. This would indicate that the interface is in promiscuous mode, which
would be used to sniff network traffic (i.e. for passwords).

ifconfig > /mnt/floppy/ifconfig.txt
Output:
eth0 Link encap:Ethernet HWaddr 00:00:86:3D:18:87
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTI CAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7 errors:0 dropped:0 overrun s:0 carrier:4
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 b) TX bytes:294 (294.0 b)
 Interrupt:3 Base address:0x300

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:139 errors:0 dropped:0 overruns:0 frame:0
 TX packets:139 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:9448 (9.2 Kb) TX bytes:9448 (9.2 Kb)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Now that we have captured some information about the network
connections and setup that will be lost after reboot, let us take a look at who
might be on the system. The information about who is currently using the
system will definitely be lost if we reboot.

The who command lists the people currently logged on to the
system. The "H" option specifies to include the column titles in the output to
make it easier to read and the "i" option specifies to include the idle time for
the users. This will help us decide if the user listed is just associated with a
crashed program or is actually active on the system.

who –Hi > /mnt/floppy/who.txt
Output:
root :0 Apr 8 12:22
root
users=1

 The finger command also displays information about the system’s
users but it is not limited to those who are currently logged in. It will list home
directories and other information for the user as well. While this may not give
us a lot of information about what may be currently happening on the system,
it will help us identify any new or bogus user accounts that may have been
created.

finger -ls > /mnt/floppy/finger.txt
Output:
Login: root Name: root
Directory: /root Shell: /bin/bash
On since Tue Apr 8 12:22 (PDT) on :0 (messages off)
Mail last read Tue Apr 8 13:53 2003 (PDT)
No Plan.

 The last command will give us some information on who has
recently been logged on to the system. From the man page last (1), “Last
searches back through the file /var/log/wtmp … and displays a list of all
users logged in (and out) since that file was created.” The “a” option specifies
displaying the hostname of the user in case it was a remote login, the “i”
option specifies displaying the IP address of any remote hosts users logged in
from, the “d” option specifies translating the IP address back into a hostname,
and the “x” option will display system shutdowns and run level changes. The
lastb command is the same but looks in /var/log/btmp to display information
about failed login attempts. Note that the administrator would have needed to
create /var/log/btmp to log this info. While this information will be useful, it
must be taken with a grain of salt. Since the two commands read files that
reside on the system, the intruder may have modified those files. However, if
the files have not been modified, which would take a fairly sophisticated root
kit or hacker, then this information can be invaluable.

last -aidx > /mnt/floppy/last.txt
Output:
wtmp begins Tue Apr 8 13:28:40 2003
lastb –aidx > /mnt/floppy/lastb.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Output:
No such file or directory.

 The script has collected information about the processes that are
running, the network connections, and the system’s users. The last evidence
collecting command in the script is the lsof command. This command lists
open files on the system. The first command with the “+L1” option tells lsof to
list open files that have a link count less than one. In Unix-type operating
systems, you can have multiple links to the same file. Each link will increase
the link count. When you delete all links to the file, the link count becomes
zero (less than one). This search is really only useful for finding one thing. A
hacker might have a program logging information (keystrokes for example).
After the program opens the file for logging, the hacker removes the last link
to the file (e.g. rm logfile). Since a program has the file open for writing, it
still exists on the system with a link count of zero. Its data is still accessible
but the file will not be shown in any listing of files. The “+L1” option for lsof
will find it. I would examine closely any results that this command gives.

lsof +L1 > /mnt/floppy/lsofL1.txt
Output:
COMMAND PID USER FD TYPE DEVICE SIZE NLINK NODE NAME
cardmgr 503 root 1u CHR 254,0 0 376309 /var/lib/pcmcia/cm-503-0
(deleted)
cardmgr 503 root 2u CHR 254,1 0 376310 /var/lib/pcmcia/cm-503-1
(deleted)
X 850 root mem DEL 0,4 0 131072 /SYSV00000000
X 850 root mem DEL 0,4 0 163841 /SYSV00000000
X 850 root mem DEL 0,4 0 196610 /SYSV00000000
X 850 root mem DEL 0,4 0 229379 /SYSV00000000
X 850 root mem DEL 0,4 0 262148 /SYSV00000000
X 850 root mem DEL 0,4 0 294917 /SYSV00000000
X 850 root mem DEL 0,4 0 327686 /SYSV00000000
X 850 root mem DEL 0,4 0 360455 /SYSV00000000
X 850 root mem DEL 0,4 0 393224 /SYSV00000000
X 850 root mem DEL 0,4 0 458761 /SYSV00000000
gnome-ses 859 root mem DEL 0,4 0 131072 /SYSV00000000
gnome-ses 859 root mem DEL 0,4 0 163841 /SYSV00000000
metacity 941 root mem DEL 0,4 0 229379 /SYSV00000000
gnome-set 943 root mem DEL 0,4 0 196610 /SYSV00000000
gnome-pan 954 root mem DEL 0,4 0 327686 /SYSV00000000
nautilus 956 root mem DEL 0,4 0 262148 /SYSV00000000
nautilus 956 root mem DEL 0,4 0 294917 /SYSV00000000
rhn-apple 963 root mem DEL 0,4 0 360455 /SYSV00000000
nautilus 965 root mem DEL 0,4 0 262148 /SYSV00000000
nautilus 965 root mem DEL 0,4 0 294917 /SYSV00000000
nautilus 966 root mem DEL 0,4 0 262148 /SYSV00000000
nautilus 966 root mem DEL 0,4 0 294917 /SYSV00000000
nautilus 967 root mem DEL 0,4 0 262148 /SYSV00000000
nautilus 967 root mem DEL 0,4 0 294917 /SYSV00000000
nautilus 968 root mem DEL 0,4 0 262148 /SYSV00000000
nautilus 968 root mem DEL 0,4 0 294917 /SYSV00000000
gnome-ter 972 root mem DEL 0,4 0 393224 /SYSV00000000
gedit 2461 root mem DEL 0,4 0 458761 /SYSV00000000

 As you can see, there are a few listed on the machine. Most
appear to be temp files in use by programs like gedit and nautilus. If there
were anything suspicious, there are other tools available that may help you
identify what is stored at those inodes (see TCT at the end of the paper).

The second lsof command simply lists all open files opened by all
active processes. This information will be useful to identify not only what is
running on the system but also what those processes might be doing. It

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

would help you identify log files and other files that might give you information
about what the intruders might be doing.

lsof > /mnt/floppy/lsof.txt
Output (note, the actual output was 83 pages long, this is a sample):
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
init 1 root cwd DIR 3,2 4096 2 /
init 1 root rtd DIR 3,2 4096 2 /
init 1 root txt REG 3,2 33960 146801 /sbin/init
init 1 root mem REG 3,2 87341 162606 /lib/ld-2.2.93.so
init 1 root mem REG 3,2 1395734 634002 /lib/i686/libc-
2.2.93.so
init 1 root 10u FIFO 3,2 65055 /dev/initctl
keventd 2 root cwd DIR 3,2 4096 2 /
keventd 2 root rtd DIR 3,2 4096 2 /
keventd 2 root 10u FIFO 3,2 65055 /dev/initctl
kapmd 3 root cwd DIR 3,2 4096 2 /
kapmd 3 root rtd DIR 3,2 4096 2 /
kapmd 3 root 10u FIFO 3,2 65055 /dev/initctl
ksoftirqd 4 root cwd DIR 3,2 4096 2 /
ksoftirqd 4 root rtd DIR 3,2 4096 2 /
ksoftirqd 4 root 10u FIFO 3,2 65055 /dev/initctl
kswapd 5 root cwd DIR 3,2 4096 2 /
kswapd 5 root rtd DIR 3,2 4096 2 /
kswapd 5 root 10u FIFO 3,2 65055 /dev/initctl
bdflush 6 root cwd DIR 3,2 4096 2 /
bdflush 6 root rtd DIR 3,2 4096 2 /
bdflush 6 root 10u FIFO 3,2 65055 /dev/initctl
kupdated 7 root cwd DIR 3,2 4096 2 /
kupdated 7 root rtd DIR 3,2 4096 2 /
kupdated 7 root 10u FIFO 3,2 65055 /dev/initctl

 Now that the script is done collecting evidence, it cleans up a bit.
It records the date and time at which it stopped collecting evidence. Then the
more command appends all of the files containing the results of the
commands into one big file called results.txt. This will make it easy to keep all
the evidence together. Next the script generates a md5 checksum of the
results.txt file so we can ensure and prove later that the evidence has not
been modified since it was gathered.

date > /mnt/floppy/stopdate.txt
Output:
Tue Apr 8 14:38:59 PDT 2003
more *.txt > /mnt/floppy/results.txt
Output:
This file merely contains all of the above listed output in one easy
to use file. It is not repeated here.
md5sum results.txt > /mnt/floppy/resultsmd5.txt
e9b9845d95ab4f69becb3d8ddcdb3b d3 results.txt

Script Usage

 Due to the preparation work, use of the script is fairly easy. The
first thing needed is to mount the response CDROM and the evidence
floppies. This can be done with the following commands:

mount /dev/cdrom /mnt/cdrom
mount /dev/fd0 /mnt/floppy

 Next you run the trusted shell on the CDROM:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/mnt/cdrom/bash

 Lastly, you run the script itself:

/mnt/cdrom/script

 That is all that is needed. The script does the rest. Once the
script has completed, you handle the evidence floppies in a forensically
controlled manner and proceed with the investigation. The great advantage
you have now, is that having collected evidence about what processes are
running, who was logged on and connected to the system, and what files
were open, you stand to lose much less if you disconnect or power down the
system. You are in a much better position to respond to management or
operational demands. You have not limited your future actions.

 The original intent was to write a script that could be used across
Unix operating systems and platforms (Solaris, BSD, Red Hat...). However,
there are some difficulties in that goal. The first is that the lsof command
(used three times in the script) uses very basic system calls. Therefore, lsof
would likely need to be compiled for every operating system and platform that
it needs to be used on. This alone would create a need for a separate trusted
CDROM for each system. Another difference between operating systems is
the LD_LIBRARY__PATH variable. The name of the appropriate variable
changes from system type to system type.

One way to approach this would be to have the script use the
results of a uname command (be sure to include a trusted uname and any
required libraries on your CDROM) to determine what system it’s running on.
Then the script could access the appropriate bin and lib directories on your
CDROM where you had the appropriate tools for each system. As written, the
script is very close to being portable. Certainly the steps and philosophy
would apply to any system.

Back to the Real World Example

My boss asked how long it would take to do an investigation and
how long it would take to wipe the disk clean and install a secure operating
system. I told him it would take several hours to begin to investigate what
was happening. We would need to do some research, gather the tools
together, and likely fly an IT department person to the branch office to do the
investigation. I then told him I could get the disk cleaned, a new operating
system installed, secured, and back in production in 4 hours or so. We
discussed how critical the data on the FTP server was itself. My boss's exact
words were “I don't want to be a cop here...” I had the user shutdown the
machine. I then talked him through wiping the disk clean, and installing the
latest version of Red Hat Linux on a different IP address. I then connected
remotely with SSH and further secured the machine. It was added to the
servers that the IT department is responsible for maintaining.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 If I had to guess, I would say it was probably being used to share
files between the hacker and his friends that had compromised the machine.
However, we will never know. It sure would be good to know if the attacker
was local to our corporation or indeed a stranger on the Internet. It would be
nice to know if it was being used in attacks on other machines. If I had the
initial response CDROM ready, I could have had better answers for my boss
in a few minutes about what was happening and whether a further
investigation was needed.

The script in its entirety

#Set environment variables and establish trusted shell
PATH="/mnt/cdrom/bin"
LD_LIBRARY_PATH="/mnt/cdrom/lib"
export PATH
export LD_LIBRARY_PATH

date > startdate.txt

ls -al /mnt/floppy > /mnt/floppy/startdirempty.txt
echo $PATH > /mnt/floppy/path.txt
echo $LD_LIBRARY_PATH > /mnt/floppy/libpath.txt
ldd /mnt/cdrom/bin/* > /mnt/floppy/ldd.txt
md5sum /mnt/cdrom/script > /mnt/floppy/scriptmd5.txt

ps -auxww > /mnt/floppy/ps.txt
#ls -alR /proc > /mnt/floppy/ls-proc.txt
#more `find /proc` > /mnt/floppy/moreproc.txt
lsof -d rtd > /mnt/floppy/lsof-rtd.txt
top -b -n1 > /mnt/floppy/top.txt

netstat -ap --inet > /mnt/floppy/netstat.txt
lsof +M -i > /mnt/floppy/lsof-Mi.txt
ifconfig > /mnt/floppy/ifconfig.t xt
who -Hi > /mnt/floppy/who.txt
finger -ls > /mnt/floppy/finger.txt
last -aidx > /mnt/floppy/last.txt
lastb -aidx > /mnt/floppy/lastb.txt

lsof > /mnt/floppy/lsof.txt

date > /mnt/floppy/stopdate.txt

more *.txt > /mnt/floppy/results.txt
md5sum results.txt > /mnt/floppy/resultsmd5.txt

Structure of CDROM

Note: “Trusted” versions ideally come from a freshly installed system or from
the source media. There is some latitude, however. You may decide that a
tool compiled from the source can be trusted. Or you could designate tools
obtained directly from software vendors as trusted. However, since there
have been many cases of web sites distributing trojanized software (due to
the site being hacked), you have to be careful with blindly trusting a site.
Many sites will include an MD5 checksum provided by the developer to prove
that it is a trusted version. The end result is that you must be able to prove (in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

court perhaps) that the versions on your CDROM can be trusted over those
on the compromised system. Perhaps the easiest way to create this CDROM,
would be to follow the following steps:

1. Install Red Hat 8.0 on an absolutely clean system. The steps
involved in installing Red Hat is beyond the scope of this
paper. Red Hat’s web site has detailed instructions. Use
either a packaged version of Red Hat purchased in a store or
a downloaded version that was verified using the MD5
checksum provided by Red Hat. This will ensure that the
system is clean and has nothing but trusted code.

2. Create a directory on the system called /CDTOBURN.
3. Create the directory structure listed below and copy the listed

files to them.
4. If the Red Hat system does not have a CDRW, just copy the

CDTOBURN directory to a floppy or over the network to a
machine that does and burn it. Then the CD should be ready
to go!

The root directory of the CDROM contains:

• bash (a trusted bash shell executable file)
• script (a file containing the script listed above)
• bin (a directory containing the trusted versions of our tools’ binaries)
• lib (a directory containing the trusted versions of the shared libraries

required by our tools)

The bin directory contains the following trusted versions of the tools:

• date
• echo
• finger
• ifconfig
• last
• ldd
• lddlibc4
• ls
• lsof
• md5sum
• more
• netstat
• ps
• rm
• top
• who

The lib directory contains the following trusted versions of shared libraries:

• libacl.so.1
• libattr.so.1
• libc.so.6
• libncurses.so.5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• libproc.so.2.0.7
• libpthread.so.0
• librt.so.1
• libtermcap.so.2

The Coroner's Toolkit (TCT)

 The TCT can be found on the web at the URL listed with the
references. On that page it describes it as “a collection of programs by Dan
Farmer and Wietse Venema for a post-mortem analysis of a UNIX system
after break-in.” Like this script, it attempts to gather the evidence “in order of
volatility” as Farmer and Venema say. As their toolset has some of the same
goals as the script presented in this paper, a comparison is in order. Here are
a few differences between the TCT and this script.

 TCT has a much broader scope than this script. While this script
is focusing on collecting only that data that will be lost if you power down or
disconnect the system, TCT collects much more information. TCT collects
information about the file systems and how much disk space is free,
information about free inodes, the MD5 checksum of all files, the bash history
of users, and much more. Some of this information would be retrievable after
you shutdown or disconnect the system. This paper only tries to collect
evidence that would be lost.

 By its own admission TCT is a complex set of tools. This paper
was designed to be relatively straight forward and easy to use and follow.
Also, the vast majority of the evidence collection in TCT is done by a program
called “grave-robber.” It is not easy to customize which commands run in
what order and with what options, etc... The script in this paper is much
easier to modify as all the commands are out in the open for everyone to see.
This may make modification to a specific environment easier.

 TCT is very much like the script in this paper in that it takes into
account the volatility of the data it is collecting. It also uses MD5 to generate
checksums to ensure that the evidence has not been tampered with since
collection. It records the timestamp information as it acts.

 While there is definitely some overlap, the focus of the two tools is
different. This paper only focuses on trying to collect the data that will be lost
if management orders a shutdown/disconnection of the system. A more
detailed analysis takes more time and more tools and can be done later. TCT
is a great toolset and deserves a look.

List of References

• Acheson, Steve. Green, John. Pomeranz, Hal. Track 6 - UNIX
Security Tools. 6.3 Topics in UNIX Security. Bethesda: SANS
Institute, 2002. Course Materials.

• Pomeranz, Hal. Track 6 - UNIX Security Tools. 6.2 UNIX Security
Tools. Bethesda: SANS Institute, 2002. Course Materials.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Mandia, Kevin. Prosise, Chris. Investigating Computer Security. Las
Vegas: Seminar at Interop2002, May 2002. Seminar Materials.

• “Creating a Computer Security Incident Response Team: A Process for
Getting Started.” Carnegie Mellon CERT Coordination Center. URL:
http://www.cert.org/csirts/Creating-A-CSIRT.html (8 Apr. 2003)

• “The MD5 Message-Digest Algorithm.” Internet Engineering Task
Force Request for Comments 1321. April 1992. URL:
http://www.ietf.org/rfc/rfc1321.txt?number=1321 (4 Jan. 2003)

• Welsh, Matt. Dalheimer, Matthias. Kaufman, Lar. Running Linux –
Third Edition. O’Reilly, 1999.

• Pomeranz, Hal. “Static Linking Under Solaris.” 2001. URL:
http://www.deer-run.com/~hal/sol-static.txt (4 Jan. 2003)

• ”Red Hat Linux 8.0 Manual Pages.” Red Hat, Inc. 2002
• Dan Farmer and Wietse Venema. “The Coroner's Toolkit (TCT).”

URL: http://www.porcupine.org/forensics/tct.html (8 Apr. 2003).

