
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Designing a Responsive Intrusion
Detection System on HP-UX 11i

GCUX - Version 1.9
Option 1 - Securing Unix Step by Step

Hazem Mahmoud
November 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents
Abstract ..3
1.0 Introduction ..3

1.1 Role of Host ..6
1.2 System Description ...6
1.3 Software Required ..7
1.4 Additional Patches ..7

2.0 Risk Analysis..8
2.1 Vulnerabilities & Threats..8

2.1.1 Vulnerabilities ...8
2.1.2 Threats ..9

3.0 RIDS Installation and Configuration...10
3.1 Installing HP-UX Operating System...10
3.2 Hardening HP-UX System...13

3.2.1 Disable unneeded network services..13
3.2.2 Convert into Trusted System ...14
3.2.3 Install HP-UX Secure Shell ..14
3.2.4 Install Security Patches..15
3.2.5 Additional Security Precautions ...15
3.2.6 Physical Security ..16

3.3 IDS/9000 Installation ...17
3.3.1 Pre-Installation Configuration...17
3.3.2 Installing IDS/9000 Administration System ...18
3.3.3 Installing IDS/9000 Agent System ...18

3.4 IDS/9000 Configuration ...20
3.4.1 Certificate Generation ..20
3.4.2 Create Hosts in the System Manager..22
3.4.3 Create Surveillance Schedules..24

3.5 Responsive Functionality...33
4.0 Testing Configuration ..38

4.1 RIDS Functionality Testing ..38
4.2 Unix System Security Testing..50

5.0 Monitoring & Maintaining Systems...54
5.1 Monitor RIDS...54
5.2 RIDS Maintenance ..55
5.3 HP-UX System Maintenance...56

6.0 Summary...57
Appendix A – Unix Shell Scripts...58
Appendix B – Reasons for Template Configurations..............................63
Appendix C – Tables..67
Appendix D – Figures ...68
References ..69

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Abstract:

The purpose of this paper is to develop and implement the concept of a
Responsive Intrusion Detection System (RIDS). The purpose of RIDS is to add
intelligence to an already existing Intrusion Detection System. RIDS empowers
an IDS system to respond to attacks in an intelligent manner, in order to reduce
the damage or eliminate them completely. This allows a System Administrator to
focus on the more advanced situations that may arise in an attack, and will
provide a quicker response time to handle the intrusion. In this practical I will be
implementing the RIDS concept from Hewlett-Packard’s implementation of IDS,
“IDS/9000”.

1.0 Introduction

An Intrusion Detection System (IDS) is a system designed to detect unauthorized
or malicious activities on a system. A system here could mean a standalone host
or a network of hosts. For this report, I will implement an IDS server whose
function is to detect and respond to certain unauthorized or malicious activity on
a network of hosts. IDS is not meant to be a standalone security feature, in the
sense that you cannot rely entirely on IDS to secure your network. Another
security feature, such as a firewall, must be installed to secure the network from
external attacks. While a firewall secures a network from outsiders, the IDS is
responsible for detecting any intrusions that may occur from external or internal
attacks.

IDS/9000 is Hewlett-Packard’s implementation of an intrusion detection system.
For my research I will initially be installing, configuring, and testing an IDS/9000
Administration Server, whose purpose is to search for suspicious activity on a
network. One of the major advantages of IDS/9000 over other IDS products is
the fact that the detection of intrusions is done at the operating system or kernel
level. This allows the system to stop core types of attacks, such as race condition
attacks and does not concern itself with the many flavors and forms that a race
condition attack can take. Therefore, it is basically focusing on the core attack
concept as opposed to the many different methods that a hack can be executed.
The major focus of my research however will be on developing a Responsive IDS
(RIDS) system using IDS/9000.

What do I mean by a “Responsive” IDS system? It is basically an IDS system
with intelligence. The purpose of IDS is to monitor and detect certain
unauthorized behavior. It is not designed to react to situations as they occur. This
is where I am heading: to create an IDS system that responds to certain
scenarios appropriately. The method I will use to accomplish this is to create a
Unix script that will allow the IDS system to act accordingly to certain intrusions.
The reasons for this development from a real-world perspective are many.
Hackers do not necessarily (if ever) work the eight to five workday. Therefore,
more than likely, a system will be compromised when there is no one around to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

detect it and stop it. So assuming that the system administrator has installed and
configured the IDS/9000 system properly, delays in alerts reaching the
administrator’s pager or the time it takes for the administrator to wake up and log
into the system, might be all the time an intruder needs to wreck havoc. Wouldn’t
it be nice to empower the IDS system to perform some simple security
housekeeping procedures whenever an intrusion is detected, in order to prevent
further damage to the host or the network? This would buy the system
administrator some time and allow him/her to focus on the problem and
assessing the damage caused instead of spending time on performing certain
tasks that can be automated by the IDS system. Please note, this is not intended
to replace a system (or security) administrator’s role in responding to intrusions,
but merely buy them time and allow them to focus on the other aspects of
resolving a system intrusion. RIDS is also not meant to be an all-inclusive
security function. It does not cover all the types of intrusions that can possibly
occur, unless of course it is constantly updated for new types of attacks. This
paper is merely designed to introduce the concept of RIDS, and therefore only
addresses a sample set of intrusions.

There are many responses that the Unix response script can take, depending on
the nature of the attack. However, for the majority of the detected attacks, an
email will be generated and sent to the Administrator, notifying him/her of the
attempt. Many times an attacker will attempt to cover their tracks by modifying or
removing system log files. The response in that case will be to attempt to
preserve the logs by emailing them to the Administrator or copying them as
hidden files to another location. The response for brute-force type attacks, where
the attacker attempts to break into a user’s account by guessing the password,
will be to lock that user’s account so that the hacker cannot enter. For user’s
already on the system and attempting to hack into another user’s account
through the “su” command, we will want to lock the account of the user executing
the “su” command. For race condition attacks, we will deactivate the user’s
account from which the attack originated, but we will also remove the attacking
program from the system to prevent future attacks. Before we remove the
infected program however, we will preserve it for analysis. Regarding the
dangerous buffer overflow attacks, the response will be to kill the malicious
program and again preserve it for analysis. All these are examples of how RIDS
will work through the Unix response script, and I will go into more detail on each
one later in the paper. The one important note here is that the types of attacks
and responses I have mentioned are only a sample. The purpose of this paper is
not to address every type of attack, but to present a concept that can be built on
and enhanced. A key benefit to this system is that the Unix response script can
be easily modified and enhanced as new attacks emerge.

The concept of an Intrusion Prevention System (IPS) is similar in theory to what I
am implementing, but there exists a fundamental difference between the two. An
Intrusion Prevention System can take it one step further and actually prevent an
attack from occurring. To accomplish that, an Intrusion Prevention System,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

creates near real-time responses to attacks, and therefore, prevents
unauthorized activities from occurring. In order for the “near real-time” responses
to become practical, the code for the response programs must be embedded in
the core of the system. In Unix, this would probably be the kernel. Other Intrusion
Prevention Systems are actual hardware devices that plug into your network and
can communicate with the firewall to block packets received from suspicious
intruders. We can safely say that Intrusion Prevention Systems are much more
advanced and require a great deal of time and money to develop. If I were to call
this paper an Intrusion Prevention System, I would be oversimplifying the
concept of an IPS. Hence the phrase “Responsive IDS” is more appropriate,
because it responds to certain intrusions intelligently to minimize or contain
damage, but it does not necessarily prevent them like an Intrusion Prevention
System would.

In order to test my research, I will be using an HP-UX Visualize workstation as
the IDS/9000 Server, referred to in this document as the IDS/9000 Administration
Server. I will also be using another HP-UX Visualize workstation as the IDS/9000
Client host machine, referred to in this document as an “Agent”. The Agent will
serve as a host on the network to which the IDS/9000 Administration Server will
attempt to protect. In implementing this in the real world, there would most likely
exist many Agents that the Administration Server would monitor. For testing
purposes, I will only be implementing one Agent. The same procedures, with
slight modifications, can be used for multiple Agents.

The first step in developing RIDS is pre-configuring the system for the
installation. This includes determining vulnerabilities and threats, hardening the
system to protect from those threats, and installing any necessary patches. The
second step is to install the IDS/9000 software on both the Server and Agent.
The third step is to configure the software so that it can detect intrusion attempts.
The fourth step is to develop and deploy the custom script(s) to turn the system
into a Responsive IDS. Finally the system will be tested, and we will discuss
ways of properly monitoring the system and performing regular system
maintenance checks to ensure the highest level of security while maintaining the
efficiency of the systems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

1.1 Role of Host

After the setup and configuration is complete, the final state of the Server on the
network is to serve as a Responsive Intrusion Detection System (IDS). The goal
of the Responsive IDS (RIDS) is to detect and respond to unauthorized or
malicious activity on the network. This will be accomplished using IDS/9000 and
custom Unix script(s) developed to turn the system into a RIDS system.
The role of the Agent Host is to allow for testing RIDS over the network. The
Agent will detect intrusions in its local workstation and notify the Administration
Server of these intrusions. It will further go on to respond accordingly to certain
types of intrusions by executing the appropriate portions of the script.

1.2 System Description

For this setup, I will be using an HP C3000 Visualize workstation (A4986A) as
the RIDS Server. The Agent will be an HP B132L workstation (A4190A) to test
the functionalities of RIDS on its local machine.

The IDS/9000 administration software is GUI-based and can be accessed either
through the network or the console. If accessed through the console, you will not
have as much of a security concern as if accessed over the network. If accessed
over the network, proper security measures can be taken with X-Windows to
ensure that the data is secure. It can be tunneled through an SSH connection to
ensure that the data is encrypted in transit over the network. To perform this, you
need to establish an SSH connection with the Administration server, perform the
necessary commands in order for the GUI display to appear on your computer
(ie: “export DISPLAY=<ip_address>:0.0”), then start up the administration
software. Regarding the Agent systems, there are no GUI applications that will
run on them. They will require the IDS/9000 agent software as well as SSH to be
installed on them. We will go into more detail regarding the software installation
later in the paper.

The table below displays the specifications for the Administration and Agent
systems, which are running HP-UX 11i. Please note that the systems required a
CD-ROM for the installation of the HP-UX 11i Operating System.

Table 1 - System Description
Hostname /
Purpose

IP Address Processor Memory Disk Space Operating
System

orion /
Admin
System

xxx.xxx.0.7 400 MHz
PA-RISC

512 MB 2 x 9 GB HP-UX 11i

gemini /
Agent
System

xxx.xxx.0.5 132 MHz
PA-RISC

384 MB 1 x 9 GB HP-UX 11i

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

1.3 Software Required

HP-UX 11i Core OS
HP Secure Shell A.03.61.001
IDS/9000 Release 2.1
JAVA SDK/RTE 1.3.1
Unix Shell Script to implement RIDS (Appendix A)

1.4 Additional Patches
These are the patches required for an HP-UX 11i OS to be able to
run the IDS/9000 Software:
PHKL_26074 (fix for system panic for Agent systems)
JAVA Patches: PHCO_26061, PHCO_27632, PHCO_27740,
PHCO_27958, PHKL_24751, PHKL_25233, PHKL_25993,
PHKL_25994, PHKL_27091, PHKL_27094, PHKL_27096,
PHKL_27316, PHKL_27317, PHKL_27686, PHKL_28122,
PHKL_28267, PHNE_27703, PHNE_28089, PHNE_28103,
PHSS_26971, PHSS_26973, PHSS_26975, PHSS_28370,
PHSS_28470

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

2.0 Risk Analysis

The major security concern of this system is for the RIDS Server or one of the
Agents to be the subject of an attack. The RIDS Server is the backbone of this
system. It contains the IDS/9000 System Manager, which manages all the hosts
on the network. Unauthorized access to this Server, as user root or ids, can
cause the IDS/9000 software to be disabled or rendered non-functional, leaving
all the hosts on the entire network open for malicious attacks. Therefore it is
imperative to properly secure the RIDS Server. An attack on the RIDS Agents is
just as critical. The Agent systems house the Unix response script and an attack
on them can cause the response script to also be nonfunctional, therefore not
allowing them to carry out the proper response in the event of an attack or
intrusion. All threats to these systems from any vulnerabilities must be examined
and corrected.

2.1 Vulnerabilities & Threats

In order to secure the IDS Server, we need to first define the vulnerabilities in the
system and the threats that exist. After defining the vulnerabilities and threats, we
can go ahead and determine how to secure the server. According to Pfleeger’s
book “Security in Computing”, a vulnerability is defined as a “weakness in the
security system”, while a threat is a “set of circumstances that has the potential to
cause loss or harm”. Meaning that a threat is present when the system is
vulnerable. For example, not having an intrusion detection system in place is a
vulnerability in the system. The threat caused by this vulnerability is that
someone can attack a host on the network without being detected. Let us now
examine the vulnerabilities and threats to this specific system, and then we can
discuss how we can protect the systems from these threats by eliminating the
vulnerabilities.

2.1.1. Vulnerabilities
In order to ensure proper implementation of the RIDS system, we must eliminate
the vulnerabilities. Out of the box, the HP-UX system has many vulnerabilities.
There are a lot of unneeded services and daemons that are by default left on.
These include network services such as telnet,ftp,rlogin, time, talk, daytime, etc.
These are all nice features that come activated when HP-UX is installed, but
have many security holes in them that attackers can exploit. There may also be
unnecessary suid/sgid programs. These are programs that run as the owner or
group of the file. Other vulnerabilities include weak password policies, expired
user accounts that are still active, unencrypted data over the network, and much
more. These must also be identified and dealt with. The rule when it comes to
eliminating vulnerabilities is: if you do not need something then get rid of it.
Another important vulnerability that is often overlooked is the physical security of
the system. It serves no good to have the latest and greatest security
applications and devices if an attacker can just waltz in and pull the plug.
Physical security can be a huge vulnerability in many corporations. We just

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

touched on some of the vulnerabilities but will discuss in detail how to eliminate
them in the section entitled “Hardening HP-UX System”.

2.1.2. Threats
The threats to the system arise from vulnerabilities that exist. The first
vulnerability we mentioned above was unneeded network services. Network
services such as rlogin are weak in nature when it comes to security. First off, the
transmission of data between the two systems using rlogin is not encrypted.
Second, rlogin (and all the other “r” commands) do not require a password to log
in from one system to the next. When rlogin is used, the /etc/hosts.equiv file on
the target system is consulted to see if the user from the source system can log
in without a password. If not, then the .rhosts file in the home directory of the
user for the target system is checked to see if permission should be granted. This
basically allows for the same user to access different servers, if the same
username exists, without having to provide a password each time. The threat to
this functionality is obvious, and must be addressed. Examples of other services
that need to be secured are Telnet and FTP. While there functionality is
necessary for usage of the system, they are vulnerable in nature. Their
vulnerability lies in the fact that they transmit their data in plain clear text over the
network. Anyone with a simple network sniffer can listen in on packets on the
network and steal passwords of users as they enter their username/password to
log onto their systems. This is a serious vulnerability, and fortunately there are
substitutes that can be used for both. We can use SSH to provide a secure shell
which encrypts data before sending it off over the network. For FTP we can use
SCP (secure copy) or SFTP (secure FTP). HP provides an SSH (A.03.61.001)
product free of charge. The HP Secure Shell package has commands to perform
remote login similar to Telnet called “ssh”, and remote file transferring similar to
FTP called “scp” or “sftp”. This solution will definitely resolve the vulnerabilities
inherent in Telnet and FTP.

The second vulnerability mentioned was the suid/sgid programs. These
programs run as the owner of the file. For example, if root is the owner of a
program that has the suid bit sit, then a smart hacker might find a way to
compromise the program and take control of the shell that the program is running
in. Therefore they would have a root shell available to them. To resolve this
vulnerability, you would need to keep track of all the suid/sgid scripts and
programs on the system. This can be done through a simple “find” command and
is discussed below. If a new suid/sgid script appears, you would need to
determine why it is there and if it contains any vulnerabilities. These, and many
others, are the types of threats that exist on out-of-the-box systems. To eliminate
these threats, we do what is called “hardening” the operating system. This
involves securing the operating system and the services it provides to ensure
that the vulnerabilities are not exploited by hackers. Hardening the system will be
covered in the step-by-step guide in the next section under “RIDS Installation &
Configuration”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

3.0 RIDS Installation & Configuration

In this section, I will go over the step-by-step procedures involved in installing the
HP-UX operating system. We will then discuss the methods and techniques of
hardening and securing the HP-UX operating system. After the system is in a
secure state, we can then proceed to install the IDS/9000 application and then
configuring it to our specific needs. After the installation and configuration of the
IDS/9000 product is complete, we can then proceed to implement the focus of
this paper, which is to convert the IDS system into a Responsive IDS system.
This approach will be taken for the RIDS server as well as all the RIDS clients.
However, the implementation will be different for both.

3.1 Installing HP-UX Operating System

The installation of the HP-UX operating system is the first step in the process of
creating our RIDS system. Before proceeding to install HP-UX, you must first
collect some networking information to help configure the networking portion of
the installation. The information you will need to gather includes the hostname
and IP address of the system, subnet mask, gateway, and DNS server. You will
also need to obtain the HP-UX 11i core operating system, which usually resides
on a CD. For this installation process we will be using the CD to install the HP-
UX operating system.

Boot up your system and wait for the message:

Processor is starting autoboot
To discontinue press a key within 10 seconds.

At this point hit any key to interrupt the boot process. Insert the HP-UX 11i Core
OS CD into the CD-ROM drive. You will be given a menu of available options,
and then the following prompt will display:

Main Menu: Enter command or menu >

You will most likely not know the path number that the CD-ROM is associated
with. Therefore type in the following:

Main Menu: Enter command or menu > search

You will be given a list of the devices on the system and their associated path
number. Find the path number of the CD-ROM (let’s assume the path is P0) and
enter the following:

Main Menu: Enter command or menu > boot P0
Interact with IPL (Y or N)? > N

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

The system will now boot from the CD-ROM and begin the installation process.
Throughout the boot process, you will be asked to make decisions and to select
certain items. This will not be GUI-based (Graphical User Interface) and so you
will not be able to use the mouse at this point. To navigate the screen you can
press the “Tab” key on the keyboard. This will allow you to jump from one option
to the next. To select a specific option, just hit the “Return” or “Enter” key on the
keyboard. The first screen you will encounter will give more detailed instructions
on the navigation methods in the installation process.

After the system has finished booting off the CD, you will then see a welcome
display and will be requested to choose between installing HP-UX, running a
recover shell or other advanced options available to you. Select “Install HP-UX”
by hitting “Return”. The next screen will prompt for the installation source, which
you will want to choose “Media only installation”. The option for an Ignite server is
generally used if you have a large number of systems that you want to roll out the
operating system to, along with any other additional software. For the purposes
of not overcomplicating this section, we will not use this option. Our installation
will be through a CD media. On the same screen you will be prompted for the
interface of the installation, and you will want to choose “Advanced Installation”.
This will allow us more options in case you should need to perform any more
advanced settings specific to your environment and setup. After those two are
selected (with the asterisk character, “*”) tab over to “OK” and hit “Return”. The
next screen will prompt for a general configuration of the system. Select the
default option of “HP-UX B.11.11 Default”. The next screen will include five (5)
tabs labeled “Basic”, “Software”, “System”, “File System”, and “Advanced”. You
will most likely want to keep the default settings for the majority of these options,
but depending on your environment, you will probably want to modify some of the
settings. For the purposes of this paper, you will want to make sure to perform at
least the following setting. IDS/9000 stores its log files in /var/opt/ids/, and they
can get considerably large. For that reason we will want to create a separate
logical volume for /var/opt/ids. This will ensure that the log files will not fill up the
/var logical volume, causing the system to crash. To perform this, tab over to the
“File System” tab. Inside this tab you can select to add a new logical volume.
Specify the following values to add logical volume /var/opt/ids, and then select
“Add”:
Usage: HFS
VG Name: vg00
Mount Dir: /var/opt/ids
Size: Fixed MB (specify the size depending on how much disk space you are
willing to allocate)

After you have added the new logical volume, you may want to reconfigure some
of the existing default logical volumes by selecting the volume and then select
“Modify”. For the purposes of this paper, we will use the default values specified
by the installation process. You can now select “Go!”, and at this point the
configuration process for the installation begins.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

You will receive a welcome screen and will be asked:

Are you ready to link this system to a network?

Press [y] for yes or [n] for no, then press [Return]

Hit “y”, then return and you will then be asked to continue if you have the
hostname IP address and time zone. Press “y” again and then return. You will
then be prompted with the following:

Enter the system name, then press [Return] or simply press [Return] to retain the current host name
(host name): orion

Enter the hostname at this point, “orion” in my case, and hit return. You will then
be prompted for the location and time zone. Enter the appropriate corresponding
number to each entry and hit return. It will then confirm that the current system is
correct. If it is, type “y” and hit return. If not, type “n” and it will walk you through
setting up the correct time. Next, you will be asked about choosing a password at
this time. It is recommended to set it now. Make sure to use good password
selection policies when selecting a password. Do not use words from the
dictionary, variants of the hostname, or any other password that can be cracked
with a few iterations. A good source of information on proper password policies
can be found at http://www.sans.org/resources/policies/Password_Policy.pdf.

At this point in the configuration you are done with the system specific settings,
and next comes the network specific settings. You will be prompted to enter your
IP address first:

Enter your IP address, then press [Return] or press [Return] to select the current address
(192.168.0.7): 192.168.0.7

Enter your IP address, and then you will be asked whether you would like to
proceed with configuring additional network settings such as the subnet mask,
gateway, DNS, and NIS service. These are specific to how your network
environment is structured. For the purposes of this paper, I have not set up these
parameters. When prompted with the following I entered “n”:

Do you want to configure these additional network parameters?
Press [y] for yes or [n] for no, then press [Return]

Finally, the basic installation is complete. If you decide to perform any
modifications or add additional settings to your basic configuration, you can
execute set_parms at the HP-UX command prompt and it will walk you through any
modifications you would like to make. At this point, the system is in its most basic
form and is therefore in its most vulnerable state. All network services are turned
on, security patches are not installed, and various other configurations are
weakining the system. We will now discuss the many security measures that
need to be taken to properly secure all our hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

3.2 Hardening HP-UX System

To secure the vulnerabilities in the IDS/9000 Server and the Agents, we are
basically hardening or securing the Operating System. To accomplish this, the
least we need to do is the following:

1. Disable network services not needed
2. Turn System into a Trusted System
3. Install HP-UX Secure Shell
4. Install Security Patches
5. Implement Additional Security Precautions
6. Examine Physical Security

I have created a script that can be used to harden the system. It will convert a
system to a Trusted System, restrict root access only to the console, carry out
additional security precautions and make recommendations for changes that
need to be made on the system, but are optional. The script can be found in
Appendix A and is called “secure.sh”. Copy this script into the Administration
system and each Agent system and execute it as root. You need to be root in
order for it to perform the security conversion on the system. Kevin Steve’s
Building a Bastion Host was the source in developing the concepts discussed in
this section.

3.2.1 Disable Unused Network Services

There is a huge risk involved in keeping network services that are not used
enabled. The more features you empower your computer to have, the more
vulnerable it is. By keeping network services enabled, you allow an intruder more
passages and openings to try and hack in. A hacker can exploit known
vulnerabilities in network services, and it is therefore highly recommended to
disable any service that we do not need.

Services that are running on the system are listed in a file called /etc/inetd.conf.
To disable a service, you just need to comment out the line that lists the service
by placing a “#” sign at the beginning of the line. The services that are not
needed will vary from system to system. If your server functions as an IDS/9000
Administration server, and is also an FTP server, than you will want to keep the
entry for the ftp service. However, if the system is solely used as an IDS/9000
Administration server, then the list below displays the network services I
recommend that we disable. The same list also applies to the Agent systems.
The script “secure.sh” disables these services for you automatically. If for any
reason you need to reactivate any of these services, you can go into
/etc/inetd.conf and remove the “#” sign at the beginning of the line that contains
the service.

Network services not needed:
login, telnet, ftp, shell, exec, ntalk, daytime, time, echo, discard, chargen

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

3.2.2 Convert into Trusted System

One of the biggest security risks is someone hacking the password file
(/etc/passwd). On a normal HP-UX system, the password file is readable to all.
Even though you may restrict access to the IDS/9000 Server, you still run the risk
of a user finding a vulnerability and gaining access to the password file. The
passwords are encrypted, however, someone can run a crack program offline
and determine the passwords. Once they have the root password, they have root
access, and can basically take control of your entire second line of defense. They
can manipulate log data, or corrupt a configuration file to make the IDS/9000
seem like it is doing its job, while the whole time it is being manipulated to not
inform the administrator of any attacks. To prevent such a threat from someone
gaining access to the password file, we would need to convert the system into a
Trusted System.

A trusted system is a secure system, which among other features, removes the
passwords from the /etc/passwd file and places them in files readable only by
root. The passwords are still encrypted, however now only the root user can read
the encrypted file, as opposed to a world-readable password file. The basic
command for converting a system into a Trusted System is /etc/tsconvert. While
having a Trusted System is an added security feature, it is not required in order
to install the IDS/9000 application. The script “secure.sh” will automatically
convert the system into a Trusted System.

3.2.3 Install HP-UX Secure Shell

HP-UX Secure Shell, is the HP implementation of the popular SSH technology.
This technology allows the encryption of data over the network to prevent
eavesdropping on the network by attackers. A common hacking tool is something
called a network sniffer. A network sniffer listens to packets transmitted over the
network. Therefore if you are logging on to a server using Telnet/FTP and you
input your username/password, the hacker with the network sniffer can read the
username/password as well as any other data that you send over the network.
SSH encrypts data before being transmitted over the network, therefore
protecting you from the hacker with the network sniffer. This is required for
properly implementing the RIDS system in a secure manner. Later on we will see
that during the installation/configurarion portion of IDS/9000, we will need to copy
over the certificates from the Administration system to each Agent system.
Certificates are the means by which a host authenticates itself to another host.
SSH is the most secure method of copying these certificates across the network.
If SSH is not used, you can risk someone intercepting the certificate.
To install, perform the following steps:

1. Go to:
https://payment.ecommerce.hp.com/portal/swdepot/try.do?productNumber
=T1471AA fill out the required information and download the depot

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

T1471AA.depot to your depot directory (ie:/depot) on the Administration
server.

2. Execute: “swinstall -s /depot/T1471AA.depot”
3. Verify that the SSH daemon (sshd) is running by executing:

“ps -ef | grep sshd”
4. Depending on your operating system version, you may need to install

additional patches.
5. Attempt to establish a connection with another server using the “ssh”

command.

3.2.4 Install Security Patches

There are constantly new vulnerabilities that are discovered in the operating
system and the services it offers. Therefore it is important for us to ensure that
we keep the latest security patches up to date on the Administration system as
well as all the Agents. The links listed below will aide you in determining which
patches are relevant to your systems.
ftp://ftp.itrc.hp.com/hp-ux_patches/ - This location contains the patches
ftp://ftp.itrc.hp.com/export/patches/hp-ux_patch_matrix - Matrix of latest patches
ftp://ftp.itrc.hp.com/export/patches/security_catalog - Patch catalog

3.2.5 Additional Security Precautions

There are many other additional security measures that we can take to help
solidify our systems. These are not necessary, but do add extra features to help
keep our systems in a more secure state. I will mention just a few measures that
we can take to help secure our systems.

First measure we can take is to restrict root login to the console. The benefit of
this is that it allows limited remote access. Only users set up on the system can
log on remotely. Since we have disabled Telnet, they will need to use SSH to log
in. After logging on, they can then execute “su –“ to log in to the root account
after providing a password. So it basically allows for more control over the root
account. The script “secure.sh” will perform this. To accomplish this, we can also
do the following:

echo console > /etc/securetty #As root user
chmod 400 > /etc/securetty

The second measure we can take is to check the /etc/passwd file for any users
that are no longer using the system. Also check the /etc/group file for any inactive
groups. If there are any users/groups no longer using the system, you can
remove them with the following:

userdel <username> #As root user
groupdel <groupname

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

This will remove the files from /tcb/files/auth, which is the location (in a Trusted
System) of the user properties. They are actually located under
/tcb/files/auth/<first_letter_of_username>/. The script “secure.sh” will list the
users and groups in the system so you can examine them.

The third measure we can take is to locate any suid/sgid programs on the
system. These are program that when executed, run in a shell logged on as the
user owner (or group if sgid is found) of the program. To determine if a program
has the suid bit set, execute “ll <program_name>” and if the execute bit, “x”, is
set in the owner permissions to “s”, then the program will run as the owner of the
program. To check if the sgid bit is set, check the execute bit for the group
permissions. “secure.sh” will locate all the suid and sgid programs on the system.
To do it manually, execute the following as root:

find / \(-perm –4000 –o –perm –2000 \) –type f –exec ls –ld {} \;

The last, but not least, measure we can take is to make sure that command
history is enabled. Command history stores the commands executed by a user,
in a file called .sh_history. This serves as a good auditing tool to see what the
user executed. For root, it is saved under “/”, and for other users, the file is saved
under “/home/<userid>/”. To enable, just make sure that .sh_history exists in the
users home directory. The environment variable HISTFILE defines the location of
the history file and HISTSIZE defines the number of previous commands to save
in .sh_history. Both these variables can be set in the users .profile file.
“secure.sh” will notify the user if which users has .sh_history activated.

3.2.6 Physical Security Considerations

Physical security is one of the most critical, yet often overlooked, issue when it
comes to security. When all is said and done, if an unauthorized or disgruntled
individual gains physical access to the Administration server, all security
measures can be considered worthless. Booting the server into single-user
mode, will allow the intruder to gain root access to the system. After that there is
nothing to hold them back from causing all the damage they want. If they are
really disgruntled, they can even take it one step further and physically damage
all the hardware. Therefore it is imperative that proper physical security
measures are taken. Physical security involves allowing access to authorized
individuals. If an unauthorized individual has access to the physical hardware,
your physical security is considered weak. This is a risk that should not be taken
lightly.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

3.3 IDS/9000 Installation

We will be installing both the IDS/9000 software as well as the Java software on
the Administration system required for the GUI screens in IDS/9000. Before
continuing however, you must have root access. I will use depots to install all the
software together at one time, so that we only need to reboot once. For more
information on the installation, and any specific patches you may need for your
system, please refer to HP Intrusion Detection System/9000 Release 2.1
Release Notes. This document proved to be very helpful in installing IDS/9000
properly on my systems.

To install IDS/9000, you will need to download it from the Internet at
http://software.hp.com, click on “security and manageability”, then click on the
link for “hp intrusion detection system 9000”. The software is free, and below is
the product information:

IDS/9000 Information:
Name: J5083AA
Version: 2.1
Information: HP Intrusion Detection System 9000 (IDS/9000)
Size: 30 MB
Architecture: HP-UX_B.11.11_32/64

3.3.1 Pre-Installation Configuration

IDS/9000 generates logs, such as /var/opt/ids/alert.log, which logs all the alerts
generated. These logs can often get quite large, and therefore it is recommended
that a separate logical volume be created for /var/opt/ids. Otherwise, as the logs
from IDS/9000 get larger, they will fill up the entire /var file system. So it is better
to keep the logs on their own file system (/var/opt/ids) so as to not cause any
system crashes. Instructions for creating this logical volume can be found under
the section “Installing HP-UX Operating System”. As far as the remaining file
system structure, I am keeping the defaults that come with the installation,
because there is no need to modify any of them. You may choose to increase or
decrease some of the sizes, but as far as the structure is concerned, we are only
adding one more file system (/var/opt/ids) to the default structure.

Installing IDS/9000 requires a system reboot. In the case where something might
go wrong, it might be wise to preserve the old kernel. To preserve the old kernel,
make a copy of /stand/vmunix and rename it to /stand/vmunix.old. In the case
where the system might not come up after installing IDS/9000, you can log back
in to single-user mode and restore the old kernel. Another recommendation is to
take a full-system backup before the installation and after the installation. All this
will ensure that the system can be restored if anything wrong should happen.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

3.3.2 Installing IDS/9000 Administration System

We will now proceed to install IDS/9000 on the Administration system. The
approach will be to create a depot to place the IDS/9000 software, the Java
software and the required patches. After all has been copied to the depot through
“sftp” - the secure FTP solution, we can proceed with the installation. This
installation includes both the IDS/9000 Administration and Agent software. The
IDS/9000 Administration server must also have the Agent software installed on it.
Below are the instructions for installing the IDS/9000 Administration system. You
must be logged in as root.

mkdir /var/depot/ #create depot directory

ftp HIDS-J5083AA_11.11.depot to /tmp
ftp PHKL_26074 to /tmp
ftp sdk13_13109_1100.depot to /tmp
ftp JAVA patches (listed above)

swcopy –s /tmp/HIDS-J5083AA_11.11.depot * @ /var/depot/ids_11i_admin+agent
sh –c ‘for i in /tmp/PH*; do sh $i; done’
sh –c ‘for i in /tmp/PH*.depot; do swcopy –s $i * @ /var/depot/ids_11i_admin+agent; done’
swinstall –x autoreboot=true –s \ orion:/var/depot/ids_11i_admin+agent *

3.3.3 Installing IDS/9000 Agent System

The next stop involves installing the IDS/9000 Agent system. The IDS/9000
Agent needs to be installed on each Agent you wish to monitor on the network.
The same approach to installing the IDS/9000 Administration system will be
taken here as well. We will create a depot and copy, through “sftp”, the IDS/9000
software and all necessary patches and perform the installation in one step. The
Java software does not need to be installed on the Agent systems. If you have a
large number of hosts, you might want to consider automating the installation
through an Ignite server. Below are the instructions for manually installing the
Agent software on each host on the network. You must also be logged in as root
to perform these installations.

mkdir /var/depots/ #create depot directory

ftp HIDS-J5083AA_11.11.depot to /tmp
ftp PHKL_26074 to /tmp

swcopy –s /tmp/HIDS-J5083AA_11.11.depot IDS.IDS-Agent @ /var/depot/ids_11i_agent
sh PHKL_26074
sh –c ‘for i in /tmp/PHKL_26074.depot; do swcopy –s $i * @ /var/depot/ids_11i_agent; done’
swinstall –x autoreboot=true –s \ gemini:/var/depot/ids_11i_agent *

The installation creates many important directories. It is worth learning about
these directories and understanding what they contain. This will in help better
securing the Administration server and Agent hosts and will also help in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

troubleshooting if a problem arises. It is also recommended to backup these
directories so you can restore them in the case of any corruption. The following
are the directories and their significance:

Administration System:
/opt/ids/bin – Programs (idsagent, idsadmin, idsgui, etc.)
/etc/opt/ids – Configuration file
/etc/opt/ids/certs – Certificates for Administration and Agent systems
/var/opt/ids/gui/logs – Agent logs (for all Agents)
/var/opt/ids/gui/SurveillanceSchedules – Configured schedules
/var/opt/ids/gui/SurveillanceGroups – Configured groups
/var/opt/ids/gui/Templates – Configured templates
/opt/ids/share/man – MAN Pages

Agent System:
/var/opt/ids – Agent logs (alert.log and error.log)
/etc/opt/ids – Agent configuration file (ids.cf)
/etc/opt/ids/certs/agent – Certificates (agent.pem and cacert.pem)
/opt/ids/bin – Programs (idsagent, etc.)
/opt/ids/response – Response scripts

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

3.4 IDS/9000 Configuration

After installation, we need to go through the following steps in order to properly
configure the Administration and Agent Systems:

1. Generate certificates for all systems
2. Create hosts to monitor through System Manager
3. Create surveillance schedules through System Manager

For more information on configuring IDS/9000, please refer to HP Intrusion
Detection System/9000 Administrator’s Guide. This guide was extremely
valuable in helping me to configure IDS/9000 on the system.

3.4.1 Certificate Generation

Communication between the Administration System and the Agent Systems must
be secure. The importance of this security is to prevent the threat of someone
interrupting the communication link, such as a man-in-the-middle attack. The
threat of disruption of the communication link can cause several problems such
as feeding the Administration System the wrong information or preventing
accurate information to the Administration System. For example, an intruder can
capture a message and alter it and send it to the Administration server, therefore
hiding his/her presence. For the sake of simplicity, they can simply capture the
messages and drop them so they never reach the Administration server. All
these attacks are possible, but are eliminated with the use of secure
communications through certificates between the Administration server and the
Agents.

To properly secure the communication link, IDS/9000 provides security between
the Administration and Agent Systems using the Secure Sockets Layer (SSL)
protocol. Certificates are the components that verify the identity of the system
through the SSL protocol, and allow for reliable communication. It allows the
Administration System to identify and verify the Agents. This serves as an
authentication tool so the Administration System can verify that the Agent is a
legitimate system. Certificates are generated by the Root Certification Authority
(Root CA), which uses the ITU-T X.509 authentication standard.

We will first generate the certificate for the Administration System by logging on
to the Administration Server and executing the following sequence of commands:

su – ids #Must be user ids

$ cd /opt/ids/bin #Location of scripts

$ IDS_genAdminKeys install #Creates Root CA #(Certification #Authority) and
#Admin certificate

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

The agent certificates are generated on the Administration System and then
moved over to each individual Agent. To generate the agent certificates, execute
the following command on the Administration Server:

$ IDS_genAgentCerts #Create Agent certificate(s). #Enter hostname/IP
of each #Agent #then CTRL-D when done.

==> Be sure to run this script on the IDS Administration host.

Generate keys for which host? ggemini
Generating key pair and certificate request for IDS Agent on gemini…
Signing certificate for IDS Agent on gemini…
Certificate package for IDS Agent on gemini is /var/opt/ids/tmp/gemini.tar.Z
Next hostname (^D to quit)? CCTRL-D

The agent certificates are stored on the Administration System in the file:
/var/opt/ids/tmp/hostname.tar.Z. Each certificate must be transferred to its
respective Agent system through some secure medium. This is where SSH
comes into play, allowing us to securely transfer the files to each Agent. It is
critical that it is transferred securely so that it is not intercepted and copied.
Transfer them to the following /var/opt/ids/tmp directory on each Agent System
and execute the following sequence of commands on the Agent Systems to
install the certificate:

su – ids #Must be user ids

$ cd /opt/ids/bin #Location of scripts

$ IDS_importAgentKeys /var/opt/ids/tmp/hostname.tar.Z & <AdminHostName>
#Import certificate into IDS Agent System

One issue that might arise is before executing the last command
(IDS_importAgentKeys), make sure that the certificate file (hostname.tar.Z) has
the owner and group set to “ids”. Otherwise the script will exit with an error:

$ IDS_importAgentKeys /var/opt/ids/tmp/hostname.tar.Z & <AdminHostName>

Usage: IDS_importAgentKeys key_bundle.tar.Z admin_hostname
Could not find the bundled key file /var/opt/ids/tmp/hostname.tar.Z

The reason it exits with that error is because of this portion of the
IDS_importAgentKeys script:

if [! -r $1]; then
 echo "\nUsage: $0 key_bundle.tar.Z admin_hostname\n"
 echo "Could not find the bundled key file $1\n"
 exit 1
fi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

In this portion, it is checking to see if the file, /var/opt/ids/tmp/hostname.tar.Z, is
readable. So if you are user “ids”, which you should be, and you try to execute
the script, which is also user ids, but the “hostname.tar.Z” file is owned by user
“root” or “hmahmoud”, then the script will not be able to read the file. The error
message is a little confusing however, because it leads you to believe that the
script cannot even find the file.
In order to resolve this problem, you would need to execute the following
commands, which will change the owner and group of “hostname.tar.Z” to ids:

chown ids /var/opt/ids/tmp/hostname.tar.Z #as user “root”
chgrp ids /var/opt/ids/tmp/hostname.tar.Z #as user “root”

3.4.2 Create Hosts in the System Manager

After the certificates have been installed on the Administration Server and the
Agents, the systems are now ready to start communicating. However, we first
need to notify the System Manager of the Agents to monitor. The System
Manager is the administration console utility shown below that allows for system
administrative tasks of the IDS/9000 product. It allows you to add hosts (Agents)
to monitor, create and deploy schedules to Agents, and monitor alerts. The GUI
for the System Manager will require X-Windows if running through the network. In
that case, you will want to ensure that X-Windows is properly secured. Tunneling
the connection through an SSH connection would be the best approach to
ensure that data going back and forth is encrypted.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

Figure 1: System Manager Screen

The System Manager needs to be notified that there exists on the network an
Agent who has the IDS/9000 Agent software and certificate installed. To add an
Agent to the IDS/9000 System Manager, follow the following steps on the
Administration Server:

su – ids #Must be user ids
$ /opt/ids/bin/idsgui #Launches System Manager

1. In the “System Manager” Window:
Edit � Host Manager… (Figure 2)
2. In the “IDS/9000 Host Manager” Window:
Click on the “Add” button (Figure 3)
3. In the “Add Host” Window:
Enter the Hostname, IP Address, and an
Optional Tag (nickname) for the Agent (Figure 4)
4. In the “IDS/9000 Host Manager” Window:
Enable the Agent (host) for monitoring by
Checking the box under “Monitored”
5. In the “IDS/9000 Host Manager” Window:
File � Save (Figure 5)
(Repeat Steps 2-5 for additional Agents)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

Figure 2: System Manager Figure 3: Host Manager

Figure 4: Add Host Figure 5: Save Host Changes

You can also add all the hosts listed in the /etc/hosts file on the Administration
Server all at once by performing the following:

In the “IDS/9000 Host Manager” Window:
Edit � Add Host � Load /etc/hosts File

This can save a considerable amount of time if your network is large. It is also
quicker to delete Agent entries in the “Host Manager” window than it is to create
them. So you can add all the hosts listed in /etc/hosts, then delete the select few
that you do not want to monitor.

3.4.3 Create Surveillance Schedules

A surveillance schedule is a function inside the IDS/9000 software that allows
you to create schedules to monitor the Agents for different types of attacks. A
surveillance schedule is at the heart of the IDS/9000 System. Its purpose is to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

monitor activities on the Agents according to certain rules and criteria’s. These
rules are defined in what are called Templates. However, let’s back up a little to
explain the structure.

Inside a surveillance schedule is one or more surveillance groups. A surveillance
group is a grouping of templates. Templates are the actual intrusion possibilities
that the IDS/9000 looks out for. Each template consists of properties that may
have values. These properties are what define the specific criteria that the
IDS/9000 system goes by to determine if it should send an alert. Below is a table
that defines the templates provided by IDS/9000 and their corresponding
properties and default values:

Table 2: Templates, Properties, & Default Values
Templates Properties Default Values

Monitor Start of Interactive
Sessions

Notify when these users begin
a session

root, ids, www, news, daemon,
bin, sys, adm, uucp, lp, nuucp,
hpdb

Monitor Logins/Logouts Ignore these users -
Changes to Log Files Files which should only be

appended to
/var/adm/btmp,
/var/adm/wtmp, /etc/btmp,
/etc/wtmp,
/var/adm/messages,
/var/adm/syslog/mail.log,
/var/adm/syslog/syslog.log,
/var/adm/pacct, /var/adm/sulog

Modification of
Files/Directories

Watch these files for
modifications/creation

/stand/vmunix, /stand/kernrel,
/stand/bootconf, /etc/passwd,
/etc/group, /.rhosts, /.shosts,
/etc/hosts.equiv,
/etc/hosts.allow,
/etc/hosts.deny, /etc/inetd.conf

Ignore these files /etc/ptmp, /etc/.pwd.lock,
/etc/utmp, /etc/utmpx,
/etc/rc.log, /etc/lvconf/lvm_lock

Watch these directories for
modification

/etc, /bin, /sbin, /stand, /lib,
/usr/bin, /opt

Ignore these directories -
Creation of setUID Files List of critical user IDs to be

monitored
0, 1, 2, 3, 4, 5, 9, 11

Creation of World-Writable
Files

List of critical user IDs to be
monitored

0, 1, 2, 3, 4, 5, 9, 11

Ignore these values -
Ignore these directories -

Repeated Failed Logins Number of failures to exceed 2
Time span to detect failures
over

10

Suppression period for
reporting

30

Repeated Failed su Command Number of failures to trigger
on

2

Time span to detect failures
over

24

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

Modification of Another User’s
Files

Ignore changes to these files /dev/null, /etc/rc.log,
/etc/lvmconf/lvm_lock

Ignore changes to these
directories

/var/opt/OV/tmp/OpC

List of user IDs to be ignored -
Race Condition Attacks What user IDs to monitor for

being attacked
0, 1, 2, 3, 4, 5, 9, 11

How many paths to keep track
of per process (0 is all)

10

Buffer Overflow Attacks What user IDs to monitor for
being attacked

0, 1, 2, 3, 4, 5, 9, 11

Below you can see a screen of the Schedule Manager. To open the Schedule
Manager, in the “System Manager” window, go to “Edit” � “Schedule
Manager…”

Figure 6: Schedule Manager Screen

As you can see on the left side of this screen shot, IDS/9000 comes with default
schedules that you can use. In any case, all the schedules that are created will
be listed in the “Schedules” box. From the Schedules box, you can create a new
schedule, copy an existing schedule, rename an old schedule, or completely
delete a schedule.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

To the right of the schedule names are the settings associated with each
schedule. There are three tabs that are used to configure the highlighted
schedule. The first tab, configure, is used to configure the surveillance groups in
that schedule. The second tab, timetable, is used to configure the day and time
the schedule runs. The third tab, details, is used to view the details of the
schedule. Each schedule can have one or more surveillance groups that it uses.
You can think of a surveillance group as a collection of procedures that define
what intrusions to detect. These procedures in IDS/9000 are called templates,
and they define what types of intrusions to look out for. Each template has one or
more properties associated with it, and these properties carry some type of
value. The administrator can choose which templates they want included in the
surveillance group, in order to detect certain types of suspicious behavior. For
example, a server that allows Telnet access to it for a certain purpose can have a
surveillance group associated with it, which monitors logins and logouts, and for
failed repeated logins. Monitoring the logins is implemented through the
template. You can then set the specific characteristic for this template by defining
how many failed logins should occur before an alert is sent, or which users you
do not need to monitor for logins, etc. These are what are called the “properties”
of the template.

To create a schedule, there must be a certain strategy or purpose in mind. It
would not be wise to create a schedule that includes all templates and checks for
all possible values for each property; this would consume all the resources of all
the Agents and the entire network. Each schedule has to serve a specific
purpose. Depending on the Agent we are monitoring, the templates and the
values for the properties will be different. However for the sake of not spending
too much time on this extensive subject of how to properly develop a schedule
for each type of Agent, since it is beyond the focus of this paper, I will create a
general-purpose schedule that can serve the purpose for many types of Agents.
From this schedule we will develop the Responsive Unix script(s). However, the
Responsive Unix script(s) can be used for any schedules you decide to develop,
since they are dependent on the templates and not the schedules.

Let us now create a new general-purpose schedule and configure it:

1. In the “Schedule Manager” Window:
Click on the “New” button under “Schedules”
2. In the “New Surveillance Schedule” Window:
Enter the name of the Schedule (GeneralPurpose) and click OK (Figure 7)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

Figure 7: New Surveillance Schedule

After creating the GeneralPurpose schedule, it will appear under the list of
“Schedules” in the “Schedule Manager” Window. We will then want to associate
surveillance groups with this schedule. By default, there are four groups we can
choose from or we can add our own groups customized to what we are trying to
do. So let us add a new group:

3. In the “Schedule Manager” Window:
Click on the “New” button under “Surveillance Groups”
4. In the “New Surveillance Group” Window:
Enter the name of the Group (BasicGroup) and click OK (Figure 8)

Figure 8: New Surveillance Group

At this point, we are ready to define the characteristics of our intrusion detection
system. We need to select which templates we want the system to use to protect
our Agents. We can use Table 2 to view the options we have. For the purpose of
our example, I have analyzed the options and chosen only certain templates and
modified some of the default values to look for only certain types of patterns.
Table 3 is the table of the templates we want to implement with their modified
property values. To select these templates, check the box in the “Schedule
Manager” window next to the desired template. To see the reasons why I chose
the specific property values defined in Table 3, please refer to Appendix B. Below
is a sample of how to modify a value for a property. The same procedure can be
used to change the values of the other properties.

5. In the “Schedule Manager” Window:
Highlight the property of interest under “Properties” and click “Edit”
6. In the “Edit List” Window:
Add, Edit or Delete the values you want (Figure 9)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

Figure 9: Edit Property Values

Table 3: Customized Templates for BasicGroup
Templates Properties Modified Values

Monitor Start of Interactive
Sessions

Notify when these users begin
a session

root, ids

Monitor Logins/Logouts Ignore these users -
Changes to Log Files Files which should only be

appended to
/var/adm/syslog/syslog.log,
/var/opt/ids/alert.log

Modification of
Files/Directories

Watch these files for
modifications/creation

/stand/vmunix, /stand/kernrel,
/stand/bootconf, /etc/passwd,
/etc/group, /.rhosts, /.shosts,
/etc/hosts.equiv,
/etc/hosts.allow,
/etc/hosts.deny, /etc/inetd.conf

Ignore these files /etc/ptmp, /etc/.pwd.lock,
/etc/utmp, /etc/utmpx,
/etc/rc.log, /etc/lvconf/lvm_lock

Watch these directories for
modification

/stand

Ignore these directories -
Creation of setUID Files List of critical user IDs to be

monitored
0, 102

Repeated Failed Logins Number of failures to exceed 2
Time span to detect failures
over

10

Suppression period for
reporting

30

Repeated Failed su Command Number of failures to trigger
on

2

Time span to detect failures
over

10

Race Condition Attacks What user IDs to monitor for 0, 102

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

being attacked
How many paths to keep track
of per process (0 is all)

10

Buffer Overflow Attacks What user IDs to monitor for
being attacked

0, 102

The two templates I chose not to implement are “Creation of world-writable files”
and “Modifications of another user’s files”. These two templates are not
necessary for our group, BasicGroup. While they are dangerous, they do not
pose as significant of a threat as some of the other templates, and I have
therefore chosen not to include them at this point. After the surveillance
schedules, groups, and their associated templates are configured, we can now
proceed to configure the timetables that these surveillance schedules will run on.
Timetables define the times and days that the groups will activate on the Agents.
The following are the step-by-step procedures for configuring the timetables:

7. In the “Schedule Manager” Window:
Click on the “Timetable” tab
8. Under the “Schedules” Window:
Select the schedule that you wish to configure its timetable
9. Under the “Selected Groups” Window:
Select the group “BasicGroup”
10. Under “Criteria” select “Always On”
11. Finally, click the “Save” button to save configuration (Figure 10)

Figure 10: Configure Timetables

Since we are developing a general-purpose schedule that includes a basic
group, I decided to keep the group “Always on”, which means that it is running

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

constantly. If the surveillance group was more comprehensive, this would not be
a wise selection. Keeping the surveillance running constantly hogs the system
and the network, and not to mention the amount of alerts that you would be
receiving. In our case, since the surveillance is basic, we can afford to have it
running constantly. If a surveillance group was developed that was more
comprehensive, you can specify certain times in the day and certain days in the
week that the group can become active. You would just select “Specified” under
the “Criteria” window and then under the “Select Days” and “Select Times”
windows you can specify the days and times that the group is activated. Finally,
once the timings of when the groups will run is completed, a visual representation
of the timetable is shown to the right under “Schedule Summary”. This allows you
to quickly and easily determine when a certain group will be active.

The locations for the configuration files for the schedules, groups, and templates
are located under /var/opt/ids/gui. Inside this directory is a directory for each of
the three. The schedules are in the directory called “SurveillanceSchedules”. The
groups are in the directory called “SurveillanceGroups”. And the templates are in
a directory called “Templates”. The configuration files are not in a readable
format, however, it is good to know their locations so that you can make sure that
they are backed up regularly.

The hosts are now configured and the certificates have been generated and
distributed. The schedules, groups, templates, and timetables were customized
to the needs of our system. However, we still have not defined which schedule
will run for which host. Therefore, our final task to fully complete the configuration
of the IDS/9000 system is to activate the schedules to their appropriate hosts. To
do this, we do the following:

12. In the “System Manager” Window:
Highlight the desired schedule you wish to activate
13. In the “System Manager” Window:
Highlight the desired host under “Monitored Nodes”
14. Click on the “Actions” pull-down menu:
Select “Activate Schedule” from the menu
15. You may need to click on the “Status” button to update (Figure 11)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

 Figure 11: Final Configuration

You can see the final configuration of the Agent, gemini, and its appropriate
schedule above. It is important to make sure that the “Status” is always
“Running”. You can also see which “Schedule” is used to monitor that Agent
(GeneralPurpose). It also displays the “Total Alerts” as well as the “Unseen
Alerts”. To obtain more information on the alerts, double-click on the listed Agent,
which will bring up the “Network Node” window. This will be discussed in more
detail in section 5.0, Monitoring & Maintaining Systems. The IDS/9000 system is
now fully functioning and properly running. We will now proceed to implement the
“responsive” functionality in IDS.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

3.5 Responsive Functionality

We are now in a position to investigate and implement the focus of this paper. As
I had mentioned previously, the focus of my research is on a concept that I call
Responsive Intrusion Detection System (RIDS). The concept of RIDS is to
configure IDS to respond intelligently to certain types of attacks. This will further
strengthen the functionality of IDS. It will allow for a faster response time for
handling intrusions, considering that the System Administrator may not always be
available to respond. It will also allow the System/Security Administrator to focus
on some other angles of the intrusion, such as determining the source and
protecting from future attacks. The responsive features of this research are
housekeeping tasks that any administrator would have to carry out if an intrusion
is detected, but it can also serve to prevent further attacks as well as providing
audit information. An important note to mention: this is a simplistic model of
the RIDS concept. This only addresses the needs of a sample of all the possible
attacks. My research is meant to develop a concept and not an all-inclusive
product. The research does allow for further growth and can be built on in the
future.

The strength of RIDS is in developing custom Unix script(s) to respond to certain
scenarios. These scripts must be kept in the directory /opt/ids/response in order
for IDS/9000 to recognize them. The scripts respond according to alerts activated
by the IDS/9000 system. Depending on the alert message fields/variables, the
script can respond appropriately. Each alert generated sends the information
listed in Table 4 in its message, and this information can be captured to decide
on what the scripts need to do.

Table 4: Alert Message Content
Variable Name Description

Code Code for template. Three digits, with leading
zeros

Version Version # of template
Severity Severity level of alert (1 – most serious, 3 –

least serious)
UTC Time Time of alert
Attacker Source of attack
Target ID System attacked
Attack Type Type of attack
Details Full alert information

Typically, a System Administrator has many methods of staying in touch with the
system. The System Administrator is not constantly sitting and watching the
IDS/9000 System Manager while at work. Therefore if an alert is generated, and
it has a medium criticality level, the best way to notify the System Administrator is
through email. The email can also be forwarded to his/her pager device to notify
him/her when they are not in front of their email. I have devised a numbering
scheme that will define the seriousness of the event based on the severity level
produced by IDS/9000 and the nature of the attack. Critical level 1 is the highest

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

level of an alert, while 3 is the lowest level. Table 5 lists the level of attack and
the response needed for such an attack. Again, this is not to be confused with
IDS/9000’s Severity Level numbering system. This new system determines its
level of severity based on IDS/9000’s Severity Level as well as the type of attack,
and then decides what the best response should be.

Table 5: Critical Levels and Responses
Level Response

1 Alert/Email/Respond
2 Alert/Email
3 Alert

If an alert is generated by IDS/9000 that is not in any way critical and is simply a
notification of someone logging on to the system, then this will carry a level 3
response. Level 3 responses merely send an alert to the IDS/9000 System
Manager. If the event is more serious, such as root or ids logging on to the
system, then this will raise the alert to level 2. Level 2 involves sending an alert to
the IDS/9000 System Manager as well as emailing (and maybe paging) the
System Administrator. At that point, the System Administrator can decide if
further action needs to take place. Finally, if the event is severe, and has the
potential of causing serious damage, this will take the alert to level 1. Level 1
involves everything that level 2 involves, but goes further to respond in a manner
that will reduce the damage or completely eliminate it, as well as providing audit-
related information.

Table 6 lists the responses that the RIDS system will take in each sample attack
listed in our group, BasicGroup. Some do not require any responses, and an
email to the System Administrator is sufficient.

Table 6: Responses to Detected Intrusions
Intrusion Templates Code RIDS Level Response

Monitor Start of
Interactive Sessions

030 2

Monitor
Logins/Logouts

031 3

Changes to Log Files 028 2 Preserve
copy of log
file

Modification of
Files/Directories

027 1 Preserve
copy of files

Creation of setUID
Files

009 2

Repeated Failed
Logins

016 1 Lock
account

Repeated Failed su
Command

015 1 Lock
account

Race Condition
Attacks

006 1 Kill program

Buffer Overflow
Attacks

005 1 Kill program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

I have chosen to develop the RIDS script in the Unix shell programming
language. I have packaged all the responses into one script, and based on the
arguments it receives from the alert (Table 5), it will determine the nature of the
attack and the appropriate response. You can also create different scripts for
each attack type, but I decided to package it all in one to prevent
overcomplicating the solution. The script is called “response.sh”, and you will find
it in Appendix A. Download (or copy and paste) the script into each Agent system
under /opt/ids/response. The response scripts run off the Agent systems, not off
the Administration system.

I chose the responses listed in Table 6 based on the nature of the attack. Let us
now look into why RIDS should respond in the following manner for each type of
attack. Please review the code in Appendix A to see the implementation of the
below descriptions. Most of the responses taken involve manipulating the
“Details” field sent by the alert. What I do is grab the information I need from that
field, with some Unix commands, then I perform the response on the data I grab.

Interactive sessions are important events to monitor because many attacks
originate from interactive sessions. Examples of interactive sessions are ftp,
remote logins (such as rlogin or telnet), and the su command. Interactive
sessions are a little more serious than monitoring for logins/logouts because
interactive sessions can be the source of many attacks. For interactive sessions,
we will only look for root or ids users, and send an email to the System
Administrator. An email is sufficient enough considering that it is common
practice for people to telnet or su into an account. Again, this would probably
depend on the type of server. If the server does not allow any interactive
sessions to take place, then you might want to modify “response.sh” to respond
more harshly by disabling networking and locking the account.

When a log file is changed (appending to it is ok) it means that someone is trying
to cover his or her trail. The attacker is trying to erase the audit trail that can lead
to them. This is a serious attack because it prevents us from knowing the source
of the attack. The two log files that we set in IDS/9000 to monitor for, are the
/var/adm/syslog/syslog.log and the /var/opt/ids/alert.log log files. The first log is
the general system log that monitors for system activity. This is critical to
preserve since it will provide a lot of valuable audit information. The second is
more critical because it contains the log files for the IDS/9000 alerts. If an
attacker is able to modify these files, then the IDS/9000 system may never
generate alerts or may send us incorrect information. The response we want to
take here is to preserve these log files in the event that they are edited. We
preserve them by emailing them to the System Administrator. The problem with
this however is that the response is not real-time, in the sense that the response
will occur only after that change is done. This does not help us much, because
we then receive a file through email after it has been altered. This response will
only serve a useful purpose if the attacker saves the file in the middle of editing it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

After it is saved, it will then get emailed to the System Administrator. So as you
can see, this may not be the best approach, but it is the best type of response we
can get with the resources we have. Another thought is to preserve these files
whenever root or ids log in, and not necessarily after the log file is opened and
edited. This will work since it is only those two users that can edit their respective
log files. This approach would work, but would carry some extra overhead on the
system, considering that it is more common for a normal root or ids user to log in
than it is for an attacker to log in. So most of the time the system will be
executing commands that do not serve an immediate purpose.

Modification or corruption of certain files or directories can cause a serious
system failure, especially when it involves the kernel or bootconf files. In this
case, our response will be to once again attempt to preserve these files. The
approach for that will be to relocate the files to another directory under a different
name and convert them to hidden files (or “.” files). This will attempt to hide the
files under a different name and at a different location so that the Administrator
can go back later and retrieve them, in case the originals are corrupted from the
hacker. However, with a little more patience, the hacker can still find the copied
files, but it will hopefully buy the Administrator enough time to preserve the
copies and disable the hacker. Another option is to perform an “rcp”, and copy it
off the Agent to the Administration server for example, but in that case, you
would have to enable “login” in /etc/inetd.conf to allow for “r” command execution.
For purposes of simplicity, we will just copy it to another location on the Agent.
The new location the hidden file will be saved to is /opt/ids/lib.

Repeated failed logins and repeated failed su attempts indicates to us that
someone is trying a brute-force attack to attempt to crack the password for a
particular user. In a Trusted System, an account will automatically lock after a
certain number of failed attempts. However, if it is a Trusted System, let us still
empower RIDS, through “response.sh”, to lock the user account. In the case that
the system is not a Trusted System, a user account can still be locked. There is a
difference between the response I chose between failed login attempts and failed
su attempts. If an attack is a “failed login attempt”, then the response will be to
lock the account the person is trying to log into. This makes sense since most
likely the hacker is logging in from an external server, and the only user we can
control is the user on the local machine, and therefore we can lock that user so
that the hacker cannot try to attack it. If an attack is a “failed su attempt”, I chose
to lock the account that the “su” command originated from. This is possible, since
“su” is a command run on the local machine, by a local user. So we have control
over local users and can therefore lock the account of this particular malicious
user. This also includes emailing the System Administrator to notify him/her that
this has occurred so they can investigate and proceed to unlock any accounts if
all is secured.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

Race condition attacks and buffer overflow attacks are quite dangerous. At the
end, they can leave the hacker with a root shell to do with it what they please.

� A race condition attack is when an attacker uses the idle time
between two commands or operations in a program to input his/her
set of commands. If the program is running as root, well then, the
attacker now has a root shell.

� A buffer overflow attack is when an attacker floods a program buffer
with too much data, causing the program to execute commands at
a different location in memory. This new location is where the
attacker places his/her code to exploit the system. The way buffer
overflow attacks actually work is that initially there is a non-
malicious program running. Malicious code is inserted so a new
malicious program is executed when the buffer overflow occurs,
and gives the user privileged access.

These are both described in great detail in Hal Pomeranz’s Common Issues and
Vulnerabilities in Unix Security. Now that we understand race condition attacks
and buffer overflow attacks, we can talk about how to prevent them through the
RIDS response program.

Let us first discuss the response for each of the two attacks.
� For the buffer overflow attack what we ultimately want to do is to kill

the malicious program that is currently running, since that is the
primary source of damage at this point. We also want to remove the
program that the buffer overflow originated from, to prevent further
attacks. “response.sh” grabs the currently running malicious
process id from the “Details” field from the alert and kills that
process. “response.sh” then grabs the program name from the
“Details” field for the initial program that contains the buffer overflow
problem and emails it (to preserve it so the Administrator can see
where the error originated) and then removes it to prevent further
attacks.

� For the race condition attack, what we would like to do is to remove
the attacking program and deactivate the user who generated this
attack. “response.sh” will capture the user ID of the attack, and then
based on whether it is a Trusted System or not, we will perform the
proper command to lock the account. Next we will email a copy of
the attacking program to the Administrator and then remove it to
prevent further attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

4.0 Testing Configuration

Testing the configuration is one of the most important steps in ensuring that the
RIDS system is up and running securely. Testing however is sometimes not
easy, because you need to simulate the different types of possible intrusions. We
can divide the testing into two main categories: system security testing and RIDS
testing. System security testing involves testing the Unix system for general
security concerns. It basically ensures that what we discussed in the section
entitled “Hardening HP-UX System” is working properly. RIDS testing involves
testing the functionality of RIDS to ensure that it is functioning as intended.

4.1 Unix System Security Testing

Testing the security of the Unix system is just as important as testing the RIDS
functionality. What good is it if you have a well-toned RIDS system, but your Unix
system has fundamental security flaws that can be exploited by the most trivial
tools used by a “script kiddie hacker”? The first check we want to perform is to
run the secure.sh script located in Appendix A against the Administration system
and all the Agents. This will perform a general security check on the system. The
output will give us a lot of valuable information that we can use to analyze our
systems. I would recommend that you run this at least once a month to give you
an idea of changes that may have occurred on the systems. For example, the
script checks for suid/sgid scripts. If any new suid/sgid scripts have been added
since the last time it ran, then it is something you will need to look into. Below is
the output from running “secure.sh” on the Administration system. As you can
see the system is Trusted, and if it is not, it will prompt you to convert the system
into a Trusted System. For more advanced security features, ensure that the
system is always Trusted. Root access is also restricted to the console, which is
another important security feature. It then notifies you of the users and groups
setup on the system. This allows you to keep track of any expired or suspicious
users/groups. After that, you will see a listing of all the suid/sgid programs. It is
imperative that you keep track of these programs and inspect any new ones. A
quick method for keeping track of all these is to store this list in a file every
month, then execute the “diff” command on the previous month’s file and the
current month’s file. Any new suid/sgid programs will be displayed on the
terminal. This will help protect your systems from a hacker who, for example, has
placed a malicious program that uses the suid/sgid functionality to gain access to
a root shell.
“secure_results” file (output of “secure.sh”):

This file contains the results of hardening the system:

Checking to see if system is trusted...
System is already trusted!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

Root access is now restricted to the console

Below is a list of users configured on the system:

root
daemon
bin
sys
adm
uucp
lp
nuucp
hpdb
www
webadmin
smbnull
ids
hmahmoud

Below is a list of groups configured on the system:

root
other
bin
sys
adm
daemon
mail
lp
tty
nuucp
users
nogroup
smbnull
ids

Below is a list of suid/sgid programs on the system:

-r-sr-xr-x 1 root bin 39448 Nov 14 2000 /opt/dce/bin/ep_scavenger
-r-sr-xr-x 1 root bin 16384 Oct 2 2000 /opt/webadmin/parmgr/startParMgr.cgi
-r-sr-xr-x 1 root bin 53248 Jun 27 2000 /opt/graphics/common/lbin/gwind
-r-sr-xr-t 5 root bin 4407296 Jun 27 2000 /opt/graphics/common/lbin/sb_daemon_11.0
-r-sr-xr-t 5 root bin 4407296 Jun 27 2000 /opt/graphics/common/lbin/sb_daemon_8.02
-r-sr-xr-t 5 root bin 4407296 Jun 27 2000 /opt/graphics/common/lbin/sb_daemon_8.05
-r-sr-xr-t 5 root bin 4407296 Jun 27 2000 /opt/graphics/common/lbin/sb_daemon_8.07
-r-sr-xr-t 5 root bin 4407296 Jun 27 2000 /opt/graphics/common/lbin/sb_daemon_9.0
-r-sr-xr-x 1 daemon bin 45056 Jun 27 2000 /opt/graphics/common/lbin/timd
-r-sr-xr-t 1 root bin 40960 Jun 27 2000 /opt/graphics/phigs/bin/cgmiui
-r-sr-xr-t 1 root bin 65536 Jun 27 2000 /opt/graphics/phigs/lbin/phg_daemon
-rwsr-xr-x 1 root users 57536 Sep 13 2000 /opt/cifsclient/bin/cifslist
-rwsr-xr-x 1 root users 57529 Sep 13 2000 /opt/cifsclient/bin/cifslogin
-rwsr-xr-x 1 root users 53434 Sep 13 2000 /opt/cifsclient/bin/cifslogout
-rws--x--x 1 root bin 77824 Sep 18 04:57 /opt/ssh/PA-RISC1.1/libexec/ssh-chauthtok-helper

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

-rws--x--x 1 root bin 1093632 Sep 18 04:57 /opt/ssh/PA-RISC1.1/libexec/ssh-keysign
-r-sr-x--- 1 root ids 266240 Mar 22 2002 /opt/ids/lbin/idssysdsp
-r-sr-x--- 1 root ids 274432 Mar 22 2002 /opt/ids/lbin/updaterc
-r-sr-xr-x 1 root bin 32768 Nov 9 2000 /usr/bin/mediainit
-r-sr-xr-x 1 root bin 20480 Nov 14 2000 /usr/bin/bdf
-r-sr-xr-x 1 root bin 45056 Nov 14 2000 /usr/bin/rcp
-r-sr-xr-x 1 root bin 28672 Nov 14 2000 /usr/bin/remsh
-r-sr-xr-x 1 root bin 45056 Nov 14 2000 /usr/bin/at
-r-sr-xr-x 1 root bin 24576 Nov 14 2000 /usr/bin/crontab
-r-sr-sr-x 2 root mail 45056 Nov 14 2000 /usr/bin/mail
-r-sr-sr-x 2 root mail 45056 Nov 14 2000 /usr/bin/rmail
-r-xr-sr-x 1 bin sys 24576 Nov 14 2000 /usr/bin/ipcs
-r-sr-xr-x 1 root bin 16384 Nov 14 2000 /usr/bin/newgrp
-r-xr-sr-x 1 bin sys 28672 Nov 14 2000 /usr/bin/top
-r-xr-sr-x 2 bin sys 16384 Nov 14 2000 /usr/bin/uptime
-r-xr-sr-x 2 bin sys 16384 Nov 14 2000 /usr/bin/w
-r-sr-xr-x 1 root bin 24576 Nov 14 2000 /usr/bin/nfsstat
-r-xr-sr-x 1 bin sys 118784 Nov 14 2000 /usr/bin/strdb
-r-xr-sr-x 1 bin sys 16384 Nov 9 2000 /usr/bin/iostat
-r-xr-sr-x 1 bin sys 98304 Oct 23 2002 /usr/bin/netstat
-r-xr-sr-x 1 bin sys 24576 Nov 9 2000 /usr/bin/vmstat
-r-sr-xr-x 5 root bin 45056 Nov 14 2000 /usr/bin/chfn
-r-sr-xr-x 1 root bin 73728 Nov 14 2000 /usr/bin/df
-r-sr-xr-x 1 root bin 53248 Nov 14 2000 /usr/bin/login
-r-sr-xr-x 1 root bin 24576 Nov 14 2000 /usr/bin/su
-r-sr-xr-x 5 root bin 45056 Nov 14 2000 /usr/bin/chsh
-r-sr-xr-x 5 root bin 45056 Nov 14 2000 /usr/bin/nispasswd
-r-sr-xr-x 5 root bin 45056 Nov 14 2000 /usr/bin/passwd
-r-sr-xr-x 5 root bin 45056 Nov 14 2000 /usr/bin/yppasswd
-r-sr-xr-x 1 root bin 36864 Nov 14 2000 /usr/bin/chkey
-r-sr-xr-x 1 root bin 344064 Nov 14 2000 /usr/bin/pppd
-r-sr-xr-x 1 root bin 69632 Nov 14 2000 /usr/bin/rdist
-r-sr-xr-x 1 root bin 20480 Nov 14 2000 /usr/bin/rexec
-r-sr-xr-x 1 root bin 36864 Nov 14 2000 /usr/bin/rlogin
-r-xr-sr-x 1 bin bin 163840 Dec 23 2002 /usr/bin/X11/xfs
-r-sr-sr-x 1 root sys 299008 Nov 14 2000 /usr/bin/X11/hpterm
-r-sr-xr-x 1 root bin 294912 Nov 14 2000 /usr/bin/X11/xterm
-r-xr-sr-x 1 bin mail 507904 Nov 14 2000 /usr/bin/elm
-r-sr-xr-x 1 root bin 40960 Nov 14 2000 /usr/bin/lp
-r-sr-xr-x 1 lp bin 36864 Nov 14 2000 /usr/bin/cancel
-r-sr-xr-x 1 lp bin 24576 Nov 14 2000 /usr/bin/disable
-r-sr-xr-x 1 lp bin 20480 Nov 14 2000 /usr/bin/enable
-r-sr-xr-x 1 root bin 36864 Nov 14 2000 /usr/bin/lpalt
-r-sr-xr-x 1 lp bin 45056 Nov 14 2000 /usr/bin/lpstat
-r-sr-xr-x 1 lp bin 16384 Nov 14 2000 /usr/bin/slp
-r-sr-xr-x 1 root bin 45056 Nov 14 2000 /usr/bin/ct
-r-sr-xr-x 1 root bin 36864 Nov 14 2000 /usr/bin/cu
-r-sr-sr-x 1 bin daemon 1699840 Nov 14 2000 /usr/bin/kermit
-r-sr-xr-x 1 uucp bin 57344 Nov 14 2000 /usr/bin/uucp
-r-sr-xr-x 1 uucp bin 20480 Nov 14 2000 /usr/bin/uuls
-r-sr-xr-x 1 uucp bin 16384 Nov 14 2000 /usr/bin/uuname
-r-sr-xr-x 1 uucp bin 16384 Nov 14 2000 /usr/bin/uusnap
-r-sr-xr-x 1 uucp bin 36864 Nov 14 2000 /usr/bin/uustat
-r-sr-xr-x 1 uucp bin 53248 Nov 14 2000 /usr/bin/uux

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

-r-xr-sr-x 1 bin bin 245760 Nov 14 2000 /usr/bin/stmkfont
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swinstall
-r-sr-xr-x 2 root bin 1011712 Nov 14 2000 /usr/sbin/swpackage
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swacl
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swconfig
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swcopy
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swlist
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swremove
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swverify
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swreg
-r-sr-xr-x 2 root bin 1011712 Nov 14 2000 /usr/sbin/swmodify
-r-sr-xr-x 1 root bin 61440 Oct 23 2002 /usr/sbin/arp
-r-sr-xr-x 1 root bin 32768 Oct 23 2002 /usr/sbin/ping
-r-xr-sr-x 1 root sys 40960 Nov 14 2000 /usr/sbin/lanscan
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvchange
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvcreate
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvdisplay
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvextend
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvlnboot
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvreduce
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvremove
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/lvrmboot
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/pvchange
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/pvck
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/pvcreate
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/pvdisplay
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/pvmove
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/pvremove
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgcfgbackup
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgcfgrestore
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgchange
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgchgid
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgcreate
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgdisplay
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgexport
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgextend
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgimport
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgreduce
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgremove
-r-sr-xr-x 26 root sys 536576 Nov 14 2000 /usr/sbin/vgscan
-r-sr-xr-x 1 root bin 12288 Nov 14 2000 /usr/sbin/acct/accton
-r-xr-sr-x 1 bin tty 16384 Nov 14 2000 /usr/sbin/wall
-r-sr-xr-x 1 root bin 12288 Nov 14 2000 /usr/sbin/keyenvoy
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/sd
-r-sr-sr-t 1 root mail 856064 Nov 14 2000 /usr/sbin/sendmail
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swask
-r-sr-xr-x 11 root bin 1888256 Nov 14 2000 /usr/sbin/swjob
-r-sr-xr-x 1 lp bin 16384 Nov 14 2000 /usr/sbin/accept
-r-sr-xr-x 1 root bin 40960 Nov 14 2000 /usr/sbin/lpadmin
-r-sr-xr-x 1 lp bin 20480 Nov 14 2000 /usr/sbin/lpfence
-r-sr-xr-x 1 lp bin 28672 Nov 14 2000 /usr/sbin/lpmove
-r-sr-xr-x 1 root bin 53248 Nov 14 2000 /usr/sbin/lpsched
-r-sr-xr-x 1 lp bin 16384 Nov 14 2000 /usr/sbin/lpshut
-r-sr-xr-x 1 root bin 32768 Nov 14 2000 /usr/sbin/rcancel

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

-r-sr-xr-x 1 lp bin 16384 Nov 14 2000 /usr/sbin/reject
-r-sr-xr-- 1 root lp 24576 Nov 14 2000 /usr/sbin/rlp
-r-sr-xr-x 1 root bin 65536 Nov 14 2000 /usr/sbin/rlpdaemon
-r-sr-xr-x 1 root bin 32768 Nov 14 2000 /usr/sbin/rlpstat
-rwxr-sr-x 1 bin sys 28296 Nov 9 2000 /usr/sbin/sysdef
-r-sr-xr-x 1 root bin 20480 Nov 14 2000 /usr/lib/lanadmin/libdsbtlan.1
-r-sr-xr-x 1 root bin 16384 Oct 4 2000 /usr/lib/lanadmin/libdsfddi4.1
-r-sr-xr-x 1 root bin 139264 Oct 2 2000 /usr/lib/lanadmin/libdsgelan.1
-r-xr-sr-x 1 bin sys 69632 Nov 14 2000 /usr/lbin/fs/vxfs/diskusg
-r-xr-sr-x 1 bin sys 24576 Nov 9 2000 /usr/lbin/fs/hfs/diskusg
-r-sr-sr-x 1 root bin 212992 Nov 14 2000 /usr/lbin/chgpt
-r-sr-xr-x 1 root bin 12288 Nov 14 2000 /usr/lbin/protect_pty
-r-xr-sr-x 1 bin mail 16384 Nov 14 2000 /usr/lbin/rmmail
-r-sr-xr-x 1 root bin 16384 Nov 14 2000 /usr/lbin/rwrite
-r-sr-xr-x 1 root bin 20480 Nov 14 2000 /usr/lbin/exrecover
-r-sr-xr-x 1 uucp bin 118784 Nov 14 2000 /usr/lbin/uucp/uucico
-r-sr-xr-x 1 uucp bin 32768 Nov 14 2000 /usr/lbin/uucp/uuclean
-r-sr-xr-x 1 uucp bin 28672 Nov 14 2000 /usr/lbin/uucp/uusched
-r-sr-xr-x 1 uucp bin 32768 Nov 14 2000 /usr/lbin/uucp/uusub
-r-sr-xr-x 1 uucp bin 57344 Nov 14 2000 /usr/lbin/uucp/uuxqt
-r-sr-xr-x 1 daemon bin 303104 Nov 14 2000 /usr/lbin/grmd
-r-sr-xr-x 1 root bin 49152 Oct 23 2002 /usr/contrib/bin/traceroute
-r-sr-xr-x 1 root bin 212992 Nov 14 2000 /usr/contrib/bin/X11/xconsole
-r-xr-sr-x 1 bin sys 229376 Nov 14 2000 /usr/contrib/bin/X11/xload
-r-sr-xr-x 1 root bin 385024 Nov 14 2000 /usr/contrib/bin/X11/xterm
-r-sr-xr-x 1 root bin 16384 Nov 14 2000 /usr/sam/lbin/rsam
-r-sr-xr-x 1 root bin 65536 Nov 14 2000 /usr/dt/bin/dtterm
-r-sr-sr-x 1 root sys 32768 Nov 14 2000 /usr/dt/bin/dtaction
-r-sr-xr-x 1 root bin 77824 Nov 14 2000 /usr/dt/bin/dtappgather
-r-xr-sr-x 1 bin mail 921600 Nov 14 2000 /usr/dt/bin/dtmail
-r-xr-sr-x 1 bin mail 258048 Nov 14 2000 /usr/dt/bin/dtmailpr
-r-sr-xr-x 1 root bin 442368 Nov 14 2000 /usr/dt/bin/dtprintinfo
-r-sr-xr-x 1 root bin 237568 Nov 14 2000 /usr/dt/bin/dtsession
-r-sr-xr-x 1 root bin 12288 Nov 14 2000 /usr/tsm/sys/tsm.root
-r-sr-xr-x 1 root bin 16384 Nov 14 2000 /usr/tsm/sys/tsm.utmp
-r-sr-xr-x 1 root bin 32768 Nov 14 2000 /var/adm/sw/save/PHNE_28089/NET-
RUN/usr/contrib/bin/traceroute
-r-sr-xr-x 1 root bin 61440 Nov 14 2000 /var/adm/sw/save/PHNE_28089/NET-
RUN/usr/sbin/arp
-r-sr-xr-x 1 root bin 24576 Nov 14 2000 /var/adm/sw/save/PHNE_28089/NET-
RUN/usr/sbin/ping
-r-xr-sr-x 1 bin sys 98304 Nov 9 2000 /var/adm/sw/save/PHNE_28089/SYS-
ADMIN/usr/bin/netstat
-r-xr-sr-x 1 bin bin 126976 Nov 14 2000 /var/adm/sw/save/PHSS_28470/X11-
FONTSRV/usr/bin/X11/xfs
-r-sr-xr-x 1 root bin 49152 Oct 23 2002 /var/depot/java/PHNE_28089/NET-
RUN/usr/contrib/bin/traceroute
-r-sr-xr-x 1 root bin 61440 Oct 23 2002 /var/depot/java/PHNE_28089/NET-
RUN/usr/sbin/arp
-r-sr-xr-x 1 root bin 32768 Oct 23 2002 /var/depot/java/PHNE_28089/NET-
RUN/usr/sbin/ping
-r-xr-sr-x 1 bin sys 98304 Oct 23 2002 /var/depot/java/PHNE_28089/SYS-
ADMIN/usr/bin/netstat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

-r-xr-sr-x 1 bin sys 98304 Oct 23 2002 /var/depot/java/PHNE_28089/SYS-
ADMIN.2/usr/bin/netstat
-r-xr-sr-x 1 bin bin 163840 Dec 23 2002 /var/depot/java/PHSS_28470/X11-
FONTSRV/usr/bin/X11/xfs
-r-sr-x--- 1 root root 138203 Mar 22 2002 /var/depot/ids_11i_admin+agent/IDS/IDS-AGT-
RUN/opt/ids/lbin/idssysdsp
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvchange
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvcreate
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvdisplay
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvextend
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvlnboot
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvreduce
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvremove
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/lvrmboot
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/pvchange
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/pvcreate
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/pvdisplay
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/pvmove
-r-sr-xr-x 1 root sys 811008 Nov 14 2000 /sbin/sdstolvm
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgcfgbackup
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgcfgrestore
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgchange
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgcreate
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgdisplay
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgexport
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgextend
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgimport
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgreduce
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgremove
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgscan
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/pvck
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/pvremove
-r-sr-xr-x 26 root sys 811008 Nov 14 2000 /sbin/vgchgid
-r-s------ 1 root bin 286720 Nov 14 2000 /sbin/passwd
-r-sr-xr-x 1 root bin 270336 Nov 14 2000 /sbin/shutdown
The following users have command history activated:

/home/ids/.sh_history
/.sh_history

The other test we will want to perform is a network penetration test. We can test
several items in this portion. First, we will want to ensure that Telnet and FTP are
truly disabled. To perform this, from any host on the network, execute the
command “telnet <hostname>” or “ftp <hostname>”, where <hostname> is the
name of the host that has telnet/ftp disabled from the /etc/services file. The
response you should expect is seen in Figure 12. It will state, “Connection
refused” and will leave you at a connectionless telnet/ftp prompt. I also displayed
a screenshot of the /etc/services file with FTP commented out – hence disabled.

Second, we will want to test that “root” cannot log in over the network, a feature
which is enabled through the “secure.sh” script. I removed the /etc/securetty file
and Figure 13 shows that the file /etc/securetty does not exist. For the purposes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

of this test, I enabled Telnet and we can see in that same figure that a connection
was established for root over the network. In Figure 14, I created and configured
the /etc/securetty file again – which is performed by the “secure.sh” script. After
attempting to connect to “orion” again, as root, it stated “Login incorrect” and took
me to the login prompt again. This proves that root cannot log in over the network
with the existence and proper configuration of the /etc/securetty file.

Third, we will want to test the “Trusted System” functionality of the systems. One
way to test this is to attempt to log onto an account using the brute-force attack
methodology. Our goal in this test is to ensure that the account locks up after
three failed login attempts, as it is supposed to under a Trusted System. Figure
15 displays a proper login of user “hmahmoud” to ensure that the account is
setup and configured properly. Figure 16 shows the response of the Trusted
System on a brute-force type attack on a user’s account. After three failed
attempts, the user account “hmahmoud” locked up. In Figure 16 you can see the
response that states, “Account is disabled – see Account Administrator”, and
proves that this test was successful and the system security held its ground in
this attack.

Figure 12: Disable FTP Connections

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

Figure 13: Root Logging in Over the Network

Figure 14: Root Cannot Login Over Network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

Figure 15: Successful Login of “hmahmoud”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

Figure 16: Trusted System Functionality – User Locked Out

4.2 RIDS Functionality Testing

We will now look into testing the RIDS functionality to verify its setup. To test the
configuration, I have created a new schedule called “Testing”, and a new group
called “TestGroup”. My approach is to initially test each template in BasicGroup
individually to make sure that the response scripts are executed when an
intrusion occurs and that they respond correctly. However I do not want to alter
the already created production schedule, “GeneralPurpose”, or the already
existing group, “BasicGroup”. That is why I created a new schedule and group for
testing. The assumption is that if each template is tested individually and passes,
then the response scripts are functioning correctly. For TestGroup, I will activate
each template one-by-one and test them. If the response script works properly
for the first template, then I will unselect it from TestGroup and select the next
template and test it. In this process I get to test each template individually, by
running it under TestGroup.

After creating the test schedule and group and selecting only one template, I
stopped the schedule, “GeneralPurpose”, running on gemini (the Agent), and
started the new schedule, “Testing”, to run instead. This was done from the
System Manager window. Every time we complete the testing of a template, we
need to stop the schedule, update TestGroup to include the next template to test,
save it then restart the schedule again on gemini.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

The first event tested was “monitor start of interactive sessions”. This carries a
RIDS level of 2, meaning that an email will be generated when this occurs and
sent to orion (the Administration system). It was also configured to run only if root
or ids are the users targeted in this attack. The next step was to log into gemini
and see if we receive the email that we had logged into gemini (therefore starting
an “interactive session”). So from orion, I logged into gemini through “ssh”, and
Figure 17 shows the email sent to root on orion. This proves that RIDS detected
the logon and responded appropriately by sending an email to the administrator.
It also shows that the user logged on to gemini from orion.

Figure 17: Monitor start of interactive session response

 The next step involves testing for “changes to log files”. This has a RIDS level of
1, which means that “orion” will receive an email but a response will also take
place. The response in this case is preserving the log files by emailing them to
the System Administrator. This will allow the System Administrator to view the log
files and obtain information about the attacks. Figure 18,19, and 20 display the
emails “orion” received from this event. RIDS was able to detect changes to the
log files, and took the appropriate response by emailing the System Administrator
the log files, in an attempt to preserve them.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

Figure 18: Changes to log files

Figure 19: Preserved alert.log

Figure 20: Preserved syslog.log

The next test we want to perform is to check for the appropriate response when
someone attempts to log on to a user’s account and fails three times. The
response we are looking for if someone is attempting to log on externally through
“ssh”, is that we want to lock the user account for the user under attack. I created

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

a new user, “hmahmoud”, performed three failed logons, and the account was
locked. The response script takes into consideration whether the system is a
Trusted System or not, and in either case it locks the account. The next step was
to check that three failed “su” attempts will produce the appropriate response. In
this case, the appropriate response is to lock the account of the user executing
the “su” command. Therefore after unlocking the account “hmahmoud”, I
performed three failed “su” commands to try and log on to “hmahmoud”, and my
user, “hazem”, who initiated the attack got locked out.

A race condition attack is unfortunately (or fortunately) difficult to recreate, and
therefore it makes it difficult to test for this kind of attack. The difficulty is not in
the implementation of a race condition attack; the concept is easy and
straightforward. The problem is in the amount of time it would take to recreate it.
The same is true for a buffer overflow attack. However, I did test that the
response script responds appropriately by simulating the attack and forcing the
script to run that portion of the code. The code kills the malicious program and
locks out the user who executed that program.

Testing is an important component in ensuring that you have a properly
functioning system that performs as intended. It should not be overlooked, nor
trivialized. In testing, I made sure to test each response feature to ensure it is
functioning properly.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

5.0 Monitoring & Maintaining Systems

5.1 Monitor RIDS

The RIDS system is only as good as the System Administrator who is monitoring
it. If the system is not monitored properly and regularly, then having RIDS
installed is pointless. Monitoring the alerts that take place for each Agent is done
through the “Network Node” window in IDS/9000. To open this window, in the
System Manager, click “View” then “Network Node”, or you can just double-click
on the Agent listed. A snapshot of the “gemini” Network Node window is
displayed in Figure 21.

The Network Node is a color-coded, GUI-based display of the alerts originated
from IDS/9000. Each severity level is a different color, which allows you to
quickly filter out and identify the serious alerts. Blue represents the least serious
alert, and carries a severity number of 3. Yellow represents a medium-risk alert
and carries a severity number of 2. Red is the most serious risk alert and it
carries a severity number of 1.

Another important monitoring task is to check that the “idsagent” program is
running on all the Agents. “idsagent” is the program that communicates with the
Administration system to notify the Administration system that a possible
intrusion has been detected and to generate an alert. If the “idsagent” program is
running, then the Administration system assumes that the Agent is not
generating any alerts, which it considers to be good. When in actuality, it is very
bad, because now the Agents are completely vulnerable. Unfortunately IDS/9000
does not do a thorough job of testing whether “idsagent” is running on the
Agents. A simple “ps -ef | grep idsagent” on each Agent will do the job of
checking that the program is running. If you have a large number of Agents, this
can be automated (through cron, for example) to run on each Agent machine and
when it does not detect that “idsagent” is running it can email the System
Administrator.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

Figure 21: Network Node for “gemini”

5.2 RIDS Maintenance

It does not take much to maintain RIDS, but maintenance is required. The single
biggest problem would occur if the log files filled up under /var/opt/ids. If
/var/opt/ids is in its own filesystem, then the problem is not as severe since the
/var filesystem is not affected. This can still cause the IDS/9000 system to stop
generating alerts. Therefore regular log file cleanups are necessary. If a separate
filesystem is not created for /var/opt/ids, then the problem is worse because it
can cause a system crash. A simple script can be written and automated to
check the size of the log files on the Administration and Agent systems and notify
the Administrator. The action you would need to take is to remove the oldest logs
first and then check if any more needs to be removed. A more advisable
approach is to backup the logs, as opposed to just removing them completely.
Creating a backup rotation to ensure that you keep a year’s worth of logs is
recommended. If you find yourself committing too much time into maintaining the
logs in /var/opt/ids, you would probably want to consider expanding the
/var/opt/ids logical volume.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

5.3 HP-UX System Maintenance

HP-UX system maintenance is a general maintenance routine for all types of
servers and workstations. Performing regular incremental and full backups are
required. Check the system log files (ie: /var/adm/syslog/syslog.log) to make sure
they do not fill up. Check the mounted logical volumes on a regular basis (“bdf”)
to make sure that none of the file systems is nearing its maximum limit. Perform
regular cleaning of old user accounts and groups. Commands such as “pwck”
and “grpck” check for inconsistencies in the password and group files. Leaving a
supposedly deactivated account active is one of the worst security practices.
Perform regular checks for suid/sgid programs on the systems. Be aware of all
the programs that have this functionality and make sure they do what they are
supposed to do. Ensure there is always proper physical security for critical
servers and workstations. The list is vast and books are written on how to
maintain HP-UX systems. This is just a short list to get you thinking of the types
of things you need to look out for. The script “secure.sh”, located in Appendix A,
can be run on a regular basis and it will address most of the items mentioned
above. It contains the command that will notify you of all the suid/sgid programs
on the system. A simple comparison (using the “diff” command) from the last time
it ran can easily filter out the new suid/sgid programs. It will also give you a listing
of all the users/groups setup on the system, just in case any of them need to be
removed. System maintenance is as critical, if not more critical, as maintaining
the RIDS systems. You need to know your systems inside out. Most of the
system maintenance tasks can be automated and can therefore save you a lot of
time.

On a regular basis, there are new vulnerabilities discovered and new attacks
created, and that is why it is important to constantly check for new updates and
patches released by HP. This is a critical measure that needs to be addressed in
regular system maintenance tasks. To search for the latest patches, you can visit
ftp://ftp.itrc.hp.com/export/patches/hp-ux_patch_matrix where you will find a
matrix listing all the new patches released. Once you determine the appropriate
patches needed on your system, you can download the patches from
ftp://ftp.itrc.hp.com/hp-ux_patches/ and install them on your system. Another
good approach is to download a benchmark utility that you run on your system
that notifies you of the appropriate patches needed to keep your system safe and
secure. One good benchmarking tool is developed by CIS (Center for Internet
Security) and can be downloaded at http://www.cisecurity.org/bench_hpux.html.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

6.0 Summary

The concept of Intrusion Detection Systems are great, but nowadays, they are
just not powerful/capable enough. We need to do more to protect our network
and our systems. We need intelligent, more sophisticated systems to care for our
systems. The days of manually sifting through logs and logs of alerts is just not
practical any more. We need a more intelligent system that can detect if an alert
is serious or not, and if it is, to take appropriate measures to reduce or eliminate
the attack. We also need this intelligent system to provide us with auditing
information. RIDS (Responsive Intrusion Detection System) is the
implementation behind this concept. I attempted to demonstrate the concept of a
simplified RIDS system in this paper. It is the concept of building your system to
respond more intelligently to certain scenarios. It is no longer just notifying the
System Administrator of an attack, but it takes it one step further and attempts to
deal with the situation. Empowering your system to make decisions is what RIDS
is all about.

As simplified as the RIDS implementation may have been in this paper, it
addressed some of the most critical types of attacks and how to respond. For
buffer overflow attacks and race condition attacks, we would like to respond by
eliminating the malicious program, if it is still running, and still provide the
program for the Administrator for auditing purposes. If it is known, it will also
deactivate the user’s account who originated the attack. For repeated failed login
attempts and repeated failed su commands, we would like to deactivate the
account to protect from further attacks. Regarding malicious manipulation of log
files, our response will be to attempt to preserve the original file for auditing. Most
likely, the attacker is trying to cover their trail. The same approach is considered
when important files, such as the kernel, come under attack.

RIDS has a lot of room for growth and the many different implementation
methods or tools are endless. However, it all originates from the same concept:
empowering our IDS systems to respond intelligently to intrusion attacks, to
reduce the damage or completely eliminate it, to allow the System Administrator
more time to investigate the attack more thoroughly.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

Appendix A – Unix Shell Scripts

secure.sh:

#!/bin/sh
###
Script to harden system
Developed by Hazem Mahmoud on 5/5/03.
###

rm secure_results #results file
echo "This file contains the results of hardening the system:\n" >> secure_results

#To convert to Trusted System
echo "\nChecking to see if system is trusted...\c" >> secure_results
/usr/lbin/getprdef -r
grep for "System is not trusted." then if statement if want to convert.
if [$? -eq 4]
then
echo "\nWould you like to convert to a trusted system (y/n)? \c"
read answer;
if [$answer = "y"]
then
echo "Will now convert to a Trusted System...\n" >> secure_results
/etc/tsconvert
echo "\nWARNING:";
echo "Open new telnet session and make sure you can log on as root!";
echo "If not, use this session to recreate password!\n";
fi
else
echo "\nSystem is already trusted!\n" >> secure_results
fi

echo "\nNow restricting root access to console...\n"
echo console > /etc/securetty
chmod 400 /etc/securetty
echo "\nRoot access is now restricted to the console\n" >> secure_results

echo "Now checking for users and groups configured on the system...\n"
echo "\nBelow is a list of users configured on the system:\n" >> secure_results
cat /etc/passwd | cut -f 1 -d : >> secure_results

echo "\nBelow is a list of groups configured on the system:\n" >> secure_results

cat /etc/group | cut -f 1 -d : >> secure_results

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
56

echo "\nNow checking for suid/sgid programs on system...\n"
echo "\nBelow is a list of suid/sgid programs on the system:\n" >> secure_results
find / \(-perm -4000 -o -perm -2000 \) -type f -exec ls -ld {} \; >> secure_results

echo "Now checking for command history...\n"
echo "The following users have command history activated:\n" >> secure_results
find / -name .sh_history >> secure_results

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
57

response.sh:

#!/usr/bin/sh

###
Author: Hazem Mahmoud
#
This script is a response program which
works with the IDS/9000 software. It
carries out a specific response, based
on the severity level generated by
IDS/9000 and the nature of the attack.
###

IDS_BASE="/opt/ids"
IDS_ETC="/etc/opt/ids"
IDS_VAR="/var/opt/ids"
RESPONSE_BASE=$IDS_BASE/response

Response for "Monitor Start of Interactive Sessions":
Send an email alert
if [[$1 -eq 30 && $3 -eq 2]]
then

echo "$8" | /usr/bin/mailx -s "$7" root@orion
fi

Response for "Changes to Log Files":
Send an email alert and email log file under attack to Administration server
if [[$1 -eq 28 && $3 -eq 2]]
then

logfile=`echo $8 | cut -f 12 -d " " | sed -e s/\"/""/g`
cat $logfile | /usr/bin/mailx -s "$7" root@orion #email log file
echo "$8" | /usr/bin/mailx -s "$7" root@orion

fi

Response for "Modification of Files/Directories":
Copy file under attack to another new location as hidden file
if [[$1 -eq 27]]
then

file=`echo $8 | cut -f 12 -d " " | sed -e s/\"/""/g`
cp $file /opt/ids/lib.$file #copy file
echo "$8\nNew File Location: /opt/ids/lib$file" | /usr/bin/mailx -s "$7"

root@orion
fi

Response for "Creation of setUID files":

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
58

Send an email alert
if [[$1 -eq 9 && $3 -eq 1]]
then

echo "$8" | /usr/bin/mailx -s "$7" root@orion
fi

Response for "Repeated Failed Logins":
Send an email and lock user account that hacker is attempting to hack into
if [[$1 -eq 16]]
then

victim=`echo $8 | cut -f 8 -d " "`
/usr/lbin/getprdef -r
if [$? -eq 4]
then

/usr/sbin/usermod -s /usr/bin/false $victim
else

/usr/lbin/modprpw -l -m alock=YES $victim
fi
echo "$8" | /usr/bin/mailx -s "$7" root@orion

fi

Response for "Repeated Failed su command":
Send an email and lock user account of person executing su command
if [[$1 -eq 15]]
then

attacker=`echo $8 | cut -f 2 -d " " | sed -e s/\"/""/g`
/usr/lbin/getprdef -r
if [$? -eq 4]
then

/usr/sbin/usermod -s /usr/bin/false $attacker
else

/usr/lbin/modprpw -l -m alock=YES $attacker
fi
echo "$8" | /usr/bin/mailx -s "$7" root@orion

fi

Response for "Race Condition Attacks":
Deactivate malicious user's account, preserve copy of attacking program
but then remove it, send and email
if [[$1 -eq 6]]
then

attacker=`echo $8 | sed -e s/^.*ATTACKER was \(.*\)/\1/`
/usr/lbin/getprdef -r
if [$? -eq 4]
then

/usr/sbin/usermod -s /usr/bin/false $attacker

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
59

else
/usr/lbin/modprpw -l -m alock=YES $attacker

fi
badprog=`echo $8 | sed -e s/^.*running \(.*\)/\1/`
cat $badprog | /usr/bin/mailx -s "$7" root@orion
echo "$8" | /usr/bin/mailx -s "$7" root@orion

fi

Response for "Buffer Overflow Attacks":
Kill malicious program, preserve copy of attacked program but then
remove it, send and email
if [[$1 -eq 5]]
then

pid=`echo $8 | sed -e s/^.*PID:\(.*\)/\1/`
kill $pid
badprog=`echo $8 | sed -e s/^.*executing \(.*\)/\1/`
cat $badprog | /usr/bin/mailx -s "$7" root@orion
echo "$8" | /usr/bin/mailx -s "$7" root@orion

fi
exit 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
60

Appendix B – Reasons for Template Configurations

Monitor Start of Interactive Sessions:

• Notify when these users begin a session:
Default: root, ids, www, news, daemon, bin, sys, adm, uucp, lp, nuucp,
hpdb
Revised Values: root, ids
Reason: For the purposes of implementing the IDS/9000 system, the two
most critical users are root and ids. If an intruder gains access to root,
they have access to the entire system. “ids” must also be secured
because if they have access to this user they can manipulate the
IDS/9000 system to not report alerts for example, therefore defeating the
whole purpose of the system. While the other users, such as bin and
daemon, are important, they are not as critical when it comes to the
overall general security of the system. They are still limited in their scope
and power.

Monitor Logins/Logouts:

• Ignore these users:
Default: -
Revised Values: N/A
Reason: We will monitor all logins/logouts into the system because that is
valuable auditing information to keep. However, we will run a response
script when user root or ids log in to notify the administrator of this, since
they are critical users and their presence is worth noting.

Changes to Log Files:

• Files which should only be appended to:
Default: /var/adm/btmp, /var/adm/wtmp, /etc/btmp, /etc/wtmp,
/var/adm/messages, /var/adm/syslog/mail.log, /var/adm/syslog/syslog.log,
/var/adm/pacct, /var/adm/sulog
Revised Values: /var/adm/syslog/syslog.log, /var/opt/ids/alert.log
Reason: The reason I took out the btmp and wtmp files is because btmp
is a file that contains bad login attempts and wtmp contains a record of all
logins/logouts and both of these features are already monitored in
IDS/9000 under the templates “Repeated Failed Logins” and “Monitor
Logins/Logouts”, respectively. /var/adm/syslog/syslog.log is the system log
file and therefore it needs to be properly monitored for any malicious
formatting. The alert log for IDS/9000 is kept in /var/opt/ids/gui/logs and if
it is deleted or edited, the alerts may never reach the Administration
system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
61

Modification of Files/Directories

• Watch these files for modifications/creation:
Default: /stand/vmunix, /stand/kernrel, /stand/bootconf, /etc/passwd,
/etc/group, /.rhosts, /.shosts, /etc/hosts.equiv, /etc/hosts.allow,
/etc/hosts.deny, /etc/inetd.conf
Revised Values: /stand/vmunix, /stand/kernrel, /stand/bootconf,
/etc/passwd, /etc/group, /.rhosts, /.shosts, /etc/hosts.equiv,
/etc/hosts.allow, /etc/hosts.deny, /etc/inetd.conf
Reason: I have decided to keep all the default values. Each file listed here
is a critical file and impacts the security of the system.

• Ignore these files:
Default: /etc/ptmp, /etc/.pwd.lock, /etc/utmp, /etc/utmpx, /etc/rc.log,
/etc/lvconf/lvm_lock
Revised Values: N/A
Reason: I see no reason to check any of these files. “utmp” contains
record of all users logged onto the system, which is already tracked
through IDS/9000. “utmpx” is similar to “utmp” but contains more
information about the user logged in. Therefore, ignoring them is fine.

• Watch these directories for modification:
Default: /etc, /bin, /sbin, /stand, /lib, /usr/bin, /opt
Revised Values: /stand
Reason: To monitor all these default directories would drain the system
resources. Performing any type of function will certainly modify at least
one of these directories. I kept it on the default values over night to get a
feel for how many alerts would be generated. Considering that there was
no major activity on the system (no users were logged in and performing
normal functions), there were over 100 alerts that were generated.
However it is not common for the /stand directory to be modified, and it is
probably the most important directory since it contains the actual kernel
and boot configuration file. Therefore, it would be wise to be notified when
this directory is modified.

• Ignore these directories:
Default: -
Revised Values: N/A
Reason: The above property sufficiently incorporates this property.

Creation of setUID Files:

• List of critical user IDs to be monitored (for suid):
Default: 0, 1, 2, 3, 4, 5, 9, 11
Revised Values: 0, 102
Reason: setUID files have the suid bit set and can allow an attacker to
gain access to a shell as that user. The two users we are concerned with
their security are root and ids.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
62

Repeated Failed Logins:

• Number of failures to exceed:
Default: 2
Revised Values: N/A
Reason: 2 is a good value. It allows a user to retype their password if they
accidentally typed it, and yet generates an alert if a brute-force login attack
is attempted.

• Time span to detect failures over:
Default: 10
Revised Values: N/A
Reason: Again, this is a good number between detecting failures that
occur to close together or not too far apart.

• Suppression period for reporting:
Default: 30
Revised Values: N/A
Reason: Once again a good average number.

Repeated Failed “su” Command:

• Number of failures to trigger on:
Default: 2
Revised Values: N/A
Reason: This should carry the same ruling as that for the Repeated Failed
Logins

• Time span to detect failures over:
Default: 24
Revised Values: 10
Reason: This should carry the same value as that for the Repeated Failed
Logins. 10 is a good average value.

Race Condition Attacks:

• What user IDs to monitor for being attacked:
Default: 0, 1, 2, 3, 4, 5, 9, 11
Revised Values: 0, 102
Reason: Our main focus of users getting compromised through Race
Condition Attacks are the root and ids users.

• How many paths to keep track of per process (0 is all):
Default: 10
Revised Values: N/A
Reason: The lower the number, the more paths we keep track of, and
therefore the more process time we are consuming.

Buffer Overflow Attacks:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
63

• What user IDs to monitor for being attacked:
Default: 0, 1, 2, 3, 4, 5, 9, 11
Revised Values: 0, 102
Reason: The major concerns for buffer overflow attacks are for root or ids.
A buffer overflow attack can allow a user to gain control of the shell that
the program is running in. If the program is a setuid program, then the
attacker gains control of the shell that the program is running in.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
64

Appendix C – Tables

Table 1 – System Description ..6
Table 2 – Templates, Properties, & Default Values......................................25
Table 3 – Customized Templates for BasicGroup..29
Table 4 – Alert Message Content...33
Table 5 – Critical Levels of Responses ..34
Table 6 – Responses to Detected Intrusions..34

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
65

Appendix D – Figures

Figure 1 – System Manager Screen...23
Figure 2 – System Manager ...24
Figure 3 – Host Manager..24
Figure 4 – Add Host ...24
Figure 5 – Save Host Changes ..24
Figure 6 – Schedule Manager Screen..26
Figure 7 – New Surveillance Schedule...28
Figure 8 – New Surveillance Group..28
Figure 9 – Edit Property Values ...29
Figure 10 – Configure Timetables ..30
Figure 11 – Final Configuration ..32
Figure 12 – Disable FTP Connections..47
Figure 13 – Root Logging in Over the Network ..48
Figure 14 – Root Cannot Login Over the Network48
Figure 15 – Successful Login of “hmahmoud” ...49
Figure 16 – Trusted System Functionality – User Locked Out50
Figure 17 – Monitor Start of Interactive Session Response51
Figure 18 – Changes to Log Files ..52
Figure 19 – Preserved alert.log ..52
Figure 20 – Preserved syslog.log...53
Figure 21 – Network Node for gemini...55

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
66

References:

1. Hewlett-Packard, HP Intrusion Detection System/9000 Administrator’s
Guide (J5083-90007)

2. Hewlett-Packard, HP Intrusion Detection System/9000 Release 2.1
Release Notes (J5083-90008)

3. Hewlett-Packard, HP-UX Secure Shell A.03.61.001 Release Notes
(T1471-90008)

4. Steves, Kevin, Building a Bastion Host
URL:http://downloads.securityfocus.com/library/bastion11.html

5. Wong, Chris (2002). HP-UX lli Security. New Jersey: Prentice Hall PTR
6. Pfleeger, Charles and Shari Lawrence. Security in Computing, 3rd ed.

Prentice Hall, 2003
7. Arthur, Lowell Jay and Burns, Ted. Unix Shell Programming, 4th ed. Wiley

Computer Publishing, 1997
8. Rehman, Rafeeq Ur. HP Certified. Prentice Hall, 2000
9. HP-UX “man” pages (/opt/ids/share/man/man1m and

/opt/ids/share/man/man5)
10. HP (Hewlett-Packard). IT Resource Center (ITRC), URL: http://itrc.hp.com
11. Pomeranz, Hal. Common Issues and Vulnerabilities in Unix Security.

SANS Institute, 2002

