
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified UNIX Security Administrator (GCUX)
Practical Assignment
Version 2.0, Option 3

The not so phantom menace
Improving UNIX security from a Windows Perspective

Jorge D. Ortiz-Fuentes

May 2, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

UNIX administrators live in a very UNIX-centric world, but there is a world out-
side and there are a lot of Windows systems out in this world.

Microsoft has invested a considerable amount of money in improving Windows
security. Some of the features they have added were already present in most UNIX
systems, but some others are worth a review.

For every security feature that I include in my wish list, I will explain the concept
behind it, make up an example where it is useful, present the currently available
alternatives for Linux systems if any, and define what is still missing.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Contents

1 Introduction 1
1.1 Acknowledgments . 1

2 The wish list 1
2.1 Access Control Lists (ACLs) . 1
2.2 Audit capabilities for every object . 4
2.3 Administrative rights . 6
2.4 Delegation of administrative tasks 9
2.5 Network domain . 10
2.6 Security templates . 12
2.7 Group policies . 13
2.8 Trusted path . 15
2.9 Automatic distribution of patches . 18
2.10 Integrated PKI and certificate management 20
2.11 Integrated IPSec . 22

3 Conclusions 23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 Introduction

Let’s face it! Most UNIX administrators feel strongly that their systems are so supe-
rior to their Windows counterparts that they won’t even consider they have security
features that are great and concepts that should become part of regular UNIX sys-
tems. Besides missing the opportunity to be more valuable for their employers
trying to be able to handle problems in both systems, they also fail to identify good
security features that are not implemented in their proudly administered UNIX sys-
tems.

Being a UNIX person myself, I think that we should look at the security features
offered by Windows to learn from their experience and improve our UNIX systems.

Throughout this paper I will focus on Linux as a UNIX-like operating system
to see if the —Windows— security features that I mention are available for it. In
particular I will talk about the Fedora Core 1 Linux distribution, because it is avail-
able for free and is fairly recent. Some of the things will apply also to other Linux
distributions as well as some other UNIX operating systems (HP-UX, Solaris, AIX,
FreeBSD. . .)

For every security feature that I include in my wish list, I will explain the concept
behind it, make up an example where it is useful, present the currently available
alternatives for Linux systems if any, and define what is still missing.

1.1 Acknowledgments

The unquestionable help that Rosa and Lidia have provided me with, through their
patience and unconditional support, has been the decisive factor for writing this
paper.

I also thank David and Raul. Working together as a group is making us all
improve and extend our knowledge about security.

Finally, I sincerely thank all the people that have put their knowledge and work
in developing the free tools that I use every day and that are both an important part
of what I explain in this paper and the applications used for writing it.

2 The wish list

2.1 Access Control Lists (ACLs)

Here I will explain how ACLs can help over regular UNIX permissions, which Linux
file systems include —or are able to include— ACL support[1], and what is not
ready yet.

2.1.1 Concept and usage

UNIX is built around the paradigm that everything is represented as a file. Not only
regular files, programs or links, but also directories, named pipes or FIFOs, sock-
ets, and even devices. Some UNIX variants, even offer a file system representation

1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

of the kernel structures, implemented in Linux as the /proc file system. Hence the
interest of the operating system designers and users to control access to each file.

The traditional security mechanism used in UNIX to allow or deny access to a
file or directory is the use of permissions. Together with the data that the file con-
tains, other information is stored, like the file name or the last time it was accessed.
This additional information is the metadata, the data that describes the real data.
UNIX permissions are a mandatory part of the metadata of each file.

Each user is identified by an integer number called user id (UID). Similarly,
groups are identified by an integer called group id (GID). Each file must belong to
a user and a group and three regular permissions are defined with respect to the
user, the group and everybody else. Every process runs associated to a UID and
one or more GIDs, and when it tries to access a file, if the process UID and the file
UID are equal the user permissions define the access. If the UIDs were different
but any of the GIDs is equal to the one owning the file the access is controlled by
the permissions granted to the owner group. Otherwise the permissions granted
for the others rule.

The regular permissions allow or deny access to read, write and execute exe-
cute the file or transverse the directory. Three additional permissions can be set to
cover specific functionalities: the setuid, the setgid and the sticky bits.

This mechanism has multiple advantages:

• It is fairly simple to understand and be applied.

• It is easy to represent the permissions in a compact way, which makes audit-
ing and verifying them much easier.

• Implementation is less complicated and since the metadata has a fixed size,
the checks can be implemented in a very efficient and clear way.

However, it also has disadvantages:

• The semantics are quite restrictive: it only allows to define the permissions
for one group.

• The granularity level is low: it only allows to define permissions to read, write
and execute.

Windows solves this problem implementing access control through Discretionary
Access Control Lists (DACLs). The DACL is composed of Access Control Entries
(ACEs). Each ACE defines an allowed or denied access for a user or, preferably,
a group. Denied accesses take precedence. If a user belongs to two groups and
one of them is allowed to read a file and the other one is explicitly denied to do so,
she cannot read the file.

Access control lists are a useful feature for an operating system that provides
simple solutions to complex access control scenarios. The simplest of these sce-
narios could involve two groups. One of them should be allowed to create and
modify documentation. The other group should only be able to read it. Nobody
else should read this documentation. Regular UNIX permissions do not provide a
straight solution to this problem.

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.1.2 Existing Linux solutions

ACLs must be controlled at the kernel level, as regular UNIX permissions are.
Every time a file needs to be accessed the kernel takes care of the process through
a system call. During the execution of the system call the permissions are checked
and enforced.

Linux implementation of ACLs is based in an unfinished version of a POSIX
standard, particularly the drafts of the IEEE standards 1003.1e —security inter-
faces to open systems for access control lists among other things— and 1003.2c[2]
—security utilities to open systems for access control lists among other things.
While the work of those groups has been discontinued, most of it can still be used
instead of reinventing the wheel to implement ACLs. Some other UNIX operating
systems vendors like SGI (Irix) or Sun Microsystems (Solaris) seem to have the
same opinion since they also based their implementations on the drafts.

The standard stable Linux kernel, the one that can be downloaded from the
primary site http://kernel.org/, did not include this functionality until the recent 2.6
was released. And even the newest 2.6 version includes ACL support only for
some file systems, like ext2 or ext3, but not for others, like NFS.

Nevertheless, there have been patches available to add this capability to pre-
vious versions of the kernel for a long time now. In particular, the previous stable
release of the Linux kernel, that is the one in use in many Linux systems —only
a few distributions have released their Linux versions using kernel 2.6 already,—
can be modified to support ACLs by using the patches that Andreas Grünbacher
has available for downloading[1]. He also has pointers to the required patches for
other file systems to support ACLs.

2.1.3 The missing parts

Only a reduced subset of the Linux users patch their kernels by themselves, mainly
to avoid non-reproducible problems in production environments. Most users prefer
to delegate this task to their preferred distribution instead. However, up until now
many Linux distributions did not include complete ACL support, if any.

Fedora Core 1 does not include the patches in the kernel. Fedora Core 2, that
is going to be based on the 2.6 kernel, will include some support for ACLs.

Kernel support is an essential part of the ACL implementation, but other things
are also necessary.

First, you need utilities to set and read the ACLs. The ones defined in the
POSIX 1003.2c draft are setfacl and getfacl and are available for Fedora Core 1
in the acl package that comes with the distribution CDROMs.

The core utilities —basic commands that you expect installed in your Linux
system like ls or cp— must be able to work with ACLs too. ls must be able to
inform the user that a file has an ACL assigned and it does so with a plus (+) sign
in the permissions field. cp must be able to copy the ACLs together with other
metadata that belongs to the file.

The backup utilities must be able to save and restore the ACL information.
There is a utility that is called star that is able to work with the ACL information[3].

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

star is already available in the distribution CDs of Fedora Core 1.
Finally, it is also very important to have file browsers, both graphical and text

based, that support ACLs. Neither Nautilus nor Konqueror support ACLs. However,
there is a project to offer graphical support for ACLs and that can be used from
within Nautilus[4], and another one to extend Konqueror[5].

The current status of the other major Linux distributions can be found in the
Table 1.

Distribution Kernel Core utils File manager Backup
Debian 3.0 (stable) no no no no

Debian 3.1 (testing) yes (2.4 & 2.6) yes no yes (star)
Red Hat RHEL 3.0 yes yes no yes (star)

Suse 9.1 yes yes no yes (star)

Table 1: Support for ACLs of each major Linux distribution

2.2 Audit capabilities for every object

In this section I will explain the advantages of being able to audit every kind of
access to each object in the machine.

2.2.1 Concept and usage

It is an essential part of every system to be able to verify that things happen as you
would expect, and to have alarms that go off when they do not. This is why audit
is important: you do want to know what happens in your system.

Auditing has disadvantages too. Depending on the implementation, audit can
generate an overwhelming amount of information. This affects both data storage
and performance. The system needs dedicated disk space and bus bandwidth.
CPU usage is also increased due to the extra amount of operations that are needed
to take a decision on whether an audit event must be generated and, if so, do it.

On the one hand, mature UNIX systems like HP-UX implement audit at the
system call level. A system call is a request to the kernel for one of the services
that it offers, like opening a file or sending a signal to a process. The system call
audit facility even offers the possibility to select which system calls are audited. So
if you want to know when a file is accessed, you can audit the sys open system
call. This will, for sure, provide you with the information you want and much, too
much more. You will get an event for each accessed file. Not only regular files, but
also device files and libraries, for example.

The system call based audit conforms the C2 security level specification defined
in the Trusted Computer System Evaluation Criteria (TCSEC). Among other things,
C2 systems must be able to generate audit events for every:

• Use of the identification and authentication mechanisms.

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Modification the users address space, like opening a file or running a pro-
gram.

• Deletion of an object, like deleting a file.

• Administrative action, like mounting a file system or shutting the system down.

But the most important part is that applications cannot make the decision on
whether to generate an audit event or not. It must be mandatory, so it has to
be the kernel the one that generates those events.

On the other hand, professional Windows operating systems target a different
objective when using audit. Windows uses an object based audit approach. Most
of the times object is a synonym of file, but it can also be a registry entry or an
Active Directory object. Windows audit facility concentrates on file operations —
other events should be generated independently of the auditing subsystem,— but
it allows the administrator to select what you audit on a per-object basis instead of
per system call.

You could get a similar behavior filtering the UNIX audit events before writing
them to a file, but in this case:

1. All the events, with its corresponding performance impact, would have been
generated

2. The filtering program would have to be very stable and able to handle a huge
workload.

2.2.2 Existing Linux solutions

Fedora Core 1 does not include an audit facility like the ones described above.
Fedora Core 2 includes the Security Enhanced Linux (SELinux) Linux Security
Module (LSM) that is the result of an NSA project. Among the security features of-
fered by the SELinux, it is included the ability to do system-call auditing. This is not
exactly a C2 auditing capability, but a way to provide information about the system
call that was being executed every time SELinux generates a denied message.

There was a open source project called Secure Auditing for Linux (SAL)[6] that
tried to develop a kernel audit package that was compliant with the one required
for a C2 system. However, no new files have been released for the last year and
the last supported kernel is 2.4.18.

Recently, it has been a fair amount of activity in the Linux kernel list about this
topic and even some patches for the current kernel have been submitted. The most
relevant one is the lightweight auditing framework[7] that provides the mechanism
for doing ruled based system call auditing. The rules indicate if an audit even
should be generated based on:

• attributes of the process that is using the system call,

• return value of the system call,

• or even the parameters used in the system call, such as a file name.

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2.3 The missing parts

On the one hand, system call audit is useful for artifact or forensic analysis, but
provides too much information for permanent usage. On the other hand, object ac-
cess audit is very useful too if you want to answer questions like who has accessed
this file. Linux should have both available: the one that allows to audit system calls,
which for simplicity I will call audit-s, and the one that allows to audit only selected
file operations on a per-file basis, which I will call audit-f. A high level description
of a possible implementation of each capability is detailed below.

Audit-s should be compiled with the kernel and enabled or disabled by software,
probably via a /proc entry. When enabled, audit-s will keep an array in memory
with an entry for each system call that will contain the logically or-ed flags of the
operations to audit for the system call. The system call gate, which is the small
piece of code that is used when a system call is done to select the piece of code
to execute and to return back to user mode, should generate all the events.

Audit-f should also be compiled with the kernel and enabled or disabled by
software. Each file that is to be audited should have stored with its metadata the
operations to audit. This information can be stored using the extended attributes
patch[1]. The operations to be audited are the same than the ones used for the
UNIX permissions: read, write and execute. The audit events will also differentiate
the user owning the file, the group owning the file and everybody else. Audit events
could also be generated when the setuid, setgid and sticky bits are used. Each
of the system calls involved in the operations that are to be audited (sys open,
sys exec, etc.), will contain code that generates the corresponding audit events.

2.3 Administrative rights

In this section I will discuss the advantages of being able to do task separation
instead of having an all-powerful administrative account.

2.3.1 Concept and usage

UNIX and Windows user models can be compared to the monotheism and poly-
theism respectively.

On one hand, in the UNIX world there are only two levels of existence. You can
either be the almighty god that makes the rules or a simple mortal. When a mortal
being needs anything special to happen, something that she cannot do by herself
—like changing the rules of the universe or changing the permissions of somebody
else’s file— they pray and ask god to do it. Root, that is the name of god in the
UNIX monotheistic religion, is the only one with the ability to do special things.

On the other hand, the Windows world has many more deities. The mortal
beings are, like the ones in the UNIX world, unable to do special things. But ev-
ery god has a only a small set of special powers. Some of them have only one.
There is also an almighty god that can do everything. Many mortal beings pray to
Administrator, but the religious people know that System is the omnipotent god.

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Good ThingTM of Windows model is that the almighty god can delegate
special tasks to other minor gods by providing them with the adequate power. This
powers are called user rights in the Windows model and there are many of them
defined[8] so it can be achieved a high level of granularity in delegating tasks and
privilege separation.

2.3.2 Existing Linux solutions

The most relevant solution available for Linux is the implementation of POSIX
capabilities[9]. POSIX capabilities are also based in the unfinished POSIX 1003.1e
draft[2].

The idea behind POSIX capabilities is to have some degree of separation of the
different privileges that are needed in the system. There are 29 capabilities defined
in kernel 2.4.22, the one used in Fedora Core 1. When these capabilities are
assigned to an unprivileged process, they allow it to perform the different privileged
tasks. This ability to set only the required level of privilege of a process results in a
better control over what the different processes can do.

A correspondence can be established between the POSIX capabilities and the
Windows rights. For example, the right to debug programs is equivalent to the ca-
pability CAP SYS PTRACE, or the right to backup files and directories is a subset
of the CAP DAC OVERRIDE.

The idea as described in the capabilities man page[10] behind the draft of
POSIX 1003.1e are:

• For every privileged operation the kernel checks the privilege sets.

• There is programming interface to access and set the privilege sets.

• There is support for saving the capability sets in the file system.

Only the first two have been implemented in Linux so far.
As part of the data that the kernel keeps for every process, there are three

fields, named capability sets, that are bit masks with the capabilities of that pro-
cess. Each bit of a capability set represents a capability that is enabled if the bit
is set. The table that converts capabilities to bits and vice versa, as well as an
explanation for each of them, can be found in Fedora Core 1 in the kernel source
file include/linux/capability.h.

The explanation of the three capability sets is:

Effective contains the capabilities that are currently enabled and can be used by
the process.

Inheritable indicates which capabilities will be preserved after a call to sys exec.

Permitted describes the maximum set of capabilities that will be used by this pro-
cess. If a capability is not present in this set, the process will not be able to
use it, even if it was in the effective set. Also if a capability is not present in
this set, it will not be passed to a process resulting of a sys exec call, even if
it was set in the inheritable set.

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There is a also a system-wide limit to the capabilities that a process can use
that is controlled by the kernel. It is called the capability bounding set. The ini-
tial value of the capability bounding set (CAP INIT EFF SET) is defined in one of
the kernel include files —include/linux/capability.h— and set by the kernel
itself in kernel/capability.c. User processes can only drop capabilities from the
bounding set, excluding init that can also add capabilities to it. Once the sys-
tem administrator has dropped a capability from the bounding set it can only be
re-added by restarting the system or through the init process.

Of course this mechanism is not perfect. Some of the capabilities can be
used to gain access to the rest of them. As an example, if a process has the
CAP SYS MODULE it can load a module that sets new capabilities and even mod-
ifies the capability bounding set. Other capabilities such as CAP SYS PTRACE or
CAP DAC OVERRIDE can be used also to obtain the similar results. Windows
privileges have the same problem though.

2.3.3 The missing parts

There are three ways in which POSIX capabilities can be used:

1. From a privileged process, programmatically drop every capability that is not
needed from its capability set. Then, if a vulnerability of the privileged process
is exploited and arbitrary code can be executed, the privileges used by this
arbitrary code will be limited to those that are strictly needed by the privileged
process. This will reduce the immediate impact of an attack.

Sendmail takes advantage of capabilities in this way.

2. Assign privileges to the user when she logs in to the system. The user logs
in to the system using a privileged process like login, gdm, kdm or xdm. A
pluggable authentication module is then used that assigns capabilities —as
stated in a configuration file that enumerates the capabilities assigned to ev-
ery user— to the first process of the user for that session. The rest of the
user processes inherit these capabilities.

There is a module that does exactly this. It is called pam capability[11] and
comes with a patch that allows non-root users to pass on capabilities when
they execute (sys exec) binaries. However, this module has been inactive
during almost two years and it is not included in any of the major distributions.

3. There is a capability set in the metadata of each file. This works similarly
to the setuid bit. If a capability is set and the file belongs to root, the sys-
tem creates a process with the capability enabled. The rules for setting this
capability set will be the same ones that are used for dealing with the setuid.

This is not implemented yet[12].

Sadly enough there is not much evidence of usage of the Linux capabilities.
They are still included in the standard kernel, but all the information and programs
have not been updated for years. Some utilities that are mentioned in many docu-
ments cannot be found anywhere.

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.4 Delegation of administrative tasks

Windows administrators can deploy custom snap-ins of the MMC to delegate tasks.
I will review alternatives in the Linux arena.

2.4.1 Concept and usage

Windows system administrators work very often with the Microsoft Management
Console (MMC). The MMC[13] is a only a framework for centralizing administrative
utilities that can be added as snap-ins. These snap-ins remain seamless integrated
thanks to the extensible, common presentation service provided by MMC.

Using the snap-ins and helped by wizards, the administrator can create custom
management tools, that can be saved for later use, or for sharing with other ad-
ministrators and users. The task of creating customized MMC consoles does not
require any programming knowledge.

The new tools can have different levels of complexity so delegated tasks are
not as complex or powerful as the ones performed by the administrator. The author
mode of the MMC allows the administrator for an easier access and edition of the
snap-ins.

Most often, a regular user requires additional rights or permissions to be able
to use the custom MMC. For example, it would be worthless to create a custom
console to run the disk defragmenter by a regular user if the administrator does
not give this user the right to perform volume maintenance tasks. Thus, this idea
has a close relationship with the one of administrative rights.

2.4.2 Existing Linux solutions

Other UNIX operating systems, like HP-UX have this functionality already built in.
HP-UX has a tool that is called System Administration Manager (SAM) and that
can be used to delegate administrative tasks. Using Restricted SAM regular users
can access certain areas of SAM as specified in a per-user configuration file.

Although, Linuxconf[14], debconf[15] and Webmin[16] are also centralized ad-
ministration tools that share some of the principles used in designing SAM, they
do not allow for the delegation of administrative tasks.

Probably the most commonly deployed solution for delegating administrative
tasks in UNIX is sudo[17]. sudo is a privileged program that allows regular users
or groups to perform certain tasks as root. The tasks that each user can do are
restricted by the sudo configuration file (/etc/sudoers) and can be controlled by
user, machine, command and even options. Other than this, the user runs this
processes with full privilege, so the administrator must choose very carefully which
tasks can be delegated with sudo. If the task can, for example, spawn a shell, like
vi or emacs can do, the sudoer will have complete control of the system. As an
additional advantage, sudo does a very good job at logging everything.

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.4.3 The missing parts

It would be nice to have a program like sudo that would allow executing tasks with
the same controlling criteria, but creating the new process with the required POSIX
capabilities only.

There was a program to run other programs with a reduced set of capabilities
that was called sucap, but I have not been able to find any copy of it. This program
had a very different purpose than sudo, though. Instead of using a configuration
file like the one for sudo, it read the capabilities from the command line and it could
only be run by root.

2.5 Network domain

The topic in this section is the centralized authentication of users and computers
within network domains.

2.5.1 Concept and usage

The relationship between computers and networks is closer everyday. If you have
more than one computer in the same environment, then you probably want to use
the same user and password for all of them and transparent access to resources
in every other computer in that environment. As an administrator you also want
centralized administration of the users, not only the authentication, but also other
aspects such as define who can do what and where, or something as simple as an
homogeneous audit report in which users have the same id independently of the
system they used to login.

Windows has been using the domain concept for a long time now. It was men-
tion for the first time in 1993 with the release of Windows NT 3.1, but it was not
widely used until NT 4.0 was release in 1996. At that time, using a Windows do-
main meant centralized authentication of the users and computers and transparent
access to the network resources. However, the biggest change to the concept was
introduced with the release of Windows 2000 and the Active Directory Service.
It introduced the ability to control other characteristics of the domain such as the
DNS or the security policies that must be applied to each machine. But the Active
Directory service is not just this. It constitutes a centralized configuration service
for the whole network providing the infrastructure upon which other security en-
hancements are built. Features like the PKI service that comes with Windows 2000
strongly benefit from the Active Directory.

At the heart of the Active Directory there is a directory server with an LDAP
interface and a hierarchical database engine that acts as the configuration repos-
itory, a Kerberos server to provide strong remote authentication and several tools
—MMC snap-ins— and a lot of operating system mechanisms.

Most of the times, adding a new feature upon the Active Directory means mod-
ifying the schema. The schema defines what can be stored in the directory and it
does so describing objects with attributes and relationships.

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Administrators with a big number of systems, many users and need for some
distributed security features will for sure appreciate having a domain service better
than the yet too old NIS.

2.5.2 Existing Linux solutions

It probably makes no sense to look for something in UNIX that is exactly the same
as the Active Directory in Windows. Mainly if we take into account that many of
the features will need the basic infrastructure to get developed. So in this section
I will describe solutions that provide the basic infrastructure: the directory ser-
vice as a centralized authentication database. Since I am concentrating in UNIX
based alternatives I will not cover using Linux clients in a Windows Active Directory
domain[18].

There are many solutions available to provide the UNIX administrators with the
same capabilities than their Windows colleagues in terms of centralized authenti-
cation. On the one hand, UNIX has been able to work with network domains since
Sun introduced NIS in the mid-80’s. Although, NIS and its evolution NIS+ are still
in use in many production systems they are not the preferred option nowadays due
to the lack of security of the former and the excessively complex administration of
the later.

On the other hand, there are several commercial products that implement LDAP-
based directory service and, even better, there is a free open source implementa-
tion of the directory services that is called OpenLDAP[19].

OpenLDAP is included in the Fedora Core 1 distribution. The distribution even
allows for configuring LDAP authentication at installation time. Client side authenti-
cation requires the use of a PAM module (pam ldap) that comes with Fedora Core 1
too.

There are very detailed explanations on how to configure OpenLDAP for au-
thentication[20][21][22][24][23]. All of them provide information about the two biggest
concerns from the security perspective: the fact that the passwords are transmit-
ted in clear text and the requirement of restricting access to certain attributes using
ACLs.

LDAP is an ASCII based protocol and it sends the passwords in clear text when
trying to authenticate the user. This makes eavesdropping the password a trivial
task. Nevertheless, OpenLDAP can use OpenSSL to protect the connections with
strong encryption. A —self-signed or CA-signed— certificate must be installed and
the LDAP daemon (slapd) must be configured to use it.

Some of the attributes are private, i.e. not everybody should be able to access
them. The password is one of this attributes. The LDAP administrator must set
access control lists to restrict access to this kind of attributes.

2.5.3 The missing parts

In the previous section I have talked about authenticating users. However, Win-
dows domains do not only allow for user authentication; every system must be

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

able to authenticate to the domain before performing any user authentication. This
functionality is not available in Fedora Core 1 or any other major distribution yet.

Anyhow, OpenLDAP authentication works, but it is not an out-of-the-box solu-
tion. It takes some work and a fair amount of knowledge to set up this centralized
authentication system. More work is needed in automating this functionality.

2.6 Security templates

Windows comes with an application to check the security settings of the system
against an externally defined set of good values and even change the ones that do
not match the right values.

2.6.1 Concept and usage

Windows templates help the administrator to define, or import, a base line of the
system, to verify the status of the system compared to the selected base line, and
to even make the necessary changes to the system to enforce compliance to the
base line. All this definitions are written in one single file that contains sections for
authentication policies, audit policies, even logging, user rights, group membership,
NTFS ACLs, registry ACLs and SACLs and service configuration.

Defining a security template can be a tedious task, but once it is done, it can
be used for many systems that have the same or similar purpose. Even better, you
do not have to start from scratch. There are many security templates defined by
various organizations with a solid reputation in the security field[26][27].

Security templates are a great tool for hardening systems and auditing them
periodically.

2.6.2 Existing Linux solutions

Bastille Linux[25] is a tool designed to harden Linux. It was originally oriented to
Red Hat, but it supports many other operating systems now like Debian GNU/Linux
and HP-UX.

Bastille includes only some of the functionality that can be found in the Windows
security templates. It can use a predefined configuration file that can be designed
once and used in many systems. It also does the job of applying the chosen
configuration and even reverting the modifications to their original values. However,
it is more oriented to change settings than to verify the configuration according to
a base line and it does not have a verify-only mode.

It offers a graphical utility to edit the create the configuration settings that you
want to apply to the systems. In contrast with the setting oriented configuration of
the Windows security templates, this is more task oriented. It allows the user to
decide whether to keep the setuid bit in mount explaining why it can be needed,
instead of providing a list of allowed setuid programs. One of the strong points of
Bastille over the Windows secure templates is that it has been designed to explain
security issues to a system administrator. The system administrator can use this
knowledge to take an educated decision about what should Bastille do.

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

No default configuration is provided with the program, thus Bastille must be run
in interactive mode —with the command bastille -x— the first time it is used.
Once the configuration file with the desired settings has been created, it has to be
copied in every system by copying it to the expected path (/etc/Bastille/config)
and then run Bastille in non-interactive mode with the bastille -b command.

2.6.3 The missing parts

The current release of Bastille (version 2.11) has not been updated to support Fe-
dora Core 1 yet. It includes some information about Red Hat 9.0 and are working
on Red Hat Enterprise Linux 3.0, though. Additionally, the perl-tk and perl-curses
packages, that are needed to display the graphical or text interface, must be in-
stalled independently since they are not distributed with Fedora Core 1.

As I mentioned above, it should also have the ability to run in a verify-only mode.
In this mode, Bastille would write a log with everything that doesn’t match what is
defined in the configuration file.

It would also be nice if the configuration editor allowed to define fine-grane
policies too.

2.7 Group policies

I will discuss the advantages of being able to control different aspects of different
systems within my domain as windows does with its group policy objects.

2.7.1 Concept and usage

It is common sense to apply the same security settings to systems that perform the
same tasks. However, in some environments the usage of each system depends
on the current user. I would want to have different security settings in the computer
when it is used by a regular user that works on administrative tasks, than when an
administrator is troubleshooting a problem from this system.

First, a centralized configuration tool is needed that stores, provides and changes
upon request every configuration parameter of the system. I can read your mind
now and you know what all this centralization of the configuration settings means:
the registry. The Windows registry is the “central hierarchical database used in
Windows to store information necessary to configure the system for one or more
users, applications and hardware devices,” as defined by Microsoft itself. Although
the objective of centralizing the configuration of the system is clearly achieved,
there are a number of aspects of Microsoft’s implementation that many people dis-
like:

Cryptic Many of the keys are undocumented. It is sometimes difficult to know
what a key does and which are the allowed values and their meanings.

Binary storage The registry is stored in a few files in binary format. The data
stored in the registry can only be accessed with specialized tools. In case of
emergency, it cannot be edited with a text editor.

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Single point of failure If one application fails and corrupts the registry, the rest of
the applications and the operating system itself that rely on it will fail.

Performance degradation As more and more programs are installed, the registry
grows and access times are increased. This is also called the registry creep
phenomenon and is one of the main causes for Windows systems slowing
with age as software is added.

Lack of timing Because everything is stored in a few files, the user cannot use
the create, modify or access times to find out what has changed if she has a
problem.

After hearing about all these features you probably would prefer to avoid having
something like the Windows registry in you UNIX systems. However, there should
be something in the middle between having every configuration file under /etc with
a different format and the Windows registry.

One of the main reasons for wanting to have a centralized configuration tool is
that it could be used to apply Group Policies. Windows Group Policy Objects allow
specifying settings such as registry values, log on and log off scripts, or software
installation and maintenance options. These GPOs can then be assigned to any
site, domain, or organizational unit defined in the Active Directory. When a user
that belongs to one of these sites, domains or organizational units, logs in to the
system, the settings contained in the GPO are applied, and when she logs off the
changes are reverted.

2.7.2 Existing Linux solutions

Most of the times, configuring a UNIX computer means that the administrator logs
in the machine and edits the required configuration files. Thus, the simplest way
is to customize all the configuration in one system and copy or synchronize them
with the rest. Obviously this method presents a lot of problems, like dealing with
the different versions of the same applications or enforcing settings to the users
without bloating their configurations.

Some tools like cfengine[28] try to solve the many formats problem by providing
a higher level language to automate configuration and other administrative tasks
which is platform independent while keeping the different configuration files used
by each application.

Other implementations prefer to establish a common format and API for solving
the configuration issues. Each of the main Linux desktops has its own: Gnome
uses GConf[29] and KDE uses the Kiosk framework[30]. Both mechanisms pro-
vide the system administrators with ways to set default values as well as set and
enforce configuration parameters for all the desktop applications. However, they
are incompatible and neither a KDE application can use Gnome’s configuration in-
terface nor vice versa. It is possible that the D-Bus messaging system[31], which
is currently used by the Gnome desktop, is also adopted by the KDE project im-
proving compatibility in the future. They also do not import the configuration files
of other applications that are not programmed to work with these interfaces.

14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There are many theoretical approaches[32] to create one common solution, but
many of them fail to consider the distributed aspect and its security implications.
Only a few take into account the importance of performing a secure authentication
before allowing any changes[33].

2.7.3 The missing parts

There is a hot ongoing debate about modifying the way Linux is configured. Some
people think that changing the way Linux applications are configured would mean
changing the whole UNIX paradigm that lays underneath it. Some others think that
we need everybody to agree in one centralized configuration interface that can be
used by all programs.

The centralized configuration abstraction would have a lot of problems with the
existing configuration files as many other projects have shown before[14][34]. But
getting rid of them would imply migrating every application to the new configuration
interface an loosing compatibility with all prior versions and other similar systems
(like Mac OS X).

Finally, having the centralized configuration tool is not enough. There should
be a mechanism to download the policy from the LDAP server in a secure manner
and apply the settings as indicated by the policy. Probably this part should be
implemented in a PAM module that is included in the session management group.

2.8 Trusted path

Windows uses the secure attention sequence (Control-Alt-Delete) to ensure the
user that it is talking to a legit part of the operating system. This reduces the
probability of being able to use a trojanized version of the log on application.

2.8.1 Concept and usage

Everything you do implies a certain amount of trust. For every decision you take,
you do your own risk analysis analyzing information and trust.

Let me show you an example. Everything you eat could potentially kill you, but
you eat it because:

• You have cooked it yourself.

• You know and trust the person who prepared the food.

• You do not know who prepared the food, but know and trust the restaurant or
its owners.

• You have had previous and positive experiences in this place.

• You do not know the place at all, but you think it is not worth for them to loose
a customer.

• You do not have a bad feeling about the food: it looks, smells and taste good.

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• . . .

Most of these points involve trust.
Thinks are much harder when we move from the real world to the computer

world. When you login to a system, you implicitly trust the application you use to
login. You tell your most precious secret, your user and password, to the applica-
tion and you trust that it will not save it somewhere or sent it to somebody else.
Obviously you trust it because you believe that this is a system application, and as
such:

• You trust the company that wrote the operating system.

• It has been revised by many people.

• It looks exactly as the application that you have used many times to login to
the system.

But could you differentiate this application from another one that looks the
same? If you want to login to a UNIX workstation and you see the graphical lo-
gin application —xdm, gdm or kdm,— how do you know that it is the genuine one
instead of a full screen application being run by the previous user? Remember
that the source code for many of these applications is available and it would be
easy to create a modified version of that application. This application is called a
Trojan horse: a program that seems to be a useful application and does something
evil also.

Windows provides its users with a trusted path to help them to know that they
are using the legitimate application and not a Trojan horse. When a user wants
to log on to the system, she must press the Secure Attention Sequence which
is the very well know key sequence Control–Alt–Delete1. This sequence cannot
be intercepted by any application because it is directly answered by the operating
system. Let us see exactly how this happens.

When the kernel has finished booting, it starts the session manager subsystem
or SMSS. The session manager subsystem is like the init process in UNIX. It does
many of the initialization tasks of the system and starts and controls the WinLogon
process —one per Terminal service connection plus the one for the local system—
and the Win32 subsystem or Client Server Runtime Subsystem (CSRSS). WinLo-
gon is the process in charge of all the interactive user logons, but it does not have
a hardcoded way to ask the user for her credentials —username and password.
Instead of that, the abilities to identify and authenticate the user are implemented in
the Graphical Identification aNd Authentication (GINA). The GINA is a dynamically
loadable library (DLL) used by WinLogon that takes care of displaying the user
interface to log on, passing the data to the Local Security Authority Subsystem
(LSASS) and to create the shell, by default, userinit.exe that runs the Windows
Explorer[36].

In an analogy with the XWindow System used in many UNIX machines, WinLo-
gon corresponds to the display manager program (xdm, gdm or kdm) while the GINA

1Also known as the three finger salute.

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

acts similarly to a pam module. The main difference is that the GINA is responsible
to display the window that asks for the user and password, while the pam modules
are not.

As part of its initialization, WinLogon creates three desktops: the default desk-
top, the one that you normally uses, the winlogon desktop that is used to prompt
the user for her password and can only be accessed by WinLogon, and the screen
saver desktop. It also registers the secure attention sequence. If the secure at-
tention sequence is detected by the kernel its keyboard hook handler gets notified,
the user is switched to the winlogon desktop, and the authentication process takes
place in a secure manner.

The fact that the secure authentication sequence is intercepted directly by the
kernel and the trusted process WinLogon is invoked results in a trusted path to the
user. However, you should take this solution for what is worth. Windows trusted
path solution assumes that winlogon and the GINA can be trusted. It will not help
if the intruder has already got administrative privileges somehow and the GINA
has been replaced. Ed Skoudis’ “Malware”[37] shows a good example of how this
can be done and also explains the benefits for the intruder that already has the
administrative privileges. Also, the trusted path solution does not work for remote
logons.

2.8.2 Existing Linux solutions

There are several solutions available for Linux[35] and Fedora Core 1 implements
them all.

If you login through one of the display managers, you can always restart the
X server by pressing Control–Alt–Backspace. This will cause the server and all
the graphical applications to be killed. The server will be restarted if the Fedora
Core 1 system is in run level 5, and the display manager application will be the one
configured by the system administrator or the distribution’s default.

If the kernel has been compiled with system request (SysRq) configured and
it is enabled there is a secure access key combination available. The status of
the SysRq at run-time can be checked and set via the /proc interface. The kernel
parameter is /proc/sys/kernel/sysrq. When enabled the key combination Alt-
SysRq-k will kill all programs on the current virtual console.

For kernels newer than 2.4.3, the loadkeys utility, that is the one that loads the
tables used to translate the key codes, has a SAK key action available. Executing
the following command as root,

echo "control alt keycode 101 = SAK" | /bin/loadkeys

the secure attention key is generated whenever the user presses the Control–Alt–
Pause keyboard combination as recommended in the kernel documentation refer-
ring to SAK[38].

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.8.3 The missing parts

The first two solutions, killing the X server and using SysRq, work in the default
installation of Fedora Core 1. The solution of the SAK key action implemented in
the kernel does not. Even though the functionality is included in the kernel, the
default keymap does not assign this key action to any keyboard combination.

Although the solutions included in Linux could work, with different degrees of
satisfaction, for the initial login, it will not work throughout the session. There is
no way to ensure that the password given to the screen saver is directly asked by
the operating system. Of course, you could still kill all the processes that you were
running and loose some amount of work that was already done.

2.9 Automatic distribution of patches

It has been a long time since Microsoft realized that their customers do not patch
their systems as often as they should. To try to get rid of the, sometimes well de-
served, reputation that Windows systems are inherently insecure, they have put
a lot of money and effort in the mechanisms used to patch Windows. As a re-
sult, Windows has several methods available for a faster and easier distribution of
patches.

2.9.1 Concept and usage

As for most operating systems, patches can be downloaded from a website and
installed manually. The usage of this site was almost restricted to the people who
know that they have a problem or the very security conscious. Hence, they decided
to offer the Windows Update service.

Windows Update is a web site (http://windowsupdate.microsoft.com/) that offers
Microsoft customers the ability to automatically patch their systems. Everything the
user needs is already included in the Windows operating system: the Internet Ex-
plorer web browser and a valid license number. When Internet Explorer accesses
the website it downloads an ActiveX control that scans the system and sends in-
formation to Microsoft to let the server side decide which updates are needed. The
user then accepts the updates and they are downloaded and installed.

Windows Update requires the user to connect periodically to the website and
accept the updates. Maybe that is asking too much for a fair amount of Windows
users, so they decided to include a built-in feature to do automatic updates. Auto-
matic updates works like Windows Update but in unattended mode. Updates can
be scheduled and the user gets notified before they are downloaded or installed.

The administrators of a Windows Active Directory domain have other solutions
available to make sure that the systems are updated as required. Global Policy
Objects (GPO) can be used to install software in msi or zap formats. While this
is undoubtedly helpful, most if not all Microsoft patches and service packs do not
come in these two formats.

The Software Update Service (SUS) is the evolution of the Automatic Update
feature. Internal software updates distribution servers can be used, so that, in-

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

stead of having every system connecting directly to Microsoft and asking for up-
dates, these servers download all the software updates and act as local repository.
Administrators can select which updates are applied to the rest of the organization,
and can even have different SUS servers to update different kinds of systems. The
SUS server that is used by each system, as well as other parameters of the client,
can be defined in a GPO.

2.9.2 Existing Linux solutions

In 1999, the Debian team released the version 2.1 of Debian GNU/Linux code-
named Slink. This release introduced a new tool written by Jason Gunthorpe which
tremendously simplified the managing of dependencies of Debian packages and
automatized the whole process of downloading and installing software. This tool is
the Advanced Package Tool (APT)[39] and allows the automatic retrieval from the
net of every package needed for a specific action. It can even upgrade the whole
system to the next major release.

Other distributions tried to have the same functionality. Since Debian uses deb
as their package format and all the other major distributions use rpm, some people
modified APT to work with rpm.

Fedora Core 1 does not include APT with the official packages of the distribu-
tion. Red Hat introduced up2date as part of their Red Hat Network (RHN) sub-
scription service, but it can be used with Fedora Core 1 without subscription to the
RHN.

Updating the system with up2date can be as easy as executing the command
up2date-nox -u. However, there is a very well known problem with Fedora Core 1
up2date, if you are not using a subscription to the RHN you will often get corrupted
versions of the packages you are trying to download. up2date will not install the
corrupted version of the RPM, but it will complain that the GPG signature of the
package is not valid:

The package ... does not have a valid GPG signature...

Running up2date again will restart the process from the last good package. How-
ever, most of the times this problem is due to the excessive load handled by the
Red Hat servers that have the packages available for downloading and up2date will
return the same error over and over again. This behavior can be avoided replacing
the URL of the Red Hat server in the sources configuration file used by up2date —
/etc/sysconfig/rhn/sources— by any of the ones included in the following web
page http://fedora.redhat.com/download/mirrors.html. This modification can also
be used to have internal repositories for the updates instead of using the pub-
licly available ones, thus reducing the external bandwidth consumption and having
more control over what gets distributed.

There is another tool that comes with Fedora Core 1: yum. The Yellow-dog
Updater Modified (YUM) provides a similar mechanism to the one offered by APT
and works out of the box with rpm packages.

All this applications can be run as a cron job to comply with you security policy.

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.9.3 The missing parts

There is no really good solution for pushing patched software other than login to
the every system and run the tool to update the system. If up2date runs often,
three or four times a day, the amount of network traffic generated is very low when
there is nothing new to be installed.

2.10 Integrated PKI and certificate management

Windows comes with everything you need to implement your own PKI already
integrated in the system with the ability to manage certificates. This also permits
using the encrypted file system and even smart cards. This is a whole topic in
itself and I will only explain the high level stuff: the problem it solves and the parts
involved. I will not get into any detail about cryptography[46].

2.10.1 Concept and usage

Public key, or asymmetric, cryptography means that two keys are required for se-
cure communication. One is the private key, that, as its name implies, must be
kept secret, and the other one is the public key, that, of course can be made pub-
lic. Everything that has been encrypted with the public key can only by decrypted
using the private key and vice versa. If you want to send a private message to
somebody, you use her public key to encrypt it. She will be the only one that can
decrypt the message. If you want to send a message that can be proved that it
comes from you, you use your private key to encrypt the message. Everybody will
be able to decrypt your message and will know that if comes from you because
it was encrypted with your private key that nobody else knows. This is a rough
description of the basis of public key cryptography.

The invention of public key cryptography changed the definition of some tradi-
tional problems in the world of secrets. You did not need to use a secure channel to
get a shared key anymore. Now you could get somebody else’s public key from any
public place and establish a private communication with this person. The problem
now was: how do you know that this key belongs to that person?

Maybe you could have got the key directly from her hands, but this cannot be
the general case. There should be a way to know that the key that we are going
to use is indeed the one of the person that we want to privately communicate with.
If somebody that I trust could provide me with this confirmation, things would be a
lot easier.

PKI means Public Key Infrastructure. And it is meant to solve the problem of
key ownership. To achieve this goal it needs a set of standards for inter-operation
that everybody agrees on, so different applications get to talk to each other and,
most important, somebody you trust. The advantages of using a PKI is that I have
and easy way to get a certificate with the public key of the person that I want
to communicate with, and that this certificate is digitally signed by a certification
authority (CA). The CA is an entity that deserves everybody’s trust.

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As you can see, a PKI does not only provide the organization with the ability to
have public and private keys and do some crypto with them, but it is also responsi-
ble for the distribution of the certificates with the public keys, the secure distribution
of everybody’s private keys, handling the revocation lists, etc.

Certificates in windows are handled by the operating system itself. While this
is a good thing because it standardizes the way applications and users deal with
them, it also offers Microsoft an excellent opportunity to decide which certification
authorities are honored by default and charge them for it.

The usage of Windows PKI in an organization provides stronger authentication
methods (personal certificates and even smart cards), encrypted storage (EFS),
encrypted and signed email, signed code, etc.

2.10.2 Existing Linux solutions

I have previously mentioned GPG signatures when talking about software distribu-
tion. Gnu Privacy Guard (GPG or GnuPG)[41] is a free implementation of public
key encryption compliant with the OpenPGP standard[42], but it does not have the
concept of a certification authority. Every GPG user can sign every body else’s key
and it is up to the GPG user to trust a key based on its signature. This is called the
web of trust.

Fedora Core 1 comes with GnuPG and it is an essential part of the distribution
because all the packages are signed with GPG. The default email clients (Evo-
lution or KMail) can use GPG to encrypt and sign messages. KDE even has a
utility for key management that is called KGpg. However, GPG is not compatible
with TLS/SSL, so the GPG key cannot be used to authenticate the user for a web
session. Also, it does not work with OpenSSH, although there is some work in
progress[43] to solve that issue.

OpenSSL[44], also bundled with Fedora Core 1, offers a set of command line
utilities that implement functionality to:

1. Create key parameters (RSA, DH and DSA).

2. Manage X.509 certificates, CSRs and CRLs.

3. Calculate Message Digests.

4. Encrypt and decrypt with ciphers.

5. Handle S/MIME signed or encrypted mail.

6. SSL/TLS client and server tests.

It is not integrated with the rest of the operating system and the documentation
is not complete, but it is a very powerful toolkit. Many applications, like Apache,
OpenLDAP or OpenSSH to name a few, depend on the OpenSSL libraries to offer
cryptographic functionality.

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.10.3 The missing parts

Some functionality is missing in the solution provided by GPG: like smart card
authentication or the ability to encrypt file system objects.

The average user would also need a wider support of GPG: more applications
that can use GPG and better interoperability. The mozilla mail client cannot work
with GPG out of the box. There is an extension called enigmail[45], but it is not
part of the distribution. Also, Evolution and KMail implement message encryption
in different ways: Evolution puts encrypted data in a MIME attachment and KMail
encrypts the data in-line.

OpenSSL is very powerful but not very user friendly. Improving the documen-
tation is a must.

2.11 Integrated IPSec

Windows comes with the ability to establish secure communications with other
hosts by using the IPSec implementation that is integrated in the operating system.

2.11.1 Concept and usage

IPSec[47] is a security extension of the IP protocol —implemented on top of it at
the host-to-host level (layer 3)— that provides cryptography based authentication
and encryption services. As the rest of the family of protocols that constitute the
essence of the Internet, it was designed for inter-operability and based in a public
standard.

Three protocols are involved when talking about IPSec:

Authenticated Headers (AH) protocol [48] used to authenticate traffic.

Encapsulating Security Payload (ESP) protocol [49] used to encrypt and au-
thenticate traffic.

Internet Key Exchange (IKE) protocol [50] needed to negotiate the session key
if AH or ESP are used.

Windows systems can be easily configured to use the IPSec functionality that
comes with the operating system. This is specially useful for establishing virtual
private networks (VPN) with dial-in or ISP connected computers.

2.11.2 Existing Linux solutions

Linux 2.6 comes with this functionality already built in it and uses IPSec-Tools[51]
for the user space configuration, but it is not yet distributed with Fedora Core 1.
Soon, it will be distributed with Fedora Core 2. Additional information on how to
use IPSec in Linux 2.6 can be found in the IPSec-HOWTO[54]

Fedora Core 1 comes with the 2.4.22 kernel and none of the IPSec solutions
available for this kernel[52][53] are included in the distribution. FreeS/WAN dis-
tributes the user space utilities and precompiled modules in rpm format for Fedora

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Core 1 (up to the last but one kernel release). Openswan offers source code in tgz

format that can be compiled with your system.
Both implementations work well with Fedora Core 1. FreeS/WAN is very much

easier to install, but the project has been recently discontinued. They even inter-
operate successfully with other implementations like the Windows one.

2.11.3 The missing parts

The software required to make the system talk IPSec exists already and works
very well, but it must come bundled with the distribution for wider usage.

3 Conclusions

Linux has a lot of security features already available and there are a large number
of projects trying to develop additional ones. By the very nature of open source,
some of these projects will succeed and be incorporated to the main stream of
Linux distributions, while a larger number will fail an disappear. This evolutionary
system has provided us with a very powerful and full featured operating system so
far, but there is plenty of room to make a more secure Linux system.

Some features, like software distribution, have traditionally been solved more
successfully in the Linux world. MSI is the Microsoft approach to software pack-
ages. But most of them are still not ready for Linux.

The areas in which consolidated standards can be found are easier to imple-
ment. The problem comes for new areas specially when interoperability is a re-
quirement.

Many of the features commented throughout this document are not included
in the very well known commercial UNIX versions. The vendors that create this
operating systems can also take advantage of this list and for once in their lifetimes
learn something technical from Microsoft.

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

[1] Grünbacher, Andreas “Linux Extended Attributes and ACLs.”
URL: http://acl.bestbits.at/ (23 Apr. 2004)

[2] Winfried Trümper “Summary about Posix.1e” 28 Feb. 2004.
URL: http://wt.xpilot.org/publications/posix.1e/ (23 Apr. 2004)

[3] Grünbacher, Andreas; Schilling, Jörg “Linux and Solaris ACLs - Backup of
Access Control Lists.”
URL:http://www.fokus.gmd.de/research/cc/glone/employees/joerg.schilling/private/star-
acl.html

[4] Saradiya. “GUI ACL Permission Manager.” 12 Mar. 2004.
URL:http://www.ameba6.com/guiaclmanager/ (30 Apr. 2004)

[5] Dalessandri, Marco. “Advanced Permissions - konqueror.” 10 Mar. 2004.
URL:http://www.kde-apps.org/content/show.php?content=11315

[6] Godinez, Javier “Secure Auditing for Linux.” Feb. 2003.
URL: http://secureaudit.sourceforge.net/ (1 May 2004)

[7] Corbet, Jonathan. “The lightweight auditing framework.” Linux Weekly News.
8 Apr. 2004.
URL:http://lwn.net/Articles/79326/ (2 May 2004)

[8] Microsoft Corp. “Chapter 4 - User Rights Assignment.” Threats and Counter-
measures Guide. 2004.
URL: http://www.microsoft.com/technet/Security/topics/hardsys/tcg/tcgch04.mspx
(24 Apr. 2004)

[9] Tobotras, Boris. “Linux kernel capabilities FAQ.” v.2.0. 2 Apr. 1999
URL:http://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-
2.4/capfaq-0.2.txt

[10] Linux man pages. “Capabilities.” 23 May 2003.
URL:http://annys.eines.info/cgi-bin/man/man2html?capabilities+7

[11] Kline, Erik. “Linux Capability PAM Module.” v.0.22. 11 Sep. 2002.
URL:http://freshmeat.net/projects/pam capability/

[12] Bacarella, Michael. “Taking Advantage of Linux Capabilities.” Linux Journal,
issue 97 (May 2002): 72–75.

[13] Microsoft Corp. “Microsoft Management Console: Overview.” 7 Oct. 1999
ULR:http://www.microsoft.com/windows2000/techinfo/howitworks/management/mmcover.asp

[14] Glinas, Jacques. “Linuxconf – Linux administration made easy.”
URL:http://www.solucorp.qc.ca/linuxconf/ (1 May 2004)

24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[15] Hess, Joey. “The many faces of Debconf”
URL:http://kitenet.net/programs/debconf/ (1 May 2004)

[16] Cameron, Jamie. “Webmin” v.1.140. 5 Apr. 2004.
URL:http://www.webmin.com/ (1 May 2004)

[17] Miller, Todd. “Sudo Main Page” v.1.6.7p5. 8 May 2003
URL:http://www.courtesan.com/sudo/ (1 May 2004)

[18] Ortiz, Jorge “Does Windows 2000 security model get along with my Linux?”
7 Dec. 2004
URL:http://www.giac.org/practical/GCWN/Jorge Ortiz GCWN.pdf
(1 May 2004)

[19] OpenLDAP Foundation. “OpenLDAP community developed LDAP software.”
v.1.58 14 Dec. 2003
URL:http://www.openldap.org/ (1 May 2004)

[20] Bauer, Mick. “Paranoid Penguin: LDAP for Security, Part I.” Linux Journal,
issue 111 (Jul. 2003): 34–37.

[21] Bauer, Mick. “Paranoid Penguin: Authenticate with LDAP.” Linux Journal, issue
112 (Aug. 2003): 30–33.

[22] Bauer, Mick. “Authenticate with LDAP, Part III.” Linux Journal, issue 113
(Sep. 2003): 32–36.

[23] Pinheiro-Malre, Luiz Ernesto. “LDAP Linux HOWTO.” v1.09, 5 Mar. 2004
URL:http://www.tldp.org/HOWTO/LDAP-HOWTO/ (1 May 2004)

[24] Danen, Vincent. “Using OpenLDAP For Authentication; Revision 2.”
6 May 2003.
URL:http://www.mandrakesecure.net/en/docs/ldap-auth2.php (1 May 2004)

[25] Lasser, John; Beale, Jay “Bastille Linux.”
URL:http://www.bastille-linux.org/

[26] The Center for Internet Security. “Benchmark Tools.” Mar. 2004.
URL:http://www.cisecurity.org/bench win2000.html

[27] “Windows 2000 Security Recommendation Guides.” Release 1, Jun. 2001.
URL:http://intranet.logiconline.org.ve/Teach/W2K security/

[28] Burgess, Mark. “Cfengine - a configuration engine for Unix and Windows.”
URl:http://www.cfengine.org/ (24 Apr. 2004)

[29] Pennington, Havoc. “Introduction to the GConf library” 2000.
URL:http://developer.gnome.org/feature/archive/gconf/gconf.html
(24 Apr. 2004)

25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[30] Seigo, Aaron J. “KDE:The Korporate Desktop Environment.” Linux Magazine.
Nov. 2002
URL:http://www.linux-mag.com/2002-11/kde 01.html (24 Apr. 2004)

[31] Pennington, Havoc. “D-BUS Tutorial.” v 0.1
URL:http://www.freedesktop.org/software/dbus/doc/dbus-tutorial.html
(24 Apr. 2004)

[32] Arnison, Matthew. “How to Fix the Unix Configuration Nightmare.”
16 Feb. 2002.
URL:http://freshmeat.net/articles/view/400/ (24 Apr. 2004)

[33] Long, Jason. “A Solution to the Problem of Configuration in Linux.”
28 Sept.2002.
URL:http://freshmeat.net/articles/view/565/ (24 Apr. 2004)

[34] Dagenais, Michel. “The Future of System Configuration” 23 May 2003.
URL:http://www.professeurs.polymtl.ca/michel.dagenais/pkg/config.html
(24 Apr. 2004)

[35] Wheeler, David A. “Secure Programming for Linux and UNIX HOWTO.” v
3.010, 3 Mar. 2003.
URL:http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-
formats/pdf/Secure-Programs-HOWTO.pdf (25 Apr. 2004)

[36] CSWL. “Windows NT/2000 Login Security.”
URL:http://www.cswl.com/whiteppr/white/gina.html (25 Apr. 2004)

[37] Skoudis, Ed. Malware. Fighting Malicious Code. Upper Saddle River, NJ:
Prentice Hall. p. 347–352.

[38] Morton, Andrew. “Linux 2.4.2 Secure Attention Key (SAK) handling.” Kernel
documentation. 18 Mar. 2001.
URL:http://www.linuxhq.com/kernel/file/Documentation/SAK.txt
(25 Apr. 2004)

[39] Noronha Silva, Gustavo; Mora, Hugo. “Apt HOWTO.” v.1.8.4 Apr. 2003.
URL: http://www.debian.org/doc/manuals/apt-howto/ (25 Apr. 2004)

[40] Vidal, Seth. “Yellow dog Updater, Modified.” 30 Jun. 2003.
URL:http://www.linux.duke.edu/projects/yum/index.ptml (26 Apr. 2004)

[41] Koch, Werner. “The GNU Privacy Guard.” v.1.55. 03 Jan. 2004.
URL:http://www.gnupg.org/ (26 Apr. 2004)

[42] Callas, J.; Donnerhacke, L.; Finney, H.; Thayer, R. “OpenPGP Message For-
mat.” Internet Engineering Task Force, Nov. 1998.
URL: http://www.ietf.org/rfc/rfc2440.txt (2 May 2004)

[43] Weber II, Joel N. “OpenSSH-GPG.”
URL:http://www.red-bean.com/ nemo/openssh-gpg/ (2 May 2004)

26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[44] Engelschall, Ralf S. “OpenSSL.”
URL:http://www.openssl.org/ (2 May 2004)

[45] Brunschwig, Patrick. “Enigmail.” v.0.83.6.
URL:http://enigmail.mozdev.org/

[46] Xenitellis, Symeon. “The Open-source PKI Book” v.2.4.7 23 Jul. 2000.
URL: http://ospkibook.sourceforge.net/ (2 May 2004)

[47] Kent, S. & Atkinson, R. “RFC2401: Security Architecture for the Internet Pro-
tocol.” Internet Engineering Task Force, Nov. 1998.
URL: http://www.ietf.org/rfc/rfc2401.txt (2 May 2004)

[48] Kent, S. & Atkinson, R. “RFC2402: IP Authentication Header.”
Internet Engineering Task Force, Nov. 1998.
URL: http://www.ietf.org/rfc/rfc2402.txt (2 May 2004)

[49] Kent, S. & Atkinson, R. “RFC2406: IP Encapsulating Security Payload (ESP).”
Internet Engineering Task Force, Nov. 1998.
URL: http://www.ietf.org/rfc/rfc2406.txt (2 May 2004)

[50] Harkins, D. & Carrel, D. “RFC2409: The Internet Key Exchange (IKE).”
Internet Engineering Task Force, Nov. 1998.
URL: http://www.ietf.org/rfc/rfc2409.txt (2 May 2004)

[51] Atkins, Derek. “IPsec-Tools.”
URL:http://ipsec-tools.sourceforge.net/ (2 May 2004)

[52] Gilmore, John. “Linux FreeS/WAN” v2.05 1 Mar. 2004.
URL: http://www.freeswan.org/ (2 May 2004)

[53] Many. “Openswan” v.1.0.3. 4 Apr. 2004.
URL:http://www.openswan.org/ (2 May 2004)

[54] Spenneberg, Ralf. “The official IPsec Howto for Linux.” v.0.9.6. 28 Jan . 2004
URL:http://www.ipsec-howto.org/ (2 May 2004)

27

