
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Securing an
OpenBSD 3.5
System for use

with Honeyd

GCUX

Practical Assignment

Version 2.1

Option 1

Nicholas J. Smith
August 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Table of Contents

 - i -

Table of Contents

1 Abstract ... 1
2 Document Conventions... 1
3 Introduction ... 2

3.1 Overview .. 2
3.2 Honeypot Technology .. 2
3.3 Honeyd... 3

4 Server Specification and Risk Mitigation Plan ... 5
4.1 Overview .. 5
4.2 Server Role .. 5
4.3 Risks .. 6
4.4 Risk Mitigation Plan.. 9
4.5 Platform Choice.. 11
4.6 Reality Check... 13
4.7 Third Party Software Version Choice ... 13
4.8 Server Specification ... 14
4.9 Design of the Filesystem Layout .. 16

5 Steps to Install and Harden the Server.. 18
5.1 Overview .. 18
5.2 Preparation .. 19
5.3 OS Installation in 5 Easy Steps.. 21

5.3.1 Step 1: Boot from the CD.. 21
5.3.2 Step 2: Partition the Filesystem .. 22
5.3.3 Step 3: Configure Networking ... 23
5.3.4 Step 4: Install the Base Software Set.. 23
5.3.5 Step 5: Post installation .. 25

5.4 Afterboot .. 26
5.4.1 Modify the dot files in /etc/skel .. 27
5.4.2 Install the bash Package... 28
5.4.3 Create a User Account.. 28
5.4.4 Edit the /etc/sudoers File .. 30
5.4.5 Edit the /etc/resolv.conf File.. 30
5.4.6 Re-create the /etc/mail/localhost.cf File 30

5.5 OS patches .. 31
5.5.1 Patching Choices .. 31
5.5.2 Apply Patches... 32
5.5.3 Patch Verification .. 33

5.6 Services and Processes... 34
5.6.1 Identify default services .. 34
5.6.2 Disable inetd ... 37
5.6.3 Disable IPv6.. 38
5.6.4 Identify running processes .. 39

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Table of Contents

 - ii -

5.6.5 Disable virtual consoles .. 40
5.7 Logging .. 41

5.7.1 Logging to a Remote Syslog Server ... 41
5.8 Warning Banners ... 42

5.8.1 Prior Warnings .. 42
5.8.2 Subsequent Warnings... 43

5.9 OpenSSH... 44
5.9.1 Configuration Changes ... 44

5.10 NTP.. 45
5.10.1 Installation... 45
5.10.2 Configuration... 46

5.11 pf .. 47
5.11.1 IP-based Access Control Policy.. 48
5.11.2 Enable pf and pflogd ... 50

5.12 Honeyd... 51
5.12.1 Installation... 51
5.12.2 Start-up Scripts ... 53
5.12.3 Verification of Basic Honeyd Operation .. 54
5.12.4 Sandboxing Honeyd.. 55

5.13 System Heartbeat .. 58
5.13.1 Piggybacking System Checks... 58
5.13.2 SMTP Heartbeat ... 59
5.13.3 Syslog Heartbeat .. 60

5.14 File Integrity Checker ... 61
5.14.1 Mapping Files and Directories... 61
5.14.2 Generation of Specification Files .. 63
5.14.3 Storage of Specification Files ... 66
5.14.4 Checking for Changes .. 67
5.14.5 Putting it all together ... 69

5.15 Filesystem Access Control... 69
5.15.1 System Security Level .. 70
5.15.2 Changing Security Levels ... 71
5.15.3 Protecting Files and Directories .. 71

6 Ongoing Maintenance Procedures.. 73
6.1 Configuration Changes .. 73

6.1.1 Changes to Honeyd .. 74
6.1.2 Changes to pf.. 75

6.2 Patching and Upgrading the System.. 75
6.2.1 Patching the OS.. 75
6.2.2 Upgrading Third-Party Software.. 77
6.2.3 Upgrading the OS ... 78

6.3 Log file Rotation ... 78
6.4 Monitoring .. 80
6.5 Updating the File Integrity Checker Specification Files 81
6.6 Enabling and Disabling Filesystem Access Control 83

6.6.1 Enabling File Access Control .. 83

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Table of Contents

 - iii -

6.6.2 Disabling File Access Control ... 84
6.7 Backups and Restores ... 85

6.7.1 Full System Backup .. 86
6.7.2 Bare-Metal Restore... 88
6.7.3 Regular Backup .. 90
6.7.4 Partial Backup... 91
6.7.5 Partial Restore .. 91

7 Verification of OS Configuration .. 93
7.1 RMS #4 .. 93
7.2 RMS #5 .. 94
7.3 RMS #6 .. 94
7.4 RMS #7 .. 95
7.5 RMS #8 .. 95
7.6 RMS #9 .. 97
7.7 RMS #10 .. 99
7.8 RMS #14 .. 100
7.9 RMS #17 .. 100
7.10 RMS #18 .. 102
7.11 RMS #20 .. 102
7.12 RMS #23 .. 102
7.13 RMS #24 .. 103
7.14 RMS #25 .. 103

8 References.. 104
Appendices... 106

Appendix A: Systrace Policies .. 107
Honeyd.. 107
router-telnet.pl ... 109

Appendix B: Automation scripts .. 110
generate-fic-spec .. 110
fac-on .. 112
fac-off .. 112

Appendix C: Public-Key Authentication with OpenSSH................................ 114

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Abstract

 - 1 -

1 Abstract

This paper describes the design and implementation of a system that uses a
honeypot technology called Honeyd to augment the incident response process
with respect to fighting worm outbreaks within a company’s internal network.
Honeyd simulates virtual systems at the network level, which gives it the
capability to detect and disable worms.

As there are risks associated with deploying any type of honeypot, the design of
the Honeyd server starts with identifying the risks for the environment in which it
will be deployed. Risk mitigation steps are formulated to address each risk and
these are categorized and numbered in the risk mitigation plan. Although a
holistic approach has been taken to mitigating the risks, this paper focuses on
the measures that will be directly implemented on the Honeyd server.

The Honeyd server was designed within particular constraints that were identified
through feasibility testing prior to the commencement of this pilot project. These
real world challenges were compounded by a lack of budget. Although hardware
and software compatibility issues guided the choice of server platform, OpenBSD
3.5 was a natural choice because many of the security features that were
required to implement the risk mitigation steps are built into the operating system.

Although OpenBSD has a very good default security posture, it was still
necessary to take steps to raise the security posture to the level specified in the
risk mitigation plan. This baseline posture was further improved by the addition of
best practice hardening steps. However, since changes to the configuration of
the Honeyd server may need to be made rapidly during an incident, it was
necessary to balance security with convenience.

The Honeyd server’s role was also given consideration during the design and
implementation of the ongoing maintenance procedures. The approach taken
was to identify what routine tasks need to be performed and then create
procedures that define how to perform them. Frequently occurring tasks involving
lots of steps have been automated with Perl and shell scripts.

The paper concludes with the verification of the operating system configuration in
order to demonstrate that all of the server risk mitigation steps have been
implemented and fulfill their intended purpose.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Document Conventions

 - 1 -

2 Document Conventions

When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

Command Operating system commands are represented in this

font style. This style indicates a command that is
entered at a command prompt or shell.

Filename Filenames, paths, and directory names are represented
in this style.

computer output
user input

The results of a command and other computer output
are in this style. User input is shown in bold.

���� Web URL's are shown in this style.

���������� A citation or quotation from a book or web site is in this
style.

It should be noted that some of the command output has been reformatted in
order to make it more readable in this document format.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Introduction

 2

3 Introduction

3.1 Overview

The purpose of this paper is to describe the design and implementation of a
server that will be deployed as part of a pilot project to determine the
effectiveness of using honeypot technology to detect and disable worms within
an organization’s intranet.

With the number and effectiveness of worm outbreaks on the rise and the time
between a vulnerability announcement and the release of an exploit on the
decline, there is an increasing need to develop technology to help defend against
the growing malware threat. Several approaches to tackling the problem are
being pursued in the commercial and open source arenas. Of these approaches,
the work of Oudot1 which uses a honeypot technology called Honeyd2 is of
interest to us due to its flexibility, simplicity and price (free, as in beer).

Since this type of technology is seen to be bleeding edge, a great deal of care
needs to be taken when deploying it on a production network. For this reason, a
disciplined approach is necessary in the design, implementation and operational
phases of the project.

3.2 Honeypot Technology

Honeypots have been around for a number of years in one form or another.
However, it is only in more recent times that their profile has been raised, largely
thanks to the efforts of many talented individuals who volunteer their time to
community projects such as The Honeynet Project3.

A succinct and flexible definition of a honeypot was created by members of the
SecurityFocus Honeypots mailing list4 through a consensus process that was
facilitated by Lance Spitzner:

	����
���������
�
������
���������
�����������
�����������������

������������
���
��������
������.

Part of the value proposition of a honeypot is that since it is an unadvertised,
non-production system, all attempts to use it are suspect and, therefore, worthy
of investigation.

1 Fighting Internet Worms with Honeypots.
2 http://www.citi.umich.edu/u/provos/honeyd/
3 http://project.honeynet.org/
4 http://www.securityfocus.com/archive/119
5 http://www.securityfocus.com/archive/119/322363/2003-05-22/2003-05-28/0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Introduction

 3

The three main functions of a honeypot are:

1. Collection. Can provide us with small sets of high-value data.

2. Detection. Can provide us with early warnings of attacks with fewer false
positives.

3. Diversion. Can provide us with more time to fix vulnerabilities by diverting
attacks away from real hosts.

For the purpose of this project we are going to focus on the detection capabilities
of honeypots.

3.3 Honeyd

There are at least three issues with honeypots that need to be addressed in
order to make the approach effective against worm attacks:

1. A traditional honeypot only sees the traffic that is directed at it. In a class A
network (e.g. 10.0.0.0), a single honeypot would be ineffective because
the chance of it being found by a worm that is randomly scanning the
network is extremely low. In order to increase our chances, we would
need to deploy more honeypots.

2. Honeypots can be difficult and expensive to set-up and run. If we multiply
the effort and expense by the number of honeypots needed to be
effective, we quickly find that the approach becomes impractical and
prohibitively expensive.

3. Deploying a honeypot can be risky.

The issue of risk will be dealt with more thoroughly in the next section. In general,
though, high-interaction honeypots carry more risk than low-interaction ones
because they are more complex to deploy and maintain.

The first two issues can be addressed by a relatively new honeypot technology
called Honeyd. In the words of its creator, Niels Provos, Honeyd is “a framework
for virtual honeypots that simulates virtual computer systems at the network
level”. The key here is the virtualization of honeypots, which enables us to
deploy large numbers of honeypots with relative ease.

In terms of our goal of detecting worm activity, Honeyd allows us to monitor
thousands of addresses by populating unused IP address space with virtual
systems. These systems can be configured with the appropriate network services
that make them appear vulnerable to a worm.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Introduction

 4

In reality, these virtual systems will reside within our Honeyd server, the design
and implementation of which is the real focus of this paper.

- END OF SECTION -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 5

4 Server Specification and Risk Mitigation Plan

4.1 Overview

The risks associated with deploying the Honeyd server need to be considered
before the start of the design process because some of the risk mitigation steps
may need to be included in the server specification. For example, we might try to
eliminate the need to offer a remote session service (and thereby reduce risk) by
choosing hardware that provides a means of securely accessing the system
console independently of the operating system. Other risk mitigation steps may
take place during implementation. For example, we might need to disable
unnecessary network services that are enabled by default. Based on this
premise, the approach taken is as follows:

1. Provide a high level statement of the server’s role.

2. Identify the risks associated with deploying this type of server along with
the mitigation step(s) for each risk.

3. Create the risk mitigation plan by rationalizing and categorizing the risk
mitigation steps identified in the previous step.

4. Choose the server platform.

5. Choose the versions of the third party software.

6. Create the server specification.

7. Design the filesystem layout.

In broad terms, steps 1 to 3 focus on what needs to be done and steps 4 to 7
focus on how it will be done.

4.2 Server Role

The main purpose of the Honeyd server is to augment parts of the existing
incident response process with respect to handling worm attacks:

Identification. Detect potential worm activity by deploying virtual honeypots
in order to instrument unused IP address space within the organization’s
network. Once worm activity has been detected, identification is possible
by determining its exploit mechanism and capturing its payload.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 6

Containment. Slow down or stop the spread of a worm. With a total of over
16 million IP addresses available in a class A network such as 10.0.0.0,
there is plenty of scope for increasing the chance that a worm connects to
a virtual honeypot rather than a real system. If the worm connects to a
virtual system it is wasting its time and will, therefore, be slowed to some
extent. Adding Honeyd’s ability to act as a tar pit, we can further slow the
worm’s progress. Data from Honeyd can also be fed to the incident
response team to further assist with containment.

Eradication. Under certain circumstances it may be possible for the
incident response team to configure countermeasures into Honeyd to
enable it to neutralize worms on infected systems.

In time we may wish to either expand or change the role of Honeyd, however, the
sole purpose of the server will always be to run Honeyd.

4.3 Risks

Regardless of our choice of server platform, there are risks associated with
deploying honeypot technology on a production network. In general, the risks
associated with deploying a virtual honeypot such as Honeyd are lower than
deploying a honeypot based on a real system. The risk is further decreased by
the fact that the Honeyd server will be deployed on an intranet and will not be
exposed to the Internet.

Although the intention is to expose Honeyd to worms, there is a chance that
there could be exposure to entities that are intent on attacking the server hosting
Honeyd. Since these entities are likely to be smarter than worms, their actions
pose the greatest risk.

The following table identifies the risks of running the Honeyd server along with
the mitigation steps.

Risk Comment How it happens Risk mitigation

Create clear policy for
the use of Honeyd.

Communicate the
policy to the
appropriate parties.

The deployment
of Honeyd is
deemed to be
misuse of the
organization’s
information
resources.

A honeypot is a tool
that is used to enforce
security policy. We
need to ensure that
policy clearly defines
how the honeypot can
be used within the
organization.

Various ways, including
lack of or bad
communication, intra-
company politics, etc.

Get C-level buy-in for
the deployment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 7

(cont ...)

Exploit of known OS
vulnerability.

Apply the latest OS
patches.
Run a version of
Honeyd with no known
vulnerabilities.

Run Honeyd in a
sandbox or jail
environment.

Compromise of Honeyd
daemon.

Implement a stack
protection mechanism
to help prevent buffer
overflow attacks.
Run the minimum
number of services on
the server.
Use IP-based access
control to limit access
to services.
Run services in a
sandbox or jail
environment, where
possible.
Implement a stack
protection mechanism
to help prevent buffer
overflow attacks.

Compromise of services
running on the server
hosting Honeyd.

Run NIDS on a
separate server to
monitor connections to
the Honeyd server.

Physical access to the
system.

Locate the Honeyd
server in a data centre
where preventative and
detective physical
access control issues
have been addressed.

Brute-force password
attack.

Monitor log files to
detect unauthorized
access attempts.

Unauthorized
access to the
server.

The risk associated
with unauthorized
access is related to
the consequences, i.e.
what the unauthorized
user does after
gaining access.
Although each
consequence is
identified as a
separate risk in this
table, it is important to
identify the issue of
unauthorized access
in order to address
mitigation techniques.

Password sniffing or
session hijacking.

Eliminate the need for
remote sessions or
used encrypted
sessions.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 8

(cont…)

Ensure that all new
configurations undergo
peer review.

Misconfiguration of
Honeyd by authorized
users.

Ensure that the change
management process
is followed when
introducing a new
configuration into the
production
environment.
Design and implement
the file system in a
manner that will make it
difficult to make
unauthorized system
changes.
Monitor log files to
detect unauthorized
activity on the system.

Honeyd server
causes
disruption of
services on the
production
network.

Honeyd is a powerful
tool that could easily
impact production
services on the
network if used
incorrectly. This might
range from Denial of
Service through to
redirection of
connections to
systems of an
attacker’s choosing.
Included in this risk is
rendering Honeyd
useless in order to
allow a worm attack to
succeed.

An unauthorized user
configures Honeyd to
disrupt services running
on the network or render
Honeyd useless.

Run file integrity
checking software to
detect changes to
essential files.
Run a packet filter on a
separate system to
control outbound
connections from the
Honeyd server.

Run NIDS on a
separate server to
monitor connections
from the Honeyd
server.

Send logging data to a
centralized syslog
server to make it
harder for the attacker
to cover tracks.

Design and implement
the file system in a
manner that will make it
difficult to make
unauthorized system
changes.

Server is used
as a launch pad
to attack other
systems.

This is usually the
number one risk
associated with the
deployment of
honeypots. Since the
Honeyd server will be
deployed on an
intranet, we do not
have to concern
ourselves with it being
used to directly attack
systems belonging to
other people.
However, we do need
to concern ourselves
with attacks against
our own systems.

Once an attacker has
compromised a system,
s/he will typically
download a toolkit that will
enable them to cover
tracks, scan the network
for vulnerabilities and
launch attacks against
other systems.

Run file integrity
checking software to
detect changes to
system binaries to
make it more difficult
for the attacker to
install a rootkit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 9

(cont…)

Keep spare hardware –
both parts and
complete systems.

Hardware failure.

Purchase a hardware
support contract for the
system.

Server suffers
catastrophic
failure.

Things happen, so we
need to be prepared.

Logical software error or a
malicious act.

Implement a backup
and restore process.

The server
becomes
unavailable.

This is not a mission
critical system, but
nevertheless it will
potentially serve an
important role in the
organization’s fight
against malware.

Power failure, network
outage, etc.

Locate the Honeyd
server in the data
centre, where these
types of facilities issues
have been addressed.

Lack of time to monitor
activity.

Send alerts to the
Operations group
because they are
dedicated to monitoring
and provide 24x7
coverage.

Alerts from the
Honeyd server
and associated
systems, go
unnoticed.

Failure of a transport
mechanism.

Send regular heartbeat
messages to
Operations to verify the
transport mechanisms.

It should be noted that in discussing the consequences of a server compromise,
we are assuming that an attacker has been able to defeat some of the measures
that we have put in place to prevent such a compromise. The point is that, from
time to time, some of our defenses will fail. Therefore, it is important to apply the
principle of defense in depth so that other layers of our security architecture will
prevent an attack from progressing any further. For example, although Honeyd
will be run in a sandbox or jail, we cannot assume that an attacker will not be
able to break out of it. After a successful jail break, the attacker might attempt to
download files to the system, in which case our separate packet filtering system
should detect, log and possibly respond to the activity, and our log monitoring
software should send an alert.

The Honeyd server is not a mission critical system. However, because of its
intended role is has the potential to disrupt other systems, which themselves may
be mission critical. In addition, the project has high profile within certain influential
parts of the organization so it is essential that problems do not occur as a result
of the deployment of the server.

4.4 Risk Mitigation Plan

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 10

The risk mitigation steps identified in the above table are summarized in the table
below. Duplicates have been removed and each one has been numbered for
ease of reference.

The risk mitigation steps have been categorized as follows.

• Policy. This relates to measures that need to be included in the
organization’s security policy.

• Management. This relates to measures that need to be addressed by
management.

• Server. This relates to measures that will be implemented on the Honeyd
server.

• Architecture. This relates to measures that will be implemented on
separate systems within the environment.

Details relating to policy, management and architecture are beyond the scope of
this document. However, it is worth mentioning that the architectural risk
mitigation steps that have been identified here are considered to be good
practice when deploying a honeypot of any type.

Reference
Number

Risk Mitigation Step (RMS) Type

1 Create clear policy for the use of Honeyd. Policy

2 Communicate the policy to the appropriate parties. Management

3 Get C-level buy-in for the deployment. Management

4 Apply the latest OS patches. Server

5 Run a version of Honeyd with no known vulnerabilities. Server

6 Run Honeyd in a sandbox or jail environment. Server

7 Implement a stack protection mechanism to help prevent buffer
overflow attacks.

Server

8 Run the minimum number of services on the server. Server

9 Use IP-based access control to limit access to services. Server

10 Run services in a sandbox or jail environment, where possible. Server

11 Run NIDS on a separate server to monitor connections to and
from the Honeyd server.

Architecture

12 Locate the Honeyd server in a data centre. Architecture

13 Monitor log files to detect unauthorized access attempts (assumes
that log files are sent to a centralized syslog server).

Policy

14 Eliminate the need for remote sessions or use encrypted sessions. Server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 11

(cont…)

15 Ensure that all new configurations undergo peer review. Policy

16 Ensure that the change management process is followed when
introducing a new configuration into the production environment.

Policy

17 Design and implement the file system in a manner that will make it
difficult to make unauthorized system changes.

Server

18 Run file integrity checking software to detect changes to essential
files such as configuration files and system binaries.

Server

19 Run a packet filter on a separate system to control outbound
connections from the Honeyd server.

Architecture

20 Send logging data to a centralized syslog server to make it harder
for the attacker to cover tracks.

Server

21 Keep spare hardware (parts and complete systems). Management

22 Purchase a hardware support contract for the system. Management

23 Implement a backup and restore process. Server

24 Send alerts to the Operations group. Server
25 Send regular heartbeats. Server

4.5 Platform Choice

Platform choice is about selecting a combination of hardware and operating
system that:

• Will enable us to meet security requirements.
• Will enable us to meet performance / capacity requirements.
• Is freely available (again as in beer because there is no budget for this

pilot project).
• Is familiar to us – this is a risky project (in many senses) so it is better that

we know what we are doing.

Our choice of hardware boils down to SPARC and Intel architectures. Since this
is a low / no budget production, our only options are:

• Sun Enterprise 250 (E250).
• Compaq Proliant 5500.

In terms of OS choice, the usual suspects are:

• Solaris.
• Red Hat Linux.
• OpenBSD.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 12

From a security standpoint, the hardware preference is the Sun E250 because it
incorporates a Remote Services Control (RSC) card that enables us to connect
to the system independently the OS. The RSC card is a lights out management
feature that enables a remote administrator to interact with the system as though
s/he were in front of the console and includes the ability to power the server on
and off. When combined with a console server that supports SSH, the RSC card
provides a secure means of managing the server. This feature could allow us to
address RMS #8 by eliminating the need to run a remote session service. In
addition, the E250 is a headless system, which would be accommodated in the
data centre more readily. This would make is easier for us to address RMS #12.

Although the capacity requirements of Honeyd are unknown at this stage, from a
performance standpoint, the hardware preference is the Compaq Proliant 5500
because it has quad Pentium III Xeon 500 MHz processors and 1GB of RAM,
making it the more powerful machine of the two. Having said that, a nice feature
of the Honeyd framework is that it can be run in a distributed fashion, which
would enable the load to be shared by more than one machine.

Taking security and performance into consideration, the E250 is the hardware
platform of choice. The RSC card gives it the edge over the Compaq in terms of
meeting security requirements and although not as powerful as the Compaq
machine, we do have more than one spare E250. Building and maintaining more
than one system requires more effort, but it also means that not all of our eggs
are in one basket.

Based on this hardware preference, we have to eliminate one of our OS options;
up until version 6.2, Red Hat would run on both SPARC and Intel hardware,
however, this is no longer the case. Since RH 6.2 is somewhat out of date, it will
not be considered for the Honeyd server.

Although there are many other Linux distributions that run on SPARC, there
would be a learning curve involved in using it. The lack of familiarity with the
product could lead to security issues being missed so it is felt that it is better to
stick with what we know.

At this point it is prudent to check that there are no hardware compatibility issues
with the two remaining OS candidates. We know that there are no issues with
running Solaris on the E250 and the OpenBSD web site6 confirms that there
should be no problems with running OpenBSD on the E250.

Some people might be tempted to select Solaris because it seems more fitting to
run Sun software on Sun hardware. However, Solaris takes a lot more work to
secure than OpenBSD because of the latter’s “Secure by default” configuration.
In addition, OpenBSD has some built-in features such as integrated crypto, W^X

6 http://www.openbsd.org/plat.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 13

and ProPolice, which would make it that much easier to implement the required
risk mitigation measures.

4.6 Reality Check

Before a decision is made about the OS, we need to determine whether the
Honeyd software will run on the candidate operating systems.

According to the Honeyd website, the software should run on Linux, *BSD and
Solaris. However, my attempts to build Honeyd on a Solaris system in the lab
failed because I could not get the software to compile. Searching the
SecurityFocus honeypot archives revealed that other people had also
experienced problems with Honeyd on Solaris, but unfortunately no one had
come up with a fix. Honeyd’s creator, Niels Provos, was very helpful in fixing
some of the issues that I had, but as he did not have access to a Solaris system
he was only able to go so far.

Based on this discovery, I decided to drop Solaris from the list of OS candidates
and thus arrived at a combination of OpenBSD on SPARC. This brings us to the
second reality check.

After purchasing the latest release of OpenBSD (3.5 at the time of writing), I
proceeded with installing it on the Sun E250. Everything seemed to go fine with
the installation, but the system consistently froze midway through the boot
sequence. The OpenBSD website and bugs mailing list had nothing to confirm
that this was a known issue so I sent in a bug report. Someone replied to me off
list and indicated that he had experienced a similar problem and was waiting for
a patch from the OpenBSD development team. In a later note he said that the
patch had not helped. Since I did not get a response from anyone in the
OpenBSD development team, I decided to switch to Plan B.

Plan B was to switch to the Compaq Proliant machine. Although is does not have
the equivalent of an RSC card, we can run OpenSSH for remote access and still
comply with the security requirements of the system (RMS #8 states that the
minimum number of services should be run and RMS #14 states that encrypted
sessions should be used if the need for remote sessions cannot be eliminated). It
was decided to stay with OpenBSD 3.5 because, ultimately, when the bugs are
ironed out of the current SPARC version, I plan to use the E250 as the hardware
platform.

4.7 Third Party Software Version Choice

Given the problems that had been experienced with Honeyd on Solaris, it was
thought prudent to check that it would run on OpenBSD.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 14

A nice feature of *BSD systems is the ports tree7, which makes it very easy to
install some third party software. Honeyd is included in the OpenBSD 3.5 ports
tree, but unfortunately it is version 0.7a, which contains a remote detection
vulnerability8. As this would contravene RMS #5 and is generally not a good idea
anyway, it was necessary to choose the latest version (0.8b at the time of
writing).

According to the Honeyd documentation in the ports tree, Honeyd is dependent
on libtool 1.3.5 and libdnet 1.7. After building both of these packages, I was able
to verify the build and operation of Honeyd 0.8b.

Although there is no dependency from a build point of view, Honeyd needs arpd9
to operate. The purpose of arpd is to listen to ARP requests and respond to the
ones that correspond to the IP addresses that we are simulating with Honeyd.
The ports tree contains arpd 0.1, which is dependent on autoconf 2.13, libdnet
1.7 and metaauto 0.1.

Although arpd does not contain any known vulnerabilities, the current version
(0.2 at the time of writing) has some new features, which include the ability to
specify multiple IP address / networks on the command line. As this is likely to
make things easier for us, it was decided that version 0.2 would be used. This
version has a dependency on a version of libevent that is more recent than the
one that is included in the OpenBSD 3.5 base install. At the time of writing,
libevent 0.8a is the most recent version and, therefore, the one that will be used
to build arpd 0.2.

4.8 Server Specification

Hardware

Compaq Proliant 5500:

• Quad Pentium III Xeon 500 MHz processors
• 1 GB RAM
• Smart Array 3200 Controller
• 4 x 9.1 GB Ultra2 SCSI 10K drives (logically configured

as one 26 GB RAID 5 drive).
• Intel 10/100 NIC

Operating System

OpenBSD 3.5 (i386)

7 http://www.openbsd.org/ports.html
8 http://www.securityfocus.com/bid/9464
9 http://www.honeyd.org/tools.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 15

(cont…)

Risk Mitigations Steps
directly addressed by
built-in OS features

• Sandboxing with systrace (RMS #6)
• Stack protection with W^X and ProPolice (RMS #7)
• IP-based access control with pf (RMS #9)
• Jailing with privilege separation (RMS #10)
• Encrypted sessions with OpenSSH (RMS #14)
• File system protection with immutable files and

securelevel (RMS #17)
• File integrity checking with mtree (RMS #18)

Third Party Software

Binary installed from OpenBSD 3.5 CDROM packages:

• bash 2.05b

Built from OpenBSD 3.5 ports tree:

• autoconf 2.13
• autoconf 2.52
• libdnet 1.7
• libtool 1.3.5
• metaauto 0.1
• ntp 4.1.1c

Built from source independently of ports tree:

• arpd 0.2
• honeyd 0.8b
• libevent 0.8a

Additional processes
running on the system

• arpd
• honeyd
• ntpd
• pflogd

Network services offered
by the host

• ssh (tcp port 22)

Note: Although network services will be simulated by Honeyd on

various udp and tcp ports, they are not considered as
network services offered by the host.

Authorized system users

During the pilot phase of this project only I will have access to
this system. Naturally, I will have normal user and root access.
Direct root login will only be allowed at the console however such
practice is reserved for emergency use only. For normal use I
will log in using my user account and use sudo to execute
commands that require root privilege.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 16

4.9 Design of the Filesystem Layout

The OpenBSD development team has gone to great lengths to ensure that
programs and files are kept in the correct place. Since the placement and
grouping of files is very logical, it makes the job of designing the filesystem layout
that much easier.

An important point to bear in mind is that the /bin and /sbin directories should
reside on the / partition so that the system is able to boot.

For security and maintenance purposes, the approach that will be taken here is
to create separate filesystems for /, /usr, /usr/ports, /usr/src, /usr/local, /home,
/var, and /tmp. As the disk is large, we can afford to be generous with the sizing
of the partitions.

Filesystem Size

(MB)
Partition Default

Mount
Option(s)

Final Mount
Option(s)

Comment

/usr

3072 d rw
async
local
nodev

rw
async
local
nodev

Contains files belonging to
the base operating system.

/usr/ports 3072 e rw
async
local
nodev
nosuid

rw
async
local
nodev
nosuid

Contains the ports tree. By
making it a separate
filesystem, the ports tree can
be quickly deleted by
creating a new file system
on /usr/ports. In the final
configuration the entire
directory tree will be made
immutable to prevent an
attacker from using it to build
programs.

/usr/src 3072 f rw
async
local
nodev
nosuid

rw
async
local
nodev
nosuid

Contains the system source.
By making it a separate
filesystem, the source tree
can be quickly deleted by
creating a new file system
on /usr/src. In the final
configuration the entire
directory tree will be made
immutable to prevent an
attacker from using it to build
programs.

/usr/local 1024 g rw
async
local
nodev

rw
async
local
nodev

Third party software or files
that are not part of the base
installation should be
installed here.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Server Specification and Risk
Mitigation Plan

 17

(cont…)

/home 512 h rw

async
local
nodev
nosuid

rw
async
local
nodev
noexec
nosuid

Contains files belonging to
users. Although this is not
intended to be a multi-user
system, it is good practice to
make it a separate
filesystem in order to
prevent the / filesystem from
filling up and causing a
system crash. In the final
configuration it will be
mounted noexec to restrict
malicious actions that could
result from a compromised
user account.

/var 12459 j rw
async
local
nodev
nosuid

rw
async
local
nodev
nosuid

Contains variable data such
as log files. It is good
practice to make it a
separate filesystem in order
to prevent the / filesystem
from filling up and causing a
system crash.

/tmp

512 i rw
async
local
nodev
nosuid

rw
async
local
nodev
nosuid

Contains temporary files.
Again it is good practice to
make it a separate
filesystem in order to
prevent the / filesystem from
filling up and causing a
system crash.

/ 256 a rw
async
local

rw
async
local

Contains everything else.

Swap 2048 b 2 x the size of physical
memory.

- END OF SECTION -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 18

5 Steps to Install and Harden the Server

5.1 Overview

Despite OpenBSD’s “secure by default” approach, there are still steps that can
be taken to improve the security posture of a system. In general, the measures
that are put in place will depend on:

1. The risks that need to be mitigated, i.e. implement the minimum or
baseline security posture based on the risk mitigation steps that were
derived from the risk analysis.

2. The effort that we are willing to expend to perform extra “best practice”
steps that take the security posture of the system beyond the baseline
requirement.

3. The tradeoffs that we are willing to accept in terms of security versus
convenience.

For the Honeyd server we will add a few high-value best practice steps that can
be implemented with relatively little effort in order to bolster the baseline security
posture. Although it would be possible to perform many best practice steps, it is
necessary to balance these measures against the necessity to streamline
maintenance processes so that the Honeyd server is effective in its role of
augmenting the incident response process, i.e. the system should not be
cumbersome to use or maintain.

The server installation and hardening steps address the following issues.

• Preparation. Gathering and reviewing of information required for the
installation of the operating system.

• OS installation. Installing OpenBSD in 5 easy steps.

• Afterboot. Miscellaneous system administration and security
enhancement tasks to perform after the OS installation.

• OS patches. Obtaining, applying and verifying operating system patches.

• Services and processes. Eliminating unnecessary services.

• Logging. Configuring syslogd to log to a remote server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 19

• Warning banners. Setting up warning messages that are displayed
before and after login.

• OpenSSH. Enhancing the default configuration of OpenSSH for encrypted
remote sessions.

• NTP. Installing and configuring NTP for synchronizing the system clock.

• pf. Enabling and configuring OpenBSD’s built-in packet filtering software
for IP-based access control.

• Honeyd. Installing, configuring, sandboxing and verifying the Honeyd
software.

• System Heartbeat. Configuring a heartbeat to test the operation of
alerting mechanisms.

• File integrity checker. Configuring mtree to check for changes to key
files.

• Filesystem access control. Setting the system immutable flag on
important files and setting the security level.

Approximate times are provided for performing tasks associated with each
phase. However, it is possible to reduce the overall time required by delaying
some tasks. For example, after applying some of the OS patches a kernel rebuild
is required. However, a kernel rebuild is also required to disable IPv6. By
eliminating the need to perform two kernel rebuilds, at least 30 minutes can be
saved on the overall time that it takes to install and harden the server.

The overall time taken to perform the install and hardening steps described in
this section was approximately 5 hours. It should be noted that this time is
somewhat dependent on the hardware.

5.2 Preparation

There are a couple of things to keep in mind when preparing to install an
operating system:

1. Normally, it is good practice to review the hardware components in the
system in case there are compatibility or driver issues. However, since
problems were identified during the design and specification stage (see

Objective: Gather and review information required for installation of the
operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 20

section 4.6, “Reality Check”) it is already known that the Compaq Proliant
5500 system works fine with OpenBSD 3.5 because it has been tested.

2. The server could be compromised before it is hardened. The HoneyNet
project has observed servers being compromised within minutes of being
connected to a network. Although these servers were honeypots, they do
have something in common with newly installed servers: they often use
the default operating system configuration. For this reason, it is good
practice to install the OS on an isolated network segment. Since some of
the risk mitigation steps for running the Honeyd server include setting up
separate architectural components, we can leverage the use of the packet
filtering device to provide us with an isolated network for our installation.
The installation environment can be configured to emulate the final
production environment in which the Honeyd server will be deployed so it
will not be necessary to make any last minute configuration changes such
as IP settings. The entire installation and hardening process will be
performed behind locked doors in the lab.

Preparation steps specific to the Compaq system include deleting the old system
configuration and using the Compaq SmartStart CD to reconfigure the system as
required. This included setting the time and date to the current UTC time and
disabling the ‘boot from floppy’ feature.

Finally, it is useful to have the network configuration information available to
speed up the installation process. The network configuration information for the
Honeyd server is shown in the following table.

Hostname matrix
IP Address 10.192.168.10
Netmask 255.255.255.0
Domain fake.world
DNS Server(s) 10.192.169.53

10.160.169.53
10.128.169.53

Default Gateway 10.192.168.1
Loghost 10.192.170.51

10.160.170.51
10.128.170.51

NTP Server(s) 10.192.171.123
10.160.171.123
10.128.171.123

SMTP Server 10.192.172.25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 21

5.3 OS Installation in 5 Easy Steps

The operating system will be installed from CD ROM. Not only is this more
convenient, it is slightly more secure than the network-based methods (FTP, NFS
and HTTP) since it eliminates the potential for a man in the middle attack. The
assumption being made here is that the software on the CD is trusted and has
not been the subject of a man in the middle attack of the physical kind.

Since installing OpenBSD is quick and easy, the few steps that are required are
shown here for completeness.

5.3.1 Step 1: Boot from the CD

The installation program prompts with the options available. Since this is a new
installation, the (I)nstall option is chosen.

erase ^?, werase ^W, kill ^U, intr ^C, status ^T
(I)nstall, (U)pgrade or (S)hell? I

Some preamble follows and the program prompts for answers to some basic set-
up questions. There is nothing security related here.

Welcome to the OpenBSD/i386 3.5 install program.

This program will help you install OpenBSD in a simple and rational
way. At any prompt except password prompts you can run a shell command
by typing ‘!foo’, or escape to a shell by typing ‘!’. Default answers
are shown in []’s and are selected by pressing RETURN. At any time you
can exit this program by pressing Control-C and then RETURN, but
quitting during an install can leave your system in an inconsistent
state.

Terminal type? [vt220] enter
Do you wish to select a keyboard encoding table? [no] enter

IS YOUR DATA BACKED UP? As with anything that modifies disk contents,
this program can cause SIGNIFICANT data loss.

It is often helpful to have the installation notes handy. For complex
disk configurations, relevant disk hardware manuals and a calculator
are useful.

Proceed with install? [no] yes

Objective: Install the minimal software components required to enable the
system to fulfill the role set out for the Honeyd server.

Time required: 15 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 22

Cool! Let’s get to it...

5.3.2 Step 2: Partition the Filesystem

After prompting for the disk that will be initialized, the installation program calls
disklabel in edit mode to enable the disk to be partitioned:

You will now initialize the disk(s) that OpenBSD will use. To enable
all available security features you should configure the disk(s) to
allow the creation of separate filesystems for /, /tmp, /var, /usr, and
/home.

Available disks are: sd0.
Which one is the root disk? (or ‘done’) [done] sd0
This platform requires that partition offsets/sizes be on cylinder
boundaries.
Partition offsets/sizes will be rounded to the nearest cylinder
automatically.

Since there is only one logical drive there are no special considerations to make
in terms of configuration. The filesystem layout was determined during the design
and specification phase, so it is a simple matter of using disklabel to set up the
disk partitions accordingly. In the interest of brevity, only the resulting partition
table is shown here.

16 partitions:
size offset fstype [fsize bsize cpg]
 a: 522208 32 4.2BSD 2048 16384 16 # /
 b: 4194240 522240 swap #
 c: 53309280 0 unused 0 0 #
 d: 6291360 4716480 4.2BSD 2048 16384 16 # /usr
 e: 6291360 11007840 4.2BSD 2048 16384 16 # /usr/ports
 f: 6291360 17299200 4.2BSD 2048 16384 16 # /usr/src
 g: 2097120 23590560 4.2BSD 2048 16384 16 # /usr/local
 h: 1052640 25687680 4.2BSD 2048 16384 16 # /home
 i: 1052640 26740320 4.2BSD 2048 16384 16 # /tmp
 j: 25516320 27792960 4.2BSD 2048 16384 16 # /var

Once the disk has been partitioned, the installation program prompts for
confirmation to proceed with the formatting of the partitions:

The next step creates a filesystem on each partition, ERASING existing
data.

Are you really sure that you’re ready to proceed? [no] yes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 23

5.3.3 Step 3: Configure Networking

Networking configuration is very straightforward; just respond to the prompts
from the installation program:

System hostname? (short form, e.g. ‘foo’) matrix
Configure the network? [yes] yes
Available interfaces are: fxp0.
Which one do you wish to initialize? (or ‘done’) [fxp0] enter
Symbolic (host) name for fxp0? [matrix] enter
The default media for fxp0 is
 media: Ethernet autoselect (10BaseT)
Do you want to change the default media? [no] enter
IP address for fxp0? (or ‘dhcp’) 10.192.168.10
Netmask? [255.255.255.0] 255.255.255.0
No more interfaces to initialize.
DNS domain name? (e.g. ‘bar.com’) [my.domain] fake.world
DNS nameserver? (IP address or ‘none’) [none] 10.192.169.53
Use the nameserver now? [yes] enter
Default route? (IP address, ‘dhcp’ or ‘none’) 10.192.168.1
add net default: gateway 10.192.168.1
Edit hosts with ed? [no] enter
Do you want to do any manual network configuration? [no] enter

At the end of the network configuration section the installation program will
prompt for the root password to be entered.

5.3.4 Step 4: Install the Base Software Set

The OpenBSD development team has worked hard to logically group the system
files and programs into installation sets. As shown in the following screen output
from the installation program, there are 12 installation sets.

You will now specify the location and names of the install sets you
want to load. You will be able to repeat this step until all of your
sets have been successfully loaded. If you are not sure what sets to
install, refer to the installation notes for details on the contents of
each.

Sets can be located on a (m)ounted filesystem; a (c)drom, (d)isk or
(t)ape device; or a (f)tp, (n)fs or (h)ttp server.
Where are the install sets? (or ‘done’) c
Available CD-ROMs are: cd0.
Which one contains the install media? (or ‘done’) [cd0] enter

Pathname to the sets? (or ‘done’) [3.5/i386] enter

The following sets are available. Enter a filename, ‘all’ to select
all the sets, or ‘done’. You may de-select a set by prepending a ‘-‘
to its name.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 24

 [X] bsd
 [] bsd.rd
 [X] base35.tgz
 [X] etc35.tgz
 [X] misc35.tgz
 [X] comp35.tgz
 [X] man35.tgz
 [X] game35.tgz
 [] xbase35.tgz
 [] xshare35.tgz
 [] xfont35.tgz
 [] xserv35.tgz

The objective is to specify the smallest functional OS image. At a minimum, the
following sets must be installed in order for the system to function correctly:

• bsd. The BSD kernel.

• base35.tgz. The base set contains the core system functionality.

• etc35.tgz. This set contains the system configuration files.

The comp35.tgz file contains C, C++ and F77 compilers. Normally, it would not
be good practice to install such software on this type of server because it could
be of use to an attacker who manages to gain access to the system. From a
convenience point of view, omitting this set would make installing third party
software more difficult, but not impossible. If this was the only consideration, we
would choose security over convenience and not install this software set.

Unfortunately, the compiler software is required for patching the system because
OpenBSD patches are not distributed in binary format. They are supplied as diff
files that must be applied to the OpenBSD source code, which must then be
compiled. Given that security is the priority, we need to install the compiler
software in order to allow us to be able to apply patches that fix security issues.

A further wrinkle in the issue of installing the compiler software is that it is not
installed as a package (i.e. with the pkg_add command) which means there is no
supported way of uninstalling it after we have finished using it.

The bottom line is that the compiler software will have to be installed. However,
the risk of it being used against us will be mitigated by the other layers of our
defense-in-depth approach.

The man35.tgz file contains the manual pages and other online information. The
OpenBSD documentation recommends that this set is installed. In practice, it has
been found that the files from this set need to be present in order for the patching
process to work cleanly. Although the installation of this set can be construed as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 25

being a convenience, it is not to the detriment of the security of this system
because all of the OpenBSD manual pages are available from the OpenBSD
web site10.

The X Window system (x*35.tgz) will not be installed on this system as it could
introduce security issues. The games (game35.tgz) set is not required and will
also be omitted.

Continuing with the installation, we specify that only the bsd35.tgz,
base35.tgz, etc35.tgz, comp35.tgz and man35.tgz sets are installed. When
we are done, the system proceeds with the installation of these sets:

 [X] bsd
 [] bsd.rd
 [X] base35.tgz
 [X] etc35.tgz
 [] misc35.tgz
 [X] comp35.tgz
 [X] man35.tgz
 [] game35.tgz
 [] xbase35.tgz
 [] xshare35.tgz
 [] xfont35.tgz
 [] xserv35.tgz

File name? (or ‘done’) [bsd.rd] done
Ready to install sets? [yes] yes
Getting bsd ...
100% |**| 4956 KB
00:04
Getting base35.tgz ...
100% |**| 30270 KB
01:15
Getting etc35.tgz ...
100% |**| 1603 KB
00:06
Getting comp35.tgz ...
100% |**| 17358 KB
00:48
Getting man35.tgz ...
100% |**| 6516 KB
00:25

5.3.5 Step 5: Post installation

Once the software sets have been installed, the installation program prompts for
some final configuration information.

10 http://www.openbsd.org/cgi-bin/man.cgi

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 26

The choice of time zone is important in our environment because the network
spans the globe. All of the systems that are connected to the network have their
system clocks set to UTC (zero offset from GMT) in order to make it easier to
correlate log entries in the event of a security incident.

Do you wish sshd(8) to be started by default? [yes] enter
Do you expect to run the X Window System? [yes] no
Saving configuration files...done.
Generating initial host.random file...done.
What timezone are you in? (‘?’ for list) [Canada/Mountain] GMT
Setting local timezone to ‘GMT’...done.
Making all device nodes...done.
Installing boot block...
Boot: /mnt/boot
proto: /usr/mdec/biosboot
device: /dev/rsd0c
/usr/mdec/biosboot: entry point 0
proto bootblock size 512
/mnt/boot is 3 blocks x 16384 bytes
fs block shift 2: part offset 32; inode block 24, offset 11688
using MBR partition 3: type 166 (0xa6) offset 32 (0x20)
done.

When the boot block has been installed, the following text will be displayed. Type
halt to reboot the system and then remove the CD.

CONGRATULATIONS! Your OpenBSD install has been successfully completed!
To boot the new system, enter halt at the command prompt. Once the
system has halted, reset the machine and boot from the disk.
halt

5.4 Afterboot

If we had installed the man pages on the Honeyd server, typing man
afterboot11 would display a manual page describing some best practice tasks
that the system administrator should perform after the first system boot. There
are approximately 30 tasks in the afterboot ‘to do’ list, which can be roughly
divided into:

• System admin tasks.

11 http://www.openbsd.org/cgi-bin/man.cgi?query=afterboot

Objective: Perform miscellaneous system administration and best practice
security enhancement tasks.

Time required: 15 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 27

• System checks.
• Security enhancements.

Not all of the tasks are applicable to the Honeyd server and some of the security-
related tasks will be covered later in our own hardening steps. However, there
are some tasks that should be performed now. These include:

• Creating a user account and specifying group membership.
• Setting up the /etc/sudoers file.
• Adding DNS server entries to the /etc/resolv.conf file.
• Editing the /etc/mail/localhost.cf file to enable the system to send

messages using SMTP.
• Installing the bash package.

It should be noted that adding the bash package is not a task described in the
OpenBSD afterboot manual page. However, it is convenient to install it at this
point.

5.4.1 Modify the dot files in /etc/skel

The dot files are the default .login, .profile, .cshrc, .mailrc and .rhosts
files that are copied to a user’s home directory when a new user account is
created. These files are located in the /etc/skel directory and are used to set
up the user’s shell environment.

One of the shell parameters is the PATH variable which is used to specify the
directories that will be searched by the shell when the user attempts to execute a
command. There is a problem with the standard .profile and .cshrc files
because the PATH variable includes a ‘.’ which means that the shell will search
the current working directory for a command. This could make the user
vulnerable to trojan horse programs if the system is compromised by an attacker.
This could be really serious if the user is able to run commands as root using
sudo because the user’s PATH is searched and not the PATH in root’s .profile
or .cshrc file.

In the .profile file the dot at the end of the PATH variable declaration needs to
be removed:

PATH=$HOME/bin:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/
sbin:/usr/games:.

In the .cshrc file the dot at the end of the set path directive needs to be
removed:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 28

set path = (~/bin /bin /sbin /usr/{bin,sbin,local/bin,local/sbin,games}
.)

In addition, the .rhosts file can be removed because the Honeyd server will not
be using the rsh, rcp or rlogin protocols.

Since this step is performed before any new user accounts are created it will not
be necessary to modify .profile or .cshrc files elsewhere on the system. Note
that the dot files in root’s home directory (/root) are different to those in
/etc/skel.

5.4.2 Install the bash Package

The bash package, which is installed purely for convenience, is available from
CD #1. The following session transcript shows how to install it.

matrix# cd /
matrix# mkdir /cdrom
matrix# mount /dev/cd0a /cdrom
matrix# cd /cdrom/3.5/packages/i386
matrix# ls bash*
bash-2.05b-static.tgz
matrix# pkg_add bash*
Adding bash-2.05b-static.tgz

+---------------
| For proper use of bash-2.05b-static you should notify the system
| that /usr/local/bin/bash is a valid shell by adding it to the
| the file /etc/shells. If you are unfamiliar with this file
| consult the shells(5) manual page
+---------------

matrix#

Despite the fact that the message directs us to manually add bash to the
/etc/shells file, this can be left for the moment because it will be taken care of
in the next task.

5.4.3 Create a User Account

A user account can be created using the adduser command. This is an
interactive program that walks the administrator through the creation of a user
account. The first time that adduser runs it prompts for default options to be
configured.

OpenBSD 3.5 accepts passwords of up to 128 characters in length. Although
somewhat extreme (unless you are the world memory champion and a very fast
typist), this is a welcome change from some of the commercial versions of UNIX

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 29

that still limit the maximum number of characters to 8. In addition, OpenBSD
offers the Blowfish algorithm which provides far stronger password encryption
that DES, which is still used by most other UNIX systems. Although not listed as
a risk mitigation step, the combination of Blowfish and longer passwords will be
used in order to make it difficult for an individual to succeed with a password
attack.

The following session transcript shows the use of adduser:

bash-2.05b# adduser
Couldn’t find /etc/adduser.conf: creating a new adduser configuration
file
Reading /etc/shells
Found shell: /usr/local/bin/bash. Add to /etc/shells? (y/n) [y]: enter
Enter your default shell: bash csh ksh nologin sh [sh]: bash
Your default shell is: bash -> /usr/local/bin/bash
Reading /etc/login.conf
Default login class: auth-defaults auth-ftp-defaults daemon default
staff
[default]: enter
Enter your default HOME partition: [/home]: enter
Copy dot files from: /etc/skel no [/etc/skel]: enter
Send message from file: /etc/adduser.message no [no]: enter
Do not send message
Prompt for passwords by default (y/n) [y]: enter
Default encryption method for passwords: auto blowfish des md5 old
[auto]: blowfish
Use option ``-silent’’ if you don’t want to see all warnings and
questions.

Reading /etc/shells
Reading /etc/login.conf
Check /etc/master.passwd
Check /etc/group

Ok, let’s go.
Don’t worry about mistakes. I will give you the chance later to correct
any input.
Enter username []:smith
Enter full name []: Agent Smith
Enter shell bash csh ksh nologin sh [bash]: enter
Uid [1000]: enter
Login group smith [smith]: enter
Login group is ``smith’’. Invite smith into other groups: guest no
[no]: wheel
Login class auth-defaults auth-ftp-defaults daemon default staff
[default]: enter
Enter password []:
Enter password again []:

Name: smith
Password: ****
Fullname: Agent Smith
Uid: 1000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 30

Gid: 1000 (smith)
Groups: smith wheel
Login Class: default
HOME: /home/smith
Shell: /usr/local/bin/bash
OK? (y/n) [y]: enter
Added user ``smith’’
Copy files from /etc/skel to /home/smith
Add another user? (y/n) [y]: n
Goodbye!

Note that my user ID was added to the wheel group in order to enable me to use
sudo and su to root when necessary.

5.4.4 Edit the /etc/sudoers File

The final step in setting up the user environment involves editing the
/etc/sudoers file to enable members of the wheel group to use sudo to run
commands that require root privilege. sudo is configured to log all commands
that it executes, thus providing an audit trail of actions taken on the system. Of
course this relies on system administrators being disciplined enough to use sudo
rather than su. The following line needs to be uncommented from the sudoers
file:

 %wheel ALL=(ALL) ALL

5.4.5 Edit the /etc/resolv.conf File

During the installation phase, a single DNS server was specified in the network
configuration section. It is good practice to have more than one DNS server to
call upon in case the primary server becomes unavailable. For this reason, the
/etc/resolv.conf file needs to be edited. Once edited the file looks like this:

search fake.world.
nameserver 10.192.169.53
nameserver 10.160.169.53
nameserver 10.128.169.53
lookup file bind

5.4.6 Re-create the /etc/mail/localhost.cf File

Sendmail reads its configuration from the /etc/mail/localhost.cf file. Within
this file the DS parameter is used to specify a smart host to which all messages
are sent. It is possible to directly edit this file, but the problem with this approach
is that if the localhost.cf file is recreated from the original openbsd-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 31

localhost.mc macro file in /usr/share/sendmail/cf, this change will be lost.
Therefore, the better approach is to add the following line to the bottom of the
macro file:

define(`SMART_HOST',`mailhub.fake.world')

Once the macro file has been modified, the following steps need to be performed
to create the new sendmail configuration file and move it to the appropriate
directory:

 cd /usr/share/sendmail/cf
 sudo make openbsd-localhost.cf
 sudo mv openbsd-localhost.cf /etc/mail/localhost.cf

The DS parameter in the resulting localhost.cf file will look like this:

"Smart" relay host (may be null)
DSmailhub.fake.world

After the change has been made SIGHUP needs to be sent to sendmail in order
to force it to re-read its configuration:

sudo kill –HUP `ps ax | grep sendmail | grep –v grep | \
awk ‘{ print $1 }’`

5.5 OS patches

Since all of the base OS software has been installed, it is possible to proceed
with patching of the system.

As mentioned in a previous section, OpenBSD patches are not distributed as
binary files. Instead, they are distributed as diff files that can be applied to the
source tree under /usr/src.

5.5.1 Patching Choices

There are three choices for patching OpenBSD:

Objective: This step is performed to satisfy RMS #4 and is intended to
eliminate any known OS vulnerabilities that could potentially be exploited by
an attacker.

Time required: 15 minutes (not including a kernel rebuild).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 32

1. Stick with the latest release and apply the patches by hand.

2. Use the patch branch which has the most important patches applied.

3. Use the current source for all the latest features.

Options 2 & 3 use CVS (Concurrent Versions System) in conjunction with RSH or
SSH to obtain a source tree from one of the OpenBSD development team’s CVS
repositories. The source tree is then used to rebuild the system. Neither of these
options are suitable for our environment because SSH access to the Internet is
not currently available for systems connected to the organization’s intranet or
DMZ segments.

By default, our only option is to use the source tree supplied as a tarball on CD
#3 and apply the patches by hand. The current list of patches can be found on
the errata page12 at the OpenBSD web site, along with a link to download a tar.gz
file containing all the patches.

The steps to install the source tree are shown below:

sudo mount /dev/cd0a /cdrom
cd /usr/src
sudo tar xzf /cdrom/src.tar.gz

5.5.2 Apply Patches

Although an example of applying a patch13 appears on the OpenBSD site, it is
probably worth saying that the actual steps required will vary from patch to patch.
In order to install a patch correctly, the associated instructions should be
followed. The patches can be found at �����		

���
��������	
����������.
The following shows example instructions for applying a patch:

Apply by doing:
 cd /usr/src
 patch –p0 < 009_kerberos.patch

Rebuild and install the Kerberos 5 library:
 cd lib/libkrb5
 make obj
 make depend
 make
 make install

And then rebuild and install the Kerberos 5 KDC:
 cd ../../kerberosV/libexec/kdc

12 http://www.openbsd.org/errata.html
13 http://www.openbsd.org/faq/faq10.html#Patches

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 33

 make obj
 make depend
 make
 make install

In some instances a rebuild of the kernel and a system reboot are required after
a patch has been applied to the source. The steps required to rebuild the default
kernel and reboot the system with the new kernel are shown below.

 cd /usr/src/sys/arch/i386/conf
 sudo /usr/sbin/config GENERIC
 cd /usr/src/sys/arch/i386/compile/GENERIC
 sudo make clean
 sudo make depend
 sudo make
 sudo cp /bsd /bsd.old
 sudo cp bsd /bsd
 sudo reboot

Note that all patching and rebuild tasks need to be executed with root privilege.

At the time of writing there are 12 patches for OpenBSD 3.5, however only 11 of
these need to be applied to the Honeyd server because the X Windows software
has not been installed. Even with this relatively small number, patching by hand
could become tedious when all patches are applied together. Fortunately, several
patches require a kernel rebuild so all the patches can be applied to the source
tree before the rebuild takes place. In addition, there are 3 CVS related patches
that can be applied to the source tree before performing the rebuild steps. Once
the system is up-to-date, only incremental additions are required as new patches
are released.

5.5.3 Patch Verification

Unlike other operating systems (e.g. Solaris with showrev –p), OpenBSD does
not make it easy to determine which patches have been applied to the OS. For
this reason, well defined maintenance procedures are needed to keep track of
the patches that have been applied.

When faced with a system where no patching records have been kept, the
source tree can be searched for the *.orig files that were created by the patch
utility to backup the original source code files before the patch was applied. The
following extract shows the result of a search on the Honeyd server immediately
after all of the latest patches have been applied:

-bash-2.05b$ cd /usr/src
-bash-2.05b$ find . –name *.orig –print
./gnu/usr.bin/cvs/lib/xsize.h.orig ���� 3 CVS patches
.
.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 34

./kerberosV/src/kdc/config.c.orig ���� 1 Kerberos patch

.

.

./sbin/isakmpd/ike_phase_1.c.orig ���� 1 isakmpd patch

.

.

./sys/dev/ic/gdt_common.c.orig ���� 1 gtd patch

.

.

./sys/miscfs/fifofs/fifo_vnops.c.orig ���� 1 FIFO patch

./sys/miscfs/procfs/procfs_cmdline.c.orig ���� 1 procfs patch

.

.

./sys/netinet/tcp_input.c.orig ���� 1 TCP patch

./sys/scsi/scsi_base.c.orig ���� 1 SCSI patch

.

.

./usr.sbin/httpd/src/include/http_core.h.orig ���� 1 httpd patch

.

.
 Total Patches: 11

Based on the above result it would appear that 11 patches have been applied to
various parts of the source tree.

It should be noted that on some systems it may not be possible to tell if the
source tree has been on the system since it was originally built or whether it has
been recently created to enable the latest patches to be applied. Some site
policies may not allow the source tree to be present on a production system, so it
has to be temporarily added for each round of patch additions.

Patch verification is performed at this stage of the proceedings because the
source tree will be removed from the system at a later stage as a best practice
hardening step.

5.6 Services and Processes

5.6.1 Identify default services

Objective: Eliminating any unnecessary services is performed to satisfy RMS
#8 and is intended to protect the system from vulnerabilities that have not yet
been discovered.

Time required: 45 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 35

The network services that are running by default can be determined by using the
netstat –an command:

-bash-2.05b$ netstat –an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
tcp 0 44 10.192.168.10.22 10.192.250.64.1852
ESTABLISHED
tcp 0 0 127.0.0.1.587 *.*
LISTEN
tcp 0 0 127.0.0.1.25 *.*
LISTEN
tcp 0 0 *.22 *.*
LISTEN
tcp 0 0 *.37 *.*
LISTEN
tcp 0 0 *.13 *.*
LISTEN
tcp 0 0 *.113 *.*
LISTEN
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
udp 0 0 127.0.0.1.512 *.*
udp 0 0 *.514 *.*
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
tcp6 0 0 ::1.587 *.*
LISTEN
tcp6 0 0 ::1.25 *.*
LISTEN
tcp6 0 0 *.22 *.*
LISTEN
tcp6 0 0 *.37 *.*
LISTEN
tcp6 0 0 *.13 *.*
LISTEN
tcp6 0 0 *.113 *.*
LISTEN
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
udp6 0 0 ::1.512 *.*

However, this is not that useful because it does not show any relationship
between listening services and running processes. In order to get this
information, the fstat command needs to be run as shown in the following
session transcript:

matrix# fstat | grep internet
root sendmail 30220 3* internet stream tcp 0xd0917b40
127.0.0.1:25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 36

root sendmail 30220 5* internet6 stream tcp 0xd0917ca8
[::1]:25
root sendmail 30220 6* internet stream tcp 0xd0917e10
127.0.0.1:587
root sendmail 30220 7* internet6 stream tcp 0xd0926004
[::1]:587
root sshd 32513 4* internet6 stream tcp 0xd0917870 *:22
root sshd 32513 5* internet stream tcp 0xd09179d8 *:22
root inetd 20931 4* internet stream tcp 0xd0917000 *:113
root inetd 20931 5* internet6 stream tcp 0xd0917168 *:113
root inetd 20931 6* internet dgram udp 127.0.0.1:512
root inetd 20931 7* internet6 dgram udp [::1]:512
root inetd 20931 8* internet stream tcp 0xd09172d0 *:13
root inetd 20931 9* internet6 stream tcp 0xd0917438 *:13
root inetd 20931 10* internet stream tcp 0xd09175a0 *:37
root inetd 20931 11* internet6 stream tcp 0xd0917708 *:37
_syslogd syslogd 29003 5* internet dgram udp *:514
matrix#

The output from netstat and fstat shows that the following services are listening
on network sockets:

• tcp 587. OpenBSD 3.5 runs Sendmail 8.12.11 which implements a
Message Submission agent as described in RFC 247614. This service is
bound to the loopback interface so it will not accept connections from
other systems. This service is required by the Honeyd server so that
messages and alerts can be sent to the appropriate parties.

• tcp 25. This is the SMTP service offered by Sendmail. This service is also
bound to the loopback interface so it will not accept connections from
other systems. This service is required by the Honeyd server so that
messages and alerts can be sent to the appropriate parties.

• tcp 22. This is the SSH service offered by OpenSSH and is required for
remote encrypted sessions (RMS #14).

• tcp 37, tcp 13 & tcp 113. These services were originally designed for
network diagnostics and testing back in the days when the Internet was a
friendlier place. Today, they are of very little use and could be used by an
attacker to disrupt network services. Since these services are not required
they will be eliminated in order to satisfy RMS #8.

• udp 512. This is the comsat service which will notify users that mail has
arrived for them if they have biff enabled. Although the service is bound to
the loopback interface, it is not required and will be disabled.

14 http://www.faqs.org/rfcs/rfc2476.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 37

• udp 514. This port is used by syslogd to enable it to send log messages to
another log server, which is the case because we need to satisfy RMS
#20. Unless syslogd is started with the –u flag, it does not accept
messages from udp port 514. Checking the /etc/rc and /etc/rc.conf
files reveals that syslogd is not started with the –u flag. (As an aside,
checking the process list with ps ax is not a reliable way to check for
options being used because a process is able to change its description in
the process list.)

To recap, only the SSH, SMTP, submission and syslog services should be
running. All the others need to be removed. In addition, the system appears to be
running IPv6 by default. Since this is not required it will also need to be removed.

5.6.2 Disable inetd

As can be seen from the following command output, all of the services that need
to be eliminated are run in conjunction with the inetd server:

-bash-2.05b$ grep –v “^#” /etc/inetd.conf
ident stream tcp nowait _identd /usr/libexec/identd
identd –el
ident stream tcp6 nowait _identd /usr/libexec/identd
identd –el
127.0.0.1:comsat dgram udp wait root /usr/libexec/comsat
comsat
[::1]:comsat dgram udp6 wait root /usr/libexec/comsat
comsat
daytime stream tcp nowait root internal
daytime stream tcp6 nowait root internal
time stream tcp nowait root internal
time stream tcp6 nowait root internal

Since none of the services that we wish to keep run out of inetd, the best
approach to eliminating the unnecessary services is to delete the
/etc/inetd.conf file and disable the inetd daemon. This can be achieved in
four steps:

1. Kill the inetd daemon:

sudo kill `ps ax | grep inetd | grep –v grep \
| awk ‘{ print $1 }’`

2. Delete the /etc/inetd.conf file.

3. Edit the /etc/rc.conf file to prevent inetd starting at boot time by making
the following change.

#inetd=YES

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 38

inetd=NO.

4. Edit the /etc/mtree/special file and remove the following entry:

inetd.conf type=file mode=0644 uname=root gname=wheel

This will prevent the /etc/security script from complaining about the file
being absent.

Since the inetd daemon has been killed, the unwanted services will no longer be
running.

5.6.3 Disable IPv6

IPv6 is not required by the Honeyd server so it will be disabled. In order to do this
it is necessary to rebuild the kernel without the INET6 option. To disable IPv6 in
the kernel, the following option needs to be commented out in the
/usr/src/sys/conf/GENERIC file:

option INET6 # Ipv6 (needs INET)

When the file has been modified, the kernel is rebuilt using the steps previously
identified above in section 5.5.2, “Applying Patches”. However, before rebooting
the server, some additional steps need to be performed.

A side effect of disabling IPv6 is that sendmail will not start because its
configuration file contains directives to enable it to run with IPv6. There are two
ways to correct this situation. Firstly, these directives can be commented out in
the /etc/mail/localhost.cf file as shown below:

SMTP daemon options

O DaemonPortOptions=Family=inet, address=127.0.0.1, Name=MTA
O DaemonPortOptions=Family=inet6, address=::1, Name=MTA6, M=O
O DaemonPortOptions=Family=inet, address=127.0.0.1, Port=587, Name=MSA,
M=E
O DaemonPortOptions=Family=inet6, address=::1, Port=587, Name=MSA6,
M=O, M=E

Again, the problem with this approach is that if the localhost.cf file is recreated
from the original openbsd-localhost.mc macro file in
/usr/share/sendmail/cf, these changes will be lost. Therefore, the better way
to correct the situation is to comment out the relevant configuration parameters in
the openbsd-localhost.mc macro file as follows:

DAEMON_OPTIONS(`Family=inet, address=127.0.0.1, Name=MTA')dnl
dnl DAEMON_OPTIONS(`Family=inet6, address=::1, Name=MTA6, M=O')dnl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 39

DAEMON_OPTIONS(`Family=inet, address=127.0.0.1, Port=587, Name=MSA,
M=E')dnl
dnl DAEMON_OPTIONS(`Family=inet6, address=::1, Port=587, Name=MSA6,
M=O, M=E')dnl

Note that the “dnl” macro is required to make the m4 processor ignore a line (i.e.
treat it as a comment). Once the macro file has been edited the following steps
need to be performed to create the new sendmail configuration file and move it to
the appropriate directory:

 cd /usr/share/sendmail/cf
 sudo make openbsd-localhost.cf
 sudo mv openbsd-localhost.cf /etc/mail/localhost.cf

The /etc/hosts file needs to be edited to remove the following line, which relates
to IPv6:

::1 localhost.aircanada.ca. localhost

The system can now be rebooted.

5.6.4 Identify running processes

The processes that are running can be identified using the ps –ax command:

 PID TT STAT TIME COMMAND
 1 ?? Is 0:00.02 /sbin/init
30062 ?? Is 0:00.01 syslogd: [priv] (syslogd)
 9449 ?? I 0:00.03 syslogd –a /var/empty/dev/log
18437 ?? Is 0:00.24 /usr/sbin/sshd
27335 ?? Is 0:00.01 cron
18853 Is 0:00.03 sendmail: accepting connections (sendmail)
21072 C0 Is+ 0:00.01 /usr/libexec/getty Pc ttyC0
 981 C1 Is+ 0:00.01 /usr/libexec/getty Pc ttyC1
18080 C2 Is+ 0:00.01 /usr/libexec/getty Pc ttyC2
 3282 C3 Is+ 0:00.04 /usr/libexec/getty Pc ttyC3
10789 C5 Is+ 0:00.01 /usr/libexec/getty Pc ttyC5

This is not considered to be the list of default processes because inetd has
already been disabled. However, since inetd is the only process that we have
disabled, it can be seen that the default installation of OpenBSD 3.5 has very few
processes running compared with Solaris or some Linux distributions. A brief
description of each process is provided below:

• /sbin/init. init is the program that starts most of the daemons on the
system.

• syslogd. This is the logging service and has already been mentioned. As
of OpenBSD 3.4, syslogd was implemented as two processes. The child

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 40

process (PID 9449) runs with the privilege of a normal user and is
chrooted in order to limit the effect of a successful exploit. The parent
process (PID 30062) runs with root privilege and performs tasks on behalf
of the child.

• /usr/sbin/sshd. sshd provides encrypted remote sessions and has
already been discussed.

• cron. This daemon is used by the system to schedule tasks.

• sendmail. sendmail is the default SMTP messaging server. It may be
somewhat disconcerting to see the sendmail entry in the process list with
“accepting connections”. However, as discussed already, sendmail only
accepts connections from localhost.

• /usr/libexec/getty Pc ttyC[01235]. These five processes provide
five virtual consoles on the machine and are controlled by the
configuration in the /etc/ttys file. Note that there are no serial ports
enabled by default (a process controlling a serial port looks like
/usr/libexec/getty std.9600 tty00). In case you are wondering,
ttyC4 is reversed for use with the X Window system.

5.6.5 Disable virtual consoles

The majority of the above processes are required. However, there is no need to
have 5 virtual consoles on the system. The risk is that someone could forget to
log out of one of the console sessions, thereby leaving the system wide open to
unauthorized use. Although the Honeyd server will be located in a data centre,
where physical access is strictly controlled, only one virtual console is needed so
ttyC1, 2, 3 and 5 will be disabled. This is achieved by editing the /etc/ttys file as
follows (changes are shown in bold):

$OpenBSD: ttys,v 1.17 2002/06/09 06:15:14 todd Exp $

name getty type status
comments

console "/usr/libexec/getty Pc" vt220 off secure
ttyC0 "/usr/libexec/getty Pc" vt220 on secure
ttyC1 "/usr/libexec/getty Pc" vt220 off secure
ttyC2 "/usr/libexec/getty Pc" vt220 off secure
ttyC3 "/usr/libexec/getty Pc" vt220 off secure
ttyC4 "/usr/libexec/getty Pc" vt220 off secure
ttyC5 "/usr/libexec/getty Pc" vt220 off secure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 41

In order to bring the change into effect, send a SIGHUP to init to force the
/etc/ttys file to be re-read:

-bash-2.05b$ sudo kill -HUP 1

Note that the init process always has PID 1.

5.7 Logging

The standard /etc/syslog.conf file is well set up for logging messages to local
files on the system. However, when a system is compromised, one of the
activities that an attacker will perform is to cover tracks by trying to clean the log
files. In order to mitigate the risk of the losing valuable logging information, the
syslogd configuration file needs to be modified so that all messages are also sent
to one or more remote syslog severs.

5.7.1 Logging to a Remote Syslog Server

The /etc/syslog.conf file contains directives for sending messages to a
loghost, but these are commented out by default:

Uncomment to log to a central host named “loghost”. You need to run
syslogd with the –u option on the remote host if you are using this.
(This is also required to log info from things like routers and
ISDN-equipment). If you run –u, you are vulnerable to syslog bombing,
and should consider blocking external syslog packets
#*.notice;auth,authpriv,cron,ftp,kern,lpr,mail,user.none @loghost
#kern.debug,user.info,syslog.info @loghost
#auth.info,authpriv.debug,daemon.info @loghost

Although the above filters that have been defined for remote logging are
reasonably comprehensive, a better approach is to send all messages just in
case.

The configuration steps that are needed to set up remote logging are as follows:

1. Add the following lines to /etc/syslog.conf configuration file to send all
messages to three remote syslog servers:

. @loghost1
. @loghost2

Objective: Configure the system to send log messages to a remote syslog
server in order to satisfy RMS #20.

Time required: 5 minutes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 42

. @loghost3

2. Add the following entries to the /etc/hosts file:

10.192.170.51 loghost1
10.160.170.51 loghost2
10.128.170.51 loghost3

3. Send SIGHUP to the syslogd daemon to force it to re-read its
configuration file:

sudo kill –HUP `cat /var/run/syslog.pid`

At this point it is prudent to check that log messages are being received at each
syslog server.

5.8 Warning Banners

Access to the Honeyd server is achieved using either a console session at the
machine or a remote session using SSH. In both cases, we need to be able to
display a short warning message to potential users and abusers of the system.

Ideally, the warning banner should be displayed before an authorization attempt
is made, but this is not always possible. In the case of SSH, this is relatively easy
to do, but not all SSH clients support this capability. This is the reason for also
displaying a banner after login.

5.8.1 Prior Warnings

In order to display a warning banner on the console screen, the following line
needs to be modified in the /etc/gettytab file:

default:\
 :np:im=\r\n%s/%m (%h) (%t)\r\n\r\n:sp#1200:

should be changed to:

default:\
 :np:im=\r\n%s/%m (%h) (%t)\r\n\r\n\
For authorized uses only. The activities on this system are\r\n\
monitored. Evidence of unauthorized activities may be disclosed\r\n\
to the appropriate authorities.\r\n\r\n\

Objective: Follow best practice by implementing messages that provide
warnings about the consequences of unauthorized use of the system.

Time required: 10 minutes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 43

:sp#1200:

While the /etc/gettytab file is being edited, it is a good opportunity to make a
modification that will cause the console screen to be cleared when a user logs
out. In order to do this, modify the following line:

P|Pc|Pc console:\
 :np:sp#9600:

so that it becomes:

P|Pc|Pc console:\
 :np:sp#9600:\
 :cl=\E[H\E[2J:

These changes take effect immediately and will first be noticed the next time that
a user logs out of the console.

The configuration changes required to display a warning banner before logging in
with SSH is covered in the section entitled “OpenSSH”.

5.8.2 Subsequent Warnings

Displaying a warning message after a user has gained access to the system is
easy. Firstly, the following code needs to be commented out of the /etc/rc file
to prevent the system from displaying the OpenBSD version information that is
part of the standard message of the day:

patch /etc/motd
if [! -f /etc/motd]; then
install -c -o root -g wheel -m 664 /dev/null /etc/motd
fi
T=`mktemp /tmp/_motd.XXXXXXXXXX`
if [$? -eq 0]; then
sysctl -n kern.version | sed 1q > $T
echo "" >> $T
sed '1,/^$/d' < /etc/motd >> $T
cmp -s $T /etc/motd || cp $T /etc/motd
rm -f $T
fi

Secondly, the contents of the /etc/motd file need to be replaced with an
appropriate warning banner. In our case the following warning text is used:

For authorized uses only. The activities on this system are
monitored. Evidence of unauthorized activities may be disclosed
to the appropriate authorities.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 44

Although not required as part of the risk mitigation steps for the Honeyd server,
the above steps are considered to be best practice.

5.9 OpenSSH

Since the use of the Compaq Proliant 5500 does not enable us to eliminate the
need for a remote session service, RMS #14 requires encryption to be used for
remote sessions. Although OpenBSD 3.5 ships with the latest version of
OpenSSH (3.8.1 at the time of writing), a few configuration changes are
necessary to improve security.

5.9.1 Configuration Changes

There are a number of best practices that can be applied to the default
configuration of sshd, which is controlled by the /etc/ssh/sshd_config file.

The convention used in the default sshd_config file is to comment out the
options that are using default values. The presence of all the configuration
parameters makes it very easy to see how sshd is configured and options that
have been changed can be easily identified because they are uncommented.

There are a number of changes that need to be made to the default
sshd_config file that ships with OpenBSD 3.5

1. Disable fallback to version 1. Since there are some known security
issues with SSH v1, it is best to prevent the server from falling back to
version 1 of the protocol. In order to do this the following change needs to
be made:

#Protocol 2,1
Protocol 2

2. Prevent root login. Allowing the superuser to log in directly using SSH is
not a good idea for two reasons. From a system administration
perspective we loose accountability since it may not be possible to tell
who actually logged into the system. From a security perspective it means
that if an unauthorized person obtained the root password they would be
able to remotely access the Honeyd server with superuser privileges. By
disabling this feature, an attacker in the possession of the root password
would need access to the account of a normal user and that user account

Objective: Ensure that the requirements of RMS #14 are met and make
changes necessary to improve the security of OpenSSH.

Time required: 5 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 45

would need to belong to the wheel group in order to su to root. To disable
this feature the following change is made:

#PermitRootLogin yes
PermitRootLogin no

3. Disable TCP port forwarding. OpenSSH allows local and remote
forwarding of TCP connections. This could be useful to an attacker who
has compromised the system as it could enable them to circumvent
firewall and other network access restrictions. To disable this feature the
following change is made:

#AllowTcpForwarding yes
AllowTcpForwarding no

4. Enable a banner. As mentioned in the section on warning banners, we
require a warning banner to be presented to a user before s/he logs into
the server. It should be noted that not all SSH clients support this feature,
which is why the warning banner is also displayed after a successful login.
To enable this feature the following change is made:

#Banner /some/path
Banner /etc/motd

The ssh daemon should be sent a SIGHUP to force it to re-read the
/etc/sshd_conf file in order to bring the above changes into effect.

5.10 NTP

Although this task is not required to directly satisfy any of the risk mitigation
steps, synchronizing the system clock with other systems on the network will help
to make correlating log events that much easier. This is important because log
messages will be sent to a remote log server in order to satisfy RMS #20.
Implementing NTP is considered to be a best practice activity.

5.10.1 Installation

The NTP software can be built from the ports tree. The make search command
can be used to determine which software is required:

Objective: Implement time synchronization using NTP as a best practice step
in order to help support the remote logging requirement of RMS #20.

Time required: 30 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 46

-bash-2.05b$ cd /usr/ports/
-bash-2.05b$ make search key=ntp | more
Port: ntp-4.1.1c
Path: net/ntp/stable
Info: network time protocol implementation
Maint: Dan Harnett <danh@openbsd.org>
Index: net
L-deps:
B-deps: :devel/autoconf/2.52 :devel/metaauto
R-deps:
Archs: any
.
.

Before proceeding it is a good idea to check that there are no known
vulnerabilities in the NTP software. Checking the vulnerabilities archive on the
SecurityFocus web site does not reveal any known vulnerabilities in version
4.1.1, so we can proceed with obtaining and building the software.

Since the Honeyd server does not have direct Internet access, it is necessary to
manually obtain the source code for the NTP software as well as any software
that NTP is dependent upon. The location of the NTP source code can be found
the /usr/ports/net/ntp/Makefile.inc file and the location of the autoconf
2.52 source code can be found in the
/usr/ports/devel/autoconf/2.52/Makfile file. Once these files have been
obtained, a directory called distfiles needs to be created under /usr/ports
and the NTP and autoconf tarballs need to be copied to the
/usr/ports/distfiles directory.

At this point the NTP software can be built and installed as follows:

cd /usr/ports/net/ntp/stable
sudo make install

5.10.2 Configuration

The next step is to create the /etc/ntp.conf file that will be read by the NTP
daemon:

synchronize from these NTP servers
server 10.192.171.123
server 10.160.171.123
server 10.128.171.123

define access restrictions
restrict default ignore
restrict 10.192.171.123 nomodify noquery
restrict 10.160.171.123 nomodify noquery

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 47

restrict 10.128.171.123 nomodify noquery
restrict 127.0.0.1

driftfile /var/ntp/ntp.drift

By synchronizing from more than one source we can mitigate against the risk of
an attacker trying to skew the system clock because the NTP daemon will throw
out bogus time information. The access restrictions prevent an attacker from
gleaning information (noquery) or modifying (nomodify) the running configuration
of NTP.

Lastly, the /var/ntp directory needs to be created for the ntp.drift file:

sudo mkdir –p /var/ntp

Normally the ntp.drift file resides in the /etc directory. However, the intention
is to set the system immutable flag on the /etc directory tree in order to prevent
unauthorized changes to the system configuration. The /var directory tree will
not have the immutable flag applied to it, so this is a logical place to locate the
ntp.drift file.

In order to start NTP, it is necessary to reboot the system. The reason for this is
that the tickadj program needs to be started before the kernel goes into secure
mode otherwise it will not be able to adjust the system clock backwards.

The OpenBSD developers intended to have the ntpd.pid file created in the
/var/run directory, but since there is a mistake in rc.local file, the ntpd.pid
file does not get created at all. To correct this error the following change needs to
be made:

if [X"${ntpd}" == X"YES" -a -x /usr/local/sbin/ntpd \
 -a -e /etc/ntp.conf]; then
 ntpd_flags="-p /var/run/ntpd.pid"
 if [$securelevel -ge 1]; then
 #ntpd_flags="${ntpdflags} -x"
 ntpd_flags="${ntpd_flags} -x"
 fi
 echo -n ' ntpd'; /usr/local/sbin/ntpd ${ntpd_flags}
fi

5.11 pf

Objective: Implement IP-based access in order to satisfy RMS #9.

Time required: 10 minutes (assumes that the policy and filtering rules have
already been created).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 48

pf is the packet filter that has shipped with OpenBSD since version 3.0. If offers
some very powerful and advanced features, but is relatively straightforward to
configure.

The purpose of running pf is to provide IP-based access control to services
running on the Honeyd server (RMS #9). On the surface it would appear that we
only need to provide IP-based access control to SSH since it is the only service
that is being offered by the Honeyd server. If this was the case, the TCP
Wrappers program would suffice for this requirement. However, we would like to
implement a more comprehensive access control policy in order to restrict
packets to and from the Honeyd server.

5.11.1 IP-based Access Control Policy

The IP-based access control policy relates to both inbound and outbound
packets.

For inbound packets to the server, the policy is:

• Allow connections from the management VLANs to the SSH service
running on the Honeyd server.

• Block all other attempts to send packets directly to the Honeyd server.
• Allow all packets to pass through to the IP addresses of virtual hosts

simulated by Honeyd.

For outbound packets from the server, the policy is:

• Allow outbound packets from the Honeyd server for ICMP echo-request,
SSH, SMTP, DNS, NTP and syslog.

• Block all other outbound packets from the Honeyd server.
• Allow all packets to pass through from the IP addresses of virtual hosts

simulated by Honeyd.

The above policy is very general with respect to the connectivity requirements of
the virtual hosts that will be simulated by Honeyd. It may need to be modified for
some Honeyd configurations.

In addition, a pf feature called state modulation will be used to prevent passive
fingerprinting of the Honeyd server. This can only be applied to TCP packets
because the technique is based on introducing randomness into TCP sequence
numbers in order to mask the normal TCP sequence number characteristics of
the operating system.

The following rules in the /etc/pf.conf file implement the policy described
above:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 49

$OpenBSD: pf.conf,v 1.27 2004/03/02 20:13:55 cedric Exp $

See pf.conf(5) and /usr/share/pf for syntax and examples.

create a macro for the interface so that the rules will still
apply even if the ip address of the host changes.
IF="fxp0"

create macros for management VLANs and specific hosts
MAN_VLAN="{ 10.192.250.0/24, 10.160.250.0/24, 10.128.250.0/24 }"
SMTP="{ 10.192.172.25 }"
DNS="{ 10.192.169.53, 10.160.169.53, 10.128.169.53 }"
NTP="{ 10.192.171.123, 10.160.171.123, 10.128.171.123 }"
SYSLOG="{ 10.192.170.51, 10.160.170.51, 10.128.170.51 }"

allow all traffic on the loopback interface
pass quick on lo0 all

#######################
Inbound connections #
#######################

only allow ssh connections to honeyd server from management
VLANs
pass in log quick proto tcp from $MAN_VLAN to $IF port = 22 flags S/SA
keep state

allow traffic from any address to any address except the
honeyd server's address to enable Honeyd to work.
pass in log quick from any to ! $IF keep state

default deny for inbound connections
block drop in log all

########################
Outbound connections #
########################

allow icmp echo requests to hosts on the same LAN
pass out log quick proto icmp from $IF to $IF:network icmp-type 8 code
0 keep state

Use the modulate state feature of pf to make it harder to use
passive fingerprinting against the honeyd host. However, this
should only be done for connections that originate from the
honeyd host and not for connections that originate from the
virtual hosts within honeyd.

allow all ssh connections from the honeyd host
pass out log quick proto tcp from $IF to any port = 22 flags S/SA
modulate state

allow all smtp connections from the honeyd host
pass out log quick proto tcp from $IF to $SMTP port = 25 flags S/SA
modulate state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 50

allow dns packets from the honeyd host to the specified dns servers
pass out quick proto udp from $IF to $DNS port = 53 keep state
pass out quick proto tcp from $IF to $DNS port = 53 modulate state

allow ntp packets from the honeyd host to the specified ntp servers
pass out quick proto udp from $IF to $NTP port = 123 keep state

allow syslog packets from the honeyd host to the specified
syslog server
pass out quick proto udp from $IF to $SYSLOG port = 514 keep state

deny all other connections that originate from the honeyd host
itself
block drop out log quick from $IF to any

explicitly allow all connections from the virtual hosts within
Honeyd
pass out log all keep state

##################
End of ruleset #
##################

5.11.2 Enable pf and pflogd

Once the /etc/pf.conf file has been created the following steps need to be
performed in order to enable pf and the logging daemon, pflogd.

1. The following command should be used to verify the syntax of the rules in
the /etc/pf.conf file whenever changes are made to it (this includes
when the file is initially created):

sudo pfctl –n –f /etc/pf.conf

2. Enable pf with the following command:

sudo pfctl –e –f /etc/pf.conf

If this task is performed remotely it will result in the SSH session to the
Honeyd server being dropped because pf did not see the initial packet
containing the SYN which would cause a match of the inbound SSH
connection rule. Since there is no entry in the state table for the SSH
session, all SSH packets are dropped.

3. If these steps are not being performed at the system console, re-establish
the SSH session and run the following command to bring up the pflog0
interface:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 51

sudo ifconfig pflog0 up

The reason for doing this is because pflogd makes the logging data
available on the pflog0 interface so that it can be examined in real time
with tcpdump.

4. Now start the pflogd daemon with the following command:

sudo pflogd

5. In order to make pf and pflogd start when the system boots, the pf
parameter needs to be set to “YES” in the /etc/rc.conf file as follows:

pf=YES # Packet filter / NAT

6. Reboot the server and check that pf is operating after the reboot.

5.12 Honeyd

As noted in the server specification section of this document, Honeyd depends
upon and works in conjunction with several other software components. In the
following description of the software installation process it is assumed that the
source code for all of these programs has been obtained from their respective
sources and has been transferred to the Honeyd server. This includes moving
the appropriate files to the distfiles directory in the ports tree:

cd /home/smith
sudo cp libtool-1.3.5.tar.gz libdnet-1.7.tar.gz \
autoconf-2.13.tar.gz /usr/ports/distfiles/

5.12.1 Installation

The following steps need to be performed in order to install the software
components.

1. Build and install libtool:

cd /usr/ports/devel/libtool

Objective: Install and configure Honeyd and sandbox it with systrace in order
to satisfy the requirements of RMS #6.

Time required: 90 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 52

sudo make install

2. Build and install libdnet:

cd /usr/ports/net/libdnet
sudo make install

3. Build and install autoconf 2.13:

cd /usr/ports/devel/autoconf/2.13
sudo make install

4. Build and install Honeyd:

cd /tmp
cp /home/smith/honeyd-0.8b.tar.gz .
tar xzf honeyd-0.8b.tar.gz
cd honeyd-0.8b
./configure
make
sudo make install
cp –R scripts/ /usr/local/share/honeyd/

5. Build and install libevent:

cd /tmp
cp /home/smith/libevent-0.8a.tar.gz .
tar xzf libevent-0.8a.tar.gz
cd /libevent-0.8a
./configure
make
sudo make install

6. Build and install arpd (note that it is necessary to specify the location of
the version of libevent that was installed in the previous step in order to
avoid running into problems with using the version of libevent that is
shipped with OpenBSD):

cd /tmp
cp /home/smith/arpd-0.2.tar.gz .
tar xzf arpd-0.8.tar.gz
cd arpd
./configure --with-libevent=/usr/local --with-libdnet=/usr/local
make
sudo make install

It should be noted that the above steps will install the basic software that will get
Honeyd up and running. When the details of a Honeyd deployment are finalized it
may be necessary to add custom scripts to Honeyd in order to meet the
requirements of a particular worm defense strategy. Although the details relating

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 53

to a particular Honey deployment are beyond the scope of this document, the
process required to make changes will be covered in section 6, “Ongoing
Maintenance Procedures”.

5.12.2 Start-up Scripts

When third party software is added to an OpenBSD system it is normal to modify
the /etc/rc.local and /etc/rc.conf.local files so that the appropriate
processes are started when the system boots up. For the Honeyd server, arpd
and honeyd processes need to be started at boot time.

The /etc/rc.conf.local file needs to be created and the following shell script
added to it:

#!/bin/sh -

rc.local.conf for matrix.fake.world

This is the safest way to do it because if the rc.local file does not
see the arpd variable it will not start arpd. Starting arpd without
specifying an IP address means that it will answer for all
unallocated IP addresses on the LAN. This is not desirable.
arpd=YES
honeyd=YES

specify the IP addresses here
arpd_flags="10.192.168.11" # change to correspond with virtual IPs
being simulated
honeyd_flags="10.192.168.11" # change to correspond with virtual IPs
being simulated

The following needs to be added to the /etc/rc.local file:

if [X"${arpd}" == X"YES" -a -x /usr/local/sbin/arpd]; then
 echo -n ' arpd'; /usr/local/sbin/arpd ${arpd_flags} \
 > /dev/null 2>&1
fi

if [X"${honeyd}" == X"YES" -a -x /usr/local/bin/honeyd \
 -a -e /etc/honeyd.conf]; then
 saved_flag="${honeyd_flags}"
 honeyd_flags="-f /etc/honeyd.conf"
 if [-e /usr/local/share/honeyd/nmap.prints]; then
 honeyd_flags="${honeyd_flags} \
 -p /usr/local/share/honeyd/nmap.prints"
 fi
 if [-e /usr/local/share/honeyd/xprobe2.conf]; then
 honeyd_flags="${honeyd_flags} \
 -x /usr/local/share/honeyd/xprobe2.conf"
 fi
 if [-e /usr/local/share/honeyd/nmap.assoc]; then
 honeyd_flags="${honeyd_flags} \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 54

 -a /usr/local/share/honeyd/nmap.assoc"
 fi
 if [-e /usr/local/share/honeyd/pf.os]; then
 honeyd_flags="${honeyd_flags} \
 -0 /usr/local/share/honeyd/pf.os"
 fi
 honeyd_flags="${honeyd_flags} ${saved_flag}"
 echo -n ' honeyd'; /usr/local/bin/honeyd ${honeyd_flags}\
 > /dev/null 2>&1
fi

5.12.3 Verification of Basic Honeyd Operation

In order to verify that Honeyd works correctly, it is necessary to create a very
basic configuration. The following configuration creates a single virtual host that
will be simulated by Honeyd:

Test configuration for Honeyd server
create router
set router personality "Cisco 3600 router running IOS 12.2(6c)"
set router default tcp action reset
set router default udp action reset
set router default icmp action open
add router tcp port 23 "/usr/local/share/honeyd/scripts/router-
telnet.pl"
bind 10.192.168.11 router

The following session transcript shows the commands needed to run arpd and
honeyd along with the resulting output.

-bash-2.05b$ sudo arpd 10.192.168.11
arpd[12395]: listening on fxp0: arp and (dst 10.192.168.11) and not
ether src 00:50:8b:0e:a1:2f
-bash-2.05b$ sudo honeyd -p /usr/local/share/honeyd/nmap.prints \
-f /etc/honeyd.conf -x / usr/local/share/honeyd/xprobe2.conf \
-a / usr/local/share/honeyd/nmap.assoc \
-0 / usr/local/share/honeyd/pf.os 10.192.168.11
Honeyd V0.8b Copyright (c) 2002-2004 Niels Provos
honeyd[24174]: started with -p /etc/nmap.prints -f /etc/honeyd.conf -x
/etc/xprobe2.prints -a /etc/nmap.assoc -0 / usr/local/share/honeyd/pf.os
10.192.168.11
Warning: Impossible SI range in Class fingerprint "IBM OS/400 V4R2M0"
Warning: Impossible SI range in Class fingerprint "Windows NT 4 SP3"
honeyd[24174]: listening promiscuously on fxp0: (arp or ip proto 47 or
(ip and (host 10.192.168.11))) and not ether src 00:50:8b:0e:a1:2f
Honeyd starting as background process

In order to verify its operation it is necessary to interact with the virtual host. The
following session transcript shows ping and TCP tests being performed from
another system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 55

-bash-2.05b$ ping -c 5 10.192.168.11
PING 10. 192.168.11 (10. 192.168.11): 56 data bytes
64 bytes from 10. 192.168.11: icmp_seq=1 ttl=64 time=1.224 ms
64 bytes from 10. 192.168.11: icmp_seq=2 ttl=64 time=0.380 ms
64 bytes from 10. 192.168.11: icmp_seq=3 ttl=64 time=0.386 ms
64 bytes from 10. 192.168.11: icmp_seq=4 ttl=64 time=0.380 ms
--- 10. 192.168.11 ping statistics ---
5 packets transmitted, 4 packets received, 20.0% packet loss
round-trip min/avg/max/std-dev = 0.380/0.592/1.224/0.365 ms
-bash-2.05b$ telnet 10.192.168.11
Trying 10.192.168.11...
Connected to 10.192.168.11.
Escape character is '^]'.

For authorized uses only. The activities on this system are
monitored. Evidence of unauthorized activities may be disclosed
to the appropriate authorities.

 User Access Verification

Username: admin
Password:
% Access denied

Username: admin
Password:
% Access denied

Username: cisco
Password:
% Access denied
Connection closed by foreign host.
-bash-2.05b$

Based on these tests, it appears that our simple Honeyd configuration is working
as expected.

5.12.4 Sandboxing Honeyd

In order to satisfy RMS #6, Honeyd needs to be run in a sandbox in order to
provide protection in the event that an attacker finds vulnerabilities in Honeyd
that could lead to the compromise of the Honeyd server.

The recommended options for sandboxing Honeyd are either to set up a chroot
jail or to use a tool called systrace15. systrace does not run on all operating
systems, but as the Honeyd server is running OpenBSD, the approach taken
here is to use systrace because it offers more control of Honeyd than a traditional
chroot jail would.

15 http://www.citi.umich.edu/u/provos/systrace/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 56

systrace is another creation of Niels Provos and was written as a policy
enforcement tool capable of monitoring, intercepting and restricting system calls.
systrace acts as a wrapper for a program and controls the environment in which
the program operates. Control is exercised in accord with the policy for the
program, so if the program tries to deviate from its normal behavior – for
example, if an attacker tries to exploit vulnerabilities – systrace should prevent it
from doing so.

In order for systrace to be able to enforce a policy for Honeyd, a policy needs to
be created. The easiest way to do this is to let systrace automatically generate it
by starting systrace with the –A flag set:

-bash-2.05b# systrace -A /usr/local/bin/honeyd \
 -f /etc/honeyd.conf \
 -p /usr/local/share/honeyd/nmap.prints \
 -a /usr/local/share/honeyd/nmap.assoc \
 -x /usr/local/share/honeyd/xprobe2.conf \
 -0 / usr/local/share/honeyd/pf.os \
 10.192.168.11
Honeyd V0.8b Copyright (c) 2002-2004 Niels Provos
honeyd[2179]: started with -f /etc/honeyd.conf -p
/usr/local/share/honeyd/nmap.prints -a
/usr/local/share/honeyd/nmap.assoc -x
/usr/local/share/honeyd/xprobe2.conf -0 / usr/local/share/honeyd/pf.os
10.192.168.11
Warning: Impossible SI range in Class fingerprint "IBM OS/400 V4R2M0"
Warning: Impossible SI range in Class fingerprint "Microsoft Windows NT
4.0 SP3"
honeyd[2179]: listening promiscuously on fxp0: (arp or ip proto 47 or
(ip and (host 10.192.168.11))) and not ether src 00:50:8b:0e:a1:2f
Honeyd starting as background process

Note that because systrace was started using the root account the resulting
policy file(s) will be located in the /root/.systrace directory.

From a security perspective it is very important that the Honeyd executable is
trusted because the resulting policy will be used to protect the system when
systrace is run in policy enforcement mode. That is, if we generate policy for a
trojaned executable, systrace may not be able to prevent the trojan code from
performing its intended purpose. Therefore, it is essential to review the policy
before putting it into production to ensure that there is no unexpected behavior.
Of course, this requires in-depth knowledge of the application and of system
calls.

From a functional perspective it is important to fully exercise the application
(Honeyd in this case) so that its full range of behavior is observed by systrace
and the corresponding policy can be generated. Again, it is important to review
the policy before putting into production so that any fine tuning can be performed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 57

For the purpose of this exercise, we’ll move forward with the simple Honeyd
configuration that was used for verification purposes. Since Honeyd is only
simulating one virtual system, it is fairly easy to exercise its full range of behavior:

1. Perform a ping test.

2. Connect and interact with the simulated telnet service.

3. Attempt a TCP connection to an unused port.

4. Send a UDP packet to an unused port.

Once these tests have been performed, the Honeyd process should be killed so
that it exits normally. Since systrace was run from the root account, the resulting
policy will be located in a file called usr_local_bin_honeyd the
/root/.systrace directory. In addition to the policy for Honeyd, there is a
separate policy for the router-telnet.pl script in a file called
usr_local_share_honeyd_scripts_router_telnet_pl. These policies are
included in Appendix A.

Review of these policies shows that Honeyd and the accompanying Perl script
use system calls in the expected manner. Of course the policy for Honeyd only
applies to the simple configuration that is being considered here. The full
production scenario is likely to be much more complicated and the appropriate
policy could take considerable time to refine. There are also likely to be several
other policy files corresponding to the service scripts needed by the various
virtual systems.

Now that the required systrace policy has been generated, the following steps
need to be performed (as root) to enforce the policy.

1. Move the policy files to the /etc/systrace directory:

cd /root/.systrace
mv usr_local_bin_honeyd /etc/systrace
mv usr_local_share_honeyd_scripts_router_telnet_pl /etc/systrace

2. Modify the start-up script in the /etc/rc.local file so that Honeyd is run
under systrace:

#echo -n ' honeyd'; /usr/local/bin/honeyd ${honeyd_flags} \
> /dev/null 2>&1
echo -n ' honeyd'; /bin/systrace -a \
 /usr/local/bin/honeyd ${honeyd_flags} \
 > /dev/null 2>&1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 58

Note that the router-telnet.pl script will automatically be run under
systrace because it is a child of the honeyd process.

3. Although it is possible to start Honeyd under systrace by launching it from
the command line, it is prudent to reboot the system in order to check that
the rc script works correctly. When the system has completed the boot up
sequence, the ps ax command can be used to verify that the systrace
and honeyd processes are running:

28701 ?? Is 0:00.04 systrace -a honeyd -f /etc/honeyd.conf
-p /usr/local/share/honeyd/nmap.prints -a /usr/local/share
27963 ?? Ixs 0:00.01 honeyd -f /etc/honeyd.conf -p
/usr/local/share/honeyd/nmap.prints -a
/usr/local/share/honeyd/nmap

This concludes the installation and configuration of the Honeyd software.

5.13 System Heartbeat

The purpose of the system heartbeat is to verify the operation of the mechanisms
that are used to send reports and alerts. The mechanisms that need to be tested
are:

1. SMTP mail.

2. Logging to a remote syslog server and the subsequent generation of an
alert from that server.

In both cases, the heartbeat will be sent every five minutes to the operations
group who provide 24x7x365 coverage.

5.13.1 Piggybacking System Checks

In order to check for the appearance of new services and processes on the
Honeyd server, we will piggyback output from the netstat and ps commands onto
the SMTP Heartbeat message.

The following command will be used to check for new UDP and TCP services:

 netstat -an | grep LISTEN

Objective: Implement a simple heartbeat mechanism to satisfy the
requirement of RMS #25.

Time required: 10 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 59

The following command will be used to check for the addition of new processes:

 ps ax

5.13.2 SMTP Heartbeat

The SMTP heartbeat is implemented by adding the following line to root’s
crontab file:

*/5 * * * * (netstat -an | perl -ple 'last if /Active UNIX domain
sockets/'; echo; ps ax) | mail -s " SMTP Heartbeat from `/bin/hostname`"
secops@fake.world

This cron job will run every five minutes.

On the receiving system at the operations console an alert will be generated if:

1. The resulting message has not arrived within one minute of the time that it
should have been sent.

2. There are any abnormalities in the output from netstat or ps.

It should be noted that the list of processes will vary because of scheduled jobs
running from cron and programs being spawned by Honeyd during the course of
its operation. The monitoring scripts on the operations console are designed to
take these variations into account. A typical heartbeat message would look like
this:

Subject: matrix.fake.world. SMTP Heartbeat
 Date: Wed, 21 Jul 2004 16:25:02 +0000 (GMT)
 From: Charlie Root <root@fake.world>
 To: secops@fake.world

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
ip 0 0 *.* *.* 255
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
tcp 0 0 127.0.0.1.587 *.*
LISTEN
tcp 0 0 127.0.0.1.25 *.*
LISTEN
tcp 0 0 *.22 *.*
LISTEN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 60

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
udp 0 0 *.* *.*
udp 0 0 *.* *.*
udp 0 0 10.192.168.10.123 *.*
udp 0 0 127.0.0.1.123 *.*
udp 0 0 *.123 *.*
udp 0 0 *.514 *.*

 PID TT STAT TIME COMMAND
 1 ?? Is 0:00.02 /sbin/init
26739 ?? Is 0:00.03 syslogd: [priv] (syslogd)
20742 ?? I 0:00.92 syslogd -a /var/empty/dev/log
 3045 ?? Is 0:00.01 pflogd: [priv] (pflogd)
32751 ?? I 0:11.08 pflogd: [running] -s 116 -f /var/log/pflog
(pflogd)
 8201 ?? Is 0:00.01 /usr/sbin/sshd
 7974 ?? Is 0:10.41 sendmail: accepting connections (sendmail)
30424 ?? Is 0:11.95 /usr/local/sbin/ntpd -p /var/run/ntpd.pid -x
15627 ?? Is 0:01.29 /usr/local/sbin/arpd 10.192.168.11
21488 ?? Is 0:00.02 /bin/systrace -a /usr/local/bin/honeyd -f
/etc/honeyd
28443 ?? Ixs 0:05.12 /usr/local/bin/honeyd -f /etc/honeyd.conf -p
/usr/loc
29269 ?? Is 0:01.50 cron
8802 ?? I 0:00.00 cron: running job (cron)
18516 ?? Is 0:00.01 /bin/sh -c /bin/sh
14991 ?? R 0:00.00 (hostname)
13978 ?? I 0:00.00 mail -s matrix.fake.world. SMTP Heartbeat
secops
18025 ?? I 0:00.00 /bin/sh -c /bin/sh
31978 ?? R 0:00.00 ps -ax
 1401 p0 Is 0:00.02 -bash (bash)
22093 p0 I 0:00.02 -csh (csh)
10407 p0 I+ 0:00.05 bash
10265 C0 Is+ 0:00.01 /usr/libexec/getty Pc ttyC0

5.13.3 Syslog Heartbeat

The syslog heartbeat is implemented by adding the following line to root’s
crontab file:

 */5 * * * * /usr/bin/logger -p user.notice \
 -t root syslog heartbeat

This cron job will run every five minutes and will result in the following log
message being sent to the remote syslog server:

 Jul 5 17:10:01 matrix root: syslog heartbeat

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 61

On the remote syslog server a program called swatch is running, which is
configured to send an alert to the operations group when it sees the “syslog
heartbeat” entry in the /var/log/messages file. If the resulting email alert
message does not arrive at the operations console within two minutes of the time
at which it should have been sent, an alert will be generated.

5.14 File Integrity Checker

OpenBSD ships with a directory hierarchy mapping tool called mtree16. In
mapping the structure of a directory tree, mtree produces a specification that
records key characteristics of files and directories that are found. By supplying
the appropriate command line switches, mtree can generate a message digest
for each file, which means that it has the basic functionality required for
performing file integrity checks.

In order to implement a file integrity checker with mtree the following issues need
to be addressed:

• Determining the files and directories that need to be checked.
• Generating the specification files.
• Storing the specification files.
• Checking for changes.

5.14.1 Mapping Files and Directories

The layout of the file system works to our advantage because mtree can be
prevented from descending beyond mount points using the ‘-x’ switch. Careful
selection of the root of the file hierarchy to be mapped will cause mtree to group
some directories together within a single mapping activity.

Before determining which directories need to be mapped, it is a good idea to
identify which directories will not be subject to file integrity checks:

• /var. This directory hierarchy contains variable data and would be difficult
to monitor in a meaningful fashion. The exception is the /var/cron/tabs

16 http://www.openbsd.org/cgi-bin/man.cgi?query=mtree

Objective: Implement a file integrity checker to detect changes to essential
system files and satisfy RMS #18.

Time required: 45 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 62

directory which contains the crontab files, including the one belonging to
root.

• /home. Although there will not be many normal user accounts on the
Honeyd server, directories below /home will be used by system
administrators to transfer files to and from the system.

• /usr/src. The mapping of the source tree would be time consuming and
would generate a large specification file. Since the source tree is only
required for applying patches it would be best to store it as a tarball on
another system and remove it from the Honeyd server.

• /usr/ports. Although not as large as the source tree, the ports tree
would also generate a large specification file. Since the ports trees is only
required when adding new software packages it would be best to store it
as a tarball on another system and remove it from the Honeyd server.

The specification files needed for checking the remaining files and directories of
interest can be generated with the following invocations of mtree:

1. Rooted at /. This will include files in /etc, /boot, /bin and /sbin as well
as the kernel itself (/bsd), but will not go beyond the /usr, /home, /var or
/tmp mount points. Mapping time is 5 seconds and the specification file
size is approximately 125 Kbytes.

2. Rooted at /dev. Although mtree will map the /dev tree when rooted at /,
problems will be experienced because the modification time, uid and gid
values will change as part of normal system operation. Therefore, a
separate mapping activity is necessary to collect only values of attributes
that remain static. Mapping time is 1 second and the specification file size
is approximately 70 Kbytes.

3. Rooted at /usr. This will include important binary files such as those in
/usr/bin, /usr/sbin and /usr/libexec, but will not go beyond the
/usr/src and /usr/ports or /usr/local mount points. Mapping time is
47 seconds and the specification file size is approximately 2.8 Mbytes.

4. Rooted at /usr/local. This will include binary files such as those in
/usr/local/bin, /usr/local/sbin and /usr/local/libexec.
Mapping time is 2 seconds and the specification file size is approximately
44 Kbytes.

5. Rooted at /var/cron/tabs. This directory contains the crontab files,
includes the one belonging to root. Mapping time is less than 1 second
and the specification file size is approximately 480 bytes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 63

By default, mtree records the following attributes of files and directories, where
applicable:

• gid. Group ownership of the file.

• mode. The file permissions.

• nlink. The number of hard links to the file.

• size. The size of the file.

• link. The file referenced by the symbolic link, if applicable.

• time. The modification time of the file.

• uid. The file owner.

When combined with message digests, it is felt that this information is sufficient
to be able to determine the type of change that could be made to a file or a
directory.

When mapping /dev, the gid, uid, mode and time attributes will not be collected
because they are subject to change as part of normal system operation.

In order to mitigate the risk of an attacker being able to modify a system file in a
way that would make the resulting message digest identical to that of the original
file, two message digests will be created for each file using the MD5 and SHA-1
algorithms. Although hash collision is possible with MD5, it will be used because
of the relatively low computational overhead. The SHA-1 algorithm produces a
longer message digest than MD5 and is generally thought to be less prone to
hash collision problems. In combination, the two digests strike a good balance
between security and computational burden.

5.14.2 Generation of Specification Files

Before any specification files are generated, the source and ports trees need to
be saved and removed from the system. This is a best practice step and aims to
protect the integrity of the source files that we have invested time in modifying.

1. Create tarball of /usr/src and transfer it to another system.

 cd /usr/src/
 tar czf /home/smith/matrix_src.tar.gz .
 cd /home/smith

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 64

 scp matrix_src.tar.gz backup@vault.fake.world:.
 rm matrix_src.tar.gz

2. Delete the source tree.

 cd /
 umount /usr/src
 newfs /dev/rsd0f
 mount /dev/sd0f /usr/src

3. Create tarball of /usr/ports and transfer it to another system.

 cd /usr
 tar czf /home/smith/matrix_ports.tar.gz ports
 cd /home/smith
 scp matrix_ports.tar.gz smith@vault.fake.world:.
 rm matrix_ports.tar.gz

4. Delete the ports tree.

 cd /
 umount /usr/ports
 newfs /dev/rsd0e
 mount /dev/sd0e /usr/ports

The commands used to generate the specification files are as follows:

mtree -cx -K md5digest,sha1digest -p / > /tmp/root.spec
mtree -cx -k nlink,size,link -K md5digest,sha1digest -p /dev >
/tmp/dev.spec
mtree -cx -K md5digest,sha1digest -p /usr > /tmp/usr.spec
mtree -cx -K md5digest,sha1digest -p /usr/local > /tmp/usr_local.spec
mtree -cx -K md5digest,sha1digest -p /var/cron/tabs > /tmp/crontab.spec

It should be noted that the specification file for the hierarchy rooted at /
(root.spec) will need to be modified so that certain attribute/value pairs are
excluded in order to prevent unnecessary alerts being generated:

1. The /dev directory and its entire contents can be ignored because it will
be mapped separately.

2. Setting a root of / will cause mtree to map /var, /tmp, /floppy, /mnt
and /cdrom mount points. Since the value of the modification time
attribute will change for these directories in the course of normal system
operation, this attribute/value pair needs to be removed from the
specification of each of these directories.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 65

3. The /root/.bash_history file’s modification time, size and MD5 and
SHA-1 hash values will change from time to time, so all of these
attribute/value pairs need to be removed for the root.spec file.

In the crontab.spec file, the modification time may change for the
/var/cron/tabs directory and /var/cron/tabs/.sock file. Therefore, the
attribute/value pair will need to be removed for these items.

The following Perl script (/usr/local/sbin/mod-mtree-spec) automates the
process of modifying the root.spec and crontab.spec files:

#!/usr/bin/perl -w

use strict;

my @dirs = ("/cdrom", "/dev", "/floppy", "/mnt", "/root", "/tmp",
"/var");
foreach (@dirs) {
 $_ = "^# .$_\$";
}
my $pattern = join "|", @dirs;
my @found = ();
my $bash_lines = 0;
my $crontab = 0;

while (<>) {
 chomp;
 $crontab++ if m%^#\s+tree:\s+/var/cron/tabs%;
 if ($crontab) {
 s/(^\.\s+type=\w+\s+mode=\d+\s+nlink=\d+)\s+time=\d+\.\d+/$1/;
 s/(^\s+\.sock\s+type=\w+)\s+time=\d+\.\d+/$1/;
 }
 unshift @found, $_ if m%$pattern%;
 if (@found % 2 == 1) {
 s/time=\d+\.\d+//;
 if ($found[0] =~ m%/dev%) {
 s/(^dev\s+type=dir.+)/$1 ignore/;
 unless (m%\\% || m%^#% || m%\.\.% || m%/set%) {
 s/(.+)/$1 optional/;
 }
 }
 if ($found[0] =~ m%/root%) {
 if (/\.bash_history/) {
 $bash_lines++;
 }
 elsif ($bash_lines && $bash_lines <= 3 &&
/mode=\d+\s+size=\d+/){
 s/(mode=\d+)\s+size=\d+.+$/$1/;
 $bash_lines++;
 }
 elsif ($bash_lines && $bash_lines <= 3) {
 $bash_lines++;
 next;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 66

 }
 }
 }
 print "$_\n";
}

exit 0

The script is intended to be used in the following manner:

cd /tmp
/usr/local/sbin/mod-mtree-spec root.spec > root.spec.new
mv root.spec.new root.spec
/usr/local/sbin/mod-mtree-spec crontab.spec > crontab.spec.new
mv crontab.spec.new crontab.spec

After running the mod-mtree-spec script on the root.spec file, the effect on the
/tmp entry, for example, would be to remove the ‘time’ keyword and value
(shown in bold):

./tmp
/set type=file uid=0 gid=0 mode=0644 nlink=1
tmp type=dir mode=01777 nlink=2 time=1089132819.370000000
./tmp

5.14.3 Storage of Specification Files

The specification files need to be accessible to mtree in order for it to be able to
check the file system for changes. However, leaving the specification files on the
system potentially makes them vulnerable to modification by the attacker. This
can be handled as follows:

1. The specification files can be stored on a read only medium.

2. SHA-1 messages digests can be created for each file and stored offline.

The obvious choice for a read only medium would be a CD ROM. However, the
process of updating the specification files would be cumbersome. An easier
approach is to use a floppy disk with write-protection physically enabled on the
disk. When the specification files need to be updated, the write protection can be
temporarily removed. Note that physical access to the system is required to do
this.

At first glance, it would appear that there is a storage capacity issue if a floppy
disk is used because the size of the usr.spec file is approximately 2.8 Mbytes.
However, it is possible to compress the specification files with gzip because

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 67

mtree is able to read a specification from the standard input. Thus, a check of the
/usr hierarchy would be performed as follows:

zcat /floppy/usr.spec.gz | mtree -x -p /usr

It should be noted that leaving a floppy disk in the system will prevent the system
from being remotely rebooted unless the appropriate BIOS parameter has been
set to prevent the system from booting from floppy disk. Disabling the boot from
floppy feature is considered to be good practice anyway and was done as part of
the Honeyd system preparation.

5.14.4 Checking for Changes

OpenBSD ships with the /etc/security script that checks for changes to a
small number of key files on a daily basis. Being alerted to the fact that a file may
have changed up to 24 hours previously may be fine on some systems, but it is
felt that this is too much of a delay for the Honeyd server. It would be ideal if
alerting could happen in real time, but since this is not possible with mtree we will
settle for running the file integrity check every hour.

The following script (/usr/local/sbin/fic) is used to check for changes to the
files and the specification files:

#!/bin/sh -

PATH=/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/sbin

umask 077

DIR=`mktemp -d /tmp/_mtree.XXXXXXXXXX` || exit 1
OUTPUT=$DIR/_mtree

trap 'rm -rf $DIR; exit 1' 0 1 2 3 13 15

mount -r /dev/fd0a /floppy/ > /dev/null 2>&1

if [-d /floppy/mtree] ; then
 cd /floppy/mtree
 echo "SHA1 (root.spec) = `zcat root.spec.gz | sha1`" >> $OUTPUT
 echo "SHA1 (dev.spec) = `zcat dev.spec.gz | sha1`" >> $OUTPUT
 echo "SHA1 (usr.spec) = `zcat usr.spec.gz | sha1`" >> $OUTPUT
 echo "SHA1 (usr_local.spec) = `zcat usr_local.spec.gz | sha1`" >>
$OUTPUT
 echo "SHA1 (crontab.spec) = `zcat crontab.spec.gz | sha1`" >>
$OUTPUT
 echo "Checking / ..." >> $OUTPUT
 zcat root.spec.gz | mtree -x -p / >> $OUTPUT
 echo done. >> $OUTPUT
 echo "Checking /usr ..." >> $OUTPUT
 zcat usr.spec.gz | mtree -x -p /usr >> $OUTPUT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 68

 echo done. >> $OUTPUT
 echo "Checking /dev ..." >> $OUTPUT
 zcat dev.spec.gz | mtree -x -k nlink,size,link -p /dev >> $OUTPUT
 echo done. >> $OUTPUT
 echo "Checking /usr/local ..." >> $OUTPUT
 zcat usr_local.spec.gz | mtree -x -p /usr/local >> $OUTPUT
 echo done. >> $OUTPUT
 echo "Checking /var/cron/tabs ..." >> $OUTPUT
 zcat crontab.spec.gz | mtree -x -k nlink,size,link -p
/var/cron/tabs >> $OUTPUT
 echo done. >> $OUTPUT
else
 echo /floppy/mtree is missing >> $OUTPUT
fi

cat $OUTPUT | mailx -s "`/bin/hostname` File Integrity Check"
secops@fake.world

exit 0

This is run from root’s crontab file and needs to be set up as follows in order to
run the script every hour:

File integrity checks
15 * * * * /bin/sh /usr/local/sbin/fic

Provided that no changes are detected, the following message will arrive at the
operations console:

SHA1 (root.spec) = cb3efdfced56d1f5e21707e9a038437a0567edf5
SHA1 (dev.spec) = f00194d006ea3a797f3ce2f90e0c113781d4ac97
SHA1 (usr.spec) = 1bddeefa86b8651fb485942efe48de08fa70461a
SHA1 (usr_local.spec) = db76827f9d6e5c19d0e9d2f1ffb4f6de824d63e5
SHA1 (crontab.spec) = 0189ddd4ede8f32263c3b9f24a285e6a0a46600f
Checking / ...
done.
Checking /usr ...
done.
Checking /dev ...
done.
Checking /usr/local ...
done.
Checking /var/cron/tabs ...
done.

If the /etc/pf.conf file were to change, for example, the following message is
generated:

SHA1 (root.spec) = cb3efdfced56d1f5e21707e9a038437a0567edf5
SHA1 (dev.spec) = f00194d006ea3a797f3ce2f90e0c113781d4ac97
SHA1 (usr.spec) = 1bddeefa86b8651fb485942efe48de08fa70461a
SHA1 (usr_local.spec) = db76827f9d6e5c19d0e9d2f1ffb4f6de824d63e5
SHA1 (crontab.spec) = 0189ddd4ede8f32263c3b9f24a285e6a0a46600f

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 69

Checking / ...
etc/pf.conf:
 size (2712, 2725)
 modification time (Sat Jun 26 12:53:55 2004, Wed Jul 7
17:49:48 2004)
 MD5 (5fbfda943a758aeef736287ada3ede01,
1c625eb3c93bc33191aa3cde62bc5125)
 SHA1 (e1f6aa3308b8a7bd7c31f43ad92d64fd04e9b510,
d88787abc743f181d791f2ef3091a892fe44bac8)
done.
Checking /usr ...
done.
Checking /dev ...
done.
Checking /usr/local ...
done.
Checking /var/cron/tabs ...
extra: .
done.

The operations console is configured to detect and alert on abnormalities in the
message as well as generating an alert if the message does not arrive within 5
minutes of the expected time.

5.14.5 Putting it all together

Since the mtree specification files will need to be updated whenever there is a
change to a monitored file, the steps required to perform the updates will be
covered in the section 6, “Ongoing Maintenance Procedures”.

5.15 Filesystem Access Control

Although a file integrity checker has been implemented on the Honeyd server, it
is preferable to try to prevent unauthorized changes from happening in the first
place. One approach would be to mount file systems with the read only option.
However, there are a couple of problems with this:

1. If the file system layout and placement of files has not been carefully
thought out, it may not be possible to mount a particular file system as
read only because it may be necessary to write to some of its directories.
For example, by default NTP puts the drift file in /etc, which means that /
needs to be mounted with the read and write options. However, it would

Objective: Implement a mechanism to prevent unauthorized changes to key
files on the system in order to satisfy the requirement of RMS #17.

Time required: 10 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 70

be desirable to mount the / file system as read only.

2. It is trivial to remount the file system with the read and write options if it
has been mounted read only:

mount -uw <mount point>

A better approach would be to use the system file flags which provide special
restrictions beyond those enforced by the file permissions. Of particular interest
is the system immutable flag (schg), which prevents a file from being modified,
moved or deleted.

5.15.1 System Security Level

The schg flag can be set at any time, but it can only be unset when the system is
running at securelevel 0. In order to understand the implications of this, it is
necessary to briefly discuss OpenBSD’s security levels.

OpenBSD has four levels of system security:

1. securelevel -1. Permanently insecure mode. This means that init will not
attempt to raise the security level beyond securelevel 0.

2. securelevel 0. Insecure mode. This mode is used during bootstrapping
and while the system is in single user mode. The system flags, such as
schg, can be cleared in this mode.

3. securelevel 1. Secure mode. This is the default security level when the
system is in multi-user mode. The security level cannot be lowered while
at securelevel 1 and system immutable flags cannot be removed.

4. securelevel 2. Highly secure mode. This includes all the features of
securelevel 1 plus others. This is the recommended mode for an
OpenBSD system that is functioning as a firewall because it prevents pfctl
from being used to change the active rules that are being used by pf.
Although the Honeyd server is not a firewall, it is desirable to prevent an
attacker from being able to alter the behavior of pf. Therefore, the Honeyd
server will be run at securelevel 2.

From the above, it is seen that the system immutable flags can only be removed
when the system is in single user mode. In order to interact with the system in
single user mode, it is necessary to be at the console because networking is not
configured. This means that it should not be possible for a remote attacker to
remove the schg flag in order to modify files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 71

5.15.2 Changing Security Levels

In securelevel 1, it is not possible to lower the security level, but it is possible to
raise it. This is achieved using the sysctl command as shown in the following
session transcript:

bash-2.05b$ sudo sysctl -w kern.securelevel=2
kern.securelevel: 1 -> 2

This change to the security level will only be effective until the next reboot
because, by default OpenBSD runs at securelevel 1. In order to raise the system
to securelevel 2 when the system boots, it is necessary to modify the
/etc/rc.securelevel file as follows:

#securelevel=1
securelevel=2

As the /etc/rc.securelevel will be protected by the schg flag, it is not possible for a
remote attacker to modify this file in order to set the security level to zero and
then reboot the system into the insecure mode.

In order for an administrator to make changes to the system, the following
command needs to be issued from the console:

kill -15 1

This will put the system in single user mode (and security level 0) where files that
need changing can have the schg flag unset.

5.15.3 Protecting Files and Directories

Ideally, the schg flag should be used to protect the same files that are being
checked by the file integrity checker. However, the /dev directory tree needs to
be excluded from this list because the uid, gid and mode of some device files
(e.g. the ttyp* files) change during the course of normal operation of the
system. Making these files immutable would prevent the system from functioning
properly.

The schg flag is set using the chflags command. It can set the schg flag on
individual files or can recursively descend through a directory tree setting the
schg on the way. In order to protect the same files that are being monitored by
the file integrity checker, the following commands need to be executed:

chflags schg /.cshrc
chflags schg /.profile

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Steps to Install and Harden the
Server

 72

chflags -R schg /.systrace
chflags -R schg /altroot
chflags -R schg /bin
chflags -R schg /boot
chflags schg /bsd
chflags -R schg /etc
chflags -R schg /root
chflags -R schg /sbin
chflags -R schg /usr
chflags -R schg /var/cron/tabs

It should be noted that “Operation not permitted” will be displayed for files that
are hard links because it is not valid to set the schg flag on a file that already has
the schg flag set. For example, the find command shows that the following are
the same file:

bash-2.05b# find / -inum 204246 -print
/usr/share/zoneinfo/Etc/UTC
/usr/share/zoneinfo/Etc/Zulu
/usr/share/zoneinfo/Etc/Universal
/usr/share/zoneinfo/Zulu
/usr/share/zoneinfo/Universal
/usr/share/zoneinfo/UTC

It should also be noted that files should only be made immutable when no further
configuration needs to be performed on the system, i.e. it should be the last task
performed before the verification steps, prior to the system being put into
production. Since further configuration steps will be performed in section 6,
“Ongoing Maintenance Procedures”, the filesystem access control mechanism
discussed here will not be enabled for the moment.

- END OF SECTION -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 73

6 Ongoing Maintenance Procedures

Key elements to good system maintenance are:

1. Identifying what routine tasks need to be performed.

2. Creating procedures to define how to perform each task.

Where possible, these tasks should be automated with scripts in order to
streamline the process and reduce the likelihood of mistakes being made. This is
particularly relevant to the Honeyd server because it is intended to augment the
incident response process. Not only will it be necessary for changes to be made
relatively quickly, these changes will often need to be made when personnel are
under pressure.

Broadly speaking the routine maintenance tasks that need to be performed on
the Honeyd server are as follows:

1. Configuration changes.

2. Patching and upgrading the system.

3. Log file rotation.

4. Monitoring.

5. Updating the file integrity checker specification files.

6. Enabling and disabling filesystem access control.

7. Backups and restores.

6.1 Configuration Changes

In the course of the life of a system many configuration changes may be needed.
However, focusing on the changes that are directly related to the function of the
Honeyd server, the most frequent changes are likely to be to the configuration of
Honeyd and pf.

Regardless of the type of change, the following general approach should be
followed:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 74

1. Disable filesystem access control.

2. Make the necessary configuration changes.

3. Update the file integrity checker specification files.

4. Enable the filesystem access control.

5. Document the changes in the Honeyd server’s log book.

To put the changes described in sections 6.1.1 and 6.1.2 into context, they will
occur at step 2.

It should be noted that major changes to Honeyd will require the Change
Management process to be followed in order to satisfy RMS #16. This measure
was designed to reduce the risk of changes to Honeyd causing disruption to the
production environment. However, since the Honeyd server’s role is to augment
the incident response process, there is a fast track process within change
management to reduce the lead times of changes that may need to be made in
response to an incident.

6.1.1 Changes to Honeyd

The typical steps that will need to be followed in order to make changes to
Honeyd are as follows (these steps assume that the configuration has already
been verified for correction operation and that appropriate systrace policies have
been generated, if necessary).

1. Kill the Honeyd process.

2. Kill the arpd process.

3. Make the required configuration changes to Honeyd by editing the
/etc/honeyd.conf file.

4. Update the systrace policy files, if required.

5. Update the /etc/rc.local file with any new flags that are required by
arpd or Honeyd

6. Start arpd.

7. Start honeyd.

It is felt that Honeyd was covered in sufficient detail in section 5.12 to enable the
reader to perform the above steps.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 75

6.1.2 Changes to pf

The initial configuration of pf is very general with respect to the connectivity
requirements of the virtual hosts simulated by Honeyd. Therefore, it is possible
that changes may need to be made to the packet filtering rules in order to
accommodate more specific requirements.

Typical steps that will need to be performed are:

1. Modify the packet filtering rules by editing the /etc/pf.conf file.

2. Verify the syntax of the new rules.

 sudo pfctl -n -f /etc/pf.conf

3. Flush the current rules and enable the new rules. It should be noted that
the Honeyd server will be unprotected for a very brief period between the
flushing of rules and enabling new rules.

 sudo pfctl -Fr && pfctl -e -f /etc/pf.conf

Again, it is felt that pf has been covered in sufficient detail previously to enable
the reader to make changes to the packet filtering rules.

6.2 Patching and Upgrading the System

The task of patching the system is most likely to apply to patching the operating
system rather than to patching applications. The reason for this is simple; bugs in
the applications used on the Honeyd server tend to be fixed by releasing an
updated version of the application whereas bugs in the OpenBSD operating
system are fixed by applying a patch to the source code and rebuilding system
binaries.

6.2.1 Patching the OS

Although the procedure for patching the operating system was covered in the
installation and hardening section of this document, it is important to consider the
overall process for keeping the operating system up-to-date.

• Notification. The OpenBSD “security-announce” mailing list should be
subscribed to in order to receive notification of security issues and the
patches that are released to address them.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 76

• Obtaining. When a new patch is released it should be obtained from the
OpenBSD FTP site.

• Testing. Before applying patches to a production system it is wise to test
them on a lab or pre-production system to ensure that no problems are
introduced. OpenBSD patches are thoroughly tested before they are
released, but there is no way for the developers to test for compatibility
issues with every third party application that runs on the OS.

• Backing out. There is no official way to back out a patch, however, it is
possible. The patched files can be identified by locating the corresponding
*.orig files in the source tree (as discussed in section 5.5.3). The original
files can be reinstated and the instructions for the particular patch followed
to rebuild and reinstall the appropriate files.

• Applying. Provided that no issues are found in the patch testing step, the
patch(es) can be applied to the production system. The high-level steps
that need to be performed to apply the patches to the Honeyd server once
it is production are:

1. Remove the system immutable flag from the key system files.

2. Transfer the source tree from the storage server to the Honeyd
server.

3. Apply the patch(es) to the source tree and rebuild the system
binaries.

4. Update the file integrity checker specification files.

5. Remove the updated source tree from the Honeyd server and
transfer to the storage server.

6. Re-apply the system immutable flag to the system files.

7. Perform a full system backup.

Details for performing each of the above steps can be found elsewhere in
this document.

• Documentation. Since there is no simple command that can be run to
determine the patch level of an OpenBSD system and since the source
tree will not be permanently located on the Honeyd server, it is important
to keep records of all patches that have been applied to the system.

For the record, the following patches have been applied to the Honeyd server:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 77

System: matrix
Patch # Patch Type Release Date Architecture Date Applied
002 Security Fix May 5, 2004 Common June 20, 2004
003 Reliability Fix May 5, 2004 Common June 20, 2004
004 Reliability Fix May 5, 2004 Common June 20, 2004
005 Reliability Fix May 6, 2004 Common June 20, 2004
006 Security Fix May 13, 2004 Common June 20, 2004
007 Security Fix May 20, 2004 Common June 20, 2004
009 Security Fix May 30, 2004 Common June 20, 2004
010 Reliability Fix June 9, 2004 Common June 20, 2004
011 Security Fix June 9, 2004 Common June 20, 2004
012 Security Fix June 10, 2004 Common June 20, 2004
013 Security Fix June 12, 2004 Common June 20, 2004

6.2.2 Upgrading Third-Party Software

There are two types of third party software installed on the Honeyd server;
software that was installed from the ports tree and software that was installed
independently from source code. We need to consider how to keep up-to-date
with both types of software.

In the case of software that has been installed from the ports tree, there is a tool
called out-of-date in the /usr/ports/infrastructure/build directory that
compares the installed packages with the versions in the ports tree. However, for
this to work, two requirements need to be met:

1. The ports tree needs to be present on the system.
2. The system needs to have SSH access to the Internet to enable the latest

OpenBSD 3.5 ports tree to be obtained.

As far as the Honeyd server is concerned, neither of these requirements are met.
In addition, the environment in which Honeyd is deployed does not permit SSH
access to the Internet. This is an issue that needs to be addressed at the policy
level since there is an increasing need to be to be able to do updates to our
OpenBSD systems. For the time being, updated ports trees will continue to be
obtained using the author’s home system, which can be used to determine if any
of the packages installed on the Honeyd server need to be updated.

In the case of software that has been installed independently using source code
we only need to consider arpd, Honeyd and libevent. The easiest way to keep
up-to-date is to subscribe to the SecurityFocus Honeypots mailing list where
Niels Provos usually announces his updates to Honeyd. It is thought that it is
likely that any requirement to update arpd or libevent will be included in the
announcement about Honeyd.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 78

6.2.3 Upgrading the OS

OpenBSD is continuously being improved by its developers. Every six months a
stable version of the operating system is released, which incorporates all the
latest changes. Each stable release is supported for one year after which time no
patches will be released to fix any security issues that are discovered. This
means that we should consider upgrading the operating system on the Honeyd
server every 12 months.

Since the Honeyd server is unable to use CVS, the options available to us are:

1. Upgrade from the latest CD ROM, which will be at release 3.7 by the time
we need to perform this task.

2. Reinstall the OS from scratch from the latest CD ROM.

The first option can be a little messy because it will require the old configuration
files to be manually merged with the new configuration files. This can be time
consuming and can lead to configuration errors being introduced. In addition,
stale files could be left on the system.

The preferred approach is to install a pristine system from scratch. Before
embarking on this process, important data such as configuration files should be
backed up.

6.3 Log file Rotation

Rotating log files is important in order to keep their size manageable so that the
data that they contain is useable - there is nothing worse than trying to work with
a log file that has grown to Giga Bytes.

OpenBSD uses a utility called newsyslog to rotate log files. It runs from root’s
crontab every hour. Rotation is performed in accordance with the directives in the
/etc/newsyslog.conf file. The default configuration file looks like this:

$OpenBSD: newsyslog.conf,v 1.24 2003/11/11 17:00:50 jmc Exp $

configuration file for newsyslog

logfile_name owner:group mode count size when flags
/var/cron/log root:wheel 600 3 10 * Z
/var/log/aculog uucp:dialer 660 7 * 24 Z
/var/log/authlog root:wheel 640 7 * 168 Z
/var/log/daemon 640 5 30 * Z
/var/log/lpd-errs 640 7 10 * Z
/var/log/maillog 600 7 * 24 Z
/var/log/messages 644 5 30 * Z

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 79

/var/log/secure 600 7 * 168 Z
/var/log/wtmp 644 7 * 168 ZB
/var/log/xferlog 640 7 250 * Z
/var/log/ppp.log 640 7 250 * Z
/var/log/pflog 600 3 250 * ZB \

/var/run/pflogd.pid

The directives in the file are fairly self-evident with the key ones being count, size
and when. count determines the number of generations of archived files that are
kept. The existence of a value for the size parameter directs newsyslog to rotate
the particular log file when that file exceeds the specified size (in Mbytes). The
existence of a value for the when parameter directs newsyslog to rotate the
particular log file when the number of hours since the last rotation exceeds the
specified time.

Since the majority of the log data is handled by syslogd, the default values are
fine because log messages are sent to three remote servers where the data is
managed and retained in accordance with the organization’s policy. However, as
previously mentioned, pf log data is not handled by syslogd, so the default values
will need to be changed in order to ensure that data is not lost before the daily
backup of the /var/log directory occurs.

The approximate number of generations of pflog that need to be archived in a 24
hour period is calculated as follows:

• Number of IP addresses in Class A 10.0.0.0 network is 16,777,216.

• Assume that 75% of address space is unused and that Honeyd will
instrument 5% of those addresses during the pilot phase of the project:
16,777,216 x 0.75 x 0.05 = 629,145 addresses.

• Assume that each of those addresses sees some probing activity on
average every hour in any given 24 hour period. This gives 24 x 629,145 =
15,099,480 probes in a 24 hour period.

• Assume each probe creates three entries in pflog, each entry being
approximately 132 bytes. This gives a total uncompressed data volume of
15,099,480 x 3 x 132 = 5,979,394,080 bytes or 5,702 Mbytes.

• Rotating when pflog exceeds 250 Mbytes would require around 23 log
files.

Building in some margin for error, 25 would be a nice round number to use.

Nothing further needs to be done once the newsyslog.conf file has been
modified; the next time that newsyslog runs from cron it will read the new
configuration file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 80

6.4 Monitoring

The monitoring mechanisms have already been discussed in some detail in the
installation and hardening section of this document. To recap, the following
mechanisms are in place:

• Log messages are sent to remote syslog servers which have the Swatch
log monitoring software running on them. Swatch has been configured to
send email alerts to the operations console when an abnormal entry
appears in any of the log files that are being monitored.

• An SMTP heartbeat has been implemented to check that the mechanisms
used to send alerts via email are functioning. The heartbeat is sent every
five minutes and if it fails to arrive at the operations console in a timely
manner, a console alert will be generated.

• Output from the netstat and ps commands are piggybacked onto the
SMTP heartbeat. If any deviation from the expected output is detected by
the monitoring script on the operations console, an alert will be generated.

• A syslog heartbeat has been implemented to check that the mechanisms
used to detect and alert on problems in the log files are functioning. The
syslog heartbeat is generated every five minutes and if the corresponding
email alert fails to arrive at the operations console in a timely manner, a
console alert will be generated.

• A file integrity checker has been implemented to perform an hourly check
for changes to important files and directories. The output of the check is
sent via email to the operations console. If it fails to arrive in a timely
manner or if the content of the message deviates from what is expected,
an alert will be generated in the console.

• By default, OpenBSD runs daily, weekly and monthly housekeeping
scripts. As well as cleaning up various temporary files, these scripts report
on various aspects of the OS in order to help operations staff spot
potential problems with the system.

The Operations Centre is staffed 24x7 so there are always trained personnel on
hand to assess and respond to alerts.

In terms of maintenance, we need to change the Perl-based monitoring scripts
on the operations console whenever changes are made that will affect the output
produced in alert or heartbeat messages. Such changes are coordinated via the
Change Management Process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 81

6.5 Updating the File Integrity Checker Specification Files

Since the mtree specification files will need to be updated whenever there is a
change to a monitored file, the steps required to perform the updates are covered
as part of ongoing maintenance of the Honeyd server.

It should be noted that it is very important to run the file integrity check script
manually to check that no unauthorized changes have been made to the system
prior to updating the specification files. If an unauthorized change is made to the
system between the hourly check and the time that the specification files are
regenerated, a problem could go undetected.

The procedure for updating the specification files is as follows:

1. Run the file integrity checker and examine the output.

 /bin/sh /usr/local/sbin/fic

2. Unmount the floppy disk, if mounted.

 umount /floppy

3. Remove write protection on the floppy disk.

4. Create a new file system on the floppy disk.

 newfs /dev/rfd0a

5. Create the new specification files in /tmp.

mtree -cx -K md5digest,sha1digest -p / > /tmp/root.spec
mtree -cx -k nlink,size,link -K md5digest,sha1digest -p /dev \
> /tmp/dev.spec
mtree -cx -K md5digest,sha1digest -p /usr > /tmp/usr.spec
mtree -cx -K md5digest,sha1digest -p /usr/local \
> /tmp/usr_local.spec
mtree -cx -K md5digest,sha1digest -p /var/cron/tabs \
> /tmp/crontab.spec

6. Run mod-mtree-spec on root.spec.

 /usr/local/sbin/mod-mtree-spec /tmp/root.spec > \
 /tmp/root.spec.new
 mv /tmp/root.spec.new /tmp/root.spec

7. Run mod-mtree-spec on crontab.spec.

 /usr/local/sbin/mod-mtree-spec /tmp/crontab.spec > \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 82

 /tmp/crontab.spec.new
 mv /tmp/crontab.spec.new /tmp/crontab.spec

8. Create SHA-1 message digests for each specification file and store them
in a safe place off of the Honeyd server.

 cd /tmp
 sha1 root.spec | ssh backup@vault.fake.world \
 dd of=matrix_root.spec.sha1
 sha1 dev.spec | ssh backup@vault.fake.world \
 dd of=matrix_dev.spec.sha1
 sha1 usr.spec | ssh backup@vault.fake.world \
 dd of=matrix_usr.spec.sha1
 sha1 usr_local.spec | ssh backup@vault.fake.world \
 dd of=matrix_usr_local.spec.sha1
 sha1 crontab.spec | ssh backup@vault.fake.world \
 dd of=matrix_cron.spec.sha1

9. Compress the specification files with gzip.

 gzip -9 *.spec

10. Mount the floppy disk on /floppy.

 mount /dev/fd0a /floppy

11. Create a directory called mtree under /floppy.

 mkdir -p /floppy/mtree

12. Move the specification files to /floppy/mtree.

 mv /tmp/*.gz /floppy/mtree/

13. Unmount the floppy disk.

 umount /floppy

14. Enable write protection on the floppy disk.

15. Mount the floppy disk.

 mount /dev/fd0a /floppy

16. Run the file integrity check shell script to verify its operation:

 /bin/sh /usr/local/sbin/fic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 83

Since there are many steps in this procedure and it will need to be performed
fairly frequently, it is a natural choice for automating with a script. This script is
shown in Appendix B and is called gen-spec.

6.6 Enabling and Disabling Filesystem Access Control

Before any changes can be made to the system the filesystem access control will
need to be disabled by removing the system immutable flag from the appropriate
files. After changes have been made, filesystem access control needs to be re-
enabled before putting the system back into production.

It should be noted that while the Honeyd server has some of its defenses
disabled it is good practice to protect it from being compromised by using the
firewall component in the security architecture to block any traffic that is destined
for it. In effect, an outer shield is put in place prior to an inner shield being
lowered for maintenance.

6.6.1 Enabling File Access Control

The following procedure enables filesystem access control. It assumes that the
system is in multi-user mode and at security level 1.

1. Edit /etc/rc.securelevel so that the system will be at security level 2
when it is booted into multi-user mode. Note that the following commands
are geared towards automating the process in a script. If performing this
task manually, edit the file in the normal manner.

cd /etc
ex rc.securelevel <<- EOF
%s/securelevel=1/securelevel=2/
w
q
EOF

2. Set the schg flag on the appropriate files and directories by running the
following commands:

chflags schg /.cshrc
chflags schg /.profile
chflags -R schg /.systrace
chflags -R schg /altroot
chflags -R schg /bin
chflags -R schg /boot
chflags schg /bsd
chflags -R schg /etc
chflags -R schg /root
chflags -R schg /sbin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 84

chflags -R schg /usr
chflags -R schg /var/cron/tabs

3. Raise the security level of the system from 1 to 2:

sysctl -w kern.securelevel=2

Since there are many commands in this procedure and it will need to be
performed whenever a change needs to be made to the system, it is a natural
choice for automating with a script. This script is shown in Appendix B and is
called fac-on.

6.6.2 Disabling File Access Control

The following procedure disables the filesystem access control. It assumes that
the system is in multi-user mode and at security level 2.

1. At the console, put the system into single user mode.

kill -15 1

2. Unset the schg flag on the appropriate files and directories by running
some or all of the following commands as required:

chflags noschg /.cshrc
chflags noschg /.profile
chflags -R noschg /.systrace
chflags -R noschg /altroot
chflags -R noschg /bin
chflags -R noschg /boot
chflags noschg /bsd
chflags -R noschg /etc
chflags -R noschg /root
chflags -R noschg /sbin
chflags -R noschg /usr
chflags -R noschg /var/cron/tabs

3. Edit /etc/rc.securelevel so that the system will be at security level 1
when it is put into multi-user mode. Note that the following commands are
geared towards automating the process in a script. If performing this task
manually, edit the file in the normal manner.

cd /etc
ex rc.securelevel <<- EOF
%s/securelevel=2/securelevel=1/
w
q

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 85

EOF

4. Return the system to multi-user mode.

exit

Since there are many commands in this procedure and it will need to be
performed whenever a change needs to be made to the system, it is a natural
choice for automating with a script. This script is shown in Appendix B and is
called fac-off.

6.7 Backups and Restores

A backup and restore process is being implemented in order to satisfy the
requirements of RMS #23.

The purpose of the Honeyd server is to instrument unused IP address space in
order to help us detect potential worm activity. Data regarding interaction with the
virtual hosts that are simulated by Honeyd is sent to syslogd for logging. Since
this data is valuable, we need to take steps to ensure that it is preserved. Those
preservation steps include sending log messages to three separate remote
syslog servers.

Unfortunately, not all logging data is handled by syslog; for example pf log data is
directly logged to the /var/log/pflog file by pflogd., so it will be necessary to
perform regular backups in order to preserve this data. Incidentally, pf log data is
stored in tcpdump format which means that there is a risk of the server being
compromised by tcpdump parsing a malicious payload. Therefore, it is
recommended practice to move the pf log data off of a server in order to view it in
a sandboxed environment.

Having investing approximately 5 hours in installing, configuring and hardening
the Honeyd server, it is a good idea to perform a full system backup in case the
need should arise to rebuild the system. In fact, it is a good idea to do a full
system backup whenever major changes have been made to the system, e.g.
after new patches have been applied and the system binaries have been rebuilt.

The backups will enable us to perform a bare-metal restore and have the system
operational in a fraction of the time that it would take to rebuild it from scratch.
This will enable us to quickly recover from a hardware failure or software
corruption.

In the event of hardware failure it is possible to restore the system on alternate
hardware because the same software is always installed on an OpenBSD system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 86

of a particular architecture (e.g. i386) irregardless of the hardware components.
However, the caveats are that the alternate system:

• Has sufficient disk capacity.

• Has no hardware compatibility issues.

• Is capable of handling the application load.

In order to provide portability between systems, backups should be performed at
the filesystem (e.g. with dump or tar) level rather than at the disk level (e.g. with
dd).

In the event of a compromise of the Honeyd server, the system will not be
restored from backup because there is no point in putting a vulnerable system
back into production. Instead the system will be “nuked from high orbit” and
rebuilt from the ground up. This will include incorporating any changes required
to prevent a repeat of the system compromise, which will be identified as part of
the incident handling process.

In summary, the following tasks need to be addressed:

1. Full system backup.

2. Bare-metal restore.

3. Regular backup.

4. Partial backup.

5. Partial restore.

6.7.1 Full System Backup

A full system backup should be performed after the system is initially built and
whenever major changes occur, such as the application of operating system
patches or upgrades to third party software.

Since this particular Compaq Proliant 5500 system does not have a built-in tape
drive, it will be necessary to look for an alternative backup method. My usual
approach is to use SSH to transport the data to another system. Fortunately, we
have a system that is used as a data repository that is backed up to tape on a
regular basis. Since there is plenty of disk space on this system, it seems like an
ideal place to store the backups of the Honeyd server’s filesystems.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 87

In order to perform a full system backup the server needs to be in single user
mode in order to reduce system activity to a minimum. This will eliminate the risk
of inconsistencies in the backup data resulting from processes writing to the
filesystem while the backup is running. The backup steps will need to be
performed from the console because there are no services running while the
system is in single user mode. In fact, networking is not enabled by default in this
mode so it will be necessary to run the /etc/netstart script to enable
networking so that an SSH session to be established from the Honeyd server to
the backup server:

 /bin/sh /etc/netstart

On the Honeyd server the following command needs to be run to backup the /
filesystem using SSH:

dump 0 -f - / | gzip -c -9 | ssh backup@vault.fake.world \
dd of=matrix_root.dump_`date +%F|tr -d "\012"`.gz

In the above example a level 0 dump (i.e. a full backup) of the / filesystem will be
performed. Note that the data is compressed using gzip before being sent over
the network in order to reduce network traffic and to reduce the disk space
requirements on the destination system. The ssh command behaves like a
normal pipe, so dd is used to write the bit stream to a file on the destination
system (note that the data is still in dump format - dd just works at the bit level).
The d̀ate +%F|tr -d "\012" ̀command adds the current date (with the newline
character removed) to the name of the dump file.

SSH will not be entirely transparent because it will prompt for the backup user’s
password. In order to eliminate the need to supply a password and pave the way
to automating the backup process, we need to set up public-key authentication.
The steps to do this are provided in appendix C.

Not all of the filesystems on the Honeyd server will need to be backed up; /tmp
does not contain permanent data and /usr/src and /usr/ports are both empty
at this stage. This leaves /, /usr, /usr/local, /home and /var that will need to
be backed up.

Putting it all together, to do a full backup of the Honeyd server, the following
steps need to be performed:

1. At the system console, put the Honeyd server into single user mode:

 kill -15 1

2. Restart networking on the Honeyd server:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 88

 /bin/sh /etc/netstart

3. Backup the filesystem data across the network to the destination server.
The following command is used to backup the / filesystem:

dump 0 -f - / | gzip -c -9 | ssh backup@vault.fake.world \
dd of=matrix_root.dump_`date +%F|tr -d "\012"`.gz

4. Repeat step 3 for each filesystem on the Honeyd server that needs to be
backed up. If a full backup is being performed then /home, /usr,
/usr/local, and /var will also need to be backed up.

5. Put the Honeyd server back into multi-user mode by entering the exit
command at the command prompt.

6. Record the fact that a backup has been performed in the backup log book
for the Honeyd server.

It should be noted that the above approach can be used as an alternative to the
method suggested in section 5.14.2 for storing the source and ports trees and
moving them on and off of the system.

6.7.2 Bare-Metal Restore

The worst case scenario is a full system restore onto virgin hardware - otherwise
known as a bare-metal restore. If there was a tape drive attached to the Honeyd
server, this would be a simple matter of booting the system from the OpenBSD
installation CD and working at the command line to partition the disks and then
restore the data.

Unfortunately there is no tape drive attached, but the data is accessible remotely
via the network. Therefore, we need a way to connect to the remote server from
the system that needs to be restored. The approach that I found to cause least
pain is to do a basic OpenBSD install on the system that needs to be restored.
The installation process will only take 15 minutes and will result in a system that
is partitioned in accordance with the filesystem layout specified in section 4.9, i.e.
it will accomplish one of the bare-metal restore tasks. In addition, the interim OS
will have networking enabled and will be able to use scp to transfer the files from
the remote storage server to an unused partition on the Honeyd server. Once all
the data has been transferred, the system will be booted from the OpenBSD
installation CD so that data can be cleanly restored to the disk partitions.

It should be noted that this approach may not work for all systems because it
relies on having a sufficiently large partition to store the compressed dump files
from which a local restore will be performed. On the Honeyd server, the partition

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 89

used by the /usr/src filesystem can be used to temporarily hold the dump data
because it is normally empty when the Honeyd server is in production.

The following steps need to be performed in order to do a full system restore:

1. Install an interim operating system from the OpenBSD 3.5 installation CD
by following the five steps in section 5.3.

2. Copy the compressed dump files from the storage server to the Honeyd
server (this assumes that the latest backup files are available in the
backup user’s home directory):

 cd /usr/src
 scp backup@vault.fake.world:./*.gz .

3. Insert the OpenBSD 3.5 installation CD and reboot the system from it into
the single user mode operating system.

4. Create a new filesystem on the partitions corresponding to the /, /home,
/usr, /usr/local and /var filesystems:

 newfs /dev/rsd0a
 newfs /dev/rsd0h
 newfs /dev/rsd0d
 newfs /dev/rsd0g
 newfs /dev/rsd0j

5. Mount the partition containing the compressed dump files:

 mount /dev/sd0i /mnt2

6. Uncompress the dump files:

 cd /mnt2
 gzip -d *.gz

7. Mount the partition corresponding to the filesystem that will have its data
restored. In the case below, data for the / filesystem will be restored so
/dev/sd0a needs to be mounted:

 mount /dev/sd0a /mnt

8. Restore the data to the filesystem:

 cd /mnt
 restore -r -f /mnt2/matrix_root.dump_*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 90

9. Delete the restoresymboltable file:

 rm restoresymboltable

10. Unmount the filesystem:

 cd /
 umount /mnt

11. Repeat steps 7 to 10 for the /home, /usr, /usr/local and /var
filesystems.

12. Make the disk bootable and install boot blocks:

 mount /dev/sd0a /mnt
 fdisk -i sd0
 cp /usr/mdec/boot /mnt/boot
 /usr/mdec/installboot -v /mnt/boot /usr/mdec/biosboot sd0

13. Unmount the / filesystem and reboot the system:

 umount /mnt
 reboot

At this point the system has been restored to the state that it was in the last time
a full backup was made of the system. It is possible that partial backups have
been performed since that time in order to capture minor configuration changes
that have been made to the system. The backup log book will indicate whether
this is the case. If so, the “Partial Restores” section should be consulted.

6.7.3 Regular Backup

As previously discussed, the /var/log directory needs to be backed up in order
to preserve the log data from pf. A daily backup should be sufficient, but if any
issues arise, the frequency can be adjusted accordingly.

Since the entire contents of the directory will be backed up it makes sense to
schedule it so that the daily backup captures the results of the daily, weekly and
monthly maintenance scripts that run from cron. These scripts run at 01:30,
03:30 and 05:30 respectively so the backup of the /var/log directory will be
scheduled to run at 07:30.

The tar command will be used to perform the backup because it backs up the
files in one pass, unlike dump which does it in four passes. This will help make
the backup data more reliable because the system will be active at the time that
the backup is run.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 91

The following entry needs to be added to root’s crontab file in order to schedule
the backup:

30 7 * * * cd /var && tar czf - log | \
 ssh -i /root/.ssh/backup_rsa backup@vault.fake.world \
 dd of=matrix_var_log_`date +%F|tr -d "\012"`.tgz

6.7.4 Partial Backup

Partial backups will occur after minor configuration changes have been made to
the system. Typically, minor configuration changes will involve modification to
files in /etc and, therefore do not warrant a full system backup.

If time permits, a partial backup of the associated filesystem can be performed
using dump with the system in single user mode (as described in the section “Full
System Backup”). If the priority is to get the Honeyd server up and running
quickly, tar can be used to backup /etc using the following command:

cd / && tar czf - etc | ssh -i /root/.ssh/backup_rsa \
backup@vault.fake.world \
dd of=matrix_etc_`date +%F|tr -d "\012"`.tgz

6.7.5 Partial Restore

Partial restores are most likely to occur after a bare-metal restore has been
performed or after an administration mistake has been made. The data that
needs to be restored will be in dump or tar format.

Regardless of the format, we have the choice of restoring all the data or
individual files. The approach taken will depend on the circumstances.

With the dump format we have the choice of restoring an entire filesystem or
individual files. The steps required to restore an entire filesystem have already
been described in the section on bare-metal restores. In order to restore
individual files the restore command is used in interactive mode. The following
session transcript shows an example of an individual file being restored:

bash-2.05b# cd /tmp
bash-2.05b# zcat matrix_root.dump.gz | restore -i -f -
restore > ls
.:
.cshrc altroot/ bsd dev/ home/ sbin/ tmp/
.profile bin/ bsd.old etc/ mnt/ stand/ usr/
.systrace/ boot cdrom/ floppy/ root/ sys@ var/

restore > cd etc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Ongoing Maintenance
Procedures

 92

restore > ls pf*
pf.conf
pf.os
restore > add pf.conf
restore > extract
set owner/mode for '.'? [yn] n
restore > q
bash-2.05b# ls
etc matrix_root.dump.gz
bash-2.05b# ls etc/
pf.conf
bash-2.05b#

After verifying that the file is correct it can be moved to /etc.

With the tar format the entire directory tree can be extracted to its proper location
or to a temporary location such as /tmp. The latter case is the safest way to
proceed as it allows the appropriate files to be examined before being restored to
the proper location.

It should be noted that in order to perform a partial restore the appropriate
system immutable flags must be disabled.

- END OF SECTION -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 93

7 Verification of OS Configuration

The following table is an extract from the Risk Mitigation Plan (section 4.4) and
shows the Risk Mitigation Steps that were implemented on the Honeyd server
itself.

Reference
Number

Risk Mitigation Step (RMS) Type

4 Apply the latest OS patches. Server

5 Run a version of Honeyd with no known vulnerabilities. Server

6 Run Honeyd in a sandbox or jail environment. Server

7 Implement a stack protection mechanism to help prevent buffer
overflow attacks.

Server

8 Run the minimum number of services on the server. Server

9 Use IP-based access control to limit access to services. Server

10 Run services in a sandbox or jail environment, where possible. Server

14 Eliminate the need for remote sessions or use encrypted sessions. Server

17 Design and implement the file system in a manner that will make it
difficult to make unauthorized system changes.

Server

18 Run file integrity checking software to detect changes to essential
files such as configuration files and system binaries.

Server

20 Send logging data to a centralized syslog server to make it harder
for the attacker to cover tracks.

Server

23 Implement a backup and restore process. Server

24 Send alerts to the Operations group. Server
25 Send regular heartbeats. Server

The aim of this section is to verify all of the Risk Mitigation Steps listed above.

These verification steps were performed on July 21, 2004 which is referred to as
“at the time of writing” from this point on. Note that the server time is set to GMT,
the Honeyd server is located in the Pacific time zone so some timestamps may
appear with July 22 in them.

When the verification process is complete, the Honeyd server can be put into
production.

7.1 RMS #4

Objective: Verify that the latest OS patches have been applied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 94

Although over one month has elapsed since the “latest” patches were originally
applied to the Honeyd server, at the time of writing there are no further patches
that need to be added to the system.

Since patch verification was performed when the patches were applied (see
section 5.5.3), no further verification is necessary. As a reminder, patch
verification was performed at an early stage in the hardening process because
the OpenBSD source tree was removed from the system as part of the hardening
steps.

7.2 RMS #5

Checking the Honeyd website shows that at the current version is still 0.8b and
recent BugTraq activity has not indicated any issues relating to Honeyd. Since
known vulnerabilities are quickly fixed by Niels Provos, we can assume that there
are no known vulnerabilities in version 0.8b.

Section 5.12.3 covers the verification of the basic operation of Honeyd. When
Honeyd is started the resulting output confirms that version 0.8b is running on the
Honeyd server.

7.3 RMS #6

Sandboxing was implemented using systrace, which comes as part of the base
OS.

In order to check that policy enforcement is working for our simple Honeyd
configuration, the virtual host can be temporarily modified by adding the following
line in the /etc/honeyd.conf file:

add router tcp port 80 "/usr/local/share/honeyd/scripts/web.sh"

After restarting Honeyd under systrace the result of trying to connect to TCP port
80 on 10.192.168.11 can be seen in the /var/log/messages file. An extract
from this file shows that systrace denies this activity:

Jul 21 16:45:18 matrix systrace: deny user: nobody, prog:
/usr/local/bin/honeyd, pid: 31103(0)[1015], policy:
/usr/local/bin/honeyd, filters: 76, syscall: native-execve(59),

Objective: Verify that the version of Honeyd has no known vulnerabilities.

Objective: Verify that Honeyd is sandboxed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 95

filename: /usr/local/share/honeyd/scripts/web.sh, argv:
/usr/local/share/honeyd/scripts/web.sh
.
.
Jul 21 16:45:18 matrix honeyd[1015]: E(10.192.250.56:1060 -
10.192.168.11:80): Operation not permitted

Although this is a trivial example, the appearance of “Operation not permitted”
shows that systrace is only allowing Honeyd to use system calls that are present
in the policy. Thus, Honeyd can be seen to be running in a sandbox.

7.4 RMS #7

W^X and ProPolice are two memory protection mechanisms that were first
introduced in OpenBSD 3.3. These mechanisms have been improved and are
present in OpenBSD 3.5.

The operation of these mechanisms is not easily to demonstrate because it
would require:

1. The Honeyd server to run a vulnerable service.
2. The development of a buffer overflow exploit for the vulnerability.
3. A deep knowledge of the operating system internals to show how W^X

and ProPolice prevented the buffer overflow from occurring.

Although it is not possible to demonstrate this Risk Mitigation Step in action,
OpenBSD documentation confirms that stack protection mechanisms have been
implemented in OpenBSD 3.5.

7.5 RMS #8

This can be verified by using netstat to show the number of services listening on
TCP and UDP ports and ps to show the processes running on the system.

The following output shows network services running on the Honeyd server:

bash-2.05b# netstat -an
Active Internet connections (including servers)

Objective: Verify that the number of services that are running on the Honeyd
server has been minimized.

Objective: Verify that the Honeyd server has a stack protection mechanism.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 96

Proto Recv-Q Send-Q Local Address Foreign Address
(state)
ip 0 0 *.* *.* 255
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
tcp 0 116 10.192.168.10.22 10.192.250.64.1303
ESTABLISHED
tcp 0 0 127.0.0.1.587 *.*
LISTEN
tcp 0 0 127.0.0.1.25 *.*
LISTEN
tcp 0 0 *.22 *.*
LISTEN
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
(state)
udp 0 0 *.* *.*
udp 0 0 *.* *.*
udp 0 0 10.192.168.10.123 *.*
udp 0 0 127.0.0.1.123 *.*
udp 0 0 *.123 *.*
udp 0 0 *.514 *.*

Referring back to section 5.6.1, it can be seen that the services that were not
required have been eliminated. The remaining services are:

• SSH (tcp 22).
• SMTP messaging (tcp 25 and tcp 587).
• NTP (udp 123) - this was added in section 5.10.
• syslog (udp 514).

There are a couple of new lines that were not present when netstat was used
during one of the hardening steps to identify default services running on the
Honeyd server. The following entry is created by honeyd and was verified by
stopping the Honeyd process.

ip 0 0 *.* *.* 255

The following entries are created by arpd and honeyd and were verified by
stopping each of the processes in turn.

udp 0 0 *.* *.*
udp 0 0 *.* *.*

The following output from the ps command shows the processes running on the
system.

bash-2.05b# ps ax
 PID TT STAT TIME COMMAND

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 97

 1 ?? Is 0:00.01 /sbin/init
31910 ?? Is 0:00.02 syslogd: [priv] (syslogd)
21264 ?? I 0:00.03 syslogd -a /var/empty/dev/log
 7169 ?? Is 0:00.01 pflogd: [priv] (pflogd)
20433 ?? I 0:00.02 pflogd: [running] -s 116 -f /var/log/pflog
(pflogd)
22144 ?? Is 0:00.01 /usr/sbin/sshd
23471 ?? Is 0:00.03 sendmail: accepting connections (sendmail)
 9458 ?? Is 0:00.02 /usr/local/sbin/ntpd -p /var/run/ntpd.pid -x
21584 ?? Is 0:00.00 /usr/local/sbin/arpd 10.192.168.11
 1560 ?? Is 0:00.02 /bin/systrace -a /usr/local/bin/honeyd -f
/etc/honeyd.conf -p /usr/local/share/honeyd/nmap.prints
20360 ?? Ixs 0:00.01 /usr/local/bin/honeyd -f /etc/honeyd.conf -p
/usr/local/share/honeyd/nmap.prints -x /usr/local/sh
14250 ?? Is 0:00.01 cron
26788 C0 Is+ 0:00.01 /usr/libexec/getty Pc ttyC0

Referring back to section 5.6.4 in which the running processes were identified, it
can be seen that there is now only one virtual console process running. The
following processes are application processes that were added during
subsequent installation and hardening steps:

• ntpd
• arpd
• systrace
• honeyd

Based on the above it can be seen that the Honeyd server is not running any
unnecessary services or processes. Thus we have verified that the number of
running services has been minimized.

7.6 RMS #9

In order to verify that pf is enforcing the IP-based access control policy described
in section 5.11.1, it will be necessary to send some packets to and from the
Honeyd server and observe pf’s response by using tcpdump to listen on the
pflog0 interface.

The following session transcript shows the inbound access policy being tested:

bash-2.05b# tcpdump -nettti pflog0
tcpdump: WARNING: pflog0: no IPv4 address assigned
tcpdump: listening on pflog0
Jul 21 23:46:39.982432 rule 5/0(match): pass in on fxp0:
10.192.250.64.1634 > 10.192.168.10.22: S 1351363029:1351363029(0) win
16384 <mss 1375,nop,nop,sackOK> (DF)

Objective: Verify that pf is enforcing IP-based access control policy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 98

Jul 21 23:46:45.707092 rule 8/0(match): block in on fxp0:
10.192.168.62.59330 > 10.192.168.10.22: S 3503025196:3503025196(0) win
24820 <nop,nop,sackOK,mss 1460> (DF)
Jul 21 23:46:51.465153 rule 7/0(match): pass in on fxp0:
10.192.100.59.1761 > 10.192.168.11.23: S 1734502307:1734502307(0) win
16384 <mss 1375,nop,nop,sackOK> (DF)
Jul 21 23:47:28.769690 rule 8/0(match): block in on fxp0:
10.192.250.64.1636 > 10.192.168.10.25: S 1363625986:1363625986(0) win
16384 <mss 1375,nop,nop,sackOK> (DF)

Taking the output in chronological order, we see:

1. A successful connection attempt to the SSH service from one of the
management VLANs.

2. An unsuccessful connection attempt to the SSH service from a system
that is not on a management VLAN.

3. A packet destined for the virtual host simulated by Honeyd being allowed
to pass.

4. An unsuccessful connection attempt to a service (SMTP in this case).

The above observation verifies that pf is correctly enforcing the inbound access
control policy.

The following session transcript shows the outbound access policy being tested:

bash-2.05b# tcpdump -nettti pflog0 src 10.192.168.10
tcpdump: WARNING: pflog0: no IPv4 address assigned
tcpdump: listening on pflog0
Jul 22 00:25:25.471719 rule 9/0(match): pass out on fxp0: 10.192.168.10
> 10.192.168.1: icmp: echo request
Jul 22 00:25:53.211911 rule 33/0(match): block out on fxp0:
10.192.168.10 > 10.192.250.1: icmp: echo request
Jul 22 00:26:23.614177 rule 10/0(match): pass out on fxp0:
10.192.168.10.40216 > 10.192.168.1.22: S 3133436122:3133436122(0) win
16384 <mss 1460,nop,nop,sackOK,[|tcp]> (DF)
Jul 22 00:26:50.823816 rule 12/0(match): pass out on fxp0:
10.192.168.10.4155 > 10.192.172.25.25: S 2254067390:2254067390(0) win
16384 <mss 1460,nop,nop,sackOK,[|tcp]> (DF)
Jul 22 00:27:41.234784 rule 33/0(match): block out on fxp0:
10.192.168.10.25547 > 10.192.118.1: S 2297057967:2297057967(0) win
16384 <mss 1460,nop,nop,sackOK,[|tcp]> (DF)
Jul 22 00:29:29.333215 rule 33/0(match): block out on fxp0:
10.192.168.10.17032 > 10.192.168.1.23: S 3344643357:3344643357(0) win
16384 <mss 1460,nop,nop,sackOK,[|tcp]> (DF)
Jul 22 00:30:06.250589 rule 33/0(match): block out on fxp0:
10.192.168.10.26014 > 10.192.168.1.53: [|domain]
Jul 22 00:31:10.907693 rule 33/0(match): block out on fxp0:
10.192.168.10.5411 > 10.192.168.1.123: [len=5] v6 +1s server strat 101
poll 115 prec 116

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 99

Jul 22 00:032:15.779921 rule 33/0(match): block out on fxp0:
10.192.168.10.34297 > 10.192.168.1.514: udp 5

Taking the output in chronological order, we see:

1. A successful ping to a device on the same subnet as the Honeyd server.

2. An unsuccessful ping attempt to a device not on the same subnet as the
Honeyd server.

3. A successful connection attempt to the SSH service on another service.

4. A successful connection attempt to the SMTP service on the designated
SMTP server.

5. An unsuccessful connection attempt to the SMTP service of a server that
is not the designated SMTP server.

6. An unsuccessful connection attempt to a service (telnet in this case) that
is not allowed to be accessed from the Honeyd server.

7. An unsuccessful attempt to send a DNS packet to a server that is not a
designated DNS server.

8. An unsuccessful attempt to send an NTP packet to a server that is not a
designated NTP server.

9. An unsuccessful attempt to send a syslog packet to a server that is not a
designated syslog server.

It should be noted that the pf rules shown in section 5.11.1 do not log permitted
packets for DNS, NTP or syslog because such entries could unnecessarily bloat
the log files. Since they are not logged, they will not show up on the pflog0
device. However, as seen above, DNS, NTP and syslog packets that are not
permitted to leave the Honeyd server are logged.

The above observation verifies that pf is correctly enforcing the outbound access
control policy and concludes the verification of the IP-based access control
mechanism.

7.7 RMS #10

Objective: Verify that services offered by the Honeyd server run in a sandbox
or jail environment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 100

The only service offered by the Honeyd server is SSH, which is implemented
using OpenSSH version 3.8.1. In OpenBSD 3.5, OpenSSH has been
implemented with privilege separation17, which confines the unprivileged child
process to a chroot jail in /var/empty. Privilege separation can be seen in action
when the establishment of a remote session is in progress:

root 23722 ?? Ss 0:00.02 sshd: smith [priv] (sshd)
sshd 20225 ?? S 0:00.04 sshd: smith [net] (sshd)

Note that the child process (PID 20225) is running as the unprivileged sshd user
and the parent (PID 23722) is running as root.

Since the privilege separation mechanism makes it very difficult to compromise
the server by running the child process in a jail environment, it satisfies the
requirement of RMS #10.

7.8 RMS #14

Verification of RMS #8 showed that SSH is the only remote session service
active on the Honeyd server. Since SSH uses encryption, the requirement of
RMS #14 is satisfied.

7.9 RMS #17

As described in section 5.15, the Honeyd server implements a filesystem access
control mechanism with the system immutable (schg) flag which protects
important system configuration and executable files.

The setting of the schg flag can be verified using the ls -lo command:

bash-2.05b# ls -lo /sbin/
total 12912
-r-xr-xr-x 1 root bin schg 113324 Mar 29 11:54 ancontrol
-r-xr-xr-x 1 root bin schg 93196 Mar 29 11:52 atactl
-r-xr-xr-x 1 root bin schg 76012 Mar 29 11:52 badsect
-r-xr-xr-x 1 root bin schg 107660 Mar 29 11:52 brconfig
-r-xr-xr-x 1 root bin schg 135340 Mar 29 11:52 ccdconfig
-r-xr-xr-x 3 root bin schg 168684 Mar 29 11:51 chown

17 http://www.citi.umich.edu/u/provos/ssh/privsep.html

Objective: Verify that the file system has been implemented in a manner that
makes it difficult to make unauthorized changes to the system.

Objective: Verify that the need for remote sessions has been eliminated or
encrypted sessions are being used.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 101

.

.

To see whether it is effective we can try to replace an executable file with a trojan
version:

 bash-2.05b# mv evil_chown /sbin/chown
 override r-xr-xr-x root/bin for /sbin/chown? y
 mv: rename evil_chown to /sbin/chown: Operation not permitted

As can be seen, this attempt was unsuccessful.

We need to check that it is not possible to unset the schg flag while the system is
in multi-user mode (security level 2):

 bash-2.05b# chflags noschg chown
 chflags: chown: Operation not permitted

We should also make sure that it is not possible to return the system to security
level 0 where it would be possible to unset the schg flag:

 bash-2.05b# sysctl -w kern.securelevel=0
 sysctl: kern.securelevel: Operation not permitted

An alternative method of getting the system back to a lower security level would
be to check to see if the system administrator has forgotten to correctly set the
securelevel value in the /etc/rc.securelevel file. If the value is anything other
than 2, rebooting the server would put the Honeyd server into a lower security
level, although it would need to be at 0 to unset the schg flag. The following
session transcript shows the securelevel value in the rc.securelevel file:

 bash-2.05b# cat rc.securelevel | grep "securelevel="
 securelevel=2

Finally, let’s check that the /etc/rc.securelevel file has the schg flag set so
that it cannot simply be edited:

 bash-2.05b# ls -lo rc.securelevel
 -rw-r--r-- 1 root wheel schg 994 Mar 29 19:47 rc.securelevel

The above steps show that it would not be easy to change important files and
directories in the system. Therefore, the Honeyd server satisfies the
requirements of RMS #17.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 102

7.10 RMS #18

In section 5.14.4, “Checking for Changes”, the output from the file integrity
checker was shown after a change had been made to the /etc/pf.conf file. In
this example, changes to the size, modification time and MD5 and SHA-1 hashes
were detected. Thus, the Honeyd server satisfies the requirements of RMS #18.

7.11 RMS #20

In order to verify this Risk Mitigation Step, it is necessary to send a message to
syslogd on the Honeyd server and then check the /var/log/messages file on
one of the remote syslog servers. The following session transcripts show this
happening.

On the Honeyd server:

bash-2.05b$ sudo logger -p user.notice -t root remote syslog
verification
bash-2.05b$

On the remote syslog server:

-bash-2.05b$ tail -f messages
.
.
Jul 21 21:36:57 matrix.fake.world root: remote syslog verification

Thus it can be seen that the Honeyd server (and the supporting security
architecture) satisfy the requirements of RMS #20.

7.12 RMS #23

All of the backup and restore processes described in Section 6.7, “Backups and
Restores” are based on tried and trusted processes that we have been using in

Objective: Verify that the file integrity checker is able to detect changes to
important system files.

Objective: Verify that log data is sent from the Honeyd server to a remote
syslog server.

Objective: Verify that a backup and restore process has been implemented.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Verification of OS
Configuration

 103

our production environment for several years. All the procedures have been
thoroughly tested to ensure that they work, including the bare-metal restore.

7.13 RMS #24

A side effect of the verification of RMS #20 was that Swatch generated an alert in
response to an unknown message appearing in the /var/log/messages file:

Subject: Message from Swatch
 Date: Wed, 21 Jul 2004 21:37:42 +0000 (GMT)
 From: Charlie Root <root@loghost1.fake.world>
 To: secops@fake.world

Jul 21 21:36:57 matrix.fake.world root: remote syslog verification

In addition, section 6.4, “Monitoring”, summarized the monitoring and alerting
mechanisms that have been implemented on the Honeyd server. Examples of
these alerts were included at the appropriate points within section 5, “Steps to
Install and Harden the Server”.

7.14 RMS #25

The operation of the syslog and SMTP heartbeats was verified in section 5.13,
“System Heartbeat”.

- END OF SECTION -

Objective: Verify that alerts are sent to the Operations Group.

Objective: Verify that regular heartbeats are sent from the Honeyd server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith References

 104

8 References

1. Oudot, Laurent. “Fighting Internet Worms with Honeypots.” Oct. 23, 2003.
URL: http://www.securityfocus.com/infocus/1740 (Jul. 29, 2004).

2. Honeyd Homepage.

URL: http://www.citi.umich.edu/u/provos/honeyd/ (Jul. 29, 2004).

3. The Honeynet Project Homepage.
URL: http://project.honeynet.org/ (Jul. 29, 2004).

4. SecurityFocus Honeypots mailing list.

URL: http://www.securityfocus.com/archive/119 (Jul. 29, 2004).

5. Spitzner, Lance. “Honeypot Definition - Almost There!” May 23, 2003.
URL: http://www.securityfocus.com/archive/119/322363/2003-05-22/2003-
05-28/0 (Jul. 29, 2004).

6. OpenBSD supported hardware platforms.

URL: http://www.openbsd.org/plat.html (Jul. 29, 2004).

7. OpenBSD Ports.
URL: http://www.openbsd.org/ports.html (Jul. 29, 2004).

8. Honeyd Remote Virtual Host Detection Vulnerability.
URL: http://www.securityfocus.com/bid/9464 (Jul. 29, 2004).

9. Arpd.
URL: http://www.honeyd.org/tools.php (Jul. 29, 2004).

10. OpenBSD online manual pages.
URL: http://www.openbsd.org/cgi-bin/man.cgi (Jul. 29, 2004).

11. OpenBSD afterboot manual page.
URL: http://www.openbsd.org/cgi-bin/man.cgi?query=afterboot (Jul. 29,
2004).

12. OpenBSD 3.5 errata and patch list.
URL: http://www.openbsd.org/errata.html (Jul. 29, 2004).

13. “Applying patches in OpenBSD.” OpenBSD FAQ.
URL: http://www.openbsd.org/faq/faq10.html#Patches (Jul. 29, 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith References

 105

14. RFC 2476 - Message Submission.
URL: http://www.faqs.org/rfcs/rfc2476.html (Jul. 29, 2004).

15. Systrace Homepage.
URL: http://www.citi.umich.edu/u/provos/systrace/ (Jul. 29, 2004).

16. OpenBSD mtree manual page.
URL: http://www.openbsd.org/cgi-bin/man.cgi?query=mtree (Jul. 29,
2004).

17. Provos, Niels. “Privilege Separated OpenSSH.” Aug. 9, 2003.
URL: http://www.citi.umich.edu/u/provos/ssh/privsep.html (Jul. 29, 2004).

18. Palmer, Brandon. Nazario, Jose. “Secure Architectures with OpenBSD”.
Addison-Wesley, April 2004.

19. Preston, W. Curtis. “Unix Backup & Recovery.” O’Reilly & Associates Inc.,
November 1999.

- END OF SECTION -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 106

Appendices

 Appendix A: Systrace Policies

 Appendix B: Automation Scripts

 Appendix C: Public-Key Authentication with OpenSSH

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 107

Appendix A: Systrace Policies

See section 5.12.4 for details relating to the use of these systrace policies.

Honeyd

Policy: /usr/local/bin/honeyd, Emulation: native
 native-issetugid: permit
 native-mprotect: permit
 native-mmap: permit
 native-__sysctl: permit
 native-fsread: filename eq "/var/run/ld.so.hints" then
permit
 native-fstat: permit
 native-close: permit
 native-fsread: filename eq "/usr/lib/libc.so.30.3" then
permit
 native-read: permit
 native-mquery: permit
 native-fsread: filename eq "/usr/lib/libpcap.so.2.1" then
permit
 native-fsread: filename eq "/usr/lib/libm.so.1.0" then
permit
 native-munmap: permit
 native-sigprocmask: permit
 native-fsread: filename eq "/etc/malloc.conf" then permit
 native-break: permit
 native-write: permit
 native-fsread: filename eq "/dev/arandom" then permit
 native-gettimeofday: permit
 native-fsread: filename eq "/usr/share/zoneinfo/GMT" then
permit
 native-getpid: permit
 native-writev: permit
 native-socket: sockdom eq "AF_UNIX" and socktype eq
"SOCK_DGRAM" then permit
 native-fcntl: permit
 native-connect: sockaddr eq "/dev/log" then permit
 native-sendto: true then permit
 native-socket: sockdom eq "AF_INET" and socktype eq
"SOCK_DGRAM" then permit
 native-fsread: filename eq
"/usr/local/share/honeyd/xprobe2.conf" then permit
 native-fsread: filename eq
"/usr/local/share/honeyd/nmap.assoc" then permit
 native-fsread: filename eq
"/usr/local/share/honeyd/nmap.prints" then permit
 native-fsread: filename eq
"/usr/local/share/honeyd/pf.os" then permit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 108

 native-ioctl: permit
 native-fswrite: filename eq "/dev/bpf0" then permit
 native-fswrite: filename eq "/dev/bpf1" then permit
 native-fswrite: filename eq "/dev/bpf2" then permit
 native-fswrite: filename eq "/dev/bpf3" then permit
 native-fswrite: filename eq "/dev/bpf4" then permit
 native-fswrite: filename eq "/dev/bpf5" then permit
 native-fsread: filename eq "/etc/honeyd.conf" then permit
 native-fsread: filename eq "/var/run/honeyd.sock" then
permit
 native-fswrite: filename eq "/var/run/honeyd.sock" then
permit
 native-socket: sockdom eq "AF_UNIX" and socktype eq
"SOCK_STREAM" then permit
 native-setsockopt: permit
 native-bind: sockaddr eq "/var/run/honeyd.sock" then
permit
 native-listen: permit
 native-setrlimit: permit
 native-getrlimit: permit
 native-socket: sockdom eq "AF_INET" and socktype eq
"SOCK_RAW" then permit
 native-getsockopt: permit
 native-fswrite: filename eq "/var/run/honeyd.pid" then
permit
 native-fork: permit
 native-exit: permit
 native-setsid: permit
 native-fswrite: filename eq "/dev/null" then permit
 native-dup2: permit
 native-chmod: filename eq "/var/run/honeyd.pid" and mode
eq "644" then permit
 native-setgroups: permit
 native-setregid: permit
 native-setegid: gid eq "32767" then permit
 native-setgid: gid eq "32767" then permit
 native-seteuid: uid eq "32767" and uname eq "nobody" then
permit
 native-setuid: uid eq "32767" and uname eq "nobody" then
permit
 native-getgid: permit
 native-getegid: permit
 native-getuid: permit
 native-geteuid: permit
 native-setuid: uid eq "0" and uname eq "root" then permit
 native-seteuid: uid eq "0" and uname eq "root" then
permit
 native-setgid: gid eq "0" then permit
 native-setegid: gid eq "0" then permit
 native-sigaction: permit
 native-poll: permit
 native-socketpair: permit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 109

 native-execve: filename eq
"/usr/local/share/honeyd/scripts/router-telnet.pl" and argv eq
"/usr/local/share/honeyd/scripts/router-telnet.pl" then permit
 native-sigreturn: permit
 native-wait4: permit

router-telnet.pl

Policy: /usr/local/share/honeyd/scripts/router-telnet.pl,
Emulation: native
 native-issetugid: permit
 native-mprotect: permit
 native-mmap: permit
 native-__sysctl: permit
 native-fsread: filename eq "/var/run/ld.so.hints" then
permit
 native-fstat: permit
 native-close: permit
 native-fsread: filename eq "/usr/libdata/perl5/i386-
openbsd/5.8.2/CORE" then permit
 native-fcntl: permit
 native-getdirentries: permit
 native-lseek: permit
 native-fsread: filename eq "/usr/lib/libc.so.30.3" then
permit
 native-read: permit
 native-mquery: permit
 native-fsread: filename eq "/usr/lib/libutil.so.9.0" then
permit
 native-fsread: filename eq "/usr/lib/libm.so.1.0" then
permit
 native-fsread: filename eq "/usr/lib/libperl.so.8.1" then
permit
 native-munmap: permit
 native-sigprocmask: permit
 native-fsread: filename eq "/etc/malloc.conf" then permit
 native-break: permit
 native-sigaction: permit
 native-getuid: permit
 native-geteuid: permit
 native-getgid: permit
 native-getegid: permit
 native-fsread: filename eq "/dev/arandom" then permit
 native-gettimeofday: permit
 native-fsread: filename eq
"/usr/local/share/honeyd/scripts/router-telnet.pl" then permit
 native-getpid: permit
 native-write: permit
 native-setitimer: permit
 native-exit: permit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 110

Appendix B: Automation scripts

See sections 6.5 and 6.6 for details relating to these scripts.

generate-fic-spec

#!/bin/sh -

This script should be run with the system in multi-user
mode with filesystem access control disabled.

PATH=/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/sbin

umask 077

DIR=`mktemp -d /tmp/_mtree.XXXXXXXXXX` || exit 1

trap 'rm -rf $DIR; exit 1' 0 1 2 3 13 15

echo "Running File Integrity Checker..."
/bin/sh /usr/local/sbin/fic

echo "Check that file changes are as expected before proceeding"
echo "File changes okay? (y/n): \c"
read ok
echo

if ["$ok" = "n"]; then
 exit 1
fi

echo "Unmounting floppy disk..."
umount /floppy

echo "Disable write protection on floppy disk"
echo "Hit enter to continue \c"
read cont
echo

echo "Creating new filesystem on floppy disk..."
newfs /dev/rfd0a

echo "Generating new mtree specification files..."
mtree -cx -K md5digest,sha1digest -p / > $DIR/root.spec
mtree -cx -k nlink,size,link -K md5digest,sha1digest -p /dev \
> $DIR/dev.spec
mtree -cx -K md5digest,sha1digest -p /usr > $DIR/usr.spec
mtree -cx -K md5digest,sha1digest -p /usr/local \
> $DIR/usr_local.spec
mtree -cx -K md5digest,sha1digest -p /var/cron/tabs \
> $DIR/crontab.spec

echo "Modifying root.spec..."

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 111

/usr/local/sbin/mod-mtree-spec $DIR/root.spec > \
$DIR/root.spec.new
mv $DIR/root.spec.new $DIR/root.spec

echo "Modifying crontab.spec..."
/usr/local/sbin/mod-mtree-spec $DIR/crontab.spec > \
$DIR/crontab.spec.new
mv $DIR/crontab.spec.new $DIR/crontab.spec

echo "Generating SHA-1 hashes and storing remotely..."
cd $DIR
sha1 root.spec | ssh -i /root/.ssh/backup_rsa backup@vault.fake.world \
dd of=matrix_root.spec.sha1
sha1 dev.spec | ssh -i /root/.ssh/backup_rsa backup@vault.fake.world \
dd of=matrix_dev.spec.sha1
sha1 usr.spec | ssh -i /root/.ssh/backup_rsa backup@vault.fake.world \
dd of=matrix_usr.spec.sha1
sha1 usr_local.spec | ssh -i /root/.ssh/backup_rsa \
backup@vault.fake.world dd of=matrix_usr_local.spec.sha1
sha1 crontab.spec | ssh -i /root/.ssh/backup_rsa \
backup@vault.fake.world dd of=matrix_cron.spec.sha1

echo "Compressing spec files..."
gzip -9 *.spec

echo "Mounting floppy disk..."
mount /dev/fd0a /floppy

mkdir -p /floppy/mtree

echo "Moving spec files to floppy disk..."
mv $DIR/*.gz /floppy/mtree/

echo "Unmounting floppy disk..."
umount /floppy

echo "Enable write protection on the floppy disk"
echo "Hit enter to continue \c"
read cont
echo

echo "Mounting floppy disk..."
mount /dev/fd0a /floppy

echo "Running File Integrity Checker..."
/bin/sh /usr/local/sbin/fic

echo "Check that no file changes are flagged"
echo "Now update the Perl monitoring script on the Ops Console"

echo "Done"

exit 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 112

fac-on

#!/bin/sh -

This script should be run to enable the filesystem access
control to prevent authorized changes to important system
files.

PATH=/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/sbin

umask 077

echo "WARNING: File system access control can only be disabled"
echo "from the console"
echo "Do you want to continue? (y/n): \c"
read cont
echo

if ["$cont" != "y"]; then
 exit 1
fi

echo "Editing /etc/rc.securelevel..."
cd /etc
ex rc.securelevel <<- EOF
%s/securelevel=1/securelevel=2/
w
q
EOF

echo "Setting the schg flag on important system files..."
chflags schg /.cshrc
chflags schg /.profile
chflags -R schg /.systrace
chflags -R schg /altroot
chflags -R schg /bin
chflags -R schg /boot
chflags schg /bsd
chflags -R schg /etc
chflags -R schg /root
chflags -R schg /sbin
chflags -R schg /usr
chflags -R schg /var/cron/tabs

echo "Raising the security level to 2..."
sysctl -w kern.securelevel=2

exit 0

fac-off

#!/bin/sh -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 113

This script should be run with the system in single user
mode to disable filesystem access control so that
authorized changes can be made to important system files.

PATH=/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/sbin

umask 077

echo "WARNING: File system access control will be disabled"
echo "Do you want to continue? (y/n): \c"
read cont
echo

if ["$cont" != "y"]; then
 exit 1
fi

echo "Disabling the schg flag on important system files..."
chflags noschg /.cshrc
chflags noschg /.profile
chflags -R noschg /.systrace
chflags -R noschg /altroot
chflags -R noschg /bin
chflags -R noschg /boot
chflags noschg /bsd
chflags -R noschg /etc
chflags -R noschg /root
chflags -R noschg /sbin
chflags -R noschg /usr
chflags -R noschg /var/cron/tabs

echo "Editing /etc/rc.securelevel..."
cd /etc
ex rc.securelevel <<- EOF
%s/securelevel=2/securelevel=1/
w
q
EOF

exit 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 114

Appendix C: Public-Key Authentication with OpenSSH

Public-key authentication enables remote access to a server without the need to
supply a UNIX account password. It uses two keys: a private key that is kept in a
secure place on the client system and a public key that is kept on the remote
server that needs to be accessed.

Ideally, the private key should be protected with a pass phrase. However, since
the objective is to automate SSH access by eliminating the need to supply a
password, no pass phrase will be used for the private key on the Honeyd server.
This is not a big issue because, as already mentioned, access to a remote
system is only possible if that system has the Honeyd server’s public key on it.
For this to happen, the cooperation of the remote system’s administrator is
required.

In order to set up public-key authentication, these steps should be followed:

1. On the client system (i.e. the Honeyd server), a private / public RSA key
pair needs to be generated by the root user:

bash-2.05b# cd /root/.ssh
bash-2.05b# ssh-keygen -b 1024 -t rsa -f backup_rsa -N ""
Generating public/private rsa key pair.
Your identification has been saved in backup_rsa.
Your public key has been saved in backup_rsa.pub.
The key fingerprint is:
1c:99:3c:53:47:8f:5d:00:77:a8:1f:8c:04:c7:6b:4c
root@matrix.fake.world.

In the session transcript above, a 1024 bit key pair has been generated
and stored in the /root/.ssh directory. The private key file is
backup_rsa and the public key file is backup_rsa.pub.

2. On the remote backup system, the system administrator needs to add the
backup_rsa.pub key to the ~/backup/.ssh/authorized_keys file.

3. Access to the remote server needs to be tested:

bash-2.05# ssh -i /root/.ssh/backup_rsa vault.fake.world
The authenticity of host ‘vault.fake.world (10.192.180.50)’ can’t
be established.
RSA key fingerprint is
d0:d3:ed:9c:e1:4f:99:1c:a3:f0:62:35:1a:b0:ee:35
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘ vault.fake.world,10.192.180.50’ (RSA)
to the list of known hosts.
bash-2.05#

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nicholas J. Smith Appendices

 115

4. Create a file called config in /root/.ssh and add strict host key checking to
it as follows:

echo “StrictHostKeyChecking yes” > /root/.ssh/config

This will prevent the Honeyd server from being able to connect to
unknown hosts.

- END OF DOCUMENT -

