
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Secure Network Configuration Management
for Linux based Routers

GIAC Certified UNIX Security Administrator (GCUX)
Practical Assignment Version 3.0 - Option 1

Ronald Young
March 14, 2005

Las Vegas, NV (10/04) Course

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Abstract 1

Initial Environment 2

Hardware Description 2
Software Description 3
Physical and Network Environment 8

New Software Service 9

Issues introduced by the new boot method 10
Implementation 11
Creating a secured development environment 13

Initial Installation of Base operating system 13
Installation of Required Development Packages 15

Creating the Production Boot Image 21
Configuring the Image Server 24
Creating the Initial Boot Image 25
Generating Passwords 29
Verifying Correct Installation 30
Ongoing Maintenance and Auditing plan 32

Summary 33

References 33

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3

Abstract

This paper presents a detailed implementation and operation plan for remote
configuration management of a research network infrastructure. GIAC University is
currently involved with several large-scale research projects that utilize individually
identifiable medical records. Medical records are considered protected data by the
U.S. Health Insurance Portability and Accountability Act (HIPAA) and steps must be
taken to insure their confidentiality. Until now, the University has had complete control
over the computing infrastructure for its projects. Recently, a joint partnership
between the university and a private company (ACME Industries) was awarded a
federal grant to computerize a collection of historical medical information. This
collection will be used for ongoing medical surveillance of individual patients and
other industrial health applications. Users of these applications will be located
nationwide and will access the data via a private network as well as the Internet.

Data security for previous projects was achieved by a combination of physical and
network/host-based security measures. The application systems were located in a
remotely monitored secured room with card-key access. Network access was
controlled by a traditional set of routers, firewalls, and intrusion detection systems
which were also placed in secure access-controlled locations. All network traffic was
required to be transferred in an encrypted form using either of the SSH (secure shell)
or SSL (secure session layer) protocols. Responsibility for network and data security
resided with GIAC University.

Access to the data and application programs by users was managed by issuing
unique usernames and passwords to each authorized user. A password is only valid
for a limited time, after which it must be changed by the user. There was also a
documented standard for selecting a password which is enforced by the password
change utility.

With the addition of the ACME Company, this security model must be extended to
protect the computer and network equipment located at their offices. Because of
limitations in the physical plant of the building housing the ACME offices, the network
equipment must be placed in a location that could be possibly accessed by ACME
staff and visitors. An added complication is that the network security staff is stationed
at the main location instead of the ACME offices.

The rest of this paper consists of the following sections:

A description of the environment of the current network and application security •
infrastructure. A detailed description of the hardware, software, and network
environment focusing on two specific systems. One functioning as a core network
router and the other as a network management system.

A proposed change to the network infrastructure to help minimize the risk of a •
compromise of the network resulting from an attack on the core router originating

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

from the ACME offices.
An analysis of the existing security issues that the proposed change is intended to •
address. A discussion of the new security issues introduced by the proposed
change as well as steps that can be taken to mitigate them.

A detailed description of how to install and configure the proposed change.•

A procedure to verify the initial installation.•

A periodic maintenance and audit procedure to verify that the change continues to •
function in an effective and secure manner.

Finally, a summary and discussion of areas for possible future research and •
enhancements are presented.

You will also notice throughout the rest of this document that there are paragraphs
that begin with a number followed by (___). These form a detailed checklist that can
be used to install and configure the new boot service described. You can place a
checkmark or initials inside of the (___) as each step has been completed.

Initial Environment

This section describes the initial hardware, software, and network environment that is
in place before the proposed changes are made. The justification for choosing a
particular operating system distribution and configuration options is also presented. In
addition, we will also describe the security policies that govern physical and network
access by authorized users.

Hardware Description

The network infrastructure is made up of multiple commodity (32-bit Intel processor
based) systems. The actual configuration of each system depends on its function,
load, and exposure to potential threats. For the purposes of this document, we will
describe two configurations: a core network router and the network management
console used to monitor and control the network. Commodity systems are used
instead of specialized equipment like Cisco routers and PIX firewalls because of their
significantly lower cost and additional flexibility in configuration. GIAC University
prefers to use Dell rack mountable servers because of the wide choice of
configurations and the existence of a volume purchasing agreement with Dell.

The typical hardware configuration of core network router is a rack mountable Dell
PowerEdge 2650 system. The base system consists of the chassis, dual 2.8 GHz
Xeon processor (w/ SMT “hyper threading” capability), a PERC/3 SCSI (a Dell re-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

1 NOTE: The network monitoring and IDS systems are in addition to a dedicated set of IDS servers used to monitor an
internal firewall protecting the main database server.
2 For the Intel PRO series interfaces, Linux uses the e1000 and OpenBSD uses the em drivers.
3 Gentoo Linux is a source code based distribution that is very customizable. The project home page is located at
http://gentoo.org.
4 The Gentoo distribution uses the concept of “stages”. Stage1 builds everything from scratch, stage2 builds the system
from a bootstrapped “semi-compiled” state, and stage3 is similar to a regular Linux distribution in that almost everything
in the system is loaded from precompiled binaries. See http://www.gentoo.org/doc/en/handbook-
x86.xml?part=1&chap=2 for more information.

badged Adaptec) Ultra 320 RAID controller, two 38GB disk drives, and two on-
board 10/100/1000mb/s Ethernet NICs. Additional network interfaces are added as
necessary. In this case, the router is one of a pair of routers that form a dedicated
gigabit Ethernet (gigE) fiber link. The interface for the fiber connection is an Intel
PRO/1000MF NIC (Part #PWLA8490LX). Two additional 10/100/1000mb/s interfaces
are made available by adding an Intel PRO/1000MT Dual Port card (Part
#PWLA8492MT). It can be argued that this machine configuration is overkill, but
having excess capacity allows us to minimize the risk of the network failing because
of a denial of service attack that overloads the router. It also allows us to run several
internal intrusion detection sensors and other network monitoring software without
having to use additional dedicated systems1. The slightly increased risk of having the
monitoring software on the routers is offset by the increased hardware costs for
separate systems.

Intel was chosen as the add-on network cards since their PRO/1000 line of cards
utilize a common network driver.2 Also, using Intel cards allows for a “drop-in” upgrade
to 10GbE on our network fiber links since the PRO/10000 cards also use the same
driver as the existing PRO/1000 cards.

The hardware configuration for the network management system is compatible with
the above. It is a Dell PowerEdge 750 1U rack mountable system. The system
consists of a single 2.4 GHz processor, 512MB ram, 40GB SATA disk, and 2 onboard
network interfaces.

Software Description

The network infrastructure uses a custom Linux (Gentoo-based)3 distribution. Why
choose Gentoo Linux another Linux or *BSD distribution? The primary reason was two-
fold: Gentoo Linux is one of the few distributions that utilize a “build from source”
philosophy. The system installer can build the entire operating system (including
kernel, compilers, and libraries) from source code4. This makes hardening the system
much easier and less error-prone because:

We are sure that the system can be rebuilt from known sources and patches, •
since this is how the system was first installed.
One of the techniques used in hardening a system is the removal of unused •
packages. Since Gentoo starts as a minimal system of less than 60 packages, it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

5 The latest installation document for Gentoo can be found at http://www.gentoo.org/doc/en/handbook/index.xml.

is much easier to insure that the system is as small as possible.
Also since the system is built from source, it is very easy to control the options •
used to compile and install a package. For example, to include SSL support for a
Gentoo system, the admin only needs to add the string “ssl” to an environment
variable and “remerge” the system

.
The Gentoo system management paradigm provides a rich set of command line •
utilities that allows the system administrator to easily control system services, i.e.
“rc-update add sshd default” configures the system to have the SSH daemon
automatically during a normal boot.

The Gentoo distribution has excellent installation instructions available on their web
site.5 Gentoo also has a wide selection of online message forums available. Because
of their high quality, please refer to them for general installation information.
Throughout the remainder of this document, only installation information that is
directly relevant to system security will be presented.

Before the freshly installed server is connected to the network, additional steps must
be taken to harden it. This additional hardening process varies by the OS, but the
results are the same: to help protect the system from threats from hostile people on
the Internet or even unintentional damage from authorized users.

Hardening a Gentoo Linux system is easier in the sense that throughout the
installation process the installer has control over which software packages and what
options they are installed with. This is different from a typical “mainstream” Linux
distribution like Red Hat, where the installer is forced to choose from a small list of
vendor determined installation configurations (i.e. minimal, desktop, developer, or
server). Then according to this option, numerous precompiled packages are installed.
To harden this type of system requires the installer to inspect each of the packages
loaded on the system and manually remove the dangerous or unnecessary ones.
Once these packages have been removed, the remaining ones may still need
additional work to securely configure them, or even need to be recompiled from
source.

The following example shows the normally running processes for the Gentoo Linux
core router after hardening. The number of “processes” shown is somewhat
misleading, they are not all true processes. The command names enclosed in
brackets (i.e. [migration/0]) are not real processes but instead are “kernel threads”.
They are built into the kernel and only show up in the process table for scheduling
purposes.

PID TTY STAT TIME COMMAND
 1 ? S 0:01 init [3]
 2 ? S 0:00 [migration/0]
 3 ? SN 0:00 [ksoftirqd/0]
 4 ? S 0:00 [migration/1]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

 5 ? SN 0:00 [ksoftirqd/1]
 6 ? S 0:00 [migration/2]
 7 ? SN 0:00 [ksoftirqd/ 8 ? S 0:00

[migration/3]
 9 ? SN 0:00 [ksoftirqd/3]

 10 ? S< 0:00 [events/0]
 11 ? S< 0:00 [events/1]
 12 ? S< 0:00 [events/2]
 13 ? S< 0:00 [events/3]
 14 ? S< 0:00 [khelper]
 15 ? S< 0:00 [kacpid]
 44 ? S< 0:00 [kblockd/0]
 45 ? S< 0:00 [kblockd/1]
 46 ? S< 0:00 [kblockd/2]
 47 ? S< 0:00 [kblockd/3]
 48 ? S 0:00 [khubd]
 58 ? S 0:00 [kirqd]
 59 ? S 0:00 [pdflush]
 60 ? S 0:00 [pdflush]
 61 ? S 0:00 [kswapd0]
 62 ? S< 0:00 [aio/0]
 63 ? S< 0:00 [aio/1]
 64 ? S< 0:00 [aio/2]
 65 ? S< 0:00 [aio/3]
650 ? S 0:00 [kseriod]
672 ? S 0:00 [scsi_eh_0]
673 ? S 0:00 [aacraid]
677 ? S< 0:00 [ata/0]
678 ? S< 0:00 [ata/1]
679 ? S< 0:00 [ata/2]
680 ? S< 0:00 [ata/3]
691 ? S 0:00 [khpsbpkt]
697 ? S 0:00 [kjournald]
826 ? Ss 0:00 /sbin/devfsd /dev

4991 ? S 0:00 [kjournald]
4992 ? S 0:00 [kjournald]
4993 ? S 0:00 [kjournald]
4994 ? S 0:00 [kjournald]
5705 ? Ds 1:03 /usr/sbin/syslogd –m 0 –r
5709 ? Ss 0:03 /usr/sbin/klogd –c 3 -2
5845 ? Ss 0:00 /usr/sbin/sshd
5863 tty1 Ss+ 0:00 /sbin/agetty 38400 tty1 linux
5864 ? Rs 0:00 sshd: root@pts/0
5870 pts/0 Ss 0:00 -bash
5874 pts/0 R+ 0:00 ps agx

In order to reliably secure a UNIX system, the security administrator must have a
thorough understanding of what system components are necessary for proper
operation and their function. Here is a brief description of each of the processes
shown above:

init (pid 1): this process is started by the kernel during the system boot process. It •
begins execution after the kernel has activated essential operating system
functions (i.e. memory management, loaded device drivers, etc). Init is the parent
process of all other processes running in the system. If it aborts, the system will
crash. It is also the first process that executes using a normal user environment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

(i.e. it can use the normal C runtime library).
migration (pids: 2, 4, 6, and 8): there is a migration thread active for each enabled•
CPU found in the system. These threads manage the migration of processes
between CPUs.
Ksoftirqd (pids: 3, 5, 7, and 9): like the migration threads, there is a ksoftirqd •
thread for each active CPU. They manage the distribution of hardware interrupt
requests for processes that are running on the associated CPU. Kirqd (pid: 58)
services the actual hardware interrupts for distribution to the appropriate ksoftirqd
instance.
events (pids 10-13) are kernel threads that control the dispatching of operating •
system signals and events to processes. These events can indicate possible error
conditions (i.e. memory access errors SIGSEGV, floating point errors SIGFPE,
user or program interrupts and aborts SIGINT, SIGQUIT, and SIGABRT). It can also
report interval timer expirations (i.e. waiting time for keyboard input has elapsed).
khelper (pid: 14) is a kernel thread that helps manage the loading and unload of •
system modules for user mode programs. It replaces the kerneld daemons found
in earlier Linux versions.
kacpid (pid: 15) manages the Advanced Configuration and Power Interface •
hardware found on most modern computer systems. ACPI can monitor things like
system temperature, battery status, etc. It has limited usefulness for always-on
servers and can be removed by rebuilding the kernel.
khubd (pid: 48) manages the plugging and unplugging of USB devices.•
kblockd (pids: 44-47) manages the block device buffer cache for each active CPU.•
pdflush (pids: 49-60) works with kblockd to write blocks found in the buffer cache •
to disk.
kswapd0 (pid: 61) manages the swapping of processes into and out of memory.•
aio (pids: 62-65) controls asynchronous I/O for each CPU. Asynchronous I/O is •
normally character oriented (i.e. serial devices and network traffic).
kseriod (pid: 650) communicates with the hardware drivers for serial devices.•
scsi_eh_0 (pid: 672) is the kernel thread that handles error and timeout handling •
for SCSI devices.
aacraid (pid: 673) is the hardware driver for the system’s SCSI RAID controller.•
ata (pids: 677-680) controls ATA/IDE devices (i.e. CD-rom and IDE disk drives).•
khpsbpkt (pid: 691) handles communication with “high-performance serial bus”•
devices like IEEE 1394 (Firewire).
kjournald (pids: 697, 4991-4994) manages the journal log file for ext3 based file •
systems.
/sbin/devfsd (pid: 826) is a user mode daemon that is used by the system to •
manage the Linux Device Filesystem (devfs). Devfs allows for the dynamic
creation and removal of node entries for things like USB and Firewire devices
/usr/sbin/syslogd and /usr/sbin/klogd (pids: 5705 and 5709) daemons that allow •
processes and the kernel to send messages to log files.
/usr/sbin/sshd is a controlling daemon that accepts incoming network requests to •
establish a secure communication method for terminal sessions. For each
connection another copy of the daemon is created (pid: 5864). The user of that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

terminal session is using the bash shell (pid: 5870) and is executing the “ps”
command (pid: 5874).
/sbin/agetty (pid: 5863) allows terminals connected to a serial interface to connect •
the system. It will configure the serial port for communications (i.e. set baud rate,
parity, and terminal type) and then prompt for a username. It then executes the
login program to prompt for a password and to verify the user information.

In addition to the above processes, management of information stored on magnetic
media (hard drivers) has a large impact on system security. Steps must be taken to
minimize the possibility of unauthorized access or modification of information stored
on the system (both programs and data). UNIX-like systems store information on
hard drives using the concepts of files and directories. A directory contains the name
of one or more files or other directories. A file may contain data or programs or a link
into the operating system that points to a device (i.e. /dev/tty1 refers to the first serial
port on the system). Each directory and file has an “owner” and what operations (read,
write, execute) are allowed by various groups of users.

A first step to accomplish this is to partition the disk storage into multiple file systems.
Each file system holds a specific set of files with their own protection requirements.
The following table shows the current file system layout for the core router.

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda5 489992 33380 431312 8% /
/dev/sda6 988212 16428 921584 2% /home
/dev/sda7 3945128 1276488 2468232 35% /usr
/dev/sda9 1976492 51660 1824428 3% /var
/dev/sda8 19694836 34140 18660252 1% /var/tmp
none 257436 0 257436 0% /dev/shm

The root file system (/) contains files and directories that are critical to system startup
and operation. Only the system administrator should be able to create, modify, or
delete files. The home files system (/home) contains the files and directories for
system users. Each user should have their own home directory such that they are the
only ones that can access or modify files contained inside of it. Only the system
administrator should be able to create new home directories. The /usr file system
contains the programs and data files for packages installed on the system, this is
where things like compilers, libraries, and utilities are located. Again, only the system
administrator should be able to add or modify information in /usr. It should be
read/execute only for all other users. System information that needs to be updated is
stored on the /var file system, this is where things like mail messages, system
information logs, and other similar files are stored. The permissions on these files and
directories show prevent normal users from access or modification except under the
control of trusted system utilities. An area to hold temporary files for normal users is
available in /var/tmp. While any normal users may use this area, files and directories
are normally protected so that only the file owner may access or modify them.
The last entry allows the GNU C-library to implement POSIX shared-memory.

In addition to the above, there are several others that are used by the system. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

boot (/boot) file system is normally not available when the system is running. It
contains the configured operating system kernel and boot loader that is loaded when
the system is booted. Only the system administrator should be able to modify (or even
read) information contained on /boot.

The remaining file systems are used by user mode programs to communicate with
the operating system: /dev, /proc, /sys, /dev/pts, and /proc/bus/usb. /dev is used by
the system and /sbin/devfsd to create special file entries to allow users to access
hardware devices. The /proc and /sys file systems allows users and programs to
query and possibly change parameters used by the operating system kernel. The
system uses these special file systems (known as pseudo file systems) used so that
the normal protection methods can apply to them.

Physical and Network Environment

Physical access to the network equipment located in the main computer room at
GIAC University is strictly controlled. Only the staff members whose job functions
require them to be inside of the computer room are permitted access. This access is
controlled by the presence of magnetic badge readers. Access by anyone else
requires that they by escorted by an authorized staff member whenever they are
inside of the controlled area. The room also has an alarm system that monitors all of
the doors and windows of the room. Both the badge reader and alarm system are
remotely monitored by an external agency (the U.S. Department of Energy).

Access to network and computer resources are controlled by a combination of
network and host based protection mechanisms. The network protection consists of a
set of firewalls and intrusion detection sensors deployed throughout the network.
Traffic passing into or out of the network to the Internet is managed by a gateway
(bastion) host. Authorized access to the network and its hosts are controlled by users
entering a username and password. Passwords must conform to a minimal security
standard: be at least 8 characters in length, contain at least 2 upper case letters, one
special character, and 2 numeric digits. They must be changed once every six
months, and cannot be “too” similar to previously used passwords.

Every device and host connected on the network must display a warning message
whenever a connection occurs. The content of this message is determined by the
granting agency for the project. The message for the current project is:

NOTICE TO USERS

This is a Federal computer system and is the property of the United States government. It is for
authorized use only. Users (authorized or unauthorized) have no explicit or implicit expectation of
privacy. Any or all users of this system and all files on this system may be intercepted, monitored,
recorded, copied, audited, inspected, and disclosed to authorized site, Department of Energy, and
law enforcement personnel, as well as authorized officials of other agencies, both domestic and
foreign.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

6 It is important to remember that it is impossible to fully secure a computer system if an attacker can gain physical
access to it. The most that we can hope for is to be able to detect and mitigate such attempts.
7 PXE stands for Pre-boot Execution Environment. It is a standard developed by PC based hardware and software
vendors to allow PCs to boot over the network.
8 Etherboot is an open source project that provides ROM images suitable for installation on network interface cards that
will allow the PC to boot over the network. See http://etherboot.sourceforge.net for more information.

By using this system, the user consents to such interception, monitoring, recording, copying,
auditing, inspection, and disclosure at the discretion of authorized site or Department of Energy
personnel. Unauthorized or improper use of this system may result in administrative disciplinary
action and civil and criminal penalties.

By continuing to use this system you indicate your awareness of and consent to these terms and
conditions of use.

If you do not agree to the conditions stated in this warning,
LOG OFF IMMEDIATELY

New Software Service

Due to the lack of dedicated network staff located at the ACME offices, it is desirable
to manage the network infrastructure from the main site as much as possible. We
also want to try and mitigate the risks of the lower physical security of the ACME
offices by improving the remote monitoring and configuration capability.6 Because of
the sensitive nature of the data, the default response to network failures and attacks
should be to “fail closed” (prevent the network from being able to process data). This
is different from the normal “fail-safe” default for more open networks (continue
processing data even in light of a denial of service attack). To address this, we will
attempt to develop a mechanism to boot a server using an operating system image
provided by a remote server while minimizing the security risks. While this study
focuses on managing network routers, this method can be used for other types of
“appliance” systems like thin clients, kiosks, file servers, and similar applications.

Why develop a new network boot method? Wouldn’t existing ones like PXE7 and
etherboot8 work? While both of these methods allow for a system to boot from the
network, they do so in an insecure manner. Both PXE and etherboot rely on
information obtained from network servers using the BOOTP, DHCP, and/or TFTP
protocols & utilities. These utilities do not normally support client authentication,
encrypted data streams, or reliable error recovery. They are all UDP based protocols.
Also, the size of the bootstrap image supported by them is typically limited to 16Kb or
32Kb.

The intent of our changes is to try and overcome these restrictions. This will allow the
remote management of routers in a secure manner without requiring the presence of
network staff on-site. The new method will function as follows:

A minimal boot image is stored on a bootable read-only media device (i.e. CD-•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

9 We could use something like a modified LinuxBIOS (http://www.linuxbios.org) to directly access the remote server.
However, this has its own set of problems, not the least of which is supporting the hardware devices on the system.

rom, or USB memory stick). This boot image loaded when the system (our router)
is powered-on or reset. It uses the network interface to establish network session
to a secured server to download the production operating system and
configuration for the router into its memory. The new operating system kernel
contained in memory is then started.

The production operating system will mount a remote file system to store system •
logs, configure and start the network services, and finally, start a secure shell
daemon to allow access to the router by the remote network staff.

Issues introduced by the new boot method

By changing the way that the system boots, several issues with security implications
are introduced, among them:

Unauthorized substitution of the initial boot media. This is the hardest issue to •
address. Usually, this is issue is handled by improving physical security to the
room housing the system and allowing only trusted personnel access. Since this
is not a feasible option, the steps that we will take to mitigate this are: store only
non-sensitive information on the media, mount the media early in the boot process
in order to “lock” the drive, and have the production image verify the media
contents as part of its boot process. None of these steps are fool-proof they only
serve to help minimize the risk. Other steps that could be taken include using a
“disk on a chip” to store the initial boot media or use a custom BIOS9. The best
method of addressing this issue is to improve physical security and limit personnel
access.

Updating the initial boot media. How do you update the initial boot media when •
needed? This can be handled by a combination of procedural and technical
means. The revised boot image is copied onto new media and delivered to the
ACME office manager (either electronically or physically). Once the new media is
ready to be installed, the following steps are used: 1) the central site network staff
issues the “unlock” command on the drive and ejects the old media; 2) the office
manager installs the new media in the drive; 3) the central site network staff
mounts (locking the drive) and verifies that the media is valid; 4) finally, the old
media is returned to the central site or destroyed.

Sniffing and/or altering the data stream (man-in-the-middle attacks). Since we are •
now using a remote system to store production operating system images, the
possibility exists of an attacker capturing or altering the data during transmission.
We address this by a combination of physical and network methods. A point-to-
point fiber optic link is used between the sites. This makes “sniffing” the wire at

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

any point other than the ends more difficult. An additional step is to declare the
link “insecure” and require all traffic to be further encrypted using SSL, IPSEC, or
similar protocols.

Exhausting network resources. This issue exists in general for any network •
service. The fact that we are using the network to load the production image from
a remote server and store log files remote increases our exposure to a denial of
service. We address this issue by using a “heartbeat” on the network connection
to the remote system. A heartbeat is something that is used to determine that a
remote system is operational. In our case, the system that houses the images and
log files for the remote routers will monitor their network traffic and if an outage is
detected, disable the network interface and issue an alert to the network staff. This
will result in a complete interruption of service. Since the network outage is total,
the sensitive data is protected in accordance to operating procedures and the
network staff can investigate and correct the cause. The protocol used for remote
access of the images and log files have built-in retry timers to help recover from
transmission errors. Each time a retry occurs, a message is written to the system
log. By having a program watch the log files and periodically “ping” the application
on the remote server, an outage can be detected. Once detected, the script can
issue system commands to disable the network link and to alert the network staff.

Resource exhaustion on the local and remote logging server. Since we are logging •
information into a fixed size circular buffer, information could be lost if it overflows.
Similarly, if the remote logging server’s file system overflows, log information will
also be lost. This could be addressed by isolating the logs for each router in file
systems separate from the logging system and the other routers. Then, a file
system overflow will only affect a single server. Also, the management of the
individual log files becomes a simple system administration problem: rotation and
analysis of log files.

Implementation

There is no single package that is capable of providing everything that we need in
order to secure our routers. However, by using a combination of several open source
packages, we can build our own. Our custom boot process will use the following
packages and utilities:

A Linux boot loader, there are several boot loaders available. We will be using the •
isolinux boot loader which is part of the syslinux package (home page:
http://syslinux.zytor.com). The version of isolinux that we will be using for this project
is part of the Gentoo distribution (emerge sys-boot/syslinux). Isolinux is stored on a
CD-rom and called by the hardware BIOS to boot the CD.

BUILDROOT (home page: http://buildroot.uclibc.org) is a set of makefiles and •
patches that makes it easy to generate a cross-compilation toolchain and root

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

10 Static linking is when all of the support (library) routines required by an executable program are included directly in
the program’s binary file instead of a “stub” routine that will load the routines dynamically at runtime. One mechanism
that can be used to subvert security on UNIX-like systems is to replace system routines in dynamic load libraries.

filesystem for working with Linux on embedded systems. It uses the
uClibc and BusyBox packages. uClibc is a small footprint C library (home page:
http://www.uclibc.org). BusyBox (home page: http://busybox.net) provides small
footprint replacements for the standard UNIX utilities like grep, md5sum, init, etc. Our
intent is to use BusyBox statically linked with uClibc to provide the support utilities for
our router software distribution10.

Linux Kernel 2.6.8.1 (http://www.kernel.org/pub/linux/kernel/v2.6/linux-•
2.6.8.1.tar.gz) is the kernel version that we will be using for our custom router
distribution.

vtun (Virtual Tunnel) is actively developed by Maxim Krasnyansky and the rest of •
the Vtun development team. Its purpose is to allow the easy creation of secure data
transport tunnels. The project’s home page can be found at
http://vtun.sourceforge.net. The version of vtun that we will be using is part of the
BUILDROOT distribution. The book “Building Linux Virtual Private Networks (VPNs)”
by Oleg Kolesnikov and Brian Hatch has a complete chapter (8) on configuring and
running vtun. Vtun was chosen because it has support for secure transfers using SSL,
improved error handling (I/O timeout retries), and does not restrict the type of data and
file systems that it serves. This allows us to use the same package for both the
isolinux boot CD-rom images and root file systems for the routers. Unlike some other
packages that were evaluated, vtun does not require patches to the Linux kernel.

kexec is a set of kernel patches and user mode tools that allow you to load a new •
linux kernel from a currently executing one. It is being actively developed and
maintained by Eric Biederman and the version that we are using can be found at:
http://www.xmission.com/~ebiederm/files/kexec/2.6.8.1-kexec3/2.6.8.1-kexec3.gz and
the user mode tools are at: http://www.xmission.com/~ebiederm/files/kexec/kexec-
tools-1.8.tar.gz.

mkisofs is part of a suite of utilities to create CD-rom images written by Joerg •
Schilling. It takes a directory tree located on disk a produces an ISO-9660 standard
CD-rom image. The version of mkisofs that we will use is part of the Gentoo
distribution (emerge app-cdr/cdrtools).

OpenSSH (home page: http://www.openssh.org) is the widely used open source •
implementation of a SSH server and client. The software will be downloaded and
configured by the BUILDROOT script.

openSSL (home page: http://www.openssl.org) is the secure session layer (SSL) •
library that is linked into the vtun and OpenSSH utilities to encrypt the network data
streams. The version (0.9.7e) of openSSL that we will use is also managed by the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

BUILDROOT script.

In order to incorporate the remote boot service into the network infrastructure,
resources must be made available to store the boot images. Ideally, the system that
houses the images and vtund server daemons should be dedicated solely to this
function and not directly accessible from the internet. This isolation is to help
minimize the risk of the boot image server becoming compromised. It will also
mitigate the effects if the server does become compromised.

If an isolated dedicated system is not available, then using some sort of Linux
virtualization technology should be given serious consideration. The most widely
known package of this technology is a commercial product called VMware (home
page: http://www.vmware.com). VMware provides the capability to run unmodified
guest operating systems on an Intel x86 Linux or Windows host. In addition to
VMware, there are two open source solutions that also show some promise: UML
(User-mode Linux, home page: http://user-mode-linux.sourceforge.net) and
Cambridge University’s Xen (home page:
http://www.cl.cam.ac.uk/Research/SRG/netos/xen). The major drawback to these two
packages is that they require modification to the guest operating system.

For this study we will use VMware as the development, image, logging, and test
platforms. The base operating systems for both the development and server platform
is the hardened version of Gentoo Linux described earlier. Any configuration changes
to the base system will be described below.

The remote boot service plan is implemented in of three phases: 1) creating a
secured development environment, 2) creation and testing of the boot image
environments (both initial and production images), and 3) burning the initial boot
image to read-only media and its distribution. The following assumes a working
knowledge of Linux/Unix commands and procedures.

Creating a secured development environment

To create a secure development environment, we will use as a base the hardened
Gentoo system described in the first section of this paper. We will load this version
into a VMware virtual machine. The following is an annotated checklist of the
development system’s installation and configuration (user inputs are shown in italics):

Initial Installation of Base operating system

(___) As the root user, create a new VMware virtual machine called “develop”1)
using the standard Gentoo base system:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

mkdir /vmware/develop; cd /vmware/develop
tar xvpf /vmware/images/vmware-gentoo-2.6.x.tgz

The above will load the previously saved VMware virtual machine image
into a new directory called “develop”. We next have to change the file
names of the disk image and VMware configuration files to match the new
virtual machine name.

mv gentoo-s001.vmdk develop-s001.vmdk
mv gentoo-s002.vmdk develop-s002.vmdk
mv gentoo-s003.vmdk develop-s003.vmdk
mv gentoo.vmdk develop.vmdk
mv gentoo.vmx develop.vmx

We now need to edit the virtual machine’s configuration and disk descriptor
file to refer to the new file names. Use the ed text editor to perform the
following changes:

ed develop.vmdk
g/gentoo-s00/s//develop-s00/g
w
q

ed develop.vmx
g/gentoo.vmdk/s//develop.vmdk/g
w
q

(___)Once the changes to the configuration files have been made, start the 2)
virtual machine by issuing the following command and clicking on the “start this

virtual machine” option:

vmware develop.vmx

A pop-up window will appear saying that the location of this virtual
machines configuration files have changed since it was last powered on.
Make sure that the “Create a new identifier” option is selected and click on
the “OK” button. The new virtual machine will boot.

(___)At the “gentoo login:” prompt: enter root and press return.3)
(___)At the “password:” prompt enter default%pass.4)
(___) At the “gentoo root#” prompt:5)

Enter the following command to change the root password:

gentoo root # passwd
New UNIX password: a new secure password
Retype new UNIX password: re-enter the new password
passwd: password updated successfully

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

11 This document is part of the Gentoo Documentation, Tips & Tricks forum and can be found at:
http://forums.gentoo.org/viewtopic-t-244837.html.
12 The buildroot documentation can be found at http://buildroot.uclibc.org/buildroot.html. The uClibc FAQ is at
http://uclibc.org/FAQ.html and the BusyBox document is at http://busybox.net/downloads/BusyBox.html.

The above will change the root password, please choose a password that is
secure. A good method would be to choose a random string or at least 8
characters with the following characteristics: at least 2 upper case letters, at
least 2 digits, at least 2 lower case letters, and at least 1 punctuation
character. They should be in a random order and not used anywhere else.
IT SHOULD NOT BE THE SAME AS THE ROOT PASSWORD FOR THE
SYSTEM RUNNING VMWARE.

(___)Change the host name of the VMware virtual machine:6)

Edit the hostname found in the file: /etc/hostname:

develop root # ed /etc/hostname
s/gentoo/develop
w
q

(___)Make sure that the virtual machine image is up to date:7)

develop root # emerge sync
develop root # emerge –uaD world

The two emerge commands will update the gentoo image with GIAC
University’s local gentoo repository. They will download and install any
packages that have changed.

(___)The initial base system install has been completed. At this point you can 8)
shut the virtual machine down by issuing a shutdown –h now command or
you may continue with installing the development packages (step 10 in the
next section).

Installation of Required Development Packages

In this section we will download, configure, and install the software packages that we
will use to create our custom boot images. Parts of this section were developed using
material from the “Gentoo Linux LiveCD for Dummies!” mini-how to document11 and
the buildroot, Busybox & uClibc documentation.12 Note: The URLs used were correct
as of March 10, 2005.

(___) If you are not logged into the root account of the development virtual 9)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

machine, do so now.

(___)Change to the source directory10)

develop root # cd /develop/src

(___)Download the necessary packages using the wget utility:11)

develop src # wget http://www.xmission.com/~ebiederm/files/kexec/2.6.8.1-kexec3/2.6.8.1-
kexec3.gz
develop src # wget http://www.xmission.com/~ebiederm/kiles/kexec/kexec-tools-1.8.tar.gz
develop src # wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.8.1.tar.gz

(___) At this point, the /develop/src directory should like this:12)

develop src # ls –l /develop/src
total 48724
-rw-r--r-- 1 root root 23484 Aug 19 2004 2.6.8.1-kexec3.gz
-rw-r--r-- 1 root root 40978 Dec 1 2002 kexec-tools-1.8.tar.gz
-rw-r--r-- 1 root root 44683888 Aug 14 2004 linux-2.6.8.1.tar.gz

(___) Merge the standard Gentoo packages that we also need to create 13)
ISO 9660

images:

develop src # emerge app-cdr/cdrtools
develop src # emerge sys-boot/syslinux

(___)Untar and patch version 2.6.8.1 of the Linux kernel:14)

develop src # cd /develop/src
develop src # tar xzpf /develop/src/linux-2.6.8.1.tar.gz

Apply the kexec patch to the linux kernel:

develop src # cd linux-2.6.8.1
develop src # gunzip –c < /develop/src/2.6.8.1-kexec3.gz | patch –p1

(___)Configure the Linux kernel (version 2.6.8.1 with our patches)15)

This step will customize the Linux kernel for our router. Our configuration
changes remove most of the “normal” configuration options from our kernel.
This limits the exposure to security vulnerabilities of our kernel (an attacker
can’t use a buffer overflow exploit in the sound card driver, if the driver isn’t
configured into the system).

To start the kernel configuration:

develop src # cd /develop/src/linux-2.6.8.1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

develop linux-2.6.8.1 # make menuconfig

The system will display of tree based set of configuration menus. Make the
following changes (DO NOT CONFIGURE THESE AS MODULES, BUILD
THEM INTO THE KERNEL INSTEAD):

Loadable module support
DISABLE Enable loadable modules support
DISABLE all other module options

Processor type and features
ENABLE Symmetric multi-processing support
ENABLE SMT (Hyperthreading) scheduler support
ENABLE kexec system call (EXPERIMENTAL)

The symmetric multi-processing and SMT support is enabled because the
hardware platform that we are using (Dell PowerEdge 2650) has dual
Hyperthreaded Pentium Xeon processors. Enabling the kexec system call
will activate the kexec patch that we applied earlier. Kexec will be used to
transfer control from the initial boot kernel to the production kernel loaded
from the remote server.

Block devices
ENABLE Loopback device support

Here we enable the loopback device support so we can mount the root file
system contained on the initial boot medium. The enhanced network device
is the kernel device driver used to communicate with our remote server to
load the production system.

ENABLE Ramdisk support
(16384) Default RAM disk size (Kbytes)
ENABLE Initial Ramdisk (initrd) support

This turns on the kernel support that we need to load our initial boot system
and production systems.

ATA/ATAPI/MFM/RLL Support
DISABLE Include IDE/ATA-2 Disk support
ENABLE Include IDE/ATAPI CDROM support

SCSI device support
DISABLE legacy /proc/scsi/ support
DISABLE SCSI disk support

The above will disable kernel support for local disks. Since we will be
running everything from the network block device, the only local device that
we need is the CD-ROM drive (/dev/hdc).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

Networking support
Networking options à

Network packet filtering à
IP Netfilter Configuration à

DISABLE connection tracking
ENABLE IP tables support

DISABLE Dummy net driver support

We configure the network and firewall support at this point. Depending on
the specific router configuration additional settings on the netfilter
configuration will be required. We will only concern ourselves with firewall
settings that are specific to protect the router itself. General firewall
configuration is beyond the scope of this document.

Character devices
ENABLE /dev/nvram support
ENABLE Enhanced Real Time Clock Support

We configure in the /dev/nvram so we can use its contents as part of the
session keys for the network disk driver.

Sound
DISABLE Sound Card Support

USB Support
DISABLE Support for Host-side USB

We disable both the sound and usb support in our kernel since we don’t
need them. If we were going to boot from a USB thumb drive, we would
need to enable the USB support.

File Systems
ENABLE Second extended FS support
ENABLE Ext3 journaling file system support
ENABLE Ext3 extended attributes
DISABLE kernel automounter version 4 support

We need ext2 for our initial boot image and ext3 for possible use in the
production kernel.

CD-Rom/DVD File systems
ENABLE ISO 9660 file system support

ISO 9660 support is needed to boot from CD-rom

Pseudo filesystems
ENABLE /proc file system support
ENABLE /dev file system support

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

This provides the linkage to the kernel drivers from user mode programs.

Network file systems
DISABLE NFS file system support
DISABLE NFS Server support

We do not need to access or provide any NFS file systems.

We have finished the configuration. Save the configuration file and then
build the kernel by entering:

develop linux-2.6.8.1 # make

The compiled kernel is now located in /develop/src/linux-
2.6.8.1/arch/i386/boot/bzImage.

(___) Build the uClibc/Busybox (BUILDROOT) development environment16)

Issue the following commands to build the development environment. Note:
this step requires the use of the subversion (svn) utility to download the
buildroot distribution from the project’s website. If svn is not installed, you
must issue the following command: emerge subversion.

develop linux-2.6.8.1 # cd /develop/src
develop src # svn co svn://uclibc.org/trunk/buildroot
develop src # cd /develop/src/buildroot
develop src # make menuconfig

During the configuration phase, choose the default values with the following
exceptions:

Target Architecture à
i386

Toolchain Options à
Kernel Headers à
select Linux 2.6.8 headers (with mips fixes)
Enable large file (size > 2GB) support

Package Selection for the Target
select openssh
select openssl
select tcpdump
select vtun
select zlib

Target Options à
select ext2 root filesystem for the target device
enter (20480) size in blocks
enter (2048) inodes.

Save the configuration file, and then issue a make command:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

develop buildroot # make

This will build the development environment and a template root file system
(located in the file root_fs_i386.ext2).

(___) Activate the new development toolchain17)

develop buildroot # cd /develop
develop develop # export \

PATH=$PATH:/develop/src/buildroot/build_i386/staging_dir/bin

(___) Build the kexec tools using the new development chain:18)

develop develop # cd /develop/src/kexec-tools-1.8

Before making the tools, you need to change the name of the gcc compiler
inside of the Makefile, change it to i386-linnux-gcc on both of the CC and
CPP lines. The modified Makefile should look like:

OBJDIR:= ./objdir

CC:=i386-linux-gcc
LD:=ld
AR:=ar
AS:=as
CPP:= i386-linux-gcc –x assembler-with-cpp –E

include Makefile.main

Now, build the tools with:

develop kexec-tools-1.8 # make

(___) Create a custom version of BusyBox. Make sure that the following 19)
options are selected during the menuconfig:

Build Options à
ENABLE Build BusyBox as a static binary (no shared libs)

Init Options à
DISABLE Support running init from within an Initrd

Note: we will still be running init from within an initrd. If we do not disable
this option, BusyBox will create a link to linuxrc instead of letting us create
our own in our make_initial.sh and make_prod.sh scripts.

develop # cd /develop/src/buildroot/build_i386/busybox
develop busybox # cp .config busybox.config-develop
develop busybox # make menuconfig

The same BUILDROOT tree (with different configurations) is used by both the initial

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

boot and production image creation process. An easy way to manage the different
configurations for the initial and production phases is to save the files
/develop/src/buildroot/.config and /develop/src/buildroot/build_i386/busybox/.config
for both. Assuming that the files have been saved in /develop, to build the initial boot
image configuration issue the following:

cd /develop/src/buildroot
cp /develop/initial.buildroot.config .config
cp /develop/initial.busybox.config ./build_i386/busybox/.config
cd ./build_i386/busybox/
make oldconfig
make clean
cd ../..
make oldconfig
make

The production configuration can similarly build by using the same commands and
substituting prod.buildroot.config and prod.busybox.config where appropriate.

Creating the Production Boot Image

All of the steps necessary to create the production boot image are contained in the
make_prod.sh shell script. This script requires that the development environment be
previously installed. There are two files produced by this script: a gzipped root file
system containing the configured production system and an ISO CD-Rom image that
can be used for testing.

#! /bin/sh1)
ISOLINUX=/usr/lib/syslinux/isolinux-debug.bin2)
INIT=/linuxrc # use /linuxrc for live images, /bin/sh for 3)

testing

Lines 2 and 3 specify that we want to use the debugging version of the isolinux boot
loader and that the first program that will be executed by the initial boot kernel will be
/linuxrc.

if [-z "$1"]4)
then5)
echo "Usage: $0 <router-IP>"6)
exit 17)
fi8)

Lines 4 though 8 checks to make sure that the IP number of the router we are
generating the system for is specified on the script command line.

cd /develop/images9)
rm -rf $1-prod10)
mkdir -p $1-prod/boot/isolinux11)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

Now we create an empty directory tree to hold the production system.

cp /develop/src/linux-2.6.8.1/arch/i386/boot/bzImage \12)
$1-prod/boot/isolinux/vmlinuz
cp $ISOLINUX $1-prod/boot/isolinux/isolinux.bin13)

Copy the kernel and boot loader that we want the production system to run.

cat > $1-prod/boot/isolinux/isolinux.cfg <<END14)
default vmlinuz15)
append init=$INIT initrd=rootfs.gz root=/dev/ram0 rw debug 16)

BOOT_IMAGE=initial
prompt 117)
timeout 30018)

label vmlinuz19)
kernel vmlinuz20)
append init=$INIT initrd=rootfs.gz root=/dev/ram0 rw debug 21)

BOOT_IMAGE=initial
END22)

Lines 14 through 22 will create the isolinux boot loader configuration file that will be
written to the initial boot CD-Rom. This configuration will boot using the initird from
the CD-Rom loaded into a ram disk.

mkdir -p /tmp/$1-rootfs23)
mount -t ext2 -o loop /develop/src/buildroot/prod.ext2 \24)
/tmp/$1-rootfs25)

Mount the production root file system so that we can customize it for our specific
router.

cp $1-prod/boot/isolinux/vmlinuz /tmp/$1-rootfs/vmlinuz26)
cat > /tmp/$1-rootfs/etc/inittab <<END_INITTAB27)
::sysinit:/bin/mount -t proc none /proc28)
::sysinit:/bin/mount -t tmpfs none /tmp29)
::sysinit:/bin/mount / -n -o remount,rw30)
::sysinit:/sbin/klogd31)
::sysinit:/sbin/syslogd -C32)
::sysinit:/bin/hostname $133)
::sysinit:/sbin/ifconfig eth0 $134)
tty1::respawn:/sbin/getty 38400 tty1 linux35)
END_INITTAB36)

Line 26 copies the kernel onto the root file system for the initial boot media. We also
will create the inittab file that when /sbin/init executes will mount /proc, /tmp, and the
root file systems in read/write mode. The system logging daemons are started. The
network management interface and console terminal is also started. Since this is an
example script, the additional network interfaces of the router are not shown, but are
also started at this point. NOTE: To start up the OpenSSH daemon so we can access
the router from the network management interface, a line running the SSH init script
would be added after line 34 above (since the configuration of OpenSSH daemon is a
common task, it is not included here).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

cat > /tmp/$1-rootfs/etc/passwd <<END_PASSWD37)
root:x:0:0:root:/root:/bin/sh38)
sshd:x:22:22:sshd:/dev/null:/bin/false39)
netops:x:1000:100::/home/netops:/bin/sh40)
END_PASSWD41)
cat > /tmp/$1-rootfs/etc/shadow <<END_SHADOW42)
root:\$1\$6gCBOeed\$nfjrUg1d8Sg2wC3N8QOej/:12838:0:::::43)
sshd:*:9797:0:::::44)
netops:\$1\$t5IzqQmV\$nV1gdOJHOujf7WADpJ2D1/:12771:0:99999:45)

7:::
END_SHADOW46)

Now create a minimal password file for the production system (these entries should
be unique for each router and could be generated by another script or program).
NOTE: It is important to escape any shell metacharacters like the dollar signs in the
passwords or you will not be able to login to the system when it boots.

mkdir -p -m 711 /home/netops47)
chown 1000:100 /home/netops48)
chmod 444 /tmp/$1-rootfs/etc/passwd49)
chmod 400 /tmp/$1-rootfs/etc/shadow50)

Create an empty home directory for the network operations account and make sure
that the permissions of the directory and the password files are correct.

cat > /tmp/$1-rootfs/etc/fstab <<END_FSTAB51)
/dev/ram0 / ext2 defaults 0 052)
END_FSTAB53)
chmod 644 /tmp/$1-rootfs/etc/fstab54)

Create a template /etc/fstab file. This is necessary so we can remount the root file
system in read/write mode when we boot.

rm -f /tmp/$1-rootfs/linuxrc55)
ln /tmp/$1-rootfs/bin/sh /tmp/$1-rootfs/linuxrc56)

Make sure that /linuxrc utility is correctly linked to the BusyBox binary. This will cause
the BusyBox program to act as the init process when the system boots.

umount /tmp/$1-rootfs57)
rmdir /tmp/$1-rootfs58)

Unmount the production root file system and clean up the temporary mount point.

gzip -c -9 < /develop/src/buildroot/prod.ext2 ./$1-prod.fs59)
cp ./$1-prod.fs ./$1-prod/boot/isolinux/rootfs.gz60)

Compress the root file system with gzip and copy it where the isolinux configuration
file expects to find it during boot.

mkisofs -o $1-prod.iso -b boot/isolinux/isolinux.bin \61)
-c boot/isolinux/boot.cat -no-emul-boot -boot-load-size 4 \62)
-boot-info-table ./$1-prod63)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

exit 064)

Finally, we make an ISO-9660 CD-Rom image that can be used for testing. The CD-
Rom image is not used other than testing. The compressed root file system is
downloaded by the initial boot image and booted instead. See the Initial Boot Media
section for more information.

The process to build the production image for the 192.168.139.64 router would look
like this:

develop root # cd /develop
develop develop # ./make_prod.sh 192.168.139.64
Size of boot image is 4 sectors -> No emulation
Total translation table size: 2048
Total rockridge attributes bytes: 0
Total directory bytes: 4096
Path table size(bytes): 38
Max brk space used 0
4660 extents written (9 MB)

develop develop # ls /develop/images
192.168.139.64-prod 192.168.139.64-prod.iso 192.168.139.64-
prod.fs
develop develop #

The results of the ./make_prod.sh script are the directory 192.168.139.64-prod, the
ISO-9660 CD-Rom image 192.168.139.64-prod.iso, and the compressed root file
system 192.168.139.64-prod.fs. Only the 192.168.139.64-prod.fs is required for the
proper functioning of the remote boot process.

Configuring the Image Server

The following steps describe the procedure used to configure the server(s) that our
routers will contact to download their production system images. We will use the vtun
virtual tunneling package to securely transfer information between the server and
routers. Multiple vtund daemons can be installed on a single system. However, they
each should use a different port and storage directory for each daemon.

(___) Install the base operating system on the system that will be acting 25)
as the image server. This could be the same procedure as described in
steps 1 through 8 above (with appropriate changes for host name and IP
numbers). Since vtund daemons run in user-mode with non-privileged ports, no
special kernel patches or configuration are needed.

(___) Copy the vtund binary from the development machine over to the 26)

image server. The vtund daemon was built as part of the BUILDROOT
process described earlier.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

(___) For each of the client systems (routers) run the make_prod.sh and 27)
make_initial.sh scripts (unless you have already done so).

(___) On the logging server (in this study, it is the same machine as the 28)
image server, but it could be another system). Make sure the syslogd
daemon is active.

(___)For each client system create the vtun configuration files. For each 29)
client, two separate configuration files are needed, one for the operating
system image and the other for the system logging messages. Below is an
example vtun configuration file to serve the OS image for the 192.168.139.64
router. The configuration file to handle the system logging is very similar and
is not included here (for space reasons).

options {
 port 5000;
 timeout 60;

}

Download-image {
 type pipe;
 pass 45566cd2864efa36ad03eab72fbe5808;
 encrypt yes;
 up {

 prog /bin/bash "-c '/bin/dd
if=/develop/images/192.168.139.64-prod.fs'";

 };
}

NOTE: The “prog” line and the one following it are displayed as two lines but is a
single line in the actual file. The password is uniquely generated for each client
system and is an MD5 checksum of system specific information. See the section
“Generating Passwords” below for more information on how this value is computed.

(___) On both the image and logging servers, configure the system to 30)
automatically start the vtund server daemons for each client system. An
easy way to do this is to create a shell script called /etc/init.d/vtund that
correctly responds to start, stop, and restart arguments. On a Gentoo
system, you can use the “rc-update add vtund default” command to do this.
See the vtun and Gentoo documentation for information.

(___) Verify that all of the vtund server daemons start up correctly by 31)
issuing a “/etc/init.d/vtund start” command. If you issue a “ps agx” command,
all of the vtund servers should appear. Also, a “netstat –an” command should

show all of the ports used by the daemons.

(___) Any host or network based firewall configuration changes that are 32)
necessary to allow access to the image and logging servers should be done

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

at this time. The actual steps necessary to accomplish this are beyond the
scope of this document.

Creating the Initial Boot Image

As with the ./make_prod.sh script, the initial boot image is produced by executing the
./make_initial.sh script. This script also requires that the development environment be
previously installed. The result of the .make_initial.sh script is an ISO-9660 CD-Rom
image that when booted, will connect to the image server, download the production
OS image and start it running.

#! /bin/sh1)
ISOLINUX=/usr/lib/syslinux/isolinux-debug.bin2)
INIT=/linuxrc # use /linuxrc for live images, /bin/sh for 3)
testing
SERVER_IP="192.168.139.11"4)
SERVER_PORT=50005)

In lines 1 though 5, we setup several environment variables that will be used
throughout the rest of the script. These specify the version of the isolinux boot loader,
system init program, and the IP number & port of the image server.

if [-z "$1"]6)
then7)
 echo "Usage: $0 <router-IP>"8)
 exit 19)

fi10)

Make sure that we have the client system’s IP number as an argument on our
command line.

if [! -f /develop/src/kexec-tools-1.8/objdir/build/sbin/kexec 11)
]

then12)
 echo " *** kexec utility not found ***"13)
 exit 114)

fi 15)

Make sure that the kexec utility that we will need to switch to the production kernel
has been built.

cd /develop/images16)
rm -rf $1-initial17)
mkdir -p $1-initial/boot/isolinux18)

Create an empty directory tree to hold the router’s isolinux boot loader configuration
files.

cp /develop/src/buildroot/initial.ext2 $1-19)
initial/boot/isolinux/rootfs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

cp /develop/src/linux-2.6.8.1/arch/i386/boot/bzImage \20)
$1-initial/boot/isolinux/vmlinuz

cp $ISOLINUX $1-initial/boot/isolinux/isolinux.bin21)

Copy the root file system, Linux kernel, and the CD-Rom boot loader that will be used
by the initial boot image.

cat > $1-initial/boot/isolinux/isolinux.cfg <<END22)
default vmlinuz23)
append init=$INIT initrd=rootfs.gz root=/dev/ram0 rw debug 24)

BOOT_IMAGE=initial
prompt 125)
timeout 10026)

label vmlinuz27)
kernel vmlinuz28)
append init=$INIT initrd=rootfs.gz root=/dev/ram0 rw debug 29)

BOOT_IMAGE=initial
END30)

Copy the isolinux configuration file for the CD-Rom.

mkdir -p /tmp/$1-rootfs31)
mount -t ext2 -o loop $1-initial/boot/isolinux/rootfs /tmp/$1-32)

rootfs

Create a temporary mount point and mount the initial boot root file system on it.

cp /develop/src/kexec-tools-1.8/objdir/build/sbin/kexec \33)
/tmp/$1-rootfs/sbin/kexec

Copy the kexec utility program over to the root file system. Now we create the startup
script that will be the first thing that is executed when the initial boot media is loaded.
Note: if this file is replaced by a link to /bin/sh (see line 3 above) the ISO image
produced can be used for testing and password generation purposes by starting a
shell session after booting.

cat > /tmp/$1-rootfs/linuxrc <<ENDLINUXRC34)
#! /bin/sh35)
automatically configure the GIAC University router $136)
eth0 by convention is always the network management interface37)

mount -t proc none /proc38)
mount -t tmpfs none /tmp # we need to create /tmp files39)

/sbin/klogd40)
/sbin/syslogd -C41)
/sbin/ifconfig eth0 $1 # bring up our netmgt 42)

interface

cat >/tmp/download <<END43)
#! /bin/sh44)
/usr/bin/tee /tmp/remote.fs | /bin/gunzip -c -f | /bin/dd 45)

of=/dev/ram1
/bin/mount -t ext2 /dev/ram1 /mnt46)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

/sbin/kexec -f /mnt/vmlinuz --init=/linuxrc --47)
initrd=/tmp/remote.fs \\

--append="root=/dev/ram0 init=/linuxrc"
exit 048)
END49)

Lines 38 and 39 will cause the /proc and /tmp file systems to be mounted during boot.
Lines 40 through 42 will start the kernel & system logging daemons and configure the
network management interface. Lines 43 through 49 will create a file called
/tmp/download that will be called when the production image is downloaded to a Ram
disk on the router. This is done by the /linuxrc script when the initial boot media is
booted on the router. After the production root file system is loaded to /dev/ram1, the
kexec utility is executed to reboot the system into the new (production) kernel. Since
we do not have any local file systems, we can do a “forced” shutdown (-f option on the
kexec command). If this option was omitted, kexec would try and execute the
shutdown command before rebooting. If the kexec fails, line 48 will cause a kernel
panic and cause it to hang (interrupting normal network service).

/bin/chmod 500 /tmp/download50)
cat >/tmp/vtund-initial.cnf <<END_Download51)
options {52)

port $SERVER_PORT;
timeout 30;

}53)

Download-image {54)
 type pipe;55)
 pass \`/sbin/ip addr | /bin/cat - /dev/nvram | /usr/bin/md5sum 56)

| /usr/bin/cut -f 1 -d ' '\`;
 encrypt yes;57)
 up {58)

 prog /tmp/download;59)
 };60)
}61)
END_Download62)

Create the client side vtun configuration file that will try and download the production
OS image. The shell pipeline found in line 56 will calculate the password to be used
by vtun to download the image.

/bin/chmod 400 /tmp/vtund-initial.cnf63)
/usr/sbin/vtund -f /tmp/vtund-initial.cnf Download-image 64)

$SERVER_IP

Start up the client side virtual tunnel to download the production image after making
sure that the permissions are set securely on its configuration file.

/bin/sleep 4065)

echo -e "\n\n\t*** Production image download failed ***\n\n"66)
exit 067)
ENDLINUXRC68)
chmod 500 /tmp/$1-rootfs/linuxrc69)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

13 The nvram device allows programs to access the contents of the system’s BIOS. Also, since we are not using any local
disk drives, entering custom BIOS disk drive settings can introduce some variation.

The sleep command found on line 65 causes the system to wait for the production
image download to complete and begin execution. If the transfer (or kexec call) fails,
the sleep timer will expire and the echo and exit commands will be executed, causing
a kernel panic.

umount /tmp/$1-rootfs70)
rm -rf /tmp/$1-rootfs71)

Unmount the initial boot media file system and clean up the temporary mount point.

gzip -9 ./$1-initial/boot/isolinux/rootfs72)
mkisofs -o $1-initial.iso -b boot/isolinux/isolinux.bin \73)

-c boot/isolinux/boot.cat -no-emul-boot -boot-load-size 4
\
-boot-info-table ./$1-initial

exit 074)

Compress the initial boot media root file system, copy it over to the isolinux
configuration directory tree and generate the ISO-9660 CD-Rom image file.

(___) Securely distribute the CD-Rom and load it into the remote router’s 33)
CD-Rom drive. Once the CD-Rom has arrived at the remote site, log onto the
router and umount the old CD-Rom and replace it with the new version. Then

“relock” the drive by issuing a mount command similar to “mount –t iso9660
–r /dev/cdrom /mnt/cdrom”. The new version of the boot media will not
become active until the router is rebooted or other specific action is taken.

Generating Passwords

One of the key questions for this project is: how should the passwords used to
authenticate data transfers to the router be generated?

Placing a plain-text pass phrase on the initial boot media is insecure; an attacker can
simply look at the CD-Rom contents and find out what it is. Another possibility is to
require someone to manually enter the pass phrase on the keyboard. But this
conflicts with the project goal of not requiring staff at the remote site on an ongoing
basis.

A simple solution is to generate a password based on hardware specific information.
For the initial boot media, we can generate a MD5 checksum based on the network
management MAC address and the /dev/nvram device13. For the production boot
image, we will use the MD5 checksum of the MAC address and the initial boot CD-
Rom. While the password may still be determined if an attacker knows this fact and
has access to the hardware, it is a reasonable compromise. This pass phrase will

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

only be used during the download phase. If this password needs to be used for
anything other than an occasional boot, a better method of securing it would be
needed.

Before a router is deployed in the field, an IP number for its network management
interface must be assigned and its MD5 checksums performed. These values are
then entered as the “pass” values of the corresponding image and logging vtun
configuration files.

(___) Compute the router’s MD5 checksum, using the following command:34.

/ # /sbin/ip addr | /bin/cat - /dev/nvram | /usr/bin/md5sum | \
/usr/bin/cut -f 1 -d ' '

853d553f9554442ba635766ad69d757

This command needs to be executed directly on the router hardware in order to obtain
a system “fingerprint”. One method that can used to do this is to generate an initial
boot media CD-Rom using /bin/sh instead of /linuxrc as the init program.

Verifying Correct Installation

Because of the way the vtund and kexec services are used by the initial boot process,
verification that it has been correctly installed is simple: it either works or it doesn’t. If
everything is installed correctly, the initial boot image will load the system and request
the production image from the remote server. Since it is not a good idea to take the
network down to test the initial boot image, using an isolated system or Vmware
session is a good idea.

Testing the production image for correct installation of the logging server is equally
simple. After the router has booted the production image, simply log onto it and log
some messages to the syslogd. If they show up on the logging server, it is installed
correctly. Of course, this only verifies the function of the network boot service,
additional software on the production image should have similar verification
procedures.

The following has been extracted from the image server system log showing both a
successful and unsuccessful router boot. Three screenshots showing both the failure
to load the production image and the output of the ps and df commands of the
production image actually running on the router are also included.

Mar 12 21:51:23 develop vtund[5932]: VTUN server ver 2.6 03/11/2005 (stand)
Mar 12 21:57:08 develop vtund[5938]: Session Download-image[192.168.139.64:32768] opened
Mar 12 21:57:08 develop vtund[5938]: BlowFish encryption initialized
Mar 12 21:57:15 develop vtund[5938]: Session Download-image closed

Mar 12 22:21:52 develop vtund[6061]: VTUN server ver 2.6 03/11/2005 (stand)
Mar 12 22:22:35 develop vtund[6063]: Session Download-image[192.168.139.64:32768] opened
Mar 12 22:22:35 develop vtund[6063]: BlowFish encryption initialized
Mar 12 22:22:35 develop vtund[6066]: Denied connection from 192.168.139.64:32769

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

Ongoing Maintenance and Auditing plan

Having a well defined procedure for managing the software configuration and
generation of the router boot images is an important part of any ongoing maintenance
and auditing plan. Having detailed creation, installation, and testing procedures
becomes part of the audit trail documenting the configuration to the router and image
server.

The procedure for ongoing maintenance of the remote image service is very simple.
Because of its implementation, many of the typical issues associated with
maintenance simply go away. Since the initial boot media is read-only, we do not
need to worry about file contents and permissions being altered in an insecure way.
Verifying the MD5 checksum of the entire media is enough to check this (and this is
an integral part of each boot of the router hardware). By design the network will “fail
closed” in the event of a system reboot or other event that impacts the router’s
network connectivity. This minimizes the risk of service failure going undetected.

Insuring the security of the systems that serves the production software images and
logging requires little more effort than those needed to check its base operating
system. Typical steps used to ensure that the base OS is secure, like running nmap
scans to check for open network vulnerabilities and using tripwire for host file system
changes are completely appropriate for the file server. The only thing that needs to be
done is to include the vtund server daemons, configuration files, and image files in
the nmap and tripwire evaluations.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

14 S/key was developed and AT&T Bell Labs (Bellcore). SecurID is a commercial product by RSA Security Inc. See
http://www.csua.berkeley.edu/skey-howto.html and http://www.rsasecurity.com/node.asp?id=1156 for more
information about s/key and SecurID.

You can make sure that the remote image server is functioning properly by reviewing
the system logs and output from the ps agx command. In general, the recovery
procedure will be to restart the server daemon for the effected image file. Of course, if
the outage was caused by a successful attack, before restarting the daemon, the
server must be restored to a known secured state. Normally, this is done by
reinstallation of the base operating system, the vtund servers & configuration files,
and the image files from known good backups and then applying any corrective
measures. If the systems are configured to disable network access based on the
image server failing, the steps necessary to re-enable network access should be done
here.

Summary

This study describes a method to securely manage the network configuration of Linux
based routers. It is intended for use in a semi-open office environment. Overall, the
approach described in this study is feasible and has been successfully implemented
in practice. The process is generic enough that it can also be used in most linux
“appliance” uses such as thin clients, kiosks, file server, etc.

One additional area that needs further research is how the password for each router
is managed. The current method should be considered insecure. It should be thought
of only as a mechanism to help prevent the casual disclosure of the password by
someone not actively attacking the system. An ideal solution to this issue would be to
use some sort of hardware device that has anti-tampering features incorporated into
it. If this device could provide two-factor or one-time pad authentication functionality
similar to SecurID or s/key14 without manual intervention, security could be
dramatically improved.

References

In addition to the course materials, the following reference sources were used in the
preparation of this paper:

isolinux & syslinux, SYSLINUX – The easy to use Linux Bootloader, H. Peter1)
Anvin. Home page: http://syslinux.zytor.com. The version of isolinux that we will use is
part of the Gentoo distribution (emerge sys-boot/syslinux).
BUILDROOT, Erik Andersen, Home page: http://buildroot.uclibc.org.2)
uClibc, Erik Andersen. Home page: http://www.uclibc.org. 3)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

BusyBox, Erik Andersen. Home page: http://busybox.net.4)
Linux Kernel 2.6.8.1, Linus Torvalds, Home page: 5)
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.8.1.tar.gz.
vtun, “Virtual Tunnel”, Maxim Krasnyansky and the Vtun team. Home page: 6)
http://vtun.sourceforge.net. The version of vtun that we will be using is part of the
BUILDROOT package.
Vtun, “Building Linux Virtual Private Networks (VPNs)”, Oleg Kolesnikov and Brian 7)
Hatch, New Riders Publishing, 2002, 231-263.
kexec, Eric Biederman. Download page: 8)
http://www.xmission.com/~ebiederm/files/kexec/2.6.8.1-kexec3/2.6.8.1-kexec3.gz
kexec user mode tool, Eric Biederman. Download page: 9)
http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.8.tar.gz.

mkisofs, Joerg Schilling. The version of mkisofs that we will use is part of 10)
the Gentoo distribution (emerge app-cdr/cdrtools).

OpenSSH, The OpenSSH project. Home page: http://www.openssh.org. 11)
The version of OpenSSH that we will be using is downloaded and configured by
the BUILDROOT script.

openSSL, The OpenSSL project. Home page: http://www.openssl.org. The 12)
version (0.9.7e) of openSSL that we will use is downloaded and configured by the
BUILDROOT script.

LinuxBIOS, The LinuxBIOS project. Home page: http://www.linuxbios.org.13)
Etherboot, The Etherboot Project. Home page: 14)

http://etherboot.sourceforge.net.
Gentoo Linux. The Gentoo Foundation. Project Home Page: 15)

http://gentoo.org.
Gentoo Linux/x86 Handbook. The Gentoo Foundation. Download page: 16)

http://www.gentoo.org/doc/en/handbook/index.xml.
Using the initial RAM disk (initrd), Werner Almesberger and Hans Lermen, 17)

This document is part of the standard documentation for the Linux kernel and can
be found in the kernel source directory tree at Documentation/initrd.txt.

RSA SecurID Authentication, RSA Security, Inc. 18)
http://www.rsasecurity.com/node.asp?id=1156.

S/Key Howto. The FreeBSD Handbook, Garrett Wollman. 19)
http://www.csua.berkeley.edu/skey-howto.html.

