
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Securing Windows and PowerShell Automation (Security 505)"
at http://www.giac.org/registration/gcwn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcwn

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Derek Lawless

June 20, 2004

GCWN version 4.0 option A

Deploying and Securing SOAP Enabled COM+ Applications

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
This paper will offer guidance and insight into securing SOAP enabled web
applications using COM+, IIS, and Microsoft Windows® 2000 Server. In order to
do this properly, the paper will use a mock web application. The paper will first
present background on web applications, where technology has taken them, and
the Microsoft solution for e-business. Then it will explore some of the business
needs associated with the mock application and the environment in which it will
operate. The paper will then delve into the details of securing IIS, COM+, and
the SOAP files. Operating system hardening and ADO security will be largely
outside the scope of this paper. Finally, the risks will be explored, the possible
security solutions explained, and the final choice will be scripted to allow large
scale deployment in an enterprise environment.

Background and Security Challenge Identification
The Internet as we know it today has changed considerably since the days of the
first ARPANET back in 1969 (Internet Society, 2003). Today, with nearly 250
million nodes, the Internet has grown to become a primary means of doing
business around the world. This new business model has been enabled by the
advent of web-enabled applications. Such web-enabled applications allow
common Internet users to communicate and create transactions with business
servers.

As e-business grew through its infancy in the 1990s, the race for companies to
become web-enabled was eclipsing the security of the companies’systems. As
a result, hackers moved from system to system with little consequence, wreaking
havoc as they went. As identity theft began to soar, legislation and customer
demand forced companies to begin looking at Internet security to protect their
customers’ data.

In addition to Internet applications, companies also began moving many of their
internal business applications online. Intranet applications could be migrated
from stand alone services oneach employee’s workstation to centralized servers
where they could more easily be administered, supported, backed up, and
secured. During this time, a major issue began to arise within security. Many
applications had multiple functions and companies did not want all employees
accessing all functionality. Human resource employees should be the only ones
with access to employee records. Managers should have access to only their
direct reports’ records. Regular employees should have access only to their own
records. This granularity is next to impossible with current operating system
authorization schemes. With operating system authorization, access can be
either permitted or denied to a file resource but business functionality
authorization cannot be controlled.

Enter MTS (and later COM+)
During about the same period of time, Microsoft was busy implementing their
web-enablement solution for their Windows® NT 4.0 operating system. Microsoft

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Transaction Service (MTS) became an integral part of Microsoft’s web strategy
with version 2.0. MTS 2.0 was integrated into Internet Information Services (IIS)
4.0 and allowed COM programmers to create business objects that could be
accessed via ASP code from IIS. In the MTS paradigm, packages contained
components. Each component contained interfaces and each interface
contained methods. Microsoft realized the importance of being able to control
access to pieces of a business application and integrated role-based security into
MTS. Role-based security could be applied at the package level, component
level, interface level, and/or method level. This allowed security administrators to
implement the granularity of security necessary to meet business requirements.
Combined with appropriate application design, certain roles could be allowed
access to perform tasks while others were denied that access. MTS later
evolved into COM+ with Windows® 2000 but the paradigm stayed essentially the
same, although packages were now known as applications.

Now granularity was attained at the business logic level, but what about the data
level? Consider an application with 1000 users. The business logic and role-
based security prevent all but 10 of those 1000 from performing an action that
involves data stored on a database server. The 10 users can change at any
given time but their role will not change. It seems foolish to give each individual’s
ID access to the data level. This situation not only creates an administrative
nightmare, but also introduces a potential security vulnerability. A user could
theoretically write his own malicious component or other code snippet to access
the data and would gain access since he is directly authorized to the data. A
solution would need to be developed where users could gain access to the data
through applications but not be directly authorized to the data with user
credentials. To address this issue, Microsoft introduced the idea of
impersonation into MTS. With MTS a COM object can impersonate a caller and
perform actions for the client with the client’s security context(access files, call
other COM objects, etc.) on the local server the object is running on, but then
make a network call using the COM object’s security context. The COM object
can now be authorized to the data resource. Only by going through the MTS
application can a user access the data.

The three-tier approach has quickly become a de-facto standard for medium to
large enterprises. In this model the presentation tier, business logic tier, and
data tier are implemented as separate entities to eliminate single points of failure
and to utilize increases in performance and security. Using this paradigm
requires logically (and often physically) separate servers that are networked
together for communication. The trouble here was that often the backend
servers would run a certain operating system or web server while the business-
tier and/or presentation-tier would run a different operating system or web server.
A way to communicate between physically separate servers that may be running
multiple flavors of operating systems and web servers was needed; enter the
Simple Object Access Protocol.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SOAP
The Simple Object Access Protocol, or SOAP, is a standard that uses XML
messages to communicate between objects. The objects can be written in any
language and run on any operating system or web server. Web services need
only be “SOAP enabled” to allow them to communicate with any other web
service connected to the Internet. SOAP utilizes HTTP as its underlying protocol
which any web server can transmit and receive. This opened up the Internet
business world like no other. Two separate companies could now have web
services that pulled information from each other by simply using SOAP to
transmit messages and make application calls.

Unfortunately, HTTP itself is a plain text protocol. This means that SOAP is a
plain text protocol. Businesses soon realized that important business data such
as credit card numbers and authentication schemes were being passed across
the Internet in plain text and could easily be intercepted by a hacker with a
network sniffer. In addition, SOAP simplified the process of making an
application call to another web service. Without a proper authentication scheme,
critical web services offered by banks, insurance companies, and any other
online business entity would be wide open to tampering, destruction, and theft.

Thankfully, a protocol was already in place on the Internet that could be utilized
by HTTP to provide security transmission of data. Secure Sockets Layer (SSL)
provides a protocol over which HTTP can ride. HTTPS (HTTP over SSL) allows
for 128-bit end-to-end encryption of data. The encryption occurs just above the
Transport layer in the OSI Network Stack so network sniffing devices will only
see encrypted packets traversing the network. SOAP data could now safely be
transmitted without worry of loss of integrity or confidentiality.

Business Background and Mock Application Requirements
In the course of explaining the controls necessary to deploy and secure a SOAP-
enabled COM+ application, this paper uses the fictitious company ACME
Banking. ACME is a small to medium sized financial institution that has a need
for an online bank for customers and employees alike to access. The application
needs to be a web-application to allow customers working on any variety of
operating system or web browser to easily make use of the application.
Customers should not be able to perform deposits but they can perform
withdrawals and check their own balances. ACME employees need to be able to
access the application to perform withdrawals, deposits, and obtaina customer’s
balance. Employees are either tellers or managers. Tellers cannot authorize
loans, but can perform all other functions. The bank managers need the ability to
authorize loans and retrieve balances.

The solution can be easily broken up into roles based on functionality. The
Customer role will have the ability to retrieve balances and perform withdrawals,
but will not be able to deposit or authorize loans. The Teller role will be able to
withdraw, deposit, and retrieve balances but not authorize loans. The Manager

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

role will be able to authorize loans and retrieve balances but does not need
functionality to deposit or withdraw.

Role-based security allows security to be associated directly with functionality.
By wrapping the security into the functionality, management and business
partners more easily see the benefits of security and security administrators get
the authorization controls they desire. The solution for this application primarily
uses Microsoft security controls which are already built into the OS product. This
reduces the cost associated with additional software. By scripting and
automating the security controls along with the server setup, administrative
resource usage is kept to a minimum as well. This should put a smile on any
manager’s face.

Buyoff
It is worth noting something about the acceptance of security by those who pay
for it. Business management has often been slow to see a benefit to increased
security. Security administrators ramming security controls down management’s
throats without providing threat and vulnerability statements with risk
assessments led to the consensus that security wasn’t really necessary. In the
absence of incidents, businesses were lulled into a false sense of security.
Vulnerability and risk assessments are the most important tools security analysts
have in obtaining buy off from management to implement security controls.
Business requirements should determine security controls, not paranoid security
analysts and not frugal managers.

Environment
ACME will be utilizing Microsoft Windows® 2000, IIS 5.0, and COM+. Microsoft
also has the .NET platform available for web application development. The
reason this paper does not explore that newer technology is three-fold. First,
many companies are accustomed to Visual Basic 6 programming and do not
have the budget needed to retrain programmers or hire consultants in order to
implement .NET web applications. Second, there is an increased cost to
maintaining the .NET infrastructure and training administrators and support
personnel with the knowledge necessary for this task. Lastly, even with .NET,
COM+ can be utilized to implement much of the role-based security. Many
companies are reluctant to move to Microsoft Windows® Server 2003, IIS 6.0,
and .NET until industry standards and best practices have been solidified.

Currently ACME has a three-tiered environment; a DMZ with two presentation
servers, a trusted zone with two business servers and two Intranet presentation
servers, and a clustered database environment. The DMZ presentation servers
will be accessed by customers and the Intranet presentation servers will be
accessed by employees. Figure 1 shows the network diagram for ACME Corp.
The DMZ servers are stand-alone Windows® 2000 servers in workgroup mode.
This was chosen because with only two servers, a domain in the DMZ is
unnecessary. In addition if a domain were implemented, a single compromise of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

an ID would compromise the entire DMZ as opposed to just a single server. The
trusted zone servers are members of a Windows® 2000 Active Directory domain.
Currently there are 20 employee users of the application and an anticipated
5,000 customers.

Figure 1

ACME has the desire to deploy the application quickly and consistently to meet
future growth. Currently two administrators maintain the environment, so an
automated solution of some type is essential.

Deriving a Solution
To reduce the chances of configuration errors due to manual installation and
setup, as much of the final solution will be scripted as possible. This will include
a small number of scripts that can be loaded when a new server is installed
before it is brought onto the network. Some tasks will be performed manually out
of necessity, but the goal is to keep these tasks to a minimum and only when
scripting is not possible.

As mentioned prior, operating system hardening is largely out of scope for this
paper. It will be assumed from here forward that the OS has been installed, all
service packs have been downloaded and installed, all security hot fixes are
installed, and the file system has been necessarily hardened. Unnecessary
services should be turned off and security policies, whether local or through GPO,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

should be in place. It will also be assumed that IIS, COM+, and Microsoft’s
SOAP toolkit are already installed on the server.

Network level security will also be out of scope but proper border control
including firewalls, anti-virus software, router ACLs, intrusion detection (IDS), and
other miscellaneous network security controls should be in place to accent the
OS security.

Database security is out of scope as well. ADO calls will originate from the mid-
tier servers and end at the clustered database servers. Securing the ADO call
will not be discussed nor will securing the database servers. Obviously, security
administrators would want to implement encryption of the ADO call and proper
database and SQL security on the servers.

Before moving into the solution, a note on the format the paper will follow should
be included. The paper will move step by step through the web server (IIS),
application server (COM+), and application file security. Each section will initially
explain the security controls and how they are implemented before using the
example mock application. Background information will be provided where
appropriate but the ultimate goal will be to explain how to implement the security
controls. The intended audience of the paper is security administrators who have
a reasonable background both in Windows 2000 administration and also in
general security principals. The paper will not explain every tiny detail or give a
“click by click” guide to the implementation but will instead describe the settings
that need to be changed and where they are located.

Courier type will be used for files, folders, and code examples. Italics will be
used for specific names such as COM+ application names, virtual directory
names, etc.

The Big Picture
The application security flow for the solution is shown in Figure 2. An ID makes a
call to an ASP on the Presentation-Tier. That ASP makes a call to the VBank
COM+ object that then makes a call to a helper SoapUtils COM+ object on the
presentation server. The COM+ object (SoapUtils) makes the SOAP call to the
Mid-Tier requesting the WSDL file of the component to which it wishes to make
the SOAP call. IIS requests basic authentication and the SOAP client on the
Presentation-Tier returns the ID and Password in the HTTP Header. IIS checks
the file permissions on the WSDL that is requested using the ID passed via Basic
Authentication. If the ID is authorized, the SOAP ISAPI handles the request by
passing it to COM+. COM+ checks the role security set on the application,
component, interface, and method being invoked by the SOAP call. If all pass,
then the call is processed by the specific VBankBackend COM+ component and
a SOAP response is sent back to the SOAP client. If the call fails, the SOAP
response will provide errors to the client.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 2

Installing the Application Files
The first task after the OS and environment have been setup will be to install all
the files that are needed for the application and to create the necessary file
structure to support the application. The files necessary for the application are:

Business Tier (Mid-Tier server) Files
 VBankBackend.dll This file contains components needed to create

the COM+ application VBankBackend.
 authorizeLoan.wsdl and authorizeLoan.wsml SOAP

infrastructure files needed on the server side to enable SOAP calls to the
authorizeLoan component.

 Deposit.wsdl and Deposit.wsml SOAP infrastructure files needed
on the server side to enable SOAP calls to the Deposit component.

 Withdrawal.wsdl and Withdrawal.wsml SOAP infrastructure files
needed on the server side to enable SOAP calls to the Withdrawal
component.

 retrieveBalance.wsdl and retrieveBalance.wsml SOAP
infrastructure files needed on the server side to enable SOAP calls to the
retrieveBalance component.

Presentation Tier (Web-Tier server) Files
 index.asp This file serves as the front end for all users. It is installed

on the Presentation server and invokes a dispatcher COM+ application
running on the Presentation-Tier server.

 SoapUtils.dll This file contains components needed to create the
COM+ application SoapUtils.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 VBank.dll This file contains components needed to create the COM+
application VBank.

The directory structure is not of great concern but creating a structure that is
consistent and flexible is desirable. Create a structure that will allow future
administrators easy navigation as well as provide the flexibility and consistency
to allow additional web applications to be deployed.

Business Tier (Mid-Tier server) Directory Structure
 %APPDIR%\VBANK will be the root directory for the VirtualBank web

application
 %APPDIR%\VBANK\DLL will contain VBankBackend.dll
 %APPDIR%\VBANK\website will be the website root directory (the Virtual

Directory)
 %APPDIR%\VBANK\website\WSDL will contain the WSDL and WSML

files for the VirtualBank web application

Presentation Tier (Web-Tier server) Directory Structure
 %APPDIR%\VBANK will be the root directory for the VirtualBank web

application on the presentation server
 %APPDIR%\VBANK\website will be the website root directory and virtual

directory for users
 %APPDIR%\VBANK\DLL will contain the SoapUtils.dll and

VBank.dll files
 %APPDIR%\WSDL will contain the client WSDL files for making the SOAP

call to the Business-Tier server

It is a good idea to create some environmental variables that will allow scripts to
utilize some common information. The mock system will contain the following
environmental variables:

 %APPDIR% C:\APPS
 %LOGDIR% C:\LOGS
 %SERVER% MIDTIER, INTER, or INTRA (This corresponds to

MIDTIER for the Mid-Tier server, INTER for the DMZ presentation server,
and INTRA for the Intranet presentation server)

The %APPDIR% variable will be used to create the directory structure and
%SERVER% will be used to determine which environment a script is running on,
if needed. %LOGDIR% will be the location used for logs on the systems.

Creating the Necessary Windows Accounts (IDs)
Before any application security is applied, it is important to create the IDs that will
be needed for access to the application. These IDs will be used to secure the
application files as well as the COM+ role-based security. There are several
ways to implement these IDs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

One way is to use Active Directory to create domain IDs for the users, domain
global groups to organize them and assign the roles, and domain local groups to
assign file permissions. This allows for the least administrative overhead since it
utilizes Active Directory exclusively; however if one of the SOAP IDs is
compromised, that ID can be exploited everywhere in the domain.

A second way to implement the ID management is by using only local computer
IDs. This offers the most security since the IDs are unique to only one (or a few
machines at most) and a compromise would be limited to only those machines
which have the ID and identical password. This choice however is undesirable
since it becomes an administrative nightmare to create local IDs for all users and
constantly update these on all servers.

The desirable option is a combination of the above two. For customers coming
from the Internet, domain IDs will not be created. They will utilize information
from a B2C LDAP directory and share a single SOAP ID passed from the
Presentation-Tier to the Mid-Tier. Internally, the employees will each have
domain accounts in Active Directory which they currently use to logon to their
workstations. They will be members of global groups which will be added to
domain local groups and associated with the roles that the application uses. The
VBank application will perform programmatic checks to see whether a user is an
employee or a customer. The SoapUtils application will then make the SOAP
call using either the customer SOAP ID or the appropriate employee SOAP ID
that will represent the employee. The SOAP ID is determined using
IsCallerInRole() programmatic security in VBank and the ID and password
is passed from VBank to SoapUtils.

The Mid-Tier will contain the following IDs and groups:

Local Accounts and Groups
 SOAP_VBANK_CUST Local ID for the Customer SOAP call
 SOAP_VBANK_CUST_L Local group used for Customer role

membership and file permissions
 SOAP_VBANK_MGR_L Local group used for Manager role

membership and file permissions
 SOAP_VBANK_TLR_L Local group used for Teller role membership

and file permissions
 SOAP_VBANK_MGR Local ID for the Manager SOAP call
 SOAP_VBANK_TLR Local ID for the Teller SOAP call
 SOAP_VBANK_L Local group containing all SOAP_VBANK IDs
 COM_VBANK Local account that the VBank COM+ application will run

under on the presentation servers
 COM_VBANK_BACK The ID that the VBankBackend COM+

application will run under

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Domain Accounts and Groups
 Employee’sindividual account Domain ID used to authenticate

employee
 VBANK_MGR_G Global group containing Manager domain IDs
 VBANK_TLR_G Global group containing Teller domain IDs
 VBANK_MGR_DLG Domain Local group containing VBANK_MGR_G
 VBANK_TLR_DLG Domain Local group containing VBANK_TLR_G

The local accounts will require logon local rights to the Mid-tier server in order for
Basic Authentication to work. This can be attained most easily by allowing the
SOAP_VBANK_L group logon local rights. This setting will be defined using
local group policy for the Mid-tier servers. The setting is located under User
Rights Assignment Log on locally in the Local Policies snap-in.

This is a good point to include a note on the COM+ application identities,
COM_VBANK and COM_VBANK_BACK. Password policies are out of scope for
this paper; however it is good to note something about passwords for these
accounts. Since these accounts will not be used by any users, they should have
long, complex pass-phrases. Windows 2000 supports up to 127 character pass-
phrases so it is easiest to set the account passwords as 30 or 40 character
phrases and then set them to never expire. This reduces administrative
headache and still provides exceptional password security. Be sure to document
these passwords and keep the documentation secure in case the need to
recreate the IDs arises.

The Teller and Manager domain accounts only need Access this computer from
the network privilege on the Intranet presentation server. This can be set using a
Domain GPO but most likely will be set using an OU GPO. The GPO will be out
of scope for the paper but this setting is needed to allow Integrated Windows
authentication to work.

Securing the Application Files
Now that the files for the application have been installed they need to be secured
using NTFS file permissions. The Least Privilege model suggests that only those
with need for access be granted access; all other accounts should not have
access to any of the files (Saltzer and Schroeder, 1975). In the case of SOAP
infrastructure, the WSDL file security is the most important. This is because for
this solution, Basic Authentication will be used at the Virtual Directory on IIS.
When IIS receives a request for the WSDL file, it will first check the file
permissions on the WSDL. If the account requesting the file has permission, it
will allow the call to be processed by the SOAP ISAPI filter and forwarded on to
COM+. If not, then the SOAP ISAPI filter will return an “Access Denied” error in
the SOAP response. Microsoft’s implementation of the SOAP ISAPI allowed it to
handle the access denied instead of returning a 401 by IIS. In the event of a
WSDL file permission error, IIS will return a 200 but the SOAP response will

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

show “Access Denied.”The IDs accessing the WSDL files need only Read
access on them in order to be authorized after the Basic Authentication call.

Although the file security on the .dll files is of lesser importance than the server
WSDL files in a SOAP enabled application, incorrect permissions on the .dll files
can cause access denied errors that are hard to debug. All IDs that will be
accessing the COM+ objects associated with the .dll file will need read and
execute privilege on the .dll. Securing the .dll file will also prevent unauthorized
users or components on the server from making COM/DCOM calls to the COM+
objects. COM/DCOM calls are not audited so preventing this is beneficial from a
forensics point of view.

The WSML files associated with each WSDL file should carry the exact same
permissions that the corresponding WSDL contains. Any ASP pages should be
secured appropriately as well. If the ASP is located on the DMZ Presentation-
Tier, Authenticated Users should have read and execute privileges on them to
enable the anonymous user account, IUSR_<computer> to view it. The ASP on
the Intranet Presentation-Tier should allow the VBANK_TLR_DLG and
VBANK_MGR_DLG groups read and execute privilege.

The mock application files will have the following effective permissions where
F=Full Control, R=Read, and E=Execute:

 VBank.dll (on DMZ servers) Administrators:F, SYSTEM:F,
Authenticated Users:RE

 VBank.dll (on Intranet servers) Administrators:F, SYSTEM:F,
VBANK_MGR_DLG:RE, VBANK_TLR_DLG:RE

 VBankBackend.dll Administrators:F, SYSTEM:F,
SOAP_VBANK_L:R

 authorizeLoan.wsdl and authorizeLoan.wsml Administrators:F,
SYSTEM:F, SOAP_VBANK_MGR_L:R

 Deposit.wsdl and Deposit.wsml Administrators:F, SYSTEM:F,
SOAP_VBANK_TLR_L:R

 Withdrawal.wsdl and Withdrawal.wsml Administrators:F,
SYSTEM:F, SOAP_VBANK_TLR_L:R, SOAP_VBANK_CUST_L:R

 retrieveBalance.wsdl and retrieveBalance.wsml
Administrators:F, SYSTEM:F, SOAP_VBANK_L:R

It is a good idea to implement policies within the organization preventing
designers and programmers from placing sensitive information in WSDL and
WSML files. Although the files are locked down on the server side, the client
side often has copies of the files that are not secured beyond authenticated users.
IP addresses, IDs, and passwords should definitely not be placed in WSDL and
WSML files.

Setting Up and Securing Internet Information Services

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Once the file system has been setup and all the application files installed and
secured, it is time to address IIS. IIS 5.0 is the web server installed by default
with Windows® 2000 Server. There are several pieces involved with the IIS
setup. The first would be hardening the out of the box install of IIS and getting it
ready to serve web applications securely. The second piece would be setting up
the Web Site for the server. This involves making configuration changes to either
the Default Web Site that is installed with IIS or disabling the Default Web Site,
creating a new Web Site, and configuring that. Many of the settings defined in
the Web Site will trickle down to any virtual directories and some can only be
changed at the Web Site layer. Third, the server must be setup with an X.509
certificate in order for the server to be able to serve content using SSL. Lastly
the virtual directory for the web application must be created, configured, and
brought online.

Hardening IIS
Out of the box, IIS 5.0 arrives with many potential vulnerabilities. The very first
thing to do is to install all hot fixes from Microsoft to patch all known
vulnerabilities. This paper assumes this step is already complete so let us move
on. A good start to eliminating the potential vulnerabilities is to download the IIS
Lockdown Tool from Microsoft. This is a must have tool for anyone running IIS.
The tool has a good user interface and does a fairly thorough job of locking down
much of IIS. The first screen (Figure 3) that will come up with the tool will ask
what Server Template you would like to apply. The choices range from an
Exchange server to a server that does not require IIS (thus allowing IIS to be
uninstalled). The mock application uses ASP pages so from this point on the
paper will use Dynamic Web Server template. The next screen asks whether to
install URLScan. URLScan is an ISAPI filter which screens incoming requests to
the web server and blocks those requests that look malicious. It comes with
an .ini file called urlscan.ini which can be configured to further lockdown IIS.
URLScan is also an excellent tool and should be installed. The next screen will
show what changes the Lockdown tool is applying to IIS.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 3

The first change that the Lockdown tool will make is to remove many
unnecessary app mappings. By default IIS comes with a plethora of mappings
for various file extensions such as .asp, .cer, .htr, .printer, etc. The App
Mappings allow IIS to map each file type to a corresponding ISAPI filter which will
process the requests for that file type. Unnecessary app mappings increase the
exposure potential for your web server. In the past, vulnerabilities have been
found within the ISAPI filters themselves and malformed requests for certain file
types have allowed attackers to gain elevated SYSTEM privileges. For the
Dynamic Web Server template, it will remove
the .idq, .htw, .ida, .idc, .shtml, .shtm, .stm, .htr, and .printer mappings. It is a
good idea to check the effective setting for app mappings under the IIS Snap-in
under Web Site Properties Home Directory Configuration to ensure that
the Lockdown tool removed the app mappings and to remove any additional
unneeded mappings. Figure 4 shows the Home Directory tab and Configuration
button.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 4

Next, the Lockdown tool will disable WebDAV which has also had vulnerabilities
in the past and set more restrictive file permissions on the content files. This
prevents the anonymous account from having write permission to the file system
and having execute permission on system files. In addition, the tool also
removes a number of virtual directories that contain examples and scripts that
can be used by attackers to gain access to the server.

Inspecting IIS, notice that the Administrative Web Site has been removed and all
that remains is the Default Web Site. Under the App Mappings, those app
mappings mentioned above are mapped to 404.dll which returns a 404 error
when requesting a file of that type. It is possible to just delete the unneeded app
mappings which eliminates any possibility of a corrupted 404.dll causing
undesirable effects.

Although the Lockdown tool provides excellent security over the base install of
IIS, more can be done. Continuing under the Application Configuration tab,
move from App Mapping to App Options. In this tab you will see several things
pertaining to session state, buffering, parent paths, and script languages. The
important pieces here are session state and parent paths. By enabling session
state with a low session length of 5 minutes, the application can actually timeout

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and depending on the logic of the application, can require the user to login again.
This is a nice security feature if your application is programmed to support it.
More importantly, though, you will see that Enable Parent Paths is checked. This
is another potential vulnerability. By allowing parent paths IIS will allow URL
syntax like the following:

http://host.domainname.com/vdir/../../Winnt/cmd.exe

This can allow an attacker to potentially access a system file such as the
Command prompt. Uncheck Enable Parent Paths to prevent the use of the “../”
syntax. Figure 5 shows the setting on the App Options tab under Configuration.

Figure 5

A nice feature of IIS 5.0 is the ability to specify that applications run as isolated
processes. This feature allows web applications to kick off their own separate
DLLHost.exe process running without elevated privileges. This setting is
located on the Home Directory tab under the IIS snap-in and has three potential
settings:

 Low this allows all applications to run under the IIS inetinfo.exe
process

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Medium a process called DLLHost.exe will kick off and all web
applications will run under this single process

 High this forces each web application to spawn its own DLLHost.exe
in addition to the generic one created for IIS

The advantage to High would be that any given web application that is
compromised will not give the attacker SYSTEM privileges and won’t impact any
other web application. This setting is not without penalty however as
performance will take a hit by enabling each application to run as its own process.
It is not advised that an application ever be set to run as Low due to security risks.
Non-essential, non-critical applications can be run with Medium level to decrease
the performance loss. Critical and sensitive applications should be run as High
to take advantage of the separate DLLHost.exe processes. The Web Site level
should be set to Medium and any virtual directories requiring High can override
the Web Site inheritance.

The last IIS hardening step to be outlined by the paper will be reducing the user
rights on the Web Site. IIS has two different settings which limit user rights and
both are located under Web Site Properties Home Directory tab in the IIS
snap-in (refer to Figure 4). The first is a series of checkboxes which define the
rights assigned to the root directory and files of the website. The check boxes
are:

 Script source access
 Read
 Write
 Directory browsing
 Log visits
 Index this resource

Script source access allows the user to gain access to script source such as ASP.
Would be attackers can now see the source code running on the server. This is
obviously not a good security practice, so this box should never be checked.
Read access is necessary if anyone is to use the website so this setting should
always be checked. Write access should be turned off unless there is an
absolute reason to turn it on. With write access a user can create files and
modify existing files under the root directory. Directory browsing allows the user
to see everything in the root directory. Combined with allowing parent paths (see
section above on disabling parent paths), a user can see the file and directory
structure of the entire web server! This is definitely not a good thing so directory
browsing should always be unchecked. Log visits functionality enables all traffic
to the website to be logged in the IIS log. This should always be turned on to
allow for forensics if needed as well as to monitor any potential attacks against
the website. The Index this resource setting only applies if Microsoft Index
server is used. If it is not used, this setting has no impact.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The second piece of user access configuration on the Home Directory tab is
Execute Permissions under the Application settings. There are 3 potential
settings: None, Scripts only, and Scripts and Executables. The choice here
depends on the needs of the website. If static content is only to be served, then
None is appropriate. If ASP or some other script language is used then Scripts
only is appropriate. If CGI or some other executable is required then Scripts and
Executables should be set. Generally, it is best to avoid using executables and
set this to Scripts only.

The VirtualBank Web Sites will all use an Application Protection setting of “High”,
Read and Log visits rights, and Scripts only execution.

Configuration of the Web Site
Much of the configuration of the Web Site has been completed by the hardening
steps above. However some general things still remain to be completed. The
goal behind configuring the Web Site is to change any defaults that IIS comes
with to those that are appropriate for the server. This involves changing the
location of the Web Site root, the configuration of log files, the default documents
for the Web Site, and changes to the HTTP error messages.

Setting the location of the Web Site root is a simple configuration. This should be
pointed to a root folder where default content would be stored. This does not
limit the ability to point a virtual directory to any location on the server, but it gives
a starting point for the Web Site. Typically, virtual directories would be setup
below this root but again, that is not a requirement. This option is defined by the
Local Path setting at Web Site Properties Home Directory in the IIS snap-in.
The Local Path setting will be defined as follows for the VirtualBank web
application:

 Internet Web-tier%APPDIR%
 Intranet Web-tier%APPDIR%
 Mid-tier%APPDIR%

The next step would be to configure the log files. There are a number of settings
that can be configured for the log files, however only a few are of significant
importance to this paper. The logging settings are located under Web Site
PropertiesWeb Site. The majority of the settings are then located under the
Properties button. The Log file directory setting will specify the location to store
the logs generated. By default this is in the %WINDIR%\System32\LogFiles
directory. It is advised to change this to a different folder to obfuscate the
location of the IIS logs. Choose a location for IIS log files to be stored and
ensure that it is locked down to only Administrators, SYSTEM, and anyone else
who needs Read access to the log files. VirtualBank will use %LOGDIR%\Web.

The Extended Properties tab allows additional logging information to be turned
on as well. By default IIS will log the following items:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Client IP Address Logs the address the user is coming from
 User Name Logs the user name that is authenticating to the server

(anonymous user is not logged)
 Server IP Address Logs the IP of the server
 Server Port Logs the port that the request is coming into (80 for

instance)
 Method Logs the HTTP method used (GET, POST, etc.)
 URI Stem Logs the resource requested
 URI Query Logs any query the client tried to perform
 Protocol Status Logs the HTTP code returned (200, 404, 401, etc.)
 User Agent Logs the agent accessing the server (Internet Explorer,

Mozilla, Netscape, etc.)

These defaults are adequate for our mock application. URI query is probably the
least important for the VirtualBank application since it should usually log nothing.
The rest are all important to both troubleshooting as well as security logging.

The Web Site Properties Documents tab allows a default document to be
specified for the Web Site. This implies that a user does not need to specifically
request a document when hitting the root of the Web Site. For instance, a
browser query can be made to http://www.sans.org/. Although the request didn’t
specify it wanted index.html, that file was returned because it was defined as the
default document. Typically this setting is set at the Web Site level but may be
disabled or changed per virtual directory. For the Web Site in the VirtualBank
example, Default.htm will be left as the default document. This setting will be
changed for the virtual directory setup.

The last bit of Web Site configuration explored in this paper will be HTTP errors.
By default, IIS comes installed with a number of default documents that are
displayed by the web browser according to the HTTP error returned. Figure 6
shows the default 404 error returned. The problem with these default pages is
that they clearly state that IIS is running on the web server. This may not be a
problem for Intranet applications but it gives away information to potential
attackers from the Internet that the web server is running IIS. Although it is
possible to determine that IIS is running through other probing and investigation
from attackers, it should not be as easy as requesting a document that does not
exist. The documents that are returned are defined under Web Site Properties
 Custom Errors. Figure 7 shows this tab. By selecting the HTTP Error from
the table, choosing Edit Properties button and selecting a message type of
Default, the HTML returned will specify only the error and nothing about IIS. It is
also possible to further obfuscate by creating custom files to return. This can be
done by creating a file and specifying its location with the File setting under Edit
Properties.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 6

Figure 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSL configuration
To this point, IIS has been installed, patched, secured, and the Web Site
configured. There is only one thing at the server level to complete for IIS and
that is the installation of an X.509 certificate and configuration of SSL. The SSL
will be integral in our security design to provide integrity and confidentiality of
customer data as well as to protect the plain text credentials sent via Basic
Authentication in the HTTP header.

The first thing to do in order to get SSL up and working on the web server is to
create a request for a certificate. The server must create a request key that will
be submitted to the Certificate Authority. The Certificate Authority (CA) will then
issue a certificate which contains the public key for the web server and a digital
signature from the CA. If the client trusts the CA, then it will automatically know
that the public key provided in the web server’s certificate is authentic. In order
to prepare the request, navigate to Web Site Properties Directory Security
 Server Certificate… in the IIS snap-in. This will open the Web Server
Certificate Wizard. Choose to “Create a new certificate” and then to “Create
requestnow, but send it later.” The next screens will ask for key length and
some organizational information. The important part is the screen that asks for
“Common Name.” This is the name of the server on the certificate. This must
match the server name exactly. The Internet presentation server will use
www.acme.com in the mock example. After entering the common name, more
information such as state and city will be needed to go on the certificate. Finally,
save the request to a text file. The information in this text file will be used to
create the certificate on the CA. Figure 8 shows the completed certificate
request information.

Figure 8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Internet facing servers should receive certificates from external sources such as
Entrust, Verisign, Thawte, etc. Most web browsers have copies of the root CA
certificate for these sources and that way users will never see certificate trust
prompts when they visit the site. Intranet presentation servers and mid-tier
servers can make use of an internal certificate authority specific to the business
and save money on certificate costs.

Figure 4 shows the contents of the certificate request text file. The information
that is given to the CA would be the Base-64 encoded portion between the ----
-BEGIN NEW CERTIFICATE REQUEST----- and -----END NEW
CERTIFICATE REQUEST----- lines.

The CA will generate a .cer file and it will be provided for installation on the
server. In order to install the certificate, return to Web Site Properties
Directory Security Server Certificate… in the IIS snap-in. This time select
“Process the pending request and install the certificate” on the first screen. The
next screen will ask for the location of the .cer file provided by the CA. This will
import the certificate into the server and allow SSL to be used.

The last thing to setup on the server to utilize SSL is to specify a port for SSL.
The default port for HTTPS is 443 so in order to enable clean, port free URLs,
443 should be set as the SSL port for the server. To do this, navigate to Web
Site PropertiesWeb Site and set the value for SSL Port. The server should
now be ready to serve HTTPS traffic over port 443.

Virtual directory creation and setup
The last portion of the setup and securing of IIS involves creating a virtual
directory for the web application and configuring it. A virtual directory is not
absolutely needed but is useful if the Web Site intends to serve more than one
web application. This section will go over the steps needed to create a virtual
directory, change some of the configuration settings, and enforce some
additional security.

The first step will be to create the virtual directory. In order to do this, a Web Site
must already be configured. Virtual directories must be created within a Web
Site. A virtual directory can be created by right-clicking the Web Site and
choosing New Virtual Directory. This kicks off a wizard to setup the
preliminary settings for the virtual directory. The first screen will ask for the alias
for the virtual directory. This is the portion tacked to the end of the Web Site
name that will allow access to the virtual directory. For example an alias of site
will produce a URL of http://www.servername.com/site/. The second screen will
ask for the directory that the virtual directory should point to. Typically this is
below the root Web Site directory but does not have to be. It can point to any
directory on the server, to a share on another server, or even to another URL as
a redirector. The final screen in the wizard will ask to setup the access

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

permissions for the virtual directory. These permissions are exactly like the
permissions that can be defined at the Web Site level. They are as follows
(Figure 9 shows the screen shot):

 Read
 Run scripts (such as ASP)
 Execute (such as ISAPI applications or CGI)
 Write
 Browse

Figure 9

The virtual directory settings will override those that are defined by the Web Site.
Refer to the Hardening IIS section for more information on each of these settings.
The same security recommendations apply here as at the Web Site level. If
more relaxed permissions are required, it is better practice to apply them at the
virtual directory level than at the Web Site level.

In addition, the Mid-tier server needs a mapping for .wsdl files in order for SOAP
requests to the .wsdl files to be processed using the ISAPI filter for SOAP
provided in the SOAP toolkit. The mapping should use the SOAPIS30.dll
ISAPI filter which is located in the SOAP toolkit install folder; most likely at
C:\Program Files\Common Files\MSSoap\Binaries.

The VirtualBank virtual directories have the following settings defined (Figure 10):
 Virtual directory alias VBank

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Local Path %APPDIR%\VBANK\website
 Execute Permissions Scripts only
 Application Protection High
 Default Documents index.asp

Figure 10

Now that the virtual directory is created it will show up under the Web Site and
highlighting it will show all the folders and files accessible through the virtual
directory. Navigating to the virtual directory Properties will bring up a
configuration screen similar to the Web Site Properties screen. The virtual
directory Properties has a subset of some settings from the Web Site level.
Documents, Directory Security, HTTP Headers, and Custom Errors are all
present at the Web Site level as well as the virtual directory level. The Virtual
Directory tab is very similar to the Home Directory tab from the Web Site
Properties. The settings at the virtual directory level are all inherited from the
Web Site except those set in the wizard for the virtual directory. This allows the
virtual directory to take advantage of the hardening that was performed for the
Web Site.

Virtual directory authentication

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Moving on the next step to setting security at the virtual directory will be to
configure the virtual directory on each web server to use the proper
authentication scheme. This will be as follows:

 Internet Presentation-tier server Anonymous access
 Intranet Presentation-tier server Integrated Windows authentication
 Mid-tier Business logic server Basic Authentication

To set this up, navigate to virtual directory Properties Directory Security and
click on the Edit… button under Anonymous access and authentication control.
This brings up a box allowing several different authentication settings:

 Anonymous access allows all incoming users to access resources
without authentication; users will run with the IUSR_<computer> account
(or whatever is specified by the Edit… button on the Anonymous access
section)

 Basic authentication Base-64 encoded ID and password (in the form
ID:Password) are sent to the web server for authentication

 Integrated Windows authentication uses NTLM or Kerberos to
authenticate a user; this allows seamless authentication by passing the
security token of a user that is logged into a Windows domain

 Digest authentication this can be utilized in a Windows domain
environment; it provides basic encryption but is not well supported by web
browsers

First let us configure the web-tier servers. By default, IIS allows anonymous
access, so nothing special needs to be configured for the VirtualBank Internet
server. For the Intranet, anonymous access needs to be turned off and
Integrated Windows authentication needs to be checked.

Lastly, the mid-tier needs to be configured to use Basic Authentication to
authenticate the SOAP call. As stated before, Basic Authentication takes
advantage of HTTP header variables to pass an ID and password via a Base-64
encoded string to the web server. Do not be fooled though, Base-64 encoded
does not mean encrypted. It is clear text and can easily be decoded to reveal the
ID and password. Basic authentication should not be used without SSL. A
Windows domain can be specified for the ID and password passed by Basic
Authentication. This can be set by the Edit… button in the Basic Authentication
section under the Authentication screen. For the VirtualBank app, local accounts
will be used so no domain will be specified. Figure 11 shows the Authentication
screen.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 11

Virtual directory SSL
SSL is required to secure the Basic Authentication credentials sent from both
Internet and Intranet web-tier servers to the mid-tier server. It is also required by
the business requirements to protect the sensitive data transmitted over the wire
by the VirtualBank application. SSL will need to be required at the virtual
directories on all three servers.

IIS allows administrators to require that only HTTPS traffic be accepted by the
server at either the Web Site level or at the virtual directory level. VirtualBank
requires SSL so the virtual directory setup on all servers for VirtualBank needs to
require SSL. This setting is located under the virtual directory Properties
Directory Security tab, Secure Communications section Edit… button. This
opens a window that displays configuration options for SSL. The very first option
is Require secure channel (SSL). This setting will require any connections to the
virtual directory to use HTTPS. Any connections attempting to connect without
SSL will receive a 403 HTTP error. This is desirable because it prevents all
users from accidentally connecting via an unsecured port and passing
credentials or sensitive information unencrypted.

In addition to requiring SSL, it is also possible to require the encryption strength
be 128-bit. SSL also supports 40-bit encryption. This encryption is weak and
can be broken fairly easily. E-commerce servers should use 128-bit SSL to
protect data in transit. Figure 12 shows the Secure Communications screen.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 12

The previous settings are the only ones that will need to be configured for the
VirtualBank web application. The other settings defined in the Secure
Communications window pertain to client certificates. These certificates can be
used for authentication between client and server and eliminate the need for
passwords.

This completes the IIS setup, configuration, and security. The next section will
discuss the final setup and security needed for the VirtualBank web application.

Installing and Securing the COM+ Application
Now that the application files have been installed and secured, IIS has been
hardened and configured, the Web Site and virtual directory has been created
and secured, and SSL has been deployed, the last piece to completing the
deployment and securing of the VirtualBank web application is installing the
COM+ pieces and securing them. The first piece will be the creation of the
COM+ applications. The second piece will be the population of those
applications with the appropriate components. Lastly, the applications and
components will be secured using role-based security.

Creating the applications
Before COM+ can be used as an application and transaction server, the
application must be created. This is easily accomplished through the Component
Services snap-in. In the snap-in, the COM+ applications are grouped according

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

to computer. All COM+ applications for the server are located under My
Computer COM+ Applications. In order to create a new application, highlight
COM+ Applications and right click. Choose a New Application. This executes
the COM+ Application Install Wizard. The first screen (Figure 13) in the wizard
presents a choice between using a pre-built application and creating an empty
application. In order to use a pre-built application, an .msi file is needed. Since
the VirtualBank web application uses .dll files, creating an empty application is
the only option. The next screen will ask for the name of the application and a
choice between which kind of application to create. The two choices of
application are library and server. Library applications run in the process of the
caller. This means that library applications will not do impersonation and in fact,
will not have an identity of their own. Server applications, when invoked, will run
in their own dllhost.exe process (or a shared server process depending on
the value chosen for Application Protection under the Web Site or virtual
directory). Unlike the library application, the server application will run as an
identity. This can be specified as Interactive user, which means it will execute
with the identity of a currently logged in user, or a specified user, in which case
the process will always run as the specified user.

Figure 13

The advantage to library applications is that they run considerably faster since
they do not need to kick off a separate process. In addition, since they are
running in the process that invoked them they can access any resources that the
calling process ID can. The downfall is that since they cannot run as their own ID,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

they could be invoked by something running as SYSTEM and if the library
application was exploited via buffer overflow or a similar exploit, the hacker would
gain the context of the process. In this case, that would be SYSTEM; this is
obviously bad.

Server applications sacrifice some performance in order to utilize better security.
Since the server application can be specified to run as a non-privileged user
account, buffer overflow type exploits result in a process running with a non-
privileged context to be exploited. The end result is better security since the
hacker is limited to working with a non-privileged account. Obviously this
requires COM+ administrators to create accounts with no privilege for the
applications to run under. Best practices would indicate that each application
should run with a unique account. This prevents all applications from being
vulnerable if an account is compromised. The Interactive user should be avoided
because if an administrator is logged into the server when the application runs, it
will run as that ID. This defeats the advantage of a server application. Also, if no
one is logged in, the application will fail. Using a specific account allows the
application to run without having anyone logged into the server.

VBank and VBankBackend will be running as server applications with respective
account IDs of COM_VBANK and COM_VBANK_BACK. Those accounts should
be added on the third screen of the wizard with their respective passwords (see
Figure 14). SoapUtils will run as a library application and will not require any
identity configuration in the wizard.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 14
Populating the components
With the applications created, it is time to populate them with components from
the .dll files. Right-clicking on the newly created application and selecting New
 Component, will bring up the COM+ Component Install Wizard. Through this
wizard components can be added to the application. The first screen will ask
whether to install new components, install components that are already
registered (through REGSVR32), or install new event classes. All of the
applications in the VirtualBank application will use the Install new components
option. Selecting the Install new components button will open a browse window
where the .dll file containing the components for the application should be
opened. Selecting the .dll will populate Components found list for the application.
This is all that is needed to add the components to the applications. The
following shows the COM+ application and corresponding .dll for the VirtualBank
web application:

 VBank VBank.dll
 VBankBackend VBankBackend.dll
 SoapUtils SoapUtils.dll

Implementing the COM+ security
The applications have now been created in COM+. By default, applications start
off with security checking turned off. This means that any process can make a
call and initiate a component in an application. This is particularly bad if the
application has components which can make business transactions and update
critical information in a database. The authorization for the security checks is
based on the roles defined for the application. Roles will be discussed a little
later.

First, consider the two server applications in the VirtualBank web application.
The first step is to turn security checking on. None of the other security features
in COM+ can be utilized without turning the checking on. COM+ performs
security checks at three distinct locations: before a server process is started,
when a call enters a process, and when a call enters an application. The first
check is always done when a server process starts. If a process is already
running (in the case of a library application initiating), then this check is not done.
The second check is always completed when security checks are turned on. The
third check occurs every time a call moves from one application to another within
in the same process. The third check is determined by the Security level setting
under the COM+ application Properties Security tab. If this is set to “Perform
access checks only at the process level,” then the third check will not occur. If it
is set to “Perform access checks at the process and component level,” then this
check will occur. As long as calls between components stay within the context of
a single process, then the third check is all that occurs between applications. If a
component makes a call to a separate process, all three calls (or two if the
Security level is set to only check at the process level) will be performed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Moving further down the screen of Properties Security under the COM+
application, there is a listbox that defines the Authentication level for calls setting.
This setting is only defined for server applications. It defines how often the
application requests authentication from the caller. The setting options are:

 None never ask for authentication (this option effectively disables
authorization checks as well)

 Connect only ask for authentication when a connection occurs (the first
call to the application)

 Call ask for authentication with each separate call to a component in
the application

 Packet ask for authentication with each packet sent
 Packet Integrity perform a check for integrity, via checksum, of the

packet data in addition to checking authentication with each packet sent
 Packet Privacy encrypt the data in each packet in addition to the

integrity check and checking authentication with each packet sent

These settings have more performance impact as the authentication level moves
from “None” to “Packet Privacy.”

The last setting for server applications on the Properties Security tab under
the application is Impersonation level. In MTS there were only two impersonation
levels defined: Identity and Impersonate. In COM+ two additional impersonation
levels have been defined: Anonymous and Delegate. Impersonation is the ability
for the server application to access resources using the security context of the
caller process. The goal is to allow the server application the ability to access
resources in much the same manner as a library application would, using the
process ID of the caller. Anonymous means that the identity of the caller is
ignored and never added to the context of the server application. Identity means
that the identity is added to the context, but no impersonation is taking place.
Impersonate means that the identity is added to the security context and the
server application will access resources on the local server using the context of
the caller. Delegate is the ultimate use of impersonation and means that the
server application will make all calls local and over the network using the context
of the caller. Much of this functionality must be coupled with programmatic
settings in the components to make full use of the impersonation. In addition,
delegation has several additional requirements:

 The account of the server application must have the “Trusted for
delegation”property set

 The account of the caller cannot have the“Account is sensitive and cannot
be delegated”property set

 Both accounts must be member of the same Windows® 2000 domain

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The settings that have been mentioned thus far are set purely at the application
level. COM+ also enables authorization checks to be set at the component,
interface, and method levels. As mentioned before, calls between components
within a single application will not have any authorization checks performed since
all components in an application are running with the same security context.
Component, interface, and method security is defined in the Properties
Security tab of each, respectively. Roles defined for the application can be
assigned to individual components, interfaces, or methods. Authorization checks
must be defined at all levels above any one of these in order for the caller to be
authorized.

The effective security settings for each of the VirtualBank server applications are
as follows:

 VBank
o Enforce security checks ON
o Perform access checks at the process and component levels ON
o Authentication level Packet Integrity
o Impersonation level Impersonate
o Component level security OFF for all
o Interface level security OFF for all
o Method level security OFF for all

 VBankBackend
o Enforce security checks ON
o Perform access checks at the process and component levels ON
o Authentication level Packet Integrity
o Impersonation level Impersonate
o Component level security ON for all
o Interface level security OFF for all
o Method level security OFF for all

Notice that component level checking has been turned on for all components
within the VBankBackend application. This will enable the role-based security to
properly authorize Customers, Tellers, and Managers to the appropriate
components for their respective functionality. The functionality of VBank is purely
to authenticate and pass on the information to the backend. For this reason,
application security is ample. The IsCallerInRole() programmatic check is
still successful. Since security checks have now been turned on, no one will be
able to access the components unless roles are defined and set appropriately to
the components. The roles for each application and the appropriate component
security are as follows:

VBank Roles
Role Members
Customer IUSER_<computer>
Manager VBANK_MGR_DLG

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Teller VBANK_TLR_DLG

VBankBackend Roles
Role Members
Customer SOAP_VBANK_CUST_L
Manager SOAP_VBANK_MGR_L
Teller SOAP_VBANK_TLR_L

VBankBackend
Component Roles assigned
VBankBackend.authorizeLoan Manager
VBankBackend.Deposit Teller
VBankBackend.Withdrawal Teller, Customer
VBankBackend.retrieveBalance Teller, Customer, Manager

The server applications have been secured, so it is time to secure the library
application. In MTS, there was no way to secure a library package. Library
packages would run within the same process of the caller and assume the
security context associated with that process. No security checks would be
performed. In COM+ however, security checks are possible even though the
library application is running in the same process as the caller.

The application Propeties Security tab once again controls the security for the
application. The security settings are a bit different here than with server
applications. The Authorization and Security level are the same, but library
applications cannot do any impersonation and can only specify whether to
perform authentication or not. They are, by default, specified to not perform
access checks.

Since the SoapUtils component merely makes SOAP calls to a specified service
using a specific ID and password that it receives from the caller, it does not need
to be secured. It will run in the context of the process that invokes it and does
not need to perform any security checks. Since no security checks are being
performed, no roles need to be defined for SoapUtils.

The COM+ security is now setup. The entire VirtualBank application has been
setup and secured from files to IIS to COM+. This process has been a
complicated one and definitely labor intensive. The goal of the next section is to
reduce the confusion and labor providing a quick and simple automated solution
for administrators to execute when setting up the VirtualBank application.

Scripting the Solution
The purpose of this section is to give a brief supplement to the scripts which are
added at the end of this paper. The goal was to come up with a scripted solution
which would perform the majority of the configuration and security setup required
in the solution outlined above. A few pieces, such as the SSL certificate

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

installation and the IIS Lockdown tool execution, are not scripted and need to be
performed manually.

The scripting will utilize batch files when possible to increase performance and
ease of coding. VBScript will be used when batch scripting is inadequate. The
code will have comments for each section; much of the documentation of what
each script does will be included in those comments. The scripts are partitioned
according to functionality to improve readability of the code and simplify
debugging. Each script will perform environment checks to implement only the
changes needed in the server it is run on (Mid-Tier, Internet Web-Tier, or Intranet
Web-Tier).

The final scripted solution will contain a number of scripts which can be applied
separately if desired, however there will also be a single “driver” script which can
be executed to kick off each of the other scripts in the proper order. The solution
will be setup so that a single CD will contain all the scripts and source files for the
VirtualBank application. Administrators need only run the driver script and all
scripts will run. The .dll files obviously cannot be included but all script file
source is included at the end of the paper.

Scripting the ID creation
This portion will be handled primarily using local_ids.bat with the NET
USER command. The NET USER command will create all the local IDs. The NET
LOCALGROUP will then create the local groups and populate them with local IDs.

Domain accounts will already be in place for the users. A single VBS,
domain_grps.vbs, will handle creating the global groups, domain local groups,
and populating the global groups into the domain local groups.

Scripting the file install and security
Creating the directory structure, installing the files, and securing the files will all
be handled by %SERVER%_files.bat. This means each server type (INTRA,
INTER, and MIDTIER) will have its own designated file. The MD command will
create directories. The COPY command and CACLS executable will be used to
copy the files from the CD and apply the proper permissions.

Scripting IIS setup
The IIS setup will all be contained within two scripts: website_config.vbs
and vdir_create.vbs. Both scripts make changes directly to the IIS
Metabase. Each script is well documented with the settings that are being
changed.

Scripting the COM+ application install
The application installs are relatively easy scripts that utilize the COMAdmin
object. Each application has a corresponding installation script. They are:
vbank_app_create.vbs for the VBank application,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vbankback_app_create.vbs for the VBankBackend application, and
soaputils_app_create.vbs for the SoapUtils application. The roles for
each application are defined in these install scripts as well.

Scripting the COM+ security
The final scripts will be the COM+ security scripts for the VBank and
VBankBackend applications; vbank_app_sec.vbs sets the VBank application
security and vbankback_app_sec.vbs sets the VBankBackend application
and component security. These scripts will set the identity and password of the
applications as well as the impersonation level, authentication level, access
checking level, and access checks flag at the application level.
vbankback_app_sec.vbs sets the component security for each of the
components in VBankBackend. The scripts also utilize the COMAdmin object to
set the properties at both the application and component levels.

Testing
Historically, security testing has been vastly under-utilized. The majority of the
time, application testing only ensures that the correct ID has access, not that
unauthorized accounts cannot perform the actions. It is impossible to test all
potential combinations of IDs and passwords in the application flow. A good way
to verify the security is to go into the interfaces and perform a check out of the
security settings. This involves knowing exactly what security should exist and
verifying that only those settings are in place. A thorough security test plan will
include some end to end application tests and the following manual verification
tests:

Test Case 1
Verify that the .ASP and .DLL files on the Presentation servers have the correct
ACLs as defined in the solution.

 VBank.dll (on DMZ servers) Administrators:F, SYSTEM:F,
Authenticated Users:RE

 VBank.dll (on Intranet servers) Administrators:F, SYSTEM:F,
VBANK_MGR_DLG:RE, VBANK_TLR_DLG:RE

Test Case 2
Verify that the .WSDL and .DLL files on the Mid-Tier servers have the correct
ACLs as defined in the solution.

 VBankBackend.dll Administrators:F, SYSTEM:F,
SOAP_VBANK_L:R

 authorizeLoan.wsdl and authorizeLoan.wsml Administrators:F,
SYSTEM:F, SOAP_VBANK_MGR_L:R

 Deposit.wsdl and Deposit.wsml Administrators:F, SYSTEM:F,
SOAP_VBANK_TLR_L:R

 Withdrawal.wsdl and Withdrawal.wsml Administrators:F,
SYSTEM:F, SOAP_VBANK_TLR_L:R, SOAP_VBANK_CUST_L:R

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 retrieveBalance.wsdl and retrieveBalance.wsml
Administrators:F, SYSTEM:F, SOAP_VBANK_L:R

Test Case 3
Verify that the following groups and IDs exist on the Mid-Tier servers:

 COM_VBANK_BACK
 SOAP_VBANK_TLR
 SOAP_VBANK_CUST
 SOAP_VBANK_MGR
 SOAP_VBANK_L contains SOAP_VBANK_CUST,

SOAP_VBANK_TLR, SOAP_VBANK_MGR
 SOAP_VBANK_TLR_L contains SOAP_VBANK_TLR
 SOAP_VBANK_MGR_L contains SOAP_VBANK_MGR
 SOAP_VBANK_CUST_L contains SOAP_VBANK_CUST

Verify that the following account exists on the Presentation servers:
 COM_VBANK

Verify that the following domain groups exist on the Mid-tier Active Directory
domain:

 VBANK_MGR_G
 VBANK_TLR_G
 VBANK_MGR_DLG VBANK_MGR_G should be a member
 VBANK_TLR_DLG VBANK_TLR_G should be a member

Test Case 4
Verify that the following settings are in place for IIS on the Presentation servers:

WebSite
 IIS logging directory %LOGDIR%\Web
 Default Document Default.htm
 Execute permissions Scripts only; Read checked and log visits checked
 Application protection Medium
 Local path %APPDIR%
 Parent paths OFF
 Enable Sessions ON
 Session Timeout 5 minutes

Virtual Directory
 Default Document index.asp
 Authentication Anonymous on Internet and Windows Integrated on

Intranet
 Application protection High
 Local path %APPDIR%\VBANK\website

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Test Case 5
Verify that the following settings are in place for IIS on the Mid-Tier servers:

WebSite
 IIS logging directory %LOGDIR%\Web
 Default Document Default.htm
 Execute permissions Scripts only; Read checked and log visits checked
 Application protection Medium
 Local path %APPDIR%
 Parent paths OFF
 Enable Sessions ON
 Session Timeout 5 minutes

Virtual Directory
 Default Document index.asp
 Authentication Basic Authentication
 Application protection High
 Local path%APPDIR%\VBANK\website
 .WSDL application mapping

Test Case 6
Verify that the following COM+ security settings are in place on the VBank COM+
application:

 Application Level
o Identity COM_VBANK
o Password set
o Impersonation Level Impersonate
o Authentication Level Packet Integrity
o Access checks set to Process and Component level
o Access checks turned on

Test Case 7
Verify that the following COM+ security settings are in place on the
VBankBackend COM+ application:

 Application Level
o Identity COM_VBANK_BACK
o Password set
o Impersonation Level Impersonate
o Authentication Level Packet Integrity
o Access checks set to Process and Component level
o Access checks turned on
o Customer role populated with SOAP_VBANK_CUST_L
o Manager role populated with SOAP_VBANK_MGR_L
o Teller role populated with SOAP_VBANK_TLR_L

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Component Level
o Deposit Component security on and Teller role set
o Withdrawal Component security on and Teller, Customer roles

set
o retrieveBalance Component security on and Teller, Customer,

Manager roles set
o authorizeLoan Component security on and Manager role set

Script Validation
This section will display the screenshots taken before, during, and after script
execution. Due to the large number of settings that are set using the included
scripts, only a portion of the settings can be validated using the following screen
shots.

Before execution

Computer Management, COM+, and IIS

During execution
See out.log appendix for the script execution log output.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Execution of driver.bat

After execution

Computer Management Users, COM+, and IIS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Computer Management Groups, Windows Explorer, and IIS

Challenges
There are challenges that still exist in the role-based security model as it is
implemented by Microsoft in COM+. Currently, individual components cannot
have their own unique ID. They are forced to run under the ID of the application
to which they belong. This allows two components within the same application to
access each other without any security check. This forces system designers to
create separate applications whenever a security check is desired between
components. At times this does not logically make sense, prevents the
granularity needed, and can cause performance issues.

In addition, impersonation by COM+ does not provide a valuable auditing system.
Each COM+ application must make OriginalCaller coding calls in order to find out
which ID started the call chain. This is cumbersome and consistency cannot be
guaranteed across all applications. In addition, if the call from the COM+
application makes a jump to a non-Microsoft backend product, the audit trail
stops there.

Although much of the solution is scripted, it is not entirely self-executing; an
administrator still must run the script. Ideally, a service such as Microsoft’s SMS
would allow for more seamless automation, particularly to a large number of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

servers. SMS can be configured to push issuances so that no interaction from
an administrator is needed. In addition, the user passwords are currently in plain
text in the script files. Using SMS, it is possible to create an executable which
bundles all the scripts. This would prevent anyone from seeing the password in
the script files.

Conclusion
The goal of this paper was to describe the steps necessary to securely deploy a
web application developed and implemented using Microsoft’s Windows, IIS, and
COM+ platforms. Microsoft systems often take a beating from those individuals
critical of its security issues. If nothing else, this paper has shown that it is
possible to implement web applications securely using Microsoft products.
Although they may appear more vulnerable “out of the box,” no knowledgeable
security administrator would run any system in an “out of the box” configuration.
By configuring IIS, COM+ and Windows, the end result is a system that is just as
secure by most standards as any Linux or UNIX system.

A second goal of the paper was to convey the importance of web applications.
Web applications are an integral part of the business world today. Without them,
businesses across the world would be unable to sell products, hire employees, or
coordinate communication. Security has been slow to evolve with the web but
great strides have been made in the past decade. Securing web applications is
not so much a science as an art. The decision of whether to implement security
controls in a web application and to what extent lies solely in the risk analysis
and criticality of the data involved. Two identical applications may have
completely different security requirements. Security administrators need to
perform the necessary risk assessments with business sponsors in order to
provide the level of security that is appropriate.

The last goal of this paper was to provide a basis for future readers to implement
their own security controls. Learning by example is an excellent way to see
concepts portrayed in a semi-real world environment. The use of the mock
application was included to draw a connection between general security
guidelines and actual business requirements. Most applications deployed follow
some sort of business requirements or else there would be no reason to deploy
them. Exploring the security controls implemented side-by-side with business
and functionality requirements provides an invaluable example. The most
important point to take from this paper, besides the Microsoft security solution, is
that business requirements should always dictate the security controls, not the
other way around.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Acronyms
ACL –Access Control List
ADO –ActiveX Data Object
ASP –Active Server Page
B2C –Business to Customer
CA –Certificate Authority
CGI –Common Gateway Interface
COM –Component Object Model
DLG –Domain Local Group
DMZ –De-militarized Zone
GPO –Group Policy Object
HTTP –Hyper Text Transport Protocol
HTTPS –Hyper Text Transport Protocol Secured
IIS –Internet Information Services
IP –Internet Protocol
ISAPI –Internet Server Application Program Interface
LDAP –Lightweight Directory Access Protocol
MTS –Microsoft Transaction Service
NTFS –NT File System
NTLM –NT LAN Manager (Hash)
OS –Operating System
OSI –Open System Interconnection
OU –Organizational Unit
SMS –Software Management System
SOAP –Simple Object Access Protocol
SQL –Structured Query Language
SSL –Secure Sockets Layer
URI –Uniform Resource Identifier
URL –Uniform Resource Locator
WSDL –Web Services Description Language
WSML –Web Services Meta Language
XML –Extensible Markup Language

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

driver.bat Script

REM *** This file serves as the single click driver for driver.vbs

REM *** Users need only run this file to execute all scripts in

REM *** correct order

REM *** Created by: Derek Lawless 7/20/04

REM ***

cscript driver.vbs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

driver.vbs Script

' True driver script
'
' Created by Derek Lawless 7/22/04
'

Dim Shell
Dim Exec
Dim Layer

If Environ("SERVER") = "MIDTIER" Then
Layer = "BUS"

ElseIf Environ("SERVER") = "INTER" Then
Layer = "WEB"

ElseIf Environ("SERVER") = "INTRA" Then
Layer = "WEB"

End If

Set Shell = WScript.CreateObject("WScript.Shell")

Wscript.echo "Running ID creation script"
Wscript.echo "*******************************"

If Environ("SERVER") = "MIDTIER" Then
Set Exec = Shell.Exec("cmd.exe /c ids.bat")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""

ElseIf Environ("SERVER") = "INTRA" Then
Set Exec = Shell.Exec("cmd.exe /c cscript domain_grps.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""

End If
Wscript.echo "*******************************"

Wscript.echo "Running File install and security script"
Wscript.echo "*******************************"
Set Exec = Shell.Exec("cmd.exe /c " + Environ("SERVER") + "_files.bat")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""
Wscript.echo "*******************************"

Wscript.echo "Running Website Config script"
Wscript.echo "*******************************"
Set Exec = Shell.Exec("cmd.exe /c cscript website_config.vbs")

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Do While Not Exec.StdOut.AtEndofStream
output = output & Exec.StdOut.ReadLine() & vbCrLf

Loop
Wscript.echo output
output = ""
Wscript.echo "*******************************"

Wscript.echo "Running Virtual Directory creation script"
Wscript.echo "*******************************"
Set Exec = Shell.Exec("cmd.exe /c cscript vdir_create.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""
Wscript.echo "*******************************"

Wscript.echo "Running COM+ application creation scripts"
Wscript.echo "*******************************"
If Layer = "WEB" Then

Set Exec = Shell.Exec("cmd.exe /c cscript vbank_app_create.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""
Set Exec = Shell.Exec("cmd.exe /c cscript soaputils_app_create.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""

ElseIf Layer = "BUS" Then
Set Exec = Shell.Exec("cmd.exe /c cscript vbankback_app_create.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo output
output = ""

End If
Wscript.echo "*******************************"

Wscript.echo "Running COM+ application security scripts"
Wscript.echo "*******************************"
If Layer = "WEB" Then

Set Exec = Shell.Exec("cmd.exe /c cscript vbank_app_sec.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop
Wscript.echo Layer
Wscript.echo output
output = ""

ElseIf Layer = "BUS" Then
Set Exec = Shell.Exec("cmd.exe /c cscript vbankback_app_sec.vbs")
Do While Not Exec.StdOut.AtEndofStream

output = output & Exec.StdOut.ReadLine() & vbCrLf
Loop

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wscript.echo output
output = ""

End If
Wscript.echo "*******************************"

Wscript.echo "Driver script finished."

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

domain_grps.vbs Script

' VBANK Domain group creation script
'
' Created by Derek Lawless 7/18/04
'
' Assume acme.org is the name of the internal domain

Dim Domain
Dim Group

' Get the domain object
Set Domain = GetObject("WinNT://acme.org")

'**
'************** Create Manager global group *******************
'**

' Create new group
Set Group = Domain.Create("group", "VBANK_MGR_G")

' Set group as global type
Group.GroupType = 2

' Set description
Group.Description = "Global group for Managers"

' Add users (this line of code commented out for mock application)
' Add more Group.Add statements for each user to add
' It is assumed that the user account is already created
' Group.Add "WinNT://acme.org/joemanager.User"

' Update group info
Group.SetInfo

'**
'************** Create Teller global group ********************
'**

' Create new group
Set Group = Domain.Create("group", "VBANK_TLR_G")

' Set group as global type
Group.GroupType = 2

' Set description
Group.Description = "Global group for Tellers"

' Add users (this line of code commented out for mock application)
' Add more Group.Add statements for each user to add
' It is assumed that the user account is already created
' Group.Add "WinNT://acme.org/janeteller.User"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

' Update group info
Group.SetInfo

'**
'************** Create Manager domain local group *************
'**

' Create new group
Set Group = Domain.Create("group", "VBANK_MGR_DLG")

' Set description
Group.Description = "Domain Local group for Managers"

' Set group as domain local type
Group.GroupType = 4

' Update prior to adding group
Group.SetInfo

' Add the global group
Group.Add "WinNT://acme.org/VBANK_MGR_G"

' Update group info
Group.SetInfo

'**
'************** Create Teller domain local group **************
'**

' Create new group
Set Group = Domain.Create("group", "VBANK_TLR_DLG")

' Set description
Group.Description = "Domain Local group for Tellers"

' Set group as domain local type
Group.GroupType = 4

' Update prior to adding group
Group.SetInfo

' Add the global group
Group.Add "WinNT://acme.org/VBANK_TLR_G"

' Update group info
Group.SetInfo

' Update Domain info
Domain.SetInfo

' Cleanup memory
Set Domain = Nothing
Set Group = Nothing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ids.bat Script
REM *** This file creates all local IDs for VBANK ***
REM *** Created by: Derek Lawless 7/20/04 ***
REM *** ***

echo *** Creating local IDs ***

if %SERVER%==INTER NET USER COM_VBANK "8yEf7d(3dsx09l" /ADD

if %SERVER%==INTRA NET USER COM_VBANK "8yEf7d(3dsx09l" /ADD

if %SERVER%==MIDTIER NET USER COM_VBANK_BACK "0kr!45xqzuUvt8" /ADD
if %SERVER%==MIDTIER NET USER SOAP_VBANK_CUST o*hkS#xtrP91!c /ADD
if %SERVER%==MIDTIER NET USER SOAP_VBANK_TLR xpCATr#tpq!(zs /ADD
if %SERVER%==MIDTIER NET USER SOAP_VBANK_MGR *ck#t*wmnGiO73 /ADD

if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_L /COMMENT:"VBANK SOAP
group" /ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_CUST_L /COMMENT:"VBANK
SOAP group" /ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_TLR_L /COMMENT:"VBANK
SOAP group" /ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_MGR_L /COMMENT:"VBANK
SOAP group" /ADD

if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_CUST_L SOAP_VBANK_CUST
/ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_TLR_L SOAP_VBANK_TLR
/ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_MGR_L SOAP_VBANK_MGR
/ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_L SOAP_VBANK_CUST /ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_L SOAP_VBANK_TLR /ADD
if %SERVER%==MIDTIER NET LOCALGROUP SOAP_VBANK_L SOAP_VBANK_MGR /ADD

echo *** Done. ***

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

INTER_files.bat Script
REM *** This file installs files on the Internet ***
REM *** Web-tier server and secures the files ***
REM *** Created by: Derek Lawless 7/20/04 ***
REM *** ***

echo "Creating directory structure for %SERVER% server..."
md %APPDIR%
md %APPDIR%\VBANK
md %APPDIR%\VBANK\DLL
md %APPDIR%\VBANK\website

md %LOGDIR%
md %LOGDIR%\Web

md %APPDIR%\WSDL

echo "Done."
echo ""
echo "Installing files on %SERVER% server..."

COPY source\index.asp %APPDIR%\VBANK\website
COPY source\SoapUtils.dll %APPDIR%\VBANK\DLL
COPY source\VBank.dll %APPDIR%\VBANK\DLL

echo "Done."

echo ""
echo "Setting file security..."

ECHO Y|CACLS %APPDIR%\VBANK\website\index.asp /C /P "Authenticated
Users:R" Administrators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\DLL /C /P /T "Authenticated Users":R
Administrators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\WSDL /C /T /P COM_VBANK:R Administrators:F
SYSTEM:F

echo "Done."

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

INTRA_files.bat Script
REM *** This file installs files on the Intranet ***
REM *** Web-tier server and secures the files ***
REM *** Created by: Derek Lawless 7/20/04 ***
REM *** ***

echo "Creating directory structure for %SERVER% server..."
md %APPDIR%
md %APPDIR%\VBANK
md %APPDIR%\VBANK\DLL
md %APPDIR%\VBANK\website

md %LOGDIR%
md %LOGDIR%\Web

md %APPDIR%\WSDL

echo "Done."
echo ""
echo "Installing files on %SERVER% server..."

COPY source\index.asp %APPDIR%\VBANK\website
COPY source\SoapUtils.dll %APPDIR%\VBANK\DLL
COPY source\VBank.dll %APPDIR%\VBANK\DLL

echo "Done."

echo ""
echo "Setting file security..."

ECHO Y|CACLS %APPDIR%\VBANK\website\index.asp /C /P VBANK_TLR_DLG:RE
VBANK_MGR_DLG:RE Administrators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\DLL /C /T /P VBANK_TLR_DLG:RE
VBANK_MGR_DLG:RE Administrators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\WSDL /C /T /P COM_VBANK:R Administrators:F
SYSTEM:F

echo "Done."

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MIDTIER_files.bat Script
REM *** This file installs files on the Mid-tier ***
REM *** server and secures the files ***
REM *** Created by: Derek Lawless 7/20/04 ***
REM *** ***

echo "Creating directory structure for %SERVER% server..."
md %APPDIR%
md %APPDIR%\VBANK
md %APPDIR%\VBANK\DLL
md %APPDIR%\VBANK\website

md %LOGDIR%
md %LOGDIR%\Web

md %APPDIR%\VBANK\website\WSDL

echo "Done."
echo ""
echo "Installing files on %SERVER% server..."

rem *** Install Mid-Tier files ***
COPY source\VBankBackend.dll %APPDIR%\VBANK\DLL
COPY source\authorizeLoan.ws* %APPDIR%\VBANK\website\WSDL
COPY source\Deposit.ws* %APPDIR%\VBANK\website\WSDL
COPY source\Withdrawal.ws* %APPDIR%\VBANK\website\WSDL
COPY source\retrieveBalance.ws* %APPDIR%\VBANK\website\WSDL

echo "Done."

echo ""
echo "Setting file security..."

ECHO Y|CACLS %APPDIR%\VBANK\DLL /C /T /P SOAP_VBANK_L:R
Administrators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\website\WSDL /C /T /P SOAP_VBANK_L:R
Administrators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\website\WSDL\authorizeLoan.ws* /C /T /P
SOAP_VBANK_MGR_L:R Administators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\website\WSDL\Deposit.ws* /C /T /P
SOAP_VBANK_TLR_L:R Administators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\website\WSDL\Withdrawal.ws* /C /T /P
SOAP_VBANK_TLR_L:R SOAP_VBANK_CUST_L:R Administators:F SYSTEM:F
ECHO Y|CACLS %APPDIR%\VBANK\website\WSDL\retrieveBalance.ws* /C /T /P
SOAP_VBANK_L:R Administators:F SYSTEM:F

echo "Done."

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

website_config.vbs Script
' Default WebSite Configuration Script
'
' Modified from script by James R. Fallon
' Modified by Derek Lawless on 07/18/04
'

Dim vDefWebSite, vW3SVC

' First setup logfile location because it must be defined at server
level
Set vW3SVC = GetObject("IIS://LocalHost/W3SVC")

vW3SVC.LogFileDirectory = Environ("LOGDIR") + "\Web"

vW3SVC.SetInfo

' Cleanup memory
Set vW3SVC = Nothing

' Modifies Default Web Site.
' To set or modify settings for a different Web site,
' modify the GetObject calls to connect to a site with a
' different instance ID. 1 is the Default site, 2 is the
' Administration site, and as more sites are added to a
' server, each is associated with an instance ID.

Set vDefWebSite = GetObject("IIS://LocalHost/W3SVC/1/Root")

vDefWebSite.DefaultDoc = "Default.htm"

vDefWebSite.AuthFlags = 4
' Authentication
' AuthFlags = 4 (Challenge Response)
' AuthFlags = 5 (Allow Anonymous)
' AuthFlags = 6 (Basic Authentication)

vDefWebSite.AccessFlags = 513
' AccessFlags = Execute Permissions + Read check box + Write check box
+ Script Source box
' Execute permissions None = 0
' Script Only = 512
' Script and Executables = 516
' Read box Unchecked = 0
' checked = 1
' Write box unchecked = 0
' checked = 1
' Script source box unchecked = 0
' checked = 16
'

vDefWebSite.AppIsolated = 2
' AppIsolated (Application Protection) = 0 (low (IIS Process))
' 1 (high (Isolated))

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

' 2 (Medium (pooled))(Our Default)

' Set local path
VDefWebSite.Path = Environ("APPDIR")

' Parent paths off
vDefWebSite.AspEnableParentPaths = "False"

' Enable sessions
vDefWebSite.AspAllowSessionState = "True"
vDefWebSite.AspSessionTimeout = 5

' Disable indexing
vDefWebSite.ContentIndexed = "False"

' Update Metabase
vDefWebSite.SetInfo

' Cleanup memory
Set vDefWebSite = Nothing

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vdir_create.vbs Script
'VBank virtual directory creation and configuration script
'
' Created by Derek Lawless 7/18/04
'

Option Explicit

Dim WebDirName
Dim WebDirPath
Dim allowAnonymousAccess
Dim enableChallengeResponse
Dim allowBasicAuthentication
Dim WSHShell
Dim vRoot
Dim vDir
Dim sMap

'Configuration variables
WebDirName = "VBANK"
WebDirPath = Environ("APPDIR") + "\VBANK\website"

' This variable will collect output from this script for debugging
' Add logic to check SERVER variable to make configuration changes
' per INTER, INTRA, or MIDTIER (espcially for authentication)

' Set authentication per environment
If Environ("SERVER") = "MIDTIER" Then

allowBasicAuthentication = "True"
allowAnonymousAccess = "False"
enableChallengeResponse = "False"

Else
If Environ("SERVER") = "INTER" Then

allowBasicAuthentication = "False"
allowAnonymousAccess = "True"
enableChallengeResponse = "False"

Else
allowBasicAuthentication = "False"
allowAnonymousAccess = "False"
enableChallengeResponse = "True"

End If
End If

Set WSHShell = CreateObject("WScript.shell")
Set vRoot = GetObject("IIS://LocalHost/W3SVC/1/Root")

'Create the new virtual directory
Set vDir = vRoot.Create("IIsWebVirtualDir", WebDirName)

'Set the new virtual directory settings
vDir.AccessFlags = 513
vDir.EnableDefaultDoc = "True"
vDir.EnableDirBrowsing = "False"
vDir.DefaultDoc = "index.asp"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vDir.AppPackageName = WebDirName
vDir.AppFriendlyName = WebDirName

vDir.AuthNTLM = enableChallengeResponse
vDir.AuthAnonymous = allowAnonymousAccess
vDir.AuthBasic = allowBasicAuthentication

vDir.ASPScriptLanguage = "VBScript"
vDir.ASPSessionTimeout = 5
vDir.ASPScriptTimeout = 90
vDir.AspAllowSessionState = "True"
vDir.AccessSSL = "True"
vDir.AccessSSL128 = "True"
vDir.AppCreate False
vDir.Path = WebDirPath

' Add script mappings here
sMap = vRoot.Get("ScriptMaps")

' Add WSDL mapping on MIDTIER server
If Environ("SERVER") = "MIDTIER" Then

sMap(UBound(sMap)) = ".wsdl,C:\Program Files\Common
Files\MSSoap\Binaries\SOAPIS30.dll,5,GET,HEAD,POST"
End If

vDir.Put "ScriptMaps", sMap

' Update metabase
vDir.SetInfo

' Cleanup memory
Set vDir = Nothing

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

soaputils_app_create.vbs Script
' SoapUtils COM+ application creation and configuration script
'
' Created by Derek Lawless 7/18/04
'

Dim Catalog
Dim AppCollection
Dim SoapUtils

' Get catalog
Set Catalog = CreateObject("COMAdmin.COMAdminCatalog")
' Get the Applications collection
Set AppCollection = Catalog.GetCollection("Applications")
' Add a new COM+ application
Set SoapUtils = AppCollection.Add

' Set name of new COM+ application
SoapUtils.Value("Name") = "SoapUtils"

' Set as a library application
SoapUtils.Value("Activation") = 0

' Save changes to collection
AppCollection.SaveChanges

Catalog.InstallComponent "SoapUtils", Environ("APPDIR") +
"\VBANK\DLL\SoapUtils.dll","",""

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vbank_app_create.vbs Script
' VBank COM+ application creation and configuration script
'
' Created by Derek Lawless 7/18/04
'

Dim Catalog
Dim AppCollection
Dim VBank

' Get catalog
Set Catalog = CreateObject("COMAdmin.COMAdminCatalog")
' Get the Applications collection
Set AppCollection = Catalog.GetCollection("Applications")
' Add a new COM+ application
Set VBank = AppCollection.Add

' Set name of new COM+ application
VBank.Value("Name") = "VBank"

' Save changes to collection
AppCollection.SaveChanges

Catalog.InstallComponent "VBank", Environ("APPDIR") +
"\VBANK\DLL\VBank.dll","",""

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vbank_app_sec.vbs Script
' VBank COM+ application security script
'
' Created by Derek Lawless 7/20/04
'
Dim Catalog
Dim AppCollection
Dim App
Dim VBank
Dim Users
Dim Roles
Dim Manager,Teller,Customer
Dim User1
Dim CompCollection
Dim Comp, CompRole1, CompRole2, CompRole3

' Get catalog
Set Catalog = CreateObject("COMAdmin.COMAdminCatalog")
' Get the Applications collection
Set AppCollection = Catalog.GetCollection("Applications")
' Get the application
AppCollection.Populate

' Grab VBank
For Each App in AppCollection

If App.Name = "VBank" Then
Exit For

End If
Next

'**************************************
' First set application level security
'**************************************

' Set Process and Component Level checking
App.Value("ApplicationAccessChecksEnabled") = True
App.Value("AccessChecksLevel") = 1

' Set Identity of application
App.Value("Identity") = "COM_VBANK"
App.Value("Password") = "8yEf7d(3dsx09l"

' Set Impersonation level (1-4), 3 is Impersonate
App.Value("ImpersonationLevel") = 3

' Set Authentication level (1-6), 5 is for Packet Integrity
App.Value("Authentication") = 5

'*********
' ROLES
'*********

Set Roles = AppCollection.GetCollection("Roles", App.Key)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Set Manager = Roles.Add
Set Teller = Roles.Add
Set Customer = Roles.Add

Manager.Value("Name") = "Manager"
Teller.Value("Name") = "Teller"
Customer.Value("Name") = "Customer"

' Update roles
Roles.SaveChanges

Set Users = Roles.GetCollection("UsersInRole", Manager.Key)

Set User1 = Users.Add
User1.Value("User") = "Test"
Users.SaveChanges

Set Users = Roles.GetCollection("UsersInRole", Customer.Key)

Set User1 = Users.Add
User1.Value("User") = "IUSR_" + Environ("COMPUTERNAME")
Users.SaveChanges

Set Users = Roles.GetCollection("UsersInRole", Teller.Key)

Set User1 = Users.Add
User1.Value("User") = "joe"
Users.SaveChanges

Roles.SaveChanges

'Update Application collection
AppCollection.SaveChanges

'***************************************
'
' Set Turn component checks off
'
Set CompCollection = AppCollection.GetCollection("Components", App.Key)

' Populate the components
CompCollection.Populate

' Add roles for components
For Each Comp in CompCollection

If Comp.Name = "VBank.UserAuth" Then
' Enable component checks
Comp.Value("ComponentAccessChecksEnabled") = False

' Save updates
CompCollection.SaveChanges

ElseIf Comp.Name = "VBank.UserReg" Then
' Disable component checks
Comp.Value("ComponentAccessChecksEnabled") = False

' Save updates
CompCollection.SaveChanges

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

End If
Next

'***************************************
Function Environ(var)

Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vbankback_app_create.vbs Script
' VBankBackend COM+ application creation and configuration script
'
' Created by Derek Lawless 7/18/04
'

Dim Catalog
Dim AppCollection
Dim VBankBack

' Get catalog
Set Catalog = CreateObject("COMAdmin.COMAdminCatalog")
' Get the Applications collection
Set AppCollection = Catalog.GetCollection("Applications")
' Add a new COM+ application
Set VBankBack = AppCollection.Add

' Set name of new COM+ application
VBankBack.Value("Name") = "VBankBackend"

' Save changes to collection
AppCollection.SaveChanges

Catalog.InstallComponent "VBankBackend", Environ("APPDIR") +
"\VBANK\DLL\VBankBackend.dll","",""

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vbankback_app_sec.vbs Script

' VBankBackend COM+ application security script
'
' Created by Derek Lawless 7/20/04
'

Dim Catalog
Dim AppCollection
Dim App
Dim VBankBackend
Dim Users
Dim Roles
Dim Manager, Teller, Customer
Dim User1
Dim CompCollection
Dim Comp
Dim CompRole1, CompRole2, CompRole3

' Get catalog
Set Catalog = CreateObject("COMAdmin.COMAdminCatalog")
' Get the Applications collection
Set AppCollection = Catalog.GetCollection("Applications")
' Get the application
AppCollection.Populate

' Grab VBankBackend
For Each App in AppCollection

If App.Name = "VBankBackend" Then
Exit For

End If
Next

'**************************************
' First set application level security
'**************************************

' Set Process and Component Level checking
App.Value("ApplicationAccessChecksEnabled") = True
App.Value("AccessChecksLevel") = 1

' Set Identity of application
App.Value("Identity") = "COM_VBANK_BACK"
App.Value("Password") = "0kr!45xqzuUvt8"

' Set Impersonation level (1-4), 3 is Impersonate
App.Value("ImpersonationLevel") = 3

' Set Authentication level (1-6), 5 is for Packet Integrity
App.Value("Authentication") = 5

AppCollection.SaveChanges

'*********

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

' ROLES
'*********

Set Roles = AppCollection.GetCollection("Roles", App.Key)

Set Manager = Roles.Add
Set Teller = Roles.Add
Set Customer = Roles.Add

Manager.Value("Name") = "Manager"
Teller.value("Name") = "Teller"
Customer.value("Name") = "Customer"

' Save role changes
Roles.SaveChanges

' Set Manager role
Set Users = Roles.GetCollection("UsersInRole", Manager.Key)

Set User1 = Users.Add
User1.value("User") = "SOAP_VBANK_MGR_L"
Users.SaveChanges

' Set Customer role
Set Users = Roles.GetCollection("UsersInRole", Customer.Key)

Set User1 = Users.Add
User1.value("User") = "SOAP_VBANK_CUST_L"
Users.SaveChanges

' Set Teller role
Set Users = Roles.GetCollection("UsersInRole", Teller.Key)

Set User1 = Users.Add
User1.value("User") = "SOAP_VBANK_TLR_L"
Users.SaveChanges

' Save role changes
Roles.SaveChanges

'***************************************
'
' Set individual component roles
'
Set CompCollection = AppCollection.GetCollection("Components", App.Key)

' Populate the components
CompCollection.Populate

' Add roles for components
For Each Comp in CompCollection

If Comp.Name = "VBankBackend.authorizeLoan" Then
' Enable component checks
Comp.Value("ComponentAccessChecksEnabled") = True

' Save updates
CompCollection.SaveChanges

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

' Add the role(s) to component
Set Roles = CompCollection.GetCollection("RolesForComponent",

Comp.Key)
Set CompRole1 = Roles.Add
CompRole1.Value("Name") = "Manager"
Roles.SaveChanges

ElseIf Comp.Name = "VBankBackend.Deposit" Then
' Enable component checks
Comp.Value("ComponentAccessChecksEnabled") = True

' Save updates
CompCollection.SaveChanges

' Add the role(s) to component
Set Roles = CompCollection.GetCollection("RolesForComponent",

Comp.Key)
Set CompRole2 = Roles.Add
CompRole2.Value("Name") = "Teller"
Roles.SaveChanges

ElseIf Comp.Name = "VBankBackend.Withdrawal" Then
' Enable component checks
Comp.Value("ComponentAccessChecksEnabled") = True

' Save updates
CompCollection.SaveChanges

' Add the role(s) to component
Set Roles = CompCollection.GetCollection("RolesForComponent",

Comp.Key)
Set CompRole2 = Roles.Add
CompRole2.Value("Name") = "Teller"
Set CompRole3 = Roles.Add
CompRole3.Value("Name") = "Customer"
Roles.SaveChanges

ElseIf Comp.Name = "VBankBackend.retrieveBalance" Then
' Enable component checks
Comp.Value("ComponentAccessChecksEnabled") = True

' Save updates
CompCollection.SaveChanges

' Add the role(s) to component
Set Roles = CompCollection.GetCollection("RolesForComponent",

Comp.Key)
Set CompRole1 = Roles.Add
CompRole1.Value("Name") = "Manager"
Set CompRole2 = Roles.Add
CompRole2.Value("Name") = "Teller"
Set CompRole3 = Roles.Add
CompRole3.Value("Name") = "Customer"
Roles.SaveChanges

End If
Next

' Update Component collection
CompCollection.SaveChanges

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

' Commit changes
AppCollection.SaveChanges

Function Environ(var)
Dim shell
Set shell = wscript.CreateObject("Wscript.Shell")
Environ = shell.ExpandEnvironmentStrings("%" + var + "%")
Set shell = Nothing

End Function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

out.log file

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** This
file serves as the single click driver for driver.vbs ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** Users
need only run this file to execute all scripts in correct order ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** Created
by: Derek Lawless 7/20/04 ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM ***

C:\Documents and Settings\Administrator\Desktop\scripts>cscript
driver.vbs
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Running ID creation script

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** This
file creates all local IDs for VBANK ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** Created
by: Derek Lawless 7/20/04 ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM ***

C:\Documents and Settings\Administrator\Desktop\scripts>echo ***
Creating local IDs ***
*** Creating local IDs ***

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
INTER NET USER COM_VBANK "8yEf7d(3dsx09l" /ADD

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
INTRA NET USER COM_VBANK "8yEf7d(3dsx09l" /ADD

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET USER COM_VBANK_BACK "0kr!45xqzuUvt8" /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET USER SOAP_VBANK_CUST o*hkS#xtrP91!c /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET USER SOAP_VBANK_TLR xpCATr#tpq!(zs /ADD

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET USER SOAP_VBANK_MGR *ck#t*wmnGiO73 /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_L /COMMENT:"VBANK SOAP group" /ADD

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_CUST_L /COMMENT:"VBANK SOAP group"
/ADD

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_TLR_L /COMMENT:"VBANK SOAP group"
/ADD

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_MGR_L /COMMENT:"VBANK SOAP group"
/ADD

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_CUST_L SOAP_VBANK_CUST /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_TLR_L SOAP_VBANK_TLR /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_MGR_L SOAP_VBANK_MGR /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_L SOAP_VBANK_CUST /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_L SOAP_VBANK_TLR /ADD
The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>if MIDTIER ==
MIDTIER NET LOCALGROUP SOAP_VBANK_L SOAP_VBANK_MGR /ADD

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The command completed successfully.

C:\Documents and Settings\Administrator\Desktop\scripts>echo *** Done.

*** Done. ***

Running File install and security script

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** This
file installs files on the Mid-tier ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** server
and secures the files ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM *** Created
by: Derek Lawless 7/20/04 ***

C:\Documents and Settings\Administrator\Desktop\scripts>REM ***

C:\Documents and Settings\Administrator\Desktop\scripts>echo "Creating
directory structure for MIDTIER server..."
"Creating directory structure for MIDTIER server..."

C:\Documents and Settings\Administrator\Desktop\scripts>md C:\APPS

C:\Documents and Settings\Administrator\Desktop\scripts>md
C:\APPS\VBANK

C:\Documents and Settings\Administrator\Desktop\scripts>md
C:\APPS\VBANK\DLL

C:\Documents and Settings\Administrator\Desktop\scripts>md
C:\APPS\VBANK\website

C:\Documents and Settings\Administrator\Desktop\scripts>md C:\LOGS

C:\Documents and Settings\Administrator\Desktop\scripts>md C:\LOGS\Web

C:\Documents and Settings\Administrator\Desktop\scripts>md
C:\APPS\VBANK\website\WSDL

C:\Documents and Settings\Administrator\Desktop\scripts>echo "Done."
"Done."

C:\Documents and Settings\Administrator\Desktop\scripts>echo ""
""

C:\Documents and Settings\Administrator\Desktop\scripts>echo
"Installing files on MIDTIER server..."
"Installing files on MIDTIER server..."

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

C:\Documents and Settings\Administrator\Desktop\scripts>rem *** Install
Mid-Tier files ***

C:\Documents and Settings\Administrator\Desktop\scripts>COPY
source\VBankBackend.dll C:\APPS\VBANK\DLL

1 file(s) copied.

C:\Documents and Settings\Administrator\Desktop\scripts>COPY
source\authorizeLoan.ws* C:\APPS\VBANK\website\WSDL
source\authorizeLoan.wsdl
source\authorizeLoan.wsml

2 file(s) copied.

C:\Documents and Settings\Administrator\Desktop\scripts>COPY
source\Deposit.ws* C:\APPS\VBANK\website\WSDL
source\Deposit.wsdl
source\Deposit.wsml

2 file(s) copied.

C:\Documents and Settings\Administrator\Desktop\scripts>COPY
source\Withdrawal.ws* C:\APPS\VBANK\website\WSDL
source\Withdrawal.wsdl
source\Withdrawal.wsml

2 file(s) copied.

C:\Documents and Settings\Administrator\Desktop\scripts>COPY
source\retrieveBalance.ws* C:\APPS\VBANK\website\WSDL
source\retrieveBalance.wsdl
source\retrieveBalance.wsml

2 file(s) copied.

C:\Documents and Settings\Administrator\Desktop\scripts>echo "Done."
"Done."

C:\Documents and Settings\Administrator\Desktop\scripts>echo ""
""

C:\Documents and Settings\Administrator\Desktop\scripts>echo "Setting
file security..."
"Setting file security..."

C:\Documents and Settings\Administrator\Desktop\scripts>ECHO Y | CACLS
C:\APPS\VBANK\DLL /C /T /P SOAP_VBANK_L:R Administrators:F SYSTEM:F
Are you sure (Y/N)?processed dir: C:\APPS\VBANK\DLL
processed file: C:\APPS\VBANK\DLL\VBankBackend.dll

C:\Documents and Settings\Administrator\Desktop\scripts>ECHO Y | CACLS
C:\APPS\VBANK\website\WSDL /C /T /P SOAP_VBANK_L:R Administrators:F
SYSTEM:F
Are you sure (Y/N)?processed dir: C:\APPS\VBANK\website\WSDL
processed file: C:\APPS\VBANK\website\WSDL\authorizeLoan.wsdl
processed file: C:\APPS\VBANK\website\WSDL\authorizeLoan.wsml
processed file: C:\APPS\VBANK\website\WSDL\Deposit.wsdl
processed file: C:\APPS\VBANK\website\WSDL\Deposit.wsml
processed file: C:\APPS\VBANK\website\WSDL\retrieveBalance.wsdl
processed file: C:\APPS\VBANK\website\WSDL\retrieveBalance.wsml
processed file: C:\APPS\VBANK\website\WSDL\Withdrawal.wsdl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

processed file: C:\APPS\VBANK\website\WSDL\Withdrawal.wsml

C:\Documents and Settings\Administrator\Desktop\scripts>ECHO Y | CACLS
C:\APPS\VBANK\website\WSDL\authorizeLoan.ws* /C /T /P
SOAP_VBANK_MGR_L:R Administators:F SYSTEM:F

C:\Documents and Settings\Administrator\Desktop\scripts>ECHO Y | CACLS
C:\APPS\VBANK\website\WSDL\Deposit.ws* /C /T /P SOAP_VBANK_TLR_L:R
Administators:F SYSTEM:F

C:\Documents and Settings\Administrator\Desktop\scripts>ECHO Y | CACLS
C:\APPS\VBANK\website\WSDL\Withdrawal.ws* /C /T /P SOAP_VBANK_TLR_L:R
SOAP_VBANK_CUST_L:R Administators:F SYSTEM:F

C:\Documents and Settings\Administrator\Desktop\scripts>ECHO Y | CACLS
C:\APPS\VBANK\website\WSDL\retrieveBalance.ws* /C /T /P SOAP_VBANK_L:R
Administators:F SYSTEM:F

C:\Documents and Settings\Administrator\Desktop\scripts>echo "Done."
"Done."

Running Website Config script

Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Running Virtual Directory creation script

Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Running COM+ application creation scripts

Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Running COM+ application security scripts

Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Driver script finished.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
“A Brief History of the Internet.”URL:
http://www.isoc.org/internet/history/brief.shtml (22 July 2004).

“A Brief History of SOAP.” URL:
http://webservices.xml.com/pub/a/ws/2001/04/04/soap.html (22 July 2004).

“About Applications.” URL:
http://www.microsoft.com/windows2000/en/server/iis/default.asp?url=/windows20
00/en/server/iis/htm/core/iiwarndc.htm (22 July 2004).

Bowne, Ben. “A Guide to Building Secure and Scalable Web Applications Using
COM+.” URL: http://www.giac.org/practical/GSEC/Ben_Bowne_GSEC.pdf (22
July 2004).

Brown, Keith. Programming Windows Security. Boston: Addison-Wesley,
November 2000.

Clarke, Todd. “MTS/COM+ Security Design.” URL:
http://www.giac.org/practical/GSEC/Todd_Clarke_GSEC.pdf (22 July 2004).

Fallon, James R. “Script the Configuration of Your Default Web Site.” URL:
http://www.winnetmag.com/Web/Article/ArticleID/24840/24840.html (22 July
2004).

“IIS 5 Administration – Home Directory.” URL:
http://www.webhelpinghand.com/iis_administration_home.htm (22 July 2004).

“IIS Programmatic Administration Reference.” URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/iissdk/iis/iis_programmatic_administration_reference.asp (22 July 2004).

“Internet Domain Survey, Jan 2004.” URL: http://www.isc.org/ (22 July 2004).

“Introductory Example Using the COM+ Administration Catalog.” URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cossdk/htm/pgautomatingadmin_2j51.asp (22 July 2004).

“Navigating the COM+ Collection Hierarchy.” URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cossdk/htm/pgautomatingadmin_6e49.asp (22 July 2004).

Saltzer, Jerome H., Schroeder D., Michael.“The Protection of Information in
Computer Systems.” URL: http://cap-lore.com/CapTheory/ProtInf/ (22 July 2004).

