
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"iOS and Android Application Security Analysis and Penetration Testing (Security 575)"
at http://www.giac.org/registration/gmob

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gmob

!

!!
[VERSION!June!2012]!

!
! !

Forensic Analysis On Android: A Practical Case

GIAC (GMOB) Gold Certification

Author:!Angel!Alonso;Parrizas,!parrizas@gmail.com!
!

Advisor:!Jose!Selvi!
!

Accepted:!October!13th,!2015!
!

Abstract!

!
Mobile!platforms!have!grown! in! the! last! few!years!very!quickly.!At! the!same!time,!
vulnerabilities! and!malware! have! evolved! affecting! the! new!mobile! landscape.! In!
order! to! respond! to! this! new! set! of! threats! it! is! necessary! that! existing! security!
techniques!and!tools!adapt!to!the!new!situation.!As!a!result,!the!current!techniques,!
tools!and!processes!to!perform!forensic!analysis!in!networks!and!systems,!need!to!
cover!also!mobile!platforms.!In!this!paper!it!will!be!discussed!how!it! is!possible!to!
perform!forensic!analysis! in!Android!platforms!covering!the!following!aspects:! the!
evidences!in!the!logs,!the!network!traffic,!file!system!and!in!particular!the!analysis!of!
the! memory.! ! A! real! malware! case! is! investigated! using! the! above! aspects.

Forensic Analysis on Android: A Practical Case! 2

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

1. Introduction
! “Digital forensic is a branch of forensic science focusing on the recovery and

investigation of raw data residing in electronic or digital devices. Mobile forensics is a

branch of digital forensics related to the recovery of digital evidence” (Bommisetty, S.,

& Tamma, R. (2014))”.

 The first part of the paper focuses on different processes that can be used to

analyze Android from a forensic point of view. Through those steps, existing tools and

techniques from traditional forensic analysis are used to investigate the systems logs, the

network traffic, the file system and the memory. A key area of analysis is the memory,

since it is possible to get many types of evidence and useful information, like crypto keys

or unencrypted information.

 In the second part of the paper, the set of steps described in the first part are

applied to a real case. A fresh malware sample from the ‘emmental’ campaign

(Cybercriminals to Online Banks: Check -. (2014, July 22)) is executed on an Android

Device, and the forensic analysis is performed.

2. Android forensic analysis: the method
! For the purpose of this research, the forensic analysis focuses on four core layers:

device logs, network traffic, file system and memory. The evidence gathered in each step

can cross-correlate with the information obtained in other steps in order to have a full

picture.

 The lab is composed of the following items: a MacBook Pro with the SDK

Android toolkit, a Virtual Machine running Ubuntu 14.04, a rooted Nexus 5 running

Android 5.1.1, and a WiFi pineapple which provides Internet access to the smartphone.

2.1. System logs
Android provides a full set of tools for log analysis; being ‘adb logcat’ (Logcat.

(n.d.)) the most relevant. With this tool it is possible to monitor different kinds of logs,

Forensic Analysis on Android: A Practical Case! 3

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

for example the events produced by the ‘radio’. This information can be very useful to

detect incoming and outgoing SMS/MMS messages. For example, malware that sends

SMS in the background and deletes the messages in the SMS application, can be spotted.

2.2. Network traffic
 The analysis of the network traffic is key in some forensic investigations, hence it

is important to be able to monitor the traffic properly. In a corporate environment there

might be existing tools like proxies or firewalls where the traffic is being monitored. A

different approach to remotely monitor Network Traffic was discussed by the author on

the paper “Monitoring network Traffic for Android Devices” (Alonso Parrizas, A. (2013,

January 16)).

 In a forensic lab it is worth to setup a very simple infrastructure to monitor all the

network traffic. In the case of this paper, the author uses a WiFi pineapple Mark V (WiFi

Pineapple (n.d.)) connected physically to a MacBook through Ethernet and also acting as

a WiFi Access point for the smart phone. This setup permits to monitor the traffic with

two main tools: Wireshark (Wireshark. (n.d.)) and Burp Suite (Burp Suite. (n.d.)). Burp

Suite’s certificated is imported in the Android device in order to do SSL inspection.

!

!
Figure'1:'Networking'setup'

Forensic Analysis on Android: A Practical Case! 4

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

2.3. File system
! In!mobile!devices,!the!data!stored!in!the!file!system!can!be!gathered!in!

several!ways!as!discussed!in!Practical!Mobile!Security!(Bommisetty,!S.,!&!Tamma,!R.!

(2014)):!manual!extraction,!logical!extraction,!physical!extraction!(Hex!dump),!chip!

off!and!micro!read.!!

! In!the!case!of!this!research!the!data!is!extracted!logically.!A!full!image!of!the!

file!system!can!be!gathered!through!different!ways,!but!in!the!case!of!this!project,!

and!for!simplicity!reasons,!the!author!boots!!the!system!in!“recovery!mode”!with!

ClockworkMod!(ClockworkMod!(n.d.)).!This!permits!to!do!a!full!image!backup!of!the!!

whole!file!systems!and!afterwards!to!pull!the!data!through!‘adb’!(Android!Debug!

Bridge!(n.d.).!!

2.4. Memory
 The analysis of the memory on a live system provides a lot of useful evidence and

information, for example crypto keys or unencrypted data.

 The first step is always to dump the memory of the target system. This can be

done with some existent tools like LiME, Linux Memory Extractor

(504ensicsLabs/LiME. (n.d.)), which can be cross compile for Android.

 Moreover, the existence of memory analytics tools like Volatilty (Volatility

Foundation. (n.d.)) enables to analyze the memories dumps. For that purpose, create a

customized profile for the Android kernel running on the target device.

 It is worth to mention that there are other approaches to analyze the memory in

Android, like using the ‘monitor’ tool provided by Android. However, this method only

allows monitoring one process at each time, instead of analyzing the whole memory of

the system.

3. The forensic process: a real malware case
! In!order!to!test!the!proposed!methodology,!a!real!malware!is!executed!on!the!

smartphone.!The!APK!to!be!executed,!named!CreditSuisse;SmsSecurity;v;20_08.apk!

(986d67fdff01c836be442fac5712ceaa),!is!a!fresh!and!not!detected!sample!(in!

VirusTotal)!by!the!time!of!this!analysis!(5th!of!September!2015!19:51!CEST).!!With!

Forensic Analysis on Android: A Practical Case! 5

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

this,!we!ensure!that!the!C&C!server!is!up!running!and!we!get!a!real!live!

communication.!Two!days!after!this!investigation!was!performed,!the!malware!was!

seen!reported!in!VirusTotal!

(https://www.virustotal.com/es/file/b57b59e41c59c71e46699dd7219a1b2a64cf1

d26b18c187427fe146dd7555acd/analysis/)!

! !

3.1. Preparation of the lab
Following a brief explanation of the architecture in section two, here a more

detailed description is highlighted. The physical system is a MacBook Pro (MacOSX

10.10.15) with Android SDK installed through brew (Homebrew. (n.d.)) which permits to

interact with the smartphone through ADB.

By default the kernel running in Nexus Android 5.1.1 (3.4-0-gbebb36b) does not

support loading kernel modules, which it is necessary in order to load LiME. As a result

it is required customize the kernel and compile it. Once the kernel is compiled, the

smartphone needs to boot with the new kernel. The Ubuntu Virtual Machine is used for

the compiling. The full set of commands for the compilation is described in the appendix.

' Figure'2:'Default'kernel'version'running'on'Nexus'5'with'Android'5.1.1'

The Ubuntu VM is also used for the cross-compilation of LiME (the full set of

commands is in the appendix). Once the LiME module has been compiled, the module

‘lime.ko’ can be pushed to the smartphone with ‘adb pull’ and loaded through ‘insmod’

(as explained in the appendix).

The last step is to create the Volatility profile based on the customized kernel (the

commands are in the appendix).

Forensic Analysis on Android: A Practical Case! 6

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

On the other hand, to setup the network, it is necessary to share Internet in

MacOSX with the WiFi Pinneaple as described in “How To: Configure a WiFi Pineapple

For Use With Mac OS X” (How To: Configure a WiFi Pineapple For Use With Mac OS

X. (n.d.)). The remaining commands that need to be executed are for redirecting all the

HTTP/HTTPS traffic coming from the WiFi pineapple to the Burp Suite proxy.

echo "

rdr pass inet proto tcp from any to any port 80 -> 127.0.0.1 port 8080

rdr pass inet proto tcp from any to any port 443 -> 127.0.0.1 port 8080

" | sudo pfctl -ef -

3.1.1. Installing and running the APK

The next step is to install the APK file and run it, which is done with the

command ‘adb install CreditSuisse-SmsSecurity-v-20_08.apk’. Then, run the newly

installed application on the device while 1) monitoring the logs, 2) sniffing the network

traffic and 3) capturing the memory dump.

3.1.2. Monitoring the logs: logcat

The main objective of logcat in this analysis is to gather evidence that SMS or

MMS messages are sent. This can be detected through the radio logs. The key idea

behind this is to detect malware abusing the SMS/MMS service, while monitoring the

radio for some specific logs. The author noticed in the past some malware, which abused

the SMS in order to subscribe to premium SMS services, but was not detected by

common detection tool.

The following commands will detect any SMS going through the radio:

adb logcat -v threadtime -b radio RILJ:V GsmSMSDispatcher:V

SMSDispatcher:V *:S

adb logcat -v threadtime -b radio RILJ:V GsmInboundSmsHandler:V

Forensic Analysis on Android: A Practical Case! 7

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

SMSDispatcher:V *:S

In the case of this specific APK, there was no SMS sent, hence no evidence on the

logs. However, other information is gathered from the logs ‘main’ and ‘event’. Just to

highlight some of them:

09-05 19:51:23.218 772 873 I PackageManager: Running dexopt on:

/data/app/org.thoughtcrime.securesms-1/base.apk pkg=org.thoughtcrime.securesms

isa=arm vmSafeMode=false

09-05 19:51:57.703 772 867 I ActivityManager: Displayed

org.thoughtcrime.securesms/.FirstActivity: +746ms (total +27s201ms)

09-05 19:52:51.292 17145 17440 W ImportFragment:

org.thoughtcrime.securesms.b.ab

09-05 19:52:51.292 17145 17440 W ImportFragment: at

org.thoughtcrime.securesms.b.af.a(Unknown Source)

09-05 19:52:51.292 17145 17440 W ImportFragment: at

org.thoughtcrime.securesms.b.af.a(Unknown Source)

09-05 19:52:51.292 17145 17440 W ImportFragment: at

org.thoughtcrime.securesms.cx.a(Unknown Source)

09-05 19:52:54.320 17145 17441 W ImportFragment:

org.thoughtcrime.securesms.b.ab

09-05 19:52:26.711 17145 17441 W MmsSmsDatabase: Executing query: SELECT _id,

body, read, type, address, address_device_id, subject, thread_id, status, date_sent,

date_received, m_type, msg_box, part_count, ct_l, tr_id, m_size, exp, st, transport_type

FROM (SELECT DISTINCT date_sent * 1 AS date_sent, date * 1 AS date_received, _id,

body, read, thread_id, type, address, address_device_id, subject, NULL AS m_type,

Forensic Analysis on Android: A Practical Case! 8

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

NULL AS msg_box, status, NULL AS part_count, NULL AS ct_l, NULL AS tr_id,

NULL AS m_size, NULL AS exp, NULL AS st, 'sms' AS transport_type FROM sms

WHERE (read = 0) UNION ALL SELECT DISTINCT date * 1000 AS date_sent,

date_received * 1000 AS date_received, _id, body, read, thread_id, NULL AS type,

address, address_device_id, NULL AS subject, m_type, msg_box, NULL AS status,

part_count, ct_l, tr_id, m_size, exp, st, 'mms' AS transport_type FROM mms WHERE

(read = 0) ORDER BY date_received ASC)

From this logs, something can be already detected:

• The name of the package installed: org.thoughtcrime.securesms. This application,

securesms, is a real application created by the company WhisperSystems

(https://github.com/WhisperSystems/TextSecure/tree/master/src/org/thoughtcrime/sec

uresms)

• There are some references that do not appear to have standard names, for example

org.thoughtcrime.securesms.b.ab or org.thoughtcrime.securesms.cx.a. This kind of

names look like some obfuscation, similar to tools like Proguard (ProGuard. (n.d.).

Retrieved September 15, 2015).

• There are some SQL queries accessing the SMS database as well.

The examples above indicate a few evidence gathered through the logs which are

enough for the purpose of this research

3.1.3. Information gathered through network traffic

With Burp Suite and Wireshark it is possible to analyze in real time the traffic

being sent and received. Burp suite focus on HTTP/HTTPs traffic (being able to decrypt

HTTPs traffic), Wireshark captures the whole traffic. This setup guarantees that the

whole traffic is being captured like for example HTTP traffic not going through standard

Forensic Analysis on Android: A Practical Case! 9

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

ports or any non-HTTP traffic.

Figure'3:'Traffic'capture'with'Burp'suite'

Figure'4:'traffic'capture'with'Wireshark'

For this case, the initial evidence gathered is:

Forensic Analysis on Android: A Practical Case! 10

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

• URL accessed http://amann.com/img/main.php

• User-agent: Mozilla/5.0 (Windows NT 5.1; rv:26.0) Gecko/20100101 Firefox/26.0.

The fake User-Agent is very suspicious for two reasons: it is a windows User-agent

(instead of an Android) and the version of Firefox is quite old.

• Information sent through a HTTP POST request. The information sent in the

paramenter “i” (Figure 3) is base64 encoded and encrypted.

3.1.4. Evidence on the file system

Next step is to do a full image of the file system by booting the device in recovery

mode (Clockworkmod) and performing an image backup. This step generates a set of

files, which needs to be pulled.

92eb1fa86e200e195aa43835d1a19189 boot.img

d41d8cd98f00b204e9800998ecf8427e cache.ext4.tar

8da72bb5531c3ff0fa504aa312c03725 cache.ext4.tar.a

d41d8cd98f00b204e9800998ecf8427e data.ext4.tar

b81641ca00b95697b7a1e4992249cf4a data.ext4.tar.a

cdb4301242ebd71ebe5255c2e5bc4fab data.ext4.tar.b

25e6a1d46cf5afb0e1f1e3495430c53e recovery.img

d41d8cd98f00b204e9800998ecf8427e system.ext4.tar

cf83aeff13d0c754428d08b08e5e1a76 system.ext4.tar.a

bdad0c5f92181d9cd51548a328f59320 system.ext4.tar.b

The command to pull the files is ‘adb pull’. The files are split and need to be

rebuilt, for example: ‘cat data.ext4.tar.a data.ext4.tar.b > data.tar’. Following this task,

the file is decompressed and the full directory structured is reconstructed. This same

approach has to be done for /system.

Forensic Analysis on Android: A Practical Case! 11

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

Figure'5:'output'of'the'file'system'

Now it is time to explore the full file system.

Although, there are many files that can be looked at, the analysis is focused on the

relevant evidence for this research. In /data/data/org.thoughtcrime.securesms all the

relevant data from the application is stored. For example, in the database subdirectory, it

is found some SQLite data bases, which can be browsed with any tool like sqlitebrowser

(DB Browser for SQLite). One of the SQLite files contains the data base of the

SMS/MMS messages.

Figure'6:'data'extracted'from'the'SQLite'data'base.'

Basically, this can mean two things: the application is able to read the MMS/SMS

databases from the default SMS application, or the new SQLite database has become the

main SMS/MMS database. This evidence matches with the logs seen in point 3.1.3 (the

SQL queries).

Forensic Analysis on Android: A Practical Case! 12

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

However going a step further, in the ‘shared_prefs’ folder, which normally is used

by Android to keep configuration files for the application to work, exists some interesting

XML files.

angel@thepro:~/Android/Forensic/CS/images/data/data/org.thoughtcrime.secures

ms/shared_prefs$ ls -l

total 32

-rw-r----- 1 angel staff 885B Sep 5 19:54 MainPref.xml

-rw-r----- 1 angel staff 951B Sep 5 19:52 SecureSMS-Preferences.xml

-rw-r----- 1 angel staff 165B Sep 5 19:52 SecureSMS.xml

-rw-r----- 1 angel staff 117B Sep 5 19:52

org.thoughtcrime.securesms_preferences.xml

Looking across all of the files, the file MainPref.xml contains some valuable

information:

Figure'7:'content'of'the'MainPref.xml'
!
 Some fields to highlight:

• USE_URL_MAIN which contains the same URL we saw in Wireshark and Burp

suite (http://frankstain.vom/allrent/om/main.php)

Forensic Analysis on Android: A Practical Case! 13

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

• URL_MAIN: contains some backup URL

• IMEI (which corresponds with the IMEI of the device).

In essence, this XML file looks like an initial configuration file used by the malware.

 With this approach, looking into the filesystem, it would be also possible to obtain

the original APK file installed in the device. However, in the case of this analysis we

already had the APK file. (The file is stored in /data/app/org.thoughtcrime.securesms-

1/base.apk)

 Always it is possible to analyze further at file system level, but for the purpose of

this research with evidence mentioned above is enough.

3.1.5. Memory analysis

The memory has been dumped through netcat as explained in the appendix. Now,

volatility runs with the customize profile ‘LinuxNexus5-511ARM’, in order to list all the

processes running:

python vol.py --profile=LinuxNexus5-511ARM -f

~/Android2/CS_mem_image/lime2.dump linux_psaux

As showed in the Appendix, the PID of the process to investigate is 17145. Worth

to mention the existence of process 17686 (insmod lime.ko path=TCP:4444

format=lime), which it is the process for LiME.

Next step is to dump the details of all the memory allocated to process 17145.

angel@ubuntu:~/Android2/volatility/volatility$ python vol.py --

profile=LinuxNexus5-511ARM -f ~/Android2/CS_mem_image/lime2.dump -p 17145

linux_proc_maps

Offset Pid Name Start End Flags Pgoff

Major Minor Inode File Path

------------------ -------- -------------------- ------------------ ------------------ ------ ------

---- ------ ------ ---------- ---------

0x00000000ed175500 17145 crime.securesms 0x0000000012c00000

0x0000000012e01000 rw- 0x0 0 4 9397 /dev/ashmem/dalvik-main space

Forensic Analysis on Android: A Practical Case! 14

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

0x00000000ed175500 17145 crime.securesms 0x0000000012e01000

0x0000000013252000 rw- 0x201000 0 4 9397 /dev/ashmem/dalvik-main

space

…..

We can use the column “start” as a reference to dump the whole memory in

different files. To achieve this is the content of column “start” is saves in a file named

“pos_mem.txt”.

for i in `cat

/home/angel/Android2/CS_mem_image/memoria_analisis/pos_mem.txt`; do python

vol.py --profile=LinuxNexus5-511ARM -f ~/Android2/CS_mem_image/lime2.dump

linux_dump_map -p 17145 -s $i --dump-dir

~/Android2/CS_mem_image/memoria_analisis/; done

Once the memory is dumped in different files, it is time to check which file

contains the interesting information. In this case it is ‘‘task.17145.0x12e01000.vma’,

which references to process:

“0x00000000ed175500 17145 crime.securesms 0x0000000012c00000

0x0000000012e01000 rw- 0x0 0 4 9397 /dev/ashmem/dalvik-main

space”

Figure'8:'memory'dump'
Checking the file with ‘strings’, there is some information about the smartphone:

IMEI, country, Provider, version of the device, kernel version, brand of the device, etc.

Forensic Analysis on Android: A Practical Case! 15

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

After that information, there is a string in base64 which starts with “QXB…==”.

,

Figure'9:'strings'in'memory'with'clear'text'information'and'base64'encoded'

When executing: ‘echo –n “QXB…DA==” | base64 –decode’ the full information

of the device above is showed. Basically, this means that the malware is dumping some

information from the device and encoding it with base64, to likely send it through HTTP.

Forensic Analysis on Android: A Practical Case! 16

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

Other interesting information are the following strings in memory:

Figure'10:'C&C'commands'and'initial'config.'
! !
 In the screenshot above, the first line, there is a set of commands which looks like

C&C commands. Moreover, the exactly same initial configuration file analyzed through

the file system (MainPref.xml) is also in memory.

 There are other existing C&C evidences:

• a:2:{s:7:"LogCode";s:4:"PASS";s:7:"LogText";s:16:"Rand code: 67302";}

• “a:4:{s:6:"device";s:750:"QXB…. ==” (this one will be analyzed later).

And other evidences which we already see:

• The Mozilla string which was detected in the network traffic

• The POST request with the base64 encoded information

Forensic Analysis on Android: A Practical Case! 17

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

 However, what it is interesting and worth to investigate is the repeated string

“4e66766e6b6a6c6e766b6a4b434e584b444b4c4648534b443a” and “12345678”.

Figure'11:'keys'in'memory'

 This is quite suspicious and it looks like some kind of crypto key used to

encrypt/decrypt. Searching in Google for the first string (key) we can find two interesting

articles from 2014.

Forensic Analysis on Android: A Practical Case! 18

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

• http://blog.dornea.nu/2014/07/07/disect-android-apks-like-a-pro-static-code-

analysis/

• http://maldr0id.blogspot.ch/2014/09/android-malware-based-on-sms-

encryption.html

!
 In both articles a Banking malware is investigated and same crypto key

(4e66766e6b6a6c6e766b6a4b434e584b444b4c4648534b443a) and an Initialization

Vector (12345678) is analyzed. Clearly the APK file is some malware which it is from

the same family. In both articles some there is some interesting information: a file named

blfs.key, where the encoded encrypted key is stored and config.cfg with keeps the initial

configuration (the content is encrypted). Both files can be found references in the

memory:

!
Figure'12:'crypto'key'file'and'initial'configuration'file'

!
 This means the malware is using the same exactly configuration for the

encryption. Using the information from both blogs, the next step is to decrypt the data

interchanged between the C&C and the compromised device. Obviously, that information

should be in memory decrypted as well.

 To check it, the information sent by the initial POST is going to be decrypted. As

showed in the appendix, the string sent in the POST is decrypted as some C&C

commands “a:4:{s:6:"device";s:750…” following with the string encoded with base64

and beginning with “QXBw..”. This is basically what was found in the memory matching

the information from the device (in clear text).

 With this approach it is possible to analyze further communication with the C&C,

however this is out of the scope of this research.

Forensic Analysis on Android: A Practical Case! 19

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

3.1.6. A bit about the malware

! It is out of the scope to perform the analysis of the malware. But is it worth to

give some additional information about this malware. This specific APK is just one new

version of the malware discovered in the campaign emmental (Cybercriminals to Online

Banks: Check -. (2014, July 22)). The main target of this malware is to steal the 2FA

tokens sent through SMS by some banks. The malware is using obfuscation in the code

and using some anti-analysis techniques (like detecting virtual devices, if the device has a

valid GSM network, or has a valid phone number). In order to make the malware

stealthier it uses a well know SMS encryption application as a baseline, and on top of that

the additional functional malware code is added and obfuscated. The malware is able to

read the SMS received in order to forward them. Actually, one of the tests performed

during this analysis was to send a text message to the phone and see how consequently a

HTTP POST was set to the C&C. The original APK file contains obfuscated code, but

the author found some previous versions of the malware which was not using this

obfuscation techniques, but other techniques to make difficult the analysis with some

standard tools. This specific version the malware was targeting a Swiss bank, however

the previous version checked and reported in VirusTotal

https://www.virustotal.com/es/file/06d6e5ac153ab5970385e998164503b9abfaa99f89730

ee98618290785fd925d/analysis/ was hitting some Austrian banks.

 The key point here is that even the malware has being updated to target other

banks, the core malware code is using exactly the same encryption techniques,

cryptographic keys and Initialization Vectors, which makes much easier the analysis and

to spot it.

4. Conclusions
During this paper the author presented several techniques to perform forensic

Analysis in Android. Each techniques focus on a different layer, and the evidences

gathered can be easily cross-correlate between them.

It was presented how it is possible to analyze the memory of a live device and

gather all the evidences in clear text before they are encrypted. This can be really useful

Forensic Analysis on Android: A Practical Case! 20

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

is some scenarios where we the code is obfuscated and we need to see what information

is being sent and received.

5. References
504ensicsLabs/LiME. (n.d.). Retrieved September 15, 2015, from
https://github.com/504ensicslabs/lime

 Alonso Parrizas, A. (2011, September 22). Securely deploying Android devices.
Retrieved from
http://www.sans.org/reading_room/whitepapers/sysadmin/securelydeploying-android-
devices_33799

Android Debug Bridge. (n.d.). Retrieved September 15, 2015, from
http://developer.android.com/tools/help/adb.html

Bommisetty, S., & Tamma, R. (2014). Practical mobile forensics dive into mobile
forensics on iOS, Android, Windows, and BlackBerry devices with this action-packed,
practical guide. Birmingham, UK: Packt Pub.

Burp Suite. (n.d.). Retrieved September 15, 2015, from https://portswigger.net/burp/

ClockworkMod. (n.d.). Retrieved September 15, 2015, from
https://www.clockworkmod.com/

Cybercriminals to Online Banks: Check -. (2014, July 22). Retrieved September 15,
 2015, from http://blog.trendmicro.com/finding-holes-operation-emmental/

DB Browser for SQLite. (n.d.). Retrieved September 15, 2015, from
 http://sqlitebrowser.org/

Homebrew. (n.d.). Retrieved September 15, 2015, from http://brew.sh
How To: Configure a WiFi Pineapple For Use With Mac OS X. (n.d.). Retrieved
 September 15, 2015, from https://www.youtube.com/watch?v=m7XUmfC8ESw

Installing the Android SDK. (n.d.). Retrieved September 15, 2015, from
 https://developer.android.com/sdk/installing/index.html?pkg=tools

Investigating Your RAM Usage. (n.d.). Retrieved September 15, 2015, from
 https://developer.android.com/tools/debugging/debugging-memory.html

Logcat. (n.d.). Retrieved September 15, 2015, from
 http://developer.android.com/tools/help/logcat.html

Forensic Analysis on Android: A Practical Case! 21

Angel!Alonso;!Parrizas,!parrizas@gmail.com!

ProGuard. (n.d.). Retrieved September 15, 2015, from
http://developer.android.com/tools/help/proguard.html

Volatility Foundation. (n.d.). Retrieved September 15, 2015, from
https://github.com/volatilityfoundation

WiFi Pineapple. (n.d.). Retrieved September 15, 2015, from
https://www.wifipineapple.com/

Wireshark. (n.d.). Retrieved September 15, 2015,
from https://www.wireshark.org/

6. Appendix
6.1. Appendix A: Compiling Android Kernel with modprobe
Reference link:

http://kuester.multics.org/blog/2015/03/24/how-to-build-custom-kernel-with-kprobes/

#Getting the right kernel sources
$git clone https://android.googlesource.com/kernel/msm.git

#check the kernel version
$ adb shell cat /proc/version | grep -e "[0-9.]*-g[a-z0-9]*" –o

#Checkout the correct commit from that kernel version
$cd msm; git checkout bebb36b

Create kernel configuration with kprobes to be able to load modules into kernel
create the .config

$cd msm; ARCH=arm make hammerhead_defconfig

Append the following lines to the .config in order to support modules:

CONFIG_KPROBES=y CONFIG_KPROBES_SANITY_TEST=y #
CONFIG_KPROBE_EVENT is not set # CONFIG_ARM_KPROBES_TEST is not set
CONFIG_NET_TCPPROBE=y # seems necessary otherwise kernel does not boot
CONFIG_MODULES=y # kprobes requires module support and makes no sense without
CONFIG_MODULE_FORCE_LOAD=y CONFIG_MODULE_UNLOAD=y
CONFIG_MODULE_FORCE_UNLOAD=y CONFIG_MODVERSIONS=y # possible
to use modules compiled for different kernels #

Forensic Analysis on Android: A Practical Case! 22

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

CONFIG_MODULE_SRCVERSION_ALL is not set

compile the kernel phase
obtained the toolchains for cross-compile in Android >5.0 (arm-eabi-)

$git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-
eabi-4.7

cross compile the kernel
$cd msm; ARCH=arm CROSS_COMPILE=../arm-eabi-4.7/bin/arm-eabi- make
if any question is asked for the new options of the kernel just choose the default

Preparing the boot image (kernel + ramdisk) from the existing one in your phone

obtaining the existing one

$adb shell su -c "ls -al /dev/block/platform/msm_sdcc.1/by-name/boot" lrwxrwxrwx root
root 1970-09-29 07:33 boot -> /dev/block/mmcblk0p19

$ adb shell su -c "dd if=/dev/block/mmcblk0p19 of=/sdcard/my_nexus5_boot.img”
$ adb pull /sdcard/my_nexus5_boot.img

Unpack original image and repack with our customize kernel

$adb shell su -c "ls -al /dev/block/platform/msm_sdcc.1/by-name/boot" lrwxrwxrwx root
root 1970-09-29 07:33 boot -> /dev/block/mmcblk0p19
$ adb shell su -c "dd if=/dev/block/mmcblk0p19 of=/sdcard/my_nexus5_boot.img”
$ adb pull /sdcard/my_nexus5_boot.img

it is necessary the tools unmkbootimg (unpacking) and mkbootimg (packing)
$ git clone https://github.com/pbatard/bootimg-tools.git $ cd bootimg-tools; make

Unpack the boot image
$./bootimg-tools/mkbootimg/unmkbootimg -i my_nexus5_boot.img

rebuild the boot image
$mkbootimg --base 0 --pagesize 2048 --kernel_offset 0x00008000 --ramdisk_offset
0x02900000 --second_offset 0x00f00000 --tags_offset 0x02700000 --cmdline
'console=ttyHSL0,115200,n8 androidboot.hardware=hammerhead user_debug=31
maxcpus=2 msm_watchdog_v2.enable=1' --kernel kernel --ramdisk ramdisk.cpio.gz -o
my_nexus5_boot.img

Forensic Analysis on Android: A Practical Case! 23

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

if everything went fine you should have the files “kernel” and ramdisk.cpio.gz
Now it is is necessary to repack everything

$booting-img/bootimg-tools/mkbootimg/mkbootimg --base 0 --pagesize 2048 --
kernel_offset 0x00008000 --ramdisk_offset 0x02900000 --second_offset 0x00f00000 --
tags_offset 0x02700000 --cmdline 'console=ttyHSL0,115200,n8
androidboot.hardware=hammerhead user_debug=31 maxcpus=2
msm_watchdog_v2.enable=1' --kernel ./msm/arch/arm/boot/zImage-dtb --ramdisk
ramdisk.cpio.gz -o my_nexus5_kprobes_boot.img

example of the final files

angel@ubuntu:~/Android2$ ls

arm-eabi-4.7 booting-img kernel lime msm my_nexus5_boot.img

my_nexus5_kprobes_boot.img ramdisk.cpio.gz

Finally boot the device with the new boot command
This is done from the MacOSX system

$ adb reboot bootloader
$ sudo fastboot boot my_nexus5_kprobes_boot.img

6.2. Appendix B: Compiling LiME
Reference link:
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics!

Get the source code
$ git clone https://github.com/504ensicsLabs/LiME.git

Backing up the Makefile and editing it

$ cd /home/angel/Android2/lime/LiME/src
$ cp Makefile Makefile.bkp
$ vim.tiny Makefile

Forensic Analysis on Android: A Practical Case! 24

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

The content of the Makefile needs to reference to the Android kernel ‘msm’ directory
Also it needs the cross-compiler arm-eabi-4.7 installed when compiling Android
kernel. An example of Make file is as follow

bj-m := lime.o
lime-objs := tcp.o disk.o main.o

KDIR where the kernel source code is
KDIR := ~/Android2/kernel/msm

KVER := $(shell uname -r)

PWD := $(shell pwd)

default:
 $(MAKE) ARCH=arm CROSS_COMPILE=~/Android2/arm-eabi-4.7/bin/arm-eabi-
-C $(KDIR) M=$(PWD) modules
 strip --strip-unneeded lime.ko
 mv lime.ko lime-$(KVER).ko

Now it is time to compile with Make. Although there might be some errors, if the in the
‘lime.ko’ module is presented, the compilation is success

example of compiling logs

angel@ubuntu:~/Android2/lime/LiME/src$ make
make ARCH=arm CROSS_COMPILE=~/Android2/arm-eabi-4.7/bin/arm-eabi- -C
~/Android2/msm M=/home/angel/Android2/lime/LiME/src modules
make[1]: Entering directory `/home/angel/Android2/msm'
 CC [M] /home/angel/Android2/lime/LiME/src/tcp.o
 CC [M] /home/angel/Android2/lime/LiME/src/disk.o
 CC [M] /home/angel/Android2/lime/LiME/src/main.o
 LD [M] /home/angel/Android2/lime/LiME/src/lime.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /home/angel/Android2/lime/LiME/src/lime.mod.o
 LD [M] /home/angel/Android2/lime/LiME/src/lime.ko
make[1]: Leaving directory `/home/angel/Android2/msm'

Forensic Analysis on Android: A Practical Case! 25

Angel!Alonso;!Parrizas,!parrizas@gmail.com!

strip --strip-unneeded lime.ko
strip: Unable to recognise the format of the input file `lime.ko'
make: *** [default] Error 1

checking the module is ‘lime.ko’ exists

angel@ubuntu:~/Android2/lime/LiME/src$ ls -l
total 1484
-rw-rw-r-- 1 angel angel 290 Sep 4 08:20 Makefile
-rw-rw-r-- 1 angel angel 1646 Sep 4 08:15 Makefile.bkp
-rw-rw-r-- 1 angel angel 1723 Sep 4 08:14 Makefile.sample
-rw-rw-r-- 1 angel angel 0 Sep 4 08:21 Module.symvers
-rw-rw-r-- 1 angel angel 2379 Sep 4 08:14 disk.c
-rw-rw-r-- 1 angel angel 158756 Sep 4 08:21 disk.o
-rw-rw-r-- 1 angel angel 1821 Sep 4 08:14 lime.h
-rw-rw-r-- 1 angel angel 491708 Sep 4 08:21 lime.ko
-rw-rw-r-- 1 angel angel 1203 Sep 4 08:21 lime.mod.c
-rw-rw-r-- 1 angel angel 18380 Sep 4 08:21 lime.mod.o
-rw-rw-r-- 1 angel angel 474393 Sep 4 08:21 lime.o
-rw-rw-r-- 1 angel angel 5303 Sep 4 08:14 main.c
-rw-rw-r-- 1 angel angel 162856 Sep 4 08:21 main.o
-rw-rw-r-- 1 angel angel 50 Sep 4 08:21 modules.order
-rw-rw-r-- 1 angel angel 3543 Sep 4 08:14 tcp.c
-rw-rw-r-- 1 angel angel 160484 Sep 4 08:21 tcp.o

Now it is time to push the module to the device and install it
$ adb push lime.ko /sdcard/lime.ko
$ adb shell 'ls -l /sdcard/lime.ko'
-rw-rw---- root sdcard_r 491708 2015-09-04 17:52 lime.ko

Two different ways of pushing the module and dumping the memory

option 1: dumping the memory to the sdcard –

$ insmod /sdcard/lime.ko "path=/sdcard/lime.dump format=lime”

!#!option!2:!dumping!the!memory!through!‘netcat!‘!into!other!host!

#!preparing!port!forwarding!through!ADB!
$ adb forward tcp:4444 tcp:4444
$ adb shell

Forensic Analysis on Android: A Practical Case! 26

Angel!Alonso;!Parrizas,!parrizas@gmail.com!

$ insmod /sdcar/lime.ko “path=tcp:4444 format=lime”

In the destination host it is necessary to run netcat
nc localhost 4444 > lime2.dump

6.3. Appendix C: Creating a Volatility profile
Reference link:
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics!

#Install!dwarfdump
$ apt-get install dwarfdump

download volatility source

$git clone https://github.com/volatilityfoundation/volatility.git
$ cd volatility/volatility/tools/linux

Edit Makefile to reference to the ARM cross compiler ‘arm-eabi-4.7/bin’.

$cd volatility/volatility/tools/linux

An example of Makefile:
obj-m += module.o
KDIR := ~/Android2/msm
KVER ?= $(shell uname -r)
CCPATH := ~/Android2/arm-eabi-4.7/bin
DWARFDUMP := /usr/bin/dwarfdump
-include version.mk
all: dwarf
dwarf: module.c

$(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-eabi- -C $(KDIR)
CONFIG_DEBUG_INFO=y M=$(PWD) modules

$(DWARFDUMP) -di module.ko > module.dwarf

compile with make.
$ make
example of output:

make ARCH=arm CROSS_COMPILE=~/Android2/arm-eabi-4.7/bin/arm-eabi- -C
~/Android2/msm CONFIG_DEBUG_INFO=y
M=/home/angel/Android2/volatility/volatility/tools/linux modules
make[1]: Entering directory `/home/angel/Android2/msm'
 CC [M] /home/angel/Android2/volatility/volatility/tools/linux/module.o

Forensic Analysis on Android: A Practical Case! 27

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

 Building modules, stage 2.
 MODPOST 1 modules
 CC /home/angel/Android2/volatility/volatility/tools/linux/module.mod.o
 LD [M] /home/angel/Android2/volatility/volatility/tools/linux/module.ko
make[1]: Leaving directory `/home/angel/Android2/msm'
/usr/bin/dwarfdump -di module.ko > module.dwarf
!

Check that the header is similar to this:

$ head module.dwarf

.debug_info

<0><0x0+0xb><DW_TAG_compile_unit> DW_AT_producer<"GNU C 4.7">
DW_AT_language<DW_LANG_C89>
DW_AT_name<"/home/angel/Android2/volatility/volatility/tools/linux/module.c">
DW_AT_comp_dir<"/home/angel/Android2/msm">
DW_AT_stmt_list<0x00000000>
<1><0x1d><DW_TAG_typedef> DW_AT_name<"__s8">
DW_AT_decl_file<0x00000001 include/asm-generic/int-ll64.h>
DW_AT_decl_line<0x00000013> DW_AT_type<<0x00000028>>
<1><0x28><DW_TAG_base_type> DW_AT_byte_size<0x00000001>
DW_AT_encoding<DW_ATE_signed_char> DW_AT_name<"signed char">
<1><0x2f><DW_TAG_typedef> DW_AT_name<"__u8">
DW_AT_decl_file<0x00000001 include/asm-generic/int-ll64.h>
DW_AT_decl_line<0x00000014> DW_AT_type<<0x0000003a>>
<1><0x3a><DW_TAG_base_type> DW_AT_byte_size<0x00000001>
DW_AT_encoding<DW_ATE_unsigned_char> DW_AT_name<"unsigned char">
<1><0x41><DW_TAG_typedef> DW_AT_name<"__s16">
DW_AT_decl_file<0x00000001 include/asm-generic/int-ll64.h>
DW_AT_decl_line<0x00000016> DW_AT_type<<0x0000004c>>
<1><0x4c><DW_TAG_base_type> DW_AT_byte_size<0x00000002>
DW_AT_encoding<DW_ATE_signed> DW_AT_name<"short int">

Now combine module.dwarf and the System.map from your android kernel source code
into a zip file

$zip ~/Android2/volatility/volatility/volatility/plugins/overlays/linux/Nexus5-511.zip
module.dwarf ~/Android2/msm/System.map

Check the new profile exists (in this case is the first one)

Forensic Analysis on Android: A Practical Case! 28

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

$~/Android2/volatility/volatility$ python vol.py --info | grep Linux
Volatility Foundation Volatility Framework 2.4
LinuxNexus5-511ARM - A Profile for Linux Nexus5-511 ARM
linux_banner - Prints the Linux banner information
linux_yarascan - A shell in the Linux memory image

6.4. Appendix D: Processes gathered with Volatility
angel@ubuntu:~/Android2/volatility/volatility$ python vol.py --

profile=LinuxNexus5-511ARM -f ~/Android2/CS_mem_image/lime2.dump

linux_psaux

Volatility Foundation Volatility Framework 2.4

*** Failed to import volatility.plugins.malware.apihooks (NameError: name

'distorm3' is not defined)

*** Failed to import volatility.plugins.ssdt (NameError: name 'distorm3' is not

defined)

*** Failed to import volatility.plugins.mac.apihooks (ImportError: No module

named distorm3)

*** Failed to import volatility.plugins.malware.threads (NameError: name

'distorm3' is not defined)

*** Failed to import volatility.plugins.mac.apihooks_kernel (ImportError: No

module named distorm3)

*** Failed to import volatility.plugins.mac.check_syscall_shadow (ImportError:

No module named distorm3)

^[[HPid Uid Gid Arguments

1 0 0 /init

2 0 0 [kthreadd]

3 0 0 [ksoftirqd/0]

Forensic Analysis on Android: A Practical Case! 29

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

7 0 0 [kworker/u:0H]

8 0 0 [migration/0]

13 0 0 [khelper]

14 0 0 [netns]

18 0 0 [modem_notifier]

19 0 0 [smd_channel_clo]

20 0 0 [smsm_cb_wq]

22 0 0 [rpm-smd]

23 0 0 [kworker/u:1H]

24 0 0 [irq/317-earjack]

37 0 0 [sync_supers]

38 0 0 [bdi-default]

39 0 0 [kblockd]

40 0 0 [vmalloc]

41 0 0 [khubd]

42 0 0 [irq/102-msm_iom]

43 0 0 [irq/102-msm_iom]

44 0 0 [irq/102-msm_iom]

45 0 0 [irq/79-msm_iomm]

46 0 0 [irq/78-msm_iomm]

47 0 0 [irq/78-msm_iomm]

48 0 0 [irq/74-msm_iomm]

49 0 0 [irq/75-msm_iomm]

50 0 0 [irq/75-msm_iomm]

Forensic Analysis on Android: A Practical Case! 30

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

51 0 0 [irq/75-msm_iomm]

52 0 0 [irq/75-msm_iomm]

53 0 0 [irq/273-msm_iom]

54 0 0 [irq/273-msm_iom]

55 0 0 [irq/97-msm_iomm]

56 0 0 [irq/97-msm_iomm]

57 0 0 [irq/97-msm_iomm]

58 0 0 [l2cap]

59 0 0 [a2mp]

60 0 0 [cfg80211]

62 0 0 [qmi]

63 0 0 [nmea]

64 0 0 [msm_ipc_router]

65 0 0 [apr_driver]

67 0 0 [kswapd0]

68 0 0 [fsnotify_mark]

69 0 0 [cifsiod]

70 0 0 [crypto]

88 0 0 [ad_calc_wq]

89 0 0 [hdmi_tx_workq]

90 0 0 [anx7808_work]

91 0 0 [k_hsuart]

92 0 0 [diag_wq]

93 0 0 [diag_cntl_wq]

Forensic Analysis on Android: A Practical Case! 31

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

94 0 0 [diag_dci_wq]

95 0 0 [kgsl-3d0]

97 0 0 [f9966000.spi]

108 0 0 [usbnet]

109 0 0 [irq/329-anx7808]

110 0 0 [k_rmnet_mux_wor]

111 0 0 [f_mtp]

112 0 0 [file-storage]

113 0 0 [uether]

114 0 0 [synaptics_wq]

115 0 0 [irq/362-s3350]

117 0 0 [msm_vidc_worker]

118 0 0 [msm_vidc_worker]

119 0 0 [msm_cpp_workque]

120 0 0 [irq/350-bq51013]

122 0 0 [dm_bufio_cache]

123 0 0 [dbs_sync/0]

124 0 0 [dbs_sync/1]

125 0 0 [dbs_sync/2]

126 0 0 [dbs_sync/3]

127 0 0 [cfinteractive]

128 0 0 [irq/170-msm_sdc]

129 0 0 [binder]

130 0 0 [usb_bam_wq]

Forensic Analysis on Android: A Practical Case! 32

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

131 0 0 [krfcommd]

132 0 0 [bam_dmux_rx]

133 0 0 [bam_dmux_tx]

134 0 0 [rq_stats]

135 0 0 [deferwq]

136 0 0 [irq/361-MAX1704]

138 0 0 [mmcqd/1]

139 0 0 [mmcqd/1rpmb]

140 0 0 [wl_event_handle]

141 0 0 [dhd_watchdog_th]

142 0 0 [dhd_dpc]

143 0 0 [dhd_rxf]

144 0 0 [dhd_sysioc]

145 0 0 [vibrator]

146 0 0 [max1462x]

147 0 0 [irq/310-maxim_m]

148 0 0 [irq/311-maxim_m]

149 0 0 /sbin/ueventd

151 0 0 [jbd2/mmcblk0p25]

152 0 0 [ext4-dio-unwrit]

155 0 0 [flush-179:0]

157 0 0 [jbd2/mmcblk0p28]

158 0 0 [ext4-dio-unwrit]

162 0 0 [jbd2/mmcblk0p27]

Forensic Analysis on Android: A Practical Case! 33

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

163 0 0 [ext4-dio-unwrit]

164 0 0 [jbd2/mmcblk0p16]

165 0 0 [ext4-dio-unwrit]

188 1036 1036 /system/bin/logd

189 0 0 /sbin/healthd

190 0 0 /system/bin/lmkd

191 1000 1000 /system/bin/servicemanager

194 0 0 /system/bin/vold

195 0 0 [IPCRTR]

196 1000 1003 /system/bin/surfaceflinger

197 9999 3004 /system/bin/rmt_storage

198 0 0 [sb-1]

199 0 0 [ipc_rtr_q6_ipcr]

200 1000 1000 /system/bin/qseecomd

202 0 0 [ngd_msm_ctrl_ng]

203 0 0 /system/bin/netd

204 0 0 /system/bin/debuggerd

205 1001 1001 /system/bin/rild

206 1019 1019 /system/bin/drmserver

207 1013 1005 /system/bin/mediaserver

208 1012 1012 /system/bin/installd

210 1017 1017 /system/bin/keystore /data/misc/keystore

212 1001 1001 /system/bin/bridgemgrd

213 1001 1001 /system/bin/qmuxd

Forensic Analysis on Android: A Practical Case! 34

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

214 1001 1000 /system/bin/netmgrd

215 9999 3004 /system/bin/sensors.qcom

218 0 1001 /system/bin/thermal-engine-hh

221 0 0 [msm_slim_qmi_cl]

222 0 0 [msm_qmi_rtx_q]

225 0 0 [irq/288-wcd9xxx]

230 0 0 zygote

235 0 0 [kauditd]

241 1000 1000 /system/bin/qseecomd

242 1023 1023 /system/bin/sdcard -u 1023 -g 1023 -l /data/media

/mnt/shell/emulated

243 1006 1006 /system/bin/mm-qcamera-daemon

244 1000 3004 /system/bin/time_daemon

261 2000 2000 /sbin/adbd --root_seclabel=u:r:su:s0

306 0 0 [msm_thermal:hot]

307 0 0 [msm_thermal:fre]

346 0 0 [mdss_fb0]

511 0 0 daemonsu:mount:master

541 0 0 [IPCRTR]

543 0 0 [ipc_rtr_smd_ipc]

574 0 0 daemonsu:master

772 1000 1000 system_server

912 1010 1010 /system/bin/wpa_supplicant -iwlan0 -Dnl80211 -

c/data/misc/wifi/wpa_supplicant.conf -I/system/etc/wifi/wpa_supplicant_overlay.conf -N

Forensic Analysis on Android: A Practical Case! 35

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

-ip2p0 -Dnl80211 -c/data/misc/wifi/p2p_supplicant.conf -

I/system/etc/wifi/p2p_supplicant_overlay.conf -puse_p2p_group_interface=1 -

e/data/misc/wifi/entropy.bin -g@android:wpa_wlan0

954 10022 10022 com.android.systemui

1093 10024 10024 com.google.android.googlequicksearchbox:interactor

1117 10056 10056 com.google.android.inputmethod.latin

1166 1027 1027 com.android.nfc

1192 1001 1001 com.redbend.vdmc

1213 1001 1001 com.android.phone

1261 10024 10024 com.google.android.googlequicksearchbox

1350 10009 10009 com.google.process.gapps

1720 10009 10009 com.google.android.gms

1742 10009 10009 com.google.android.gms.persistent

1858 0 0 /system/bin/mpdecision --no_sleep --avg_comp

2352 0 0 daemonsu:10087

4084 0 0 daemonsu:0

4086 0 0 daemonsu:0:4081

4300 0 0 tmp-mksh -

6311 10067 10067 com.google.android.apps.plus

7463 10024 10024 com.google.android.googlequicksearchbox:search

9547 0 0 daemonsu:10088

24285 10006 10006 android.process.media

24315 10065 10065 com.google.android.apps.photos

28743 10008 10008 com.google.android.apps.gcs

Forensic Analysis on Android: A Practical Case! 36

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

28796 10061 10061 com.google.android.apps.magazines

32564 0 0 [kworker/0:0H]

3447 0 0 [kworker/u:4]

5478 0 0 [kworker/0:1H]

7409 0 0 [kworker/0:0]

9669 0 0 [kworker/u:7]

10520 10014 10014 com.google.android.partnersetup

10861 0 0 [kworker/u:12]

12900 10035 10035

13558 1000 1000 com.android.settings

13964 0 0 [kworker/u:14]

14116 1014 1014 /system/bin/dhcpcd -aABDKL -f

/system/etc/dhcpcd/dhcpcd.conf -h android-173db3c715e97b6 wlan0

15087 10005 10005 com.android.defcontainer

15575 99028 99028 com.android.chrome:sandboxed_process7

15600 0 0 [kworker/0:1]

16038 2000 2000 /system/bin/sh -

16043 2000 2000 su -

16046 0 0 daemonsu:0:16043

16050 0 0 [kworker/0:3H]

16063 10087 10087 eu.chainfire.supersu

16185 0 0 tmp-mksh -

16354 0 0 [kworker/0:2]

16358 10091 10091 org.mozilla.firefox

Forensic Analysis on Android: A Practical Case! 37

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

16626 10004 10004 android.process.acore

16662 10017 10017 com.android.musicfx

16681 10018 10018 com.android.vending

16717 0 0 [kworker/0:3]

16740 10009 10009 com.google.android.gms:car

16763 10009 10009 com.google.android.gms.wearable

16787 10041 10041 com.google.android.apps.docs

16967 0 0 [kworker/u:0]

16968 0 0 [kworker/u:1]

17145 10093 10093 org.thoughtcrime.securesms

17372 0 0 [kworker/u:2]

17424 0 0 [kworker/0:2H]

17439 0 0 [kworker/u:3]

17686 0 0 insmod lime.ko path=TCP:4444 lime2.dump format=lime

17687 0 0 [migration/1]

17688 0 0 [kworker/1:0]

17689 0 0 [kworker/1:0H]

17690 0 0 [ksoftirqd/1]

17691 0 0 [kworker/1:1H]

17692 0 0 [kworker/1:2H]

6.5. Appendix E: information decrypted with ipython and base64
#!ipython!script!obtained!from!http://blog.dornea.nu/2014/07/07/disect;android;
apks;like;a;pro;static;code;analysis/!
!

Forensic Analysis on Android: A Practical Case! 38

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

from!Crypto.Cipher!import!Blowfish!
from!Crypto!import!Random!
from!struct!import!pack!
from!binascii!import!hexlify,!unhexlify!
!
#!Read!content!from!files!
blfs_key!=!!cat!/Users/angel/Android/Forensic/CS/CS_tmp/CreditSuisse;
SmsSecurity;v;20_08/res/raw/blfs.key!
!
#ciphertext_base64!=!!cat!
/Users/angel/Android/Forensic/CS/CS_tmp/CreditSuisse;SmsSecurity;v;
20_08/res/raw/config.cfg!
ciphertext_base64!=!!cat!tmp2.txt!#!we!change!this!file!with!the!information!to!
decrypt!
!
!
ciphertext_raw!=!ciphertext_base64[0].decode("base64")!
#ciphertext_raw!
#!Some!settings!
IV!=!"12345678"!
_KEY!=!blfs_key[0]!
ciphertext!=!ciphertext_raw!
!
#!As!seen!in!the!source!code:!!
#!!*!hex;encode!the!blfs!key!
#!!*!take!only!the!substring[0:50]!
_KEY!
KEY!=!hexlify(_KEY)[:50]!
KEY!
!
#!Do!the!decryption!
cipher!=!Blowfish.new(KEY,!Blowfish.MODE_CBC,!IV)!
message!=!cipher.decrypt(ciphertext)!
message!
!

Output of the ipython script and the base64 and the decoding of the encoded string in

the URL

Forensic Analysis on Android: A Practical Case! 39

!

Angel!Alonso;!Parrizas,!parrizas@gmail.com! ! !

