GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

A Fuzzing Approach to Credentials Discovery using Burp Intruder = 1

A Fuzzing Approach to Credentials Discovery
using Burp Intruder

GIAC (GPEN) Gold Certification

Author: Karl Dawson, karldawson1@gmail.com
Advisor: Joey Niem

Accepted: 11th February 2009

© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 2

Abstract

Password guessing against web-based applications typically relies on a pattern match of
what a 'successful' login response looks like. It may also consider HTML status codes
such as looking for a 200 OK’ server response. Armed with this information, the tester is
able to begin processing hundreds or thousands of server responses, looking for alerts
when the anticipated pattern is detected. But what if you don't know what a 'successful’
login response looks like for the application you're testing? Or the server always returns
a 200 OK’ response? Or similarly, what if the server responds with a failure for the
access you were after, but provides information about another form of access you hadn’t
known existed? This may not be a 'successful' login, but may still provide you with a
wealth of information, some of the failure information itself may also be of particular

interest.

Instead of basing success on the assumption of what a successful login keyword may be,
the approach described here is to treat the application credentials as just another input
to be tested. As such, it relies on ‘anomaly detection’ to discover not just 'successful’
logins, but potentially a host of other information that may otherwise go undiscovered.
To help this process further, this approach also takes into consideration the relatively
slow rate at which on-line credentials testing occurs, and shows how some knowledge of

human behavior is an integral part of speeding things up.

The tool used to conduct this testing is Burp Intruder, part of the Burp Suite ‘web

application vulnerability scanner’ package from PortSwigger (www.portswigger.net,

2009).

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 3

Table of Contents

Table Of CONENTSc.iiiii et 3
1. INrOAUCTION ...t 5
2. MethOdOIOGYccoicieiieiieee ettt ettt neas 6
3. Getting Burp Up and RUNNINGcccoiiiiiiiiecieeceecee et 7
4. The Human Element. ... 11
5. USErNamMeE DISCOVEIYccooiiiiieiieiieieeeeeeste ettt et se e ssaenseeseens 12
5.1, Username StruCtUIe...........cocoouiiiiniiiircc e 13
511, USING GIEP ceiiiieiieieeeteete ettt ettt et esaesaaebe e e saaeseennans 17
5.1.2. Default USernamescccocoeoiirinininiiineccceceeces 17

5.2. Username Payload Creationcccoooieienieciieieceeeeeeee e 18
5.3. Anomaly DeteCliONccveiieieiceceee e 19
6. Assessing ACCOUNt LOCKOUL...........ccoouieiiiieiieieeieeceeeee e 20
7. AdJUSTING TIMING ..oceiiiieiiciecee et a e e staenaeeneens 23
8. Dealing with HTTP Basic Authentication..............ccccccoevieviiiiniiiieeeee, 24
9. PasSWOrd DISCOVETYc.ooieiiiiiieieiieieeeese ettt sta s 25
9.1, Password STTUCLUIE..........cccoeviiiiiniieine e 26
9.2. Logging Server RESPONSESccovieieiiieiieieeieeieeeeete ettt 27
9.3, The Human Element..........c.ccociiiiiicceces e 29
9.4. Payload Generationc.oocevieiieiecieeeeeeeee e 30
9.41. Payload — Username or Password Filescccccoeeeiivieciinienieenn, 31
9.4.2. Payload — Runtime Filec.cccooieiiiiiiieieecee e 33
9.4.3. Payload — Brute FOrCe.........ccccoeviiiieiiieiiceeeeeseee e 33
9.4.4. Payload — Case Substitutionccooievieiiiienicecee e 34
9.4.5. Payload — Character Substitutionccecovieviiciciiieceee, 35
9.4.6. Payload — NUMDEIScccciiiiieiiieeeecee et 36
9.4.7. Payload — Custom Iterationsc.cccoeievieiinienieecee e 37

10, SAVING RESUIS ...t 38

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder = 4

10,1, SAVE — ATACK......c.ooiiiiiiec s 39
10.2. Save — Results Table.........ccccviiiiiniice e 40
10.3. Save — Server RESPONSESccvieeviieiieeeeeeeeee e 40
11, Passwords DISCOVEIred............coviririiininiiieineceecrcteteieee et 40
11.1. USEIMEIMES ...ttt 41
11.2. Using the Human Element.............oocoiiiiiiieeeeeee 41
11.3. Preparing INtruderc.cocooiiiiiieeeeeee e 41
11.4. Launching the Attack ..o 42
11.5. Investigating ANOMAIIESccoooveiieiicieeeeeeee e 43
12, CONCIUSION ..ottt 44
13, REFEIENCES ...ttt 45

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 5

1. Introduction

Usernames and passwords have been an Achilles heel of computing systems for
almost as long as we’ve had computers (Kessler, 1996). They’re used in almost all
aspects of daily life, including banking, shopping, recreation and work. Entire industries
have arisen with a range of products and services designed to exploit them, manage them,

support them, enhance them, and develop replacements to them.

Their simplicity is a strength and a weakness. They are easy to implement,
universally understood, and are ‘low tech’, in so much as no special hardware or software
is required for their use. But they are also subject to the limitations of human memory and
behavior, and while passwords are capable of considerable complexity, they rarely reach

such heights.

A variety of solutions have been developed to compensate for these weaknesses,
including hardware and software tokens and biometric recognition systems. These
solutions aim to provide an environment with multi factor authentication capabilities, but
their uptake has been relatively slow (Braue, 2005). This particularly affects the
consumer sector where the distribution, support and use of multiple authentication

mechanisms can be problematic (Felker, 2007).

Despite this, cracking passwords on web-based authentication systems may still be
unsuccessful if there isn’t a good understanding of the target system. The structure of
usernames and passwords, the presence of account lockout features, the type of backend
authentication system, and the speed of the target system can all impact on the end result.
Also, a username may not have privileges on the target system, but could still give access

to other systems that are as yet unknown to the tester.

To increase the chance of finding suitable credentials, a broader approach than just
brute force and dictionary attacks needs to be adopted (OWASP, 2009). Such an
approach should aim to discover as much as possible about the structure and types of
usernames in use, the sorts of access they provide, and the possible authentication
systems that support them. It should assess the presence of account lockout functionality

to ensure that all possible accounts are in fact tested. Just as important, it should discover

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder = 6

as much as possible about the structure of the passwords. Not just whether complexity is

used, but other factors relating to the people who created them.

The following sections start with an overview of the methodology used to guide
the testing process, as well as a general overview of the components of Burp that are used
to conduct the tests themselves. This is followed by an analysis of usernames; a step that
is often overlooked in the rush to crack a password. It is however a vital step in dealing
with the comparatively slow authentication mechanisms of on-line systems. Passwords
are then covered and, as with usernames, this includes an assessment of their structure,
and how knowledge of human behavior can be used to maximize the chances of guessing
the right ones. A brief real-world example will then be presented, showing the process

end to end.

Burp Intruder, part of the broader Burp Suite of tools (Portswigger, 2009), will be
used to conduct all testing. Burp Intruder is an HTML fuzzer (OWASP, 2009) well suited
to conducting tests such as this, as well as the more traditional brute force and dictionary
attacks. Discussion and examples will be provided throughout each section showing

which features of Burp Intruder may be of most benefit.

Since Burp is primarily a web-based assessment tool, the scope of this document
is limited to the testing of credentials against on-line systems. This typically includes web
applications and portals, but may also encompass web-enabled infrastructure devices
such as routers and switches, as well as Remote Terminal Units (RTUs) used in the
process control and SCADA arenas. The username and password discovery processes
though, should be applicable to other systems where credentials are required, such as

telnet, SSH, or FTP.

2. Methodology

The testing methodology described here fits within the ‘Testing For User
Enumeration (OWASP-AT-002)’ section of the OWASP Testing Guide (OWASP, 2009),
and is designed to be used on production systems as part of a formal penetration testing
exercise. To this end, a core aim of the processes described is to have a minimal impact

on the system being tested. This doesn’t mean that the process will be stealthy, but rather

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 7

that it’s designed to minimize the likelihood of there being any impact on those systems.
Credentials attacks do however present the possibility of causing account lockouts which
result in a denial of service for the organization under test. This should be avoided unless

it’s been defined in an agreed Rules of Engagement.

The very nature of this methodology involves the continual analysis and tuning of
the responses being returned. It’s therefore ideal for the early detection of performance

related problems or similar conditions that may impact on the target system.

The testing methodology is also designed for use against on-line systems, where
processing and resource limitations reduce the total number of attempts per second to
relatively low numbers when compared to off-line testing. As such, there’s a heavy focus
on research and analysis to ensure that the selected usernames and passwords have the

highest likelihood of success.

In the spirit of fuzzing though, this methodology is also looking for the strange
and unusual. It’s trying to look outside the box for the systems and access that weren’t

expected, and for the programming errors that allow them to be exploited.

3. Getting Burp Up and Running

Burp supports a wide range of parameter fuzzing across all aspects of an HTML
request, and provides an equally wide array of canned or user-supplied input to be sent to
those parameters. This section provides a quick overview of the groundwork that’s
needed to get the application to a point where attacks can be conducted, but which aren’t

often changed from that point onwards during the course of an attack.

This groundwork starts with the initial capture of a request with Burp Proxy,
progresses through the passing of the request over to Burp Intruder, and on to the
configuration of its various attack types. It finishes with the selection of the parameters
within the request that need fuzzing. Once this point is reached a range of different

attacks can then be carried out and repeated as required.

An overall process flow is also provided by way of Figure 1, which demonstrates a

typical end-to-end usage of Burp. This starts with the interception by Burp Proxy of an

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 8

HTML POST containing the credentials to be manipulated. The ‘Send to Intruder’ action
has then been selected so that the request can be forwarded to Burp Intruder. Once a
request has been forwarded to another part of the Burp tool suite, Burp Proxy is free to
continue intercepting, forwarding or dropping subsequent requests, as well as sending
them to other tools such as Burp Repeater or Burp Sequencer. A single request such as
the one shown can also be sent to multiple applications within the Burp tool suite so that

it can continue to be manipulated in other ways.

Once the request is in Burp Intruder, a variety of options and payload settings can

be configured, before launching the attack and reviewing the results.

Each portion of this end-to-end process flow will be described in more detail in

the following sections.

The specifics of how to use Burp Proxy’s features is out of scope and won’t be
covered. However, its use should be familiar to anyone who’s used similar proxy
applications such as Paros, Odysseus, Charles or Webscarab. The OWASP site provides

links to all of these tools and more.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder 9

burp intruder repeater window help

intruder

scanner

repeater | sequencer | decoder | comparer | comms | alerts

intercept [options | history.

request to http://10.0.70.139:80

e | . ||

send to spider Send intercepted
|daiahiact request to Intruder

POST /phpbb/login.php HTTP/1.1
Host: 10.0.70.139 0o o Jntr
User-Agent: Mozilla/5.0 0CLL; U; Linux i686; en-Us; ry Send to repeater 3 Ubuntu/8.04 (hardy) Firefox/3.0.9
Accept: text/htmi,application/xhtml+xml, application/x{ send to sequencer
Accept-Language: en-us,em;q=0.5 o e
Accept-Encoding: gzip, deflate

Accept-Charset: [SO-8859-1,u1f-8;q=0.7,%q=0.7 | Sendlo decoder

Keep-Alive: 300 change request method

Proxy-Connection: keep-alive change body encoding

Referer: http://10.0.70.139/phpbb/login. php?sid=a6| copy 44d30ab

Cookie: phpbb2mysql_data=a%3A2%3 A%7Bs%3A11%3) [A0%3 A%2 2%2 2%3 Bs%3 AG%3 A%2 2 userid’
hpbl Isid=a65072¢80f; 144¢_Ccopy URL

Content-Type: application/x-www-form-uriencacied | dnms intarant ramacte b
Content-Length: 50 burp intruder repeater window help

(‘target | proxy | spider | scanner | intruder | repeater | sequencer | decoder | comparer | comms | alents
positions | payioads | options

attack type [sniper

Select the required

POST /phpbb/login.php HTTP/1.1
parameters for fuzzing 139

Host: 10.0.70.

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.9) Gecko/2009042113 Ubuntu/8.04 (hardy) Firefox/3.0.9
Accept: text/html, appli htmi-+ xml, appli 9,%/%a=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: 150-8859-1,tf-8;0=0.7,7=0.7

Keep-Alive: 200

Proxy-Connection: keep-alive

Referer: http://10.0.70.139/phpbb/I sid=a65 d44c30ab

Cookie:

phpbb2mysal_data=

§a%3A2%3A%7BS%3AL1%3A%2. i Quserid 1%31

Content-Type: application/x-www-form-urlencoded
Content-Length: 50

burp intruder repeater window! ¥ 0g+in§

quencer | decoder | comparer | comms.

options

arep Set any required options
match | exract | payloads

[[] search responses for these expressions

jerror | @ simple pattern match
exception
lillegal —| O regex
invalid
fail I | —
stk I
Sanaes
directory .
<] [delete | [clear |

[] case sensitive

burp intruder repeater window help

exclude HTTP headers

repeater | sequencer | decoder | comparer | comms | alerts

number of payloads: 8,895
number of requests: 8,895

Configure the payloads
to be sent to the selected
parameters

preset list

[_add | [saNsRulez |

add from list v
add from list -
ffuzzing - quick

ffuzzing - full

o el
short words

[Gonot mody]

a-2

la-z ~

intruder

repeater | sequencer

Select ‘Intruder / start’ to

begin the attack
attack type [sniper
POST /phpbb/login.php HTTP/1.1
Host: 10.0.70.139
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.9) Gecko/20C
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/%,q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: IS0-8859-1,utf-8,0=0.7,%,9=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
attack atus | error redir. tir length | error |+
results table
server responses 5
17 v
7 v i
17 v Fi
Analyze the results, and 7 ZEES] 75| O
" 7 v 7!
repeat steps as required e d 7
71 W[O 75| O
17 43
: . Z-
17 vl 7!
7 v 7
17 v i
17 v Fi
71 ¥ [O 75] O
v i
v i
W[O 75] O
v ri

Figure 1 - Burp Intruder process overview

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 10

As mentioned above, Burp Intruder uses attack types to define how payloads are
delivered to the parameters needing to be fuzzed, and are selectable from the Positions
tab, as shown in Figure 2. For the purpose of discovering credentials, the sniper attack

type will be used in the majority of examples.

burp infruder repeater window help
proxy spider [intruder | repeater sequencer | decoder | comparer | comms alerts

target | positions | payloads | options

attack type |sniper v

F— sniper

EO‘:‘TIJrJ_?t\IJh battering ram 2448
AREERL MG,y fork
applicationy clear§
Refersthttp L1UStEr bomb

Accept-Languagesen-au "
Content-Type: applicationfewww-form-urlencoded auto§

Proxy-Connection: Keep-Alive refresh
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; NET CLR 1.1.4322; NET CLR 2.0.50727; .NET CLR 3.0.04506.30)

Pragma: no-cache

Host: 10.0.70.139

Cookie:

phpbh2mysql_data=a%3A2%3A%7B5%3A11%3A%22autologinid%22%3Bs% 3A0%3A% 22%22%3B5 % 3A6%3A% 22userid % 22%3Bi% 3A-1%3B%7D,
phpbhZmysql_sid=edaf! 60fea3d488d645373f2ch3991d8

CorenkLgagie6d Display of the attack types,

usemarne=§test§ &pagsword=passwordautologin=on&redirect=&login=Log+in and the parameter being attacked

clear

1 positions length: 851

Figure 2 - Burp Intruder attack types

It’s worth understanding how each of them work though, and how they could be

applied to specific testing scenarios. The attack types are as follows (Portswigger, 2009):

* Sniper — sends a single payload to each of the selected parameters; i.e. each

parameter is sequentially tested with the same set of variables

* Battering ram — sends a single payload to all of the selected parameters at once;
i.e. all parameters will be passed the first variable, followed by all parameters

being passed the second variable, and so on until the payload is completed

* Pitchfork — sends a specific payload to each of the selected parameters; i.e. all
parameters need to be passed its own payload, and the variables of each payload

are passed to its designated parameter in sequence

* Cluster bomb — starts with a specific payload to each parameter, and when all
variables have been tested, will start testing with the payload from the next

variable, such that all parameters get tested with all variables

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder 11

By default, Burp Intruder will attempt to discover all parameters suitable for
fuzzing within the request and mark them with the ‘§’ symbol. At this stage the process is
only concerned with the discovery and manipulation of usernames and passwords, so all
of the automatically highlighted parameters can be cleared by selecting them, and
clicking the ‘clear §” button, as shown in Figure 3. The required parameters can then be

selected by using the ‘add §’ button (or by not deselecting it in the first step).

burp |intruder | repeater window help
ler ["intruder | repeater | sequencer | decoder | comparer | comms | alerts
q e |options
send request to repeater
attack type |sniper i
add§
clear §
auto §
refresh
63 A%2 2 userid®2 2%3 Bi%3 A- 1%3B%7D;
username=S§test§&password=test&redirect=_&login=Log+in
Use the ‘clear’ button to clear all of Burp's
automatically discovered parameters
Fuzzing will occur on all parameters that are
enclosed in these symbols clear
1 positions length: 759

Figure 3 - Request in Intruder ready for manipulation

At this point a request has been loaded and portions of it have been selected for
fuzzing. Burp Intruder is now up and running, and ready to start sending manipulated

data.

The following sections will deal with the processes associated with selecting
usernames and passwords to send to the manipulated parameters, as well as how those

usernames and passwords can most effectively be delivered to those parameters.

4. The Human Element
Before moving into the technical aspects, it’s worth touching on the significant
role that human aspects can contribute to successful credential exploitation. While society

continues to use computer systems, and continue to need humans to access those

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 12

computer systems, there will continue to be weak passwords. The methodology discussed
here relies on it and, based on the results of recently publicized attacks, will continue to

be applicable for some time to come.

As an example, a phishing attack conducted against MySpace users in 2006
demonstrates this, providing a useful insight into the structure of passwords associated
with more than 34,000 accounts. A study of this attack (Schneier, 2006) shows that the
top twenty passwords included password, passwordl, abc123, 123abc, qwertyl, and
123456. It also showed that numbers were used in well over half the passwords (most
often at the end of the password), and that 65% of the passwords contained eight

characters or less.

This example shows that despite the trillions of combinations available with an
eight character alphanumeric password, only a small proportion of them is actually used.
Of that small proportion, predictable patterns such as dictionary words still play a notable

part.

This human element is being stressed at this point because it will be a recurring

theme, and an essential tool, throughout the remainder of the sections.

5. Username Discovery

Password cracking against an online system can be slow. Where an offline crack
using tools such as Hydra or John the Ripper may provide hundreds of thousands of tries
per second or more, a similar online crack may be in the order of tens of tries per second
or less. This can be due to a number of factors including available network bandwidth,
the speed or utilization of the target server, and the need to accommodate password

lockouts (TechRepublic, 2008).

With so few attempts per second occurring, knowing the correct format of
usernames, and preferably the actual usernames themselves, can significantly reduce the

time taken to gain a successful result.

A reverse brute force attack (webappsec.org, 2005) can be used as part of this

discovery process. Where a typical brute force attack tries many passwords against each

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 13

username, a reverse attack tries a single password against a large username list. This list
can be compiled from a range of sources including corporate phone directories, e-mail
distribution lists, Google searches, social engineering, dumpster diving or usernames

found on other compromised systems.

Using a reverse brute force attack will also ensure that accounts aren’t locked out,
while still allowing the tester to check for any unusual responses that may be returned.
The reverse brute force approach is covered in more detail in Section 6, Assessing

Account Lockout.

While this section is concerned with the discovery of usernames, those usernames
still need to be paired with a password. That password should be chosen for maximum
effect, and so should be one that is suspected of being associated with the site or
organization under test. A common password like ‘password’ could be used, but only if
it’s first been determined that the passwords for that site don’t require complexity such as
the inclusion of upper case or numbers. Using the MySpace example, only 0.22% of the
34,000 compromised accounts were ‘passwordl’, but that still gives access to almost 75
accounts. Finding usernames is good, but gaining some form of access or unusual
response with a valid username and password combination on the first attempt is even
better. Putting together a suitable password for use during this stage of the process is

discussed further in Section 9, Password Discovery.

The timing of the username discovery phase, as well as any subsequent password
testing, can also assist in gaining access to the target system by exploiting human
behavior and common corporate practices (Hitachi ID Systems, 2009). For example, the
likelihood of passwords being changed on a Monday, combined with a process that resets
passwords to a standard default value, may increase the likelihood of a successful

compromise.

5.1. Username Structure
Knowing the required structure of a username allows an existing list of names to
be added to by including similar or related lists of names that have been formatted in the

same way. This might be the first name followed by the last name, the first initial

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 14

followed by the last name, or either of those but in e-mail address format. A quick way of
finding the required structure can be to have a look at the web page source code. Some
sites, such as the one shown in Figure 4, specifically test to make sure that the username

is only submitted as an e-mail address.

Please enter your log in details Need to register? | Forgotten your password?

* Indicates a required field

Your email address *

Your password *

[J save my log in details 8n my computer

d which you do not use on
if you wish'to

For maximum security, we rec d you have a p:
other websites. Please follow the “change your login details” link on \
replace your existing password.

function Validate (form)
t
//Check that the email entry is valid
if('1sValid(cmailexp,form.emalil,crue, "Invalid c-mail address"))

Source code taken from a return false:

browser's ‘view source' page //Check the password Text box for an entxy

if (!1sValid(passwordexp, form.pwd,true, "Invalid Password. Password must be between &
and 12 characters."))
return false;

return true;

Figure 4 — Credentials source code

Based on this, the system can be tested to see if it returns different results for a
correctly formatted valid, as opposed to an invalid, username (OWASP, 2009). The
screen captures in Figure 5 show the results of some quick tests. The response on the left
shows that the e-mail address (username) isn’t on record, while the response on the right

shows that the address is valid, but the password is incorrect.

Sorry Sorry
We have no record of this email address JPlease register here or email us at for This password is incorrect. fyou've forgotten your password, enter your email address and we'll

aggistance

sand you a new passwgidfimediately

Please enter your log in details

Need to register? | Forgotten your password?

* Indicates a required field

Your email address * [karldawson1@gmail.com

Your password * [

I Save my log in details on my computer

Please enter your log in details Need to register? | Forgotten your password?

* Indicates a required field

Your email address * [karl@karldawson.com au

Your password * [

I~ Save my log in details on my computer

© SANS Institute 2009,

B Logn |
For maximum security, we recommend you have a password which you do not use on For maximum security, we recommend you have a password which you do not use on
other websites. Please follow the "change your login details” link on if you wish to other websites. Please follow the “"change your login details” link on if you wish to

replace your existing password replace your existing password

Figure 5 - Valid and invalid credentials: very similar responses

The difference between the responses in this example is subtle and will be affected
by the length of the e-mail address, since it’s returned as part of the server response. This
will however still be detectable when Burp Intruder’s results are viewed. Some systems

will return noticeably different web pages as shown in Figure 6, making the identification

Karl Dawson, karldawsonl@gmail.com
Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder 15

of valid and invalid usernames that much easier.

Organisation thisisalsoatest Organisation test
User Identification: test User Identification: test
Password: Password:

Help
Login not permitted. You don't belong
to il o e sca—

Help
1 System Error - Cannot Validate User.

X

/ -
Please contact s Msige Bl W

cocnm W 7o § e e el o e

\ Noticably different responses. This also results /

in noticably difference response lengths when
viewed in Burp Intruder

Figure 6 — Valid and invalid credentials: noticeably different responses

Irrespective of the differences between valid or invalid credentials, Burp Intruder
can be used to distinguish between then as shown in Figure 7. This applies to username
formats besides just e-mail addresses, since it’s looking for how the server responds to

the credentials, no just the credentials themselves.

To aid in spotting the differences between the similar logins shown in Figure 5,
Burp Intruder’s grep functionality can be used to look for possible keywords, such as
‘error’, ‘invalid’, ‘access’, and ‘incorrect’. The use of the grep function is described later

in this section.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 16

Sometimes you just get lucky and guess a Using the ‘grep’ function to analyse
valid username and password combination, responses for particular words or phrases
but don't rely on it.
[@imuderaitacks 74 I
attack save view
request payload status | error | redirect followed twmreout.]‘ Jengihili—rjnr invalid | access |ncorre€tj
1jtest@test.com 302 L L 621 Tt A valid username with an invalid

2|karl@karldawson.com.au 200] __13271D fel——hA—
3|karldawson1 @gmail.com 200 | O b I] 7 139N [v] |

4linvalid@emailaddress.com 200 | & = | (13201 7]
5lhogus@emailaddress.com.au|200 | lal | 132021 [v] |

i password provides a different response
to an invalid username

NREEEE

v
v
=
|
=
v

6 &karl@karldawson.com.au 200 | i] A 12951) [v]] -
7ltest 200 | 1 13181) [¥] =
Invalid usernames all
provide a similar response
The inclusion of an ‘& symbol in the username This website only accepts e-mail addresses as
has probably been interpreted as part of the HTML valid and so the to an
login string, resulting in a null username, and incorrectly structured username is different to
hence a notably different response length either a valid or an invalid e-mail username.

finished |

Figure 7 - Response differences

From the results of the seven e-mail addresses (payloads) shown in Figure 7,

we’re able to identify the following:

e avalid login which includes a ‘302 redirect’ (IETF. Fielding, R et al, 1999) and

an obviously different response length

* avalid username with an invalid password, with a response length approximately
70 bytes more than that of an invalid username. The grep function has also

detected the keyword ‘incorrect’ in the server response
* 3 incorrect usernames, all with a response length of approximately 13,200 bytes

* an incorrectly formatted username and password combination through the
submission of an ‘&’ symbol, which has resulted in a response length

approximately 310 bytes less than a valid username

* aslightly different response for an incorrectly formatted username (i.e. not in e-

mail address format)

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 17

5.1.1. Using grep

Burp Intruder’s grep function allows keyword search strings to be added manually
or loaded from a file, and allows those search strings to be manipulated and leveraged in
various ways. For the credentials discovery requirements shown here though, simple

pattern matching is sufficient.

Figure 8 shows the customized list of search terms used in the previous example.
The default list provided is comprehensive, however the specific responses generated by
the target system should be analyzed and keywords added or removed as required.
target | positions | payloads options

grep

match extract | payloads

veaaarch responses for these expressions

J error \ 4 ' ® simple pattern match
illegal \ A
invalid | ! regex
access | |
\ incorrect J = 2 ﬁ Simple pattern matching has been used in this example,
logout / | aqd log.ou however regular expression matching can also be used.
\ 4
load ... paste
delete clear

case sensitive

v| exclude HTTP headers

redirects
Search terms can be manually added,

v/ follow 3¢ redirects (onsite only) or loaded from a file as required

v| process cookies in redirects

Figure 8 — Burp Intruder's customizable grep function

5.1.2. Default Usernames

A number of default usernames are included with a range of hardware and
software vendor applications (CIRT, 2008), and time and effort can be saved by including
these in a username list. With some of these applications the default usernames can’t be
changed and it’s up to the administrators to either use strong passwords, or disable the
access that the accounts provide. This of course doesn’t always occur, and since these
accounts are often linked with privileged access, their use should not be overlooked.

There are a number of websites dedicated to the collection of details associated with these

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

18

accounts, including the manufacturer, product, version, username, and in some instances

the password (anameless.com, 2003). From a username perspective, some of the most

common include: admin, Administrator, adm, root, guest, operator, system, security,

manager, debug and user (OWASP, 2009)

5.2. Username Payload Creation

Burp Intruder comes with its own list of default usernames as shown in Figure 9

which is accessible via the Payloads tab, and then by selecting ‘usernames’ from the ‘add

from list” drop-down list. If a small list of custom usernames has been compiled, these

can be manually added to the default list or used independently each time they’re

required.

payload importation and generation capabilities are provided. Figure 10 shows an

burp intruder repeater window help

target ' proxy ' spider [scanner [intruder ' repeater | sequencer | decoder [comparer [comms ' alerts

target ’ positions | payloads ' options \

number of payloads: 8,895
number of requests: 8,895

payload set [1 || [presetlist -
APPS =
AQDEMO 1=
AQUSER
ARCHIVIST
AUTOLOG1
Administrator l add ‘SAJ ISRulez
|Anonymous — —
An add from list ... v
‘BA\C/KUP T — Custom values can be entered,
BATCH BCCMRomplst = or default values can be selected
BATCHI || fuzZing—quickc = from predefined lists. Or, a combination
BATCID o [[uzzing - full —~ of both can be used.
usernames
passwords
short words
case do not modify v a-z
A-Z =
match regex | |
replace with | |
[replace all

Figure 9 - Creating a manual list of usernames

The manual addition of usernames isn’t practical for larger lists, so a suite of

example of how this is performed, and Section 9.4 discusses these capabilities in more

detail.

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009,

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

19

target | proxy | spider | scanner [‘intruder | repeater | sequencer | decoder | comparer | options | alerts |

target | positions [payloads | options |

number of payloads: 0
number of requests: 0

Custom payloads can be loaded

into Burp as required.

ID

|| =] (=] (=] e8]

payloadset [1 [+ [preset list [+]
\
\
“Look In: |[jT06_Is
Do
~ 0 custom_userlié‘.txt
_jaddfromlist .,
/ <
(
defete clear

case

[da not oy]

S

File Name:

{ [custom userlist.txt

match regex |

Files of Iype:\\“ }AI_I_FiIes

=]

replace with |

[replace all

o

Figure 10 - Customized payload import

5.3. Anomaly Detection

So far Burp Intruder’s been used to conduct a reverse brute force test against a

planned and customized list of usernames. During the test, anomalies may have been

detected such as usernames that respond differently to what was expected for a valid or

an invalid account, as shown in Figure 11.

These are the responses we're expecting
to see for a valid login

\

Why is the length of this one different?
It may be a glitch or it may not; either way
it should be investigated further.

>
s
attack save wviel
request | payload —status | error[redir.. [time..[Ie error [exce..[illegal[invalid] _fail | stack [access[dire..[file [not f...Junkn..] uid=| c
194 500 L O] | O 1616 N b | OO | O | A O | O | O | O |00 | [s
281 nds 500 O [T 1616 W] N | O | D00 | O | OO QD [H[M[O[] S
726k = 500 o | [wl 1616 (vl [Jod | O LA | O | O | O[O O [Q[M[H[]Q
1078w 500 wl | [wl 1616 W WM | 7] O | O | O O[O0 [0 [d][d
1244 Bmwmny 500 ~HE"EE 1615 o™ %/ el [(o [[[(o [[[[l [[l | [| G | [l | Il
13560 a"W 200 O [811 WD [| O [[O[M[O[O o [[[[l
1 200 O | b | O] | o | el | Gl | D | Gl | D4 | [ef | (el [[[[[[w [(W
2 200 FHEPEE"] 32200 | i | fel | Dol | Dg | Gl | Of | [of [[[[[[[[[[
Spmon 200 O[O 15322 o | G | G | b | G | Gl | Gl | G | Gl | Gl | [l | [
4 200 Ole|d 15322 o | | | b | G | Gl | Gl | el | Gl | D | [l |
5 200 Ole|d 15322 | W | | b | | Gd | G | e | G | G | Gl |
6 e B m 200 W | O [Gl 15322 e[G | Gl | Gl | Goff | Gl [Gl [G [Gl | Gl | Gl | [l | [l
7 200 O [G [15322l W W [0 0 [& O O(d[d/Olg[d
8 200 gle [15322 (W b | [l | Gl [(gl | Gl [Gl | Gl | Gl [(ol | Gl [(] | Gl
9. ~wm 200 Ol [Q4 5322| Wl W Od [[l | Gol [D | Gl [Gl | G [Gol [(Gl | Gl [(] | Gl
200 L v 5322 [v] 4] L ™ 4] ™ v sl L L Ll Ll LJ
- 200 L v 5322| [v] 4] L | (4 Ll (4 Il Ll L LJ L L
= 200 [« s Wil [O|O0[M[O[EM | Old[lOo[ldld
13 p 200 L 2 15322[[v] vl O] ™ v ™ v] || ™ || ™ O]
140 L] 200 Ll v 15322| [v] vl Ol | v | v [l] | Ll [l Ll
15 el & 200 O [15322 [W[{ (G [(6l [o | Gl | G2 | Gl | Gl | Gl | Gl | [l | [l
16 ik 200 EEEZEE 15322 [O () [(6 [(Gl [o | Gl | G2 | Gl | Gl | Gl | Gl | [l | [l
17 g 200 EEEZEE 15322| [O () { (Gl [(G [o | (G |) | Gl | Gl | Gl | G | (] | [l
18 pmem 200 EEEZEER 15322] [l () [[[(6l [(o | (Gl | (2] | G | o | Gl | G | (] | [l
19 200 EEEZEER 15322] Dallinbd | Gol [Gal [g | Gl | Dol | (o [[l [Gl [Gl | (il | [l
20 200 ol | 0 | W[15322 Gl T\ [Gl | Gl | Dol | (ol [Dl [Gl [ol | ool | fuul | [l [[l
215 200 mEEZEEE 15322 W | N [H [[[k [O[@[O[E[d
22 200 ol | o [ol § 15322 d [TN Gl [i | Gl [(ol [[l [[l ~HE~HE
23 py 200 bl | @ | [l 15322 o [fwl [N [(o | el | (2 | [| fwl O[O [Q-
- 2.00.] [Ll)] 1 [l 1 [ael 1 [[[v | [
< i ’|
finished [NS

Figure 11 — Username anomalies

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009,

Nese are the responses we're expecting

to see for an invalid attempt

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 20

These anomalies may be uncovered during testing for usernames or for passwords.
They may be glitches, or they may show the presence of accounts that provide access to
different systems, or that require another round of authentication before proceeding
further. Whatever the reason, these anomalies need to be targeted for further
investigation. If the username and password testing methodology was to rely solely on

the presence of keywords, it’s likely that these anomalies would go undiscovered.

6. Assessing Account Lockout

At this point a refined list of usernames has been created, and the process of
testing them against a password payload can begin. This could be done by just loading in
the list of usernames as one payload, a list of passwords as a second payload, and

selecting the ‘cluster bomb’ attack type to test all passwords against all usernames.

There are, however, a number of drawbacks to this, one of the most notable being
the high likelihood that account retry limits will be exceeded, locking them out
permanently or at least for some time. Locking out the accounts is of no benefit from a
credentials discovery perspective since there’ll soon be nothing left to test, but more
importantly it’ll effectively conduct a Denial of Service (DoS) attack against the target
environment. This can be compounded further if, for example, the accounts being
targeted are Internet-facing and are managed within a central directory service, and that
directory service is also used to authenticate the businesses’ internal users. Unless the
conduct of DoS attacks has been documented in a Rules of Engagement, then testing

methods that prevent it from occurring are required.

As discussed previously, Burp Intruder can be used to conduct a reverse brute
force attack as part of the username discovery process. A similar testing method can also
be used to test for the presence of account lockout timers, and to test for how long those

timers may be.

Once these timeout values are determined, the reverse brute force attack
methodology can continue to be used against all accounts, while preventing those

accounts from being locked out.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

This process is diagrammatically represented in Figure 12.

21

Username Response Password attempts
acc0001 100 password
acc0002 102 E password
acc0003 98 6 password passwordl
acc0004 1520 password passwordl
acc0005 87 password passwordl abcl23
acc0006 105 password passwordl abcl23
acc0007 1,378 password password qwertyl
acc0008 1,456 password passwordl qwertyl
acc0008 110 password passwordl f
acc0010 109 password passwordl
password K
password \
password
password \
password \
password
¥ | password \
c password \ “
©| password \ The number of password tries are increased
‘é‘ password \ until the lockout limit ig reached; in this
5| password \ case, 3 tries.
0| password \
password While two passwords could therefore be
password tested at a time for each account, this
password \ gives no margin of error for a user who
password happens to be trying to access their
password account at the same time.
password
pageword In order to ensure a minimal impact on the
password business, a single password is tried
acc2990 105 password per account.
accz2991 109 password
acc2952 146 password
acc2993 124 password
acc29%4 98 password
accz2995 93 v password
acc299%6 122 8 password
acc2997 103 5| password
acc2998 97 £| password
acc2999 92 £ password
acc3000 105 | password
X R

\

\

\
3,000 accounts:
10 tries per second = 5 minutes to

test all accounts with a password
of 'password’

Figure 12 — Assessing account lockout

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009,

This example allows a 5 minute window before
resetting the 'lockout’ counter back to zero.

With 3,000 accounts and 10 accounts per second,
this allows us to try a single password against all
accounts within the 5 minute window. When we
start again with the next password, the account
'lockout’ counter will be back to zero.

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 22

The example in Figure 12 is based on a custom list of 3,000 usernames, and makes
the assumption that account lockout details haven’t been provided to the tester. Further, it

assumes that a ‘test’ account to test the account lockouts also hasn’t been provided.

Testing begins by progressively increasing the number of password attempts on
different accounts until the account lockout threshold is reached. For this example that
threshold is reached after three tries, which then results in a different response being
generated by the target system. This can be seen by the increased response time for a

locked out account transaction.

Rather than locking out an account completely, often systems disable the account
for a few minutes at a time. For this example the account lockout duration was found to

be five minutes.

With 3,000 accounts and a target server that’s processing login requests at
approximately 10 per second, this means that by processing a single login request per
account, the end of the username list will be reached just as the account retry timer is
being reset on the first accounts tested. In this way Burp Intruder can be used to test
entire username and password lists without locking out the account, and without creating

a DoS on the target system.

Results will vary depending on the size of the username list, the account lockout
duration and the speed at which the target system processes requests. A consequence of
this may be a delay between the completion of testing one password against all
usernames, and the start of testing with the next one. With an attack using large username
and password lists, that have been researched and tailored for the system under test,
there’s a good chance that the first pass will provide at least some sort of result. The
down-time can then be spent on further investigation rather than sitting and waiting for

timers to expire.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 23

In this example more than 1,200
accounts were tested, with only
two successful logins.

status | error|redir.. time...| length | error|exce..|illegal|invalid| fail | stack |access|c
00 1616/ [v!

-

Lot

\

This however is still one more than
was required to access the system.

Intruder allows the attack results
to be sorted per column for quick
identification of anomalies.

RIRIRIRIRRRIRIERIRRRESRSR R RS SRR
RIRIIRIRRIRIRRIRSRRRR SRR SRR R RS

\‘\\\'\‘\\\‘\‘\\\\‘{‘

RIRIRISIRIRISIS RSSO ISR
RIRIIRNIRRIRISSRISRSR SRR SIS SRS SRR

1

18
19
20

< _— >
finished

Figure 13 - Sorted results
As shown in Figure 13, even only two compromised accounts out of a username
list of more than 1,200 still provides two points of deeper access into the system. Even if
those accounts don’t provide the desired access, it’s possible that further investigation
into the information and systems they do contain may yield previously unknown

information on other accounts, or other areas of the application.

7. Adjusting Timing

Rather than waiting by the clock before kicking off the next round of password
attempts, Burp Intruder’s timing settings can be configured to tune the way in which
requests are sent to the server. The timing settings are available under the Options tab as

shown in Figure 14.

The main setting to note here is the ‘throttle’ which can be set as either a fixed or
variable delay, and is measured in milliseconds. In the example shown, a fixed delay of
500ms between requests has been defined, and has been used in conjunction with a
‘concurrent request’ setting of one. The concurrent request setting defines how many

parallel requests are sent to the server before waiting for a response.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 24

burp intruder repeater window help
target | proxy | spider [scanner [intruder | repeater [sequencer | decoder | comparer | comms | alerts

|| target payioads | options

The concurrent threads setting (default of 5) can be used
to reduce the load on the target server, but may also increase

Uming the time taken to complete an attack.
use concurrent request threads |1
throttle ® fixed

variable: sta 0 ep (30000

AL GE | SEl oue Here a fixed delay between requests of 500ms has been
defined. If an element of randomness is required, a variable
start immediately range could be used instead.
®in (1 minutes

paused
results
requests ® store in temp dir

store in memory

don't store
responses ® store in temp dir

-
ctara in maman §

Figure 14 — Burp Intruder timing settings
Testing for account lockouts may have shown that no such restrictions are in
place. If this is the case then Burp Intruder’s timing settings, in conjunction with an eye
on the results display, can be adjusted to maximize the rate at which passwords are tried
without exceeding bandwidth or server processing capabilities. A variable throttle setting
could then be used to reduce the likelihood of the requests looking exactly like they are;

part of an automated attack.

8. Dealing with HTTP Basic Authentication

All of the attack methods so far have assumed that HTTP form-based
authentication is used on the target system. With form-based authentication, Burp
Intruder is able to intercept the username and password fields via Burp Proxy, making the
manipulation of them straightforward. With basic authentication however, the credentials
— in the form ‘username:password’ — are Base-64 encoded prior to being received by the
proxy, meaning that the credentials appear as an encoded stream of text rather than
distinct usernames and passwords. As such, the direct manipulation of the usernames and

passwords at first appears problematic.

Figure 15 shows a way around this, through the use of the ‘Base-64 encode’

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

25

functionality available via the Options tab. Using this it’s possible to mark the encoded

text under the Positions tab for fuzzing, and supply it a payload as per the usual method.

A caveat however is that both the username and password need to be passed as part of the

payload, and so a standard password file isn’t enough. Burp Intruder provides a

workaround for this, by allowing a prefix or suffix to be added to the password as shown

in Figure 15.

An alternative is to use the array of payload generation techniques to create

payloads that include the ‘username:’ portion of the credentials as part of the password.

Burp Intruder’s payload generation capabilities are described in section 9.4, Payload

Generation.

Network

Status

CATEGORIES: »Info« System

OpenWrt, Adm

.
im NPanaala
Authentication Required

burp intruder

Host Name: sy
Uptime: 2:22

Load: 0.10, 0.11, 0.05
Version: WHITE RUSSIAN (0.9)

(target | spide

help

er | intruder | repeater | sequencer | decoder | comparer

comms | alerts

target | posftions | payioad

options |

|_IWIREL

attack type

sniper

WHITE RUSSTAN (0.9) =-----=--=nns-mmsooomeNooooe
* 20z Vodka Mix the Vodka and Kahlua together
* 1 0z Kahlua over ice, then float the cream or
* 17202 crean milk on the top

HTTP ‘Basic Authentication’ Base-64 encodes the
username and password, meaning that the resultant
encoded text can't be fuzzed in the usual way.

Aprefix - in this case the username - can be added
so that the authentication credentials are passed
correctly in the form ‘username:password’

To overcome this, there is the option to Base-64
encode any fuzzed parameter. This option is selectable
under the Payloads tab.

\do not encode

) OkL-encode these characters:

add prefix:
add suffix

Figure 15 - Dealing with HTTP basic authentication

9. Password Discovery

1.9.0.11)

n-US; rv:1.9.0.
ation/xmi;ci=0.

0/2009060309 Ubuntu/8.04 (hardy) Firefox/3

The tailoring of passwords to a specific system is critical for most on-line

011

applications due to speed and resource constraints. During the username discovery phase,

research was carried out to try and determine if usernames had to conform to a particular

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009,

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 26

structure, such as being based on an e-mail address. Tests were then conducted to see if
the responses from the target system disclosed which of the correctly structured

usernames might be valid and which might be invalid.

9.1. Password Structure
These same processes apply to the discovery of passwords. The structure of a
valid password needs to be determined as thoroughly as possible so that the resultant
password list can be tested against all usernames in a realistic timeframe. An example of
the need for this is demonstrated in section 9.4.3, Payload — Brute Force. This shows that
it would take more than 70 days to cycle through all of the ~62,000,000 permutations and
combinations for an alpha-numeric password only five characters long. Clearly, being

able to narrow down the number of combinations that are needed is a vital consideration.

The other aspect, being able to determine a valid as opposed to an invalid
password, is of course the ‘end game’ of this whole exercise, and not an intermediary step

like it was with the usernames.

Account Information

UserID: | *

Password: [x

New users sign up here! | Confirm Password: | x

Reminder phrase: 5

Figure 16 - New user password information
Determining password structure may be as easy as having the site tell you what
the requirements are, as shown in Figure 16. This of course may only be applicable to
sites that allow users to create their own accounts, and even then it may only show what
the minimum requirements are. While this doesn’t let us know what the upper limits are it
may still be helpful. Knowing that a password only needs to be six characters long means

that there will no doubt be people who follow the path of least resistance and create a

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 27

password to meet that minimum requirement.

Another possibility is to gain access to a password policy document that explains
details such as minimum length, expiry periods and complexity. This however is usually

only available during ‘white-box’ testing, and so isn’t considered a viable option here.

Researching the specific habits of an organization can also be of use. Many
organizations set user’s passwords to a common default setting for new accounts, or reset
them to a default setting if a password’s forgotten. Also, not all organizations enforce the
changing of a password at next login, so there’s always a chance that there will be active
accounts with the default password still enabled. If not, ‘password’ or ‘123456’ are
always good starts, particularly with a large user-base. Geographic, organizational,
cultural, sporting and demographic influences, as well as political and socioeconomic

factors should also be taken into consideration (Brown, 2006).

In addition, techniques such as crawling the company’s website and the websites
of targeted employees, as well as searching social networking sites such as FaceBook,
LinkedIn and Twitter may provide keywords that can be used as the basis of a targeted

attack.

9.2. Logging Server Responses
Burp supports the ability to collect this sort of information, as well as required
password lengths and potential complexity requirements, by logging all server responses
as shown in Figure 17. There’s the ability to log the requests and/or responses from each
of its tools individually, or as an aggregate as shown in the example, and is selectable
under the ‘Options’ tab. If the option of logging all responses to a single file is selected,
the size of the file should be monitored. It can quickly grow to be many megabytes, and

can become unwieldy to work with.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder 28

burp intruder repeater window help

[target | proxy | spider | scanner | intruder | repeater | sequencer | decoder | comparer [options | alerts

domain name resolution [300 - N
failed domain name resolution o _
T [= o] o—
Save In: |[] LogFiles v| |H| |5 |=3 E.E.IS_
|) — .
logging E] Intruder_Responses.txt
all tools: [[Irequests [responses
I
Provy [[]requests [_lresponses
spider: [[Jrequests []responses
scanner: [] requests | responses
intruder: []requests [] responses =g
. = File Name: Burp_all_responses.txt] |
repeater [Jrequests []responses - -
Files of Type: |All Files |~
. save || Cancel
|_| automatically backup state |
| every minutes
Burp_all_responses.txt & Burp's logging feature can be used to collect
4281'U>_ = responses from browsed sites, which may include
4282 1> potential passwords, as well as information about
4283 <label for="email-coldRegistrationForm" >Email:</label> the structure of those passwords.
4284 <div class="fieldgroup">
4285
4286 <input type="text" name="email" value="" id="email-coldRegistrationForm" maxlength="128">
4287 </div>
4288'1i>
4289.i>
4290 <label for="password-coldRegistrationForm" >New Password:</label>
4291 <div class="fieldgroup">
4292
4293 <input type="password®-name="password" value="" id="password-coldRegistrationForm" maxlength="16">
4294 </div>
4295 <p class="note">6 or more characters</p>
~ 2

~

Figure 17 - Burp response logging
In Figure 17, the option to log all server responses was selected. The social
networking site profiles of targeted employees were then browsed, resulting in the pages
being logged to a flat file. Potential password candidates were jotted down manually as
the profiles were examined, but some information might have been missed, and so the

Burp logs act as a useful archive.

The logs contain the full HTML source code of each visited page, making them
difficult to read when trying to spot specific information such as people’s hobbies, pet’s
names, or favorite holiday destinations. There are however a variety of tools and
command-line options for stripping away the HTML noise, leaving just the site’s text as

shown in Figure 18.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 29

Windows tools such as HTMLtoText can be used to make the
identification of possible passwords within the server responses

- HTMLASText. 3 : = ; e - >
F‘ X, easier. Similar results can be achieved with Unix ‘sort’,
N ‘uniq’, and ‘awk’ commands.
Single/Multiple: () Convert Single File () Convert Multiple Files
HTML File: F:\emp\Burp_all_responses4.html Browse...
Text File: F:\Burp_all_responsesd. txt Browse... ————r—
C Burp_a esponses4.tx Notepad

File Edit, Format View Help

Conversion Options
Characters Per Line: |75 “xxxxxx XRXXXXXXR 18 & fan of:

Use the following characters for unordered lists (tag): “o-@# * Evgeni Malkin

. . . * Twilight
] Add line under headings (W1 - htags) Use the following characters:
2 e 5 * Victoria's Secret PINK
[¥] Skip the text stored inside the <itle> tag Horizontal rule character: | = * Michael Jackson

i . * Lil Wayne

v :
[] Open the converted test fle in notepad Definition List spaces: '8 WeDRaRE
] Enclose bold text with the following characters: Start: End: * Jabbawockeez

[] Allow centered test Table Options = i?;iliix

] Alow right-aigned text Separate table cells by: | Space Character | wRTErae] TPneTas

* Jeff Dunham

* Lil Wayne

* Jonas Brothers
Carrie Underwood

Skip the text stored inside the table headers (<th> tag)

Links Display Format: | %T v

o Iy
Convet | SaveConfig | Load Config About Exit ‘ * Kenny Chesney

Figure 18 - Extracting possible passwords from Burp logs

9.3. The Human Element
Discovering online credentials is as much about the research as it is about the
technology used to expose them. Knowing the target and knowing the way in which

people structure passwords in general goes a long way towards a successful exploit.

The Human Element was touched on in section 4, and used the MySpace hack as
an example of password usage in 2006. A more recent example is the output from the
2009 ‘Zero For Owned’ exploits, as published in their ZF05.txt e-zine. These exploits
provide a useful example of the password structures currently in use by a broad range of
the IT community (Rootsecurity 2009). Accounts were compromised from the websites
of Perlmonks.org and Elitehackers.info; the former being a more mainstream site used by
a range of IT professionals, and the latter (as described by ZF0) as being more frequented

by script kiddies.

An examination of the compromised accounts shows that none of the
Perlmonks.org users had a password of ‘password’, whereas at least a dozen of the
Elitehackers.info accounts did. Users of both sites still made use of dictionary words such
as ‘william’, ‘chicken’, ‘insecure’, ‘kenny’, and ‘easter’, as well as numbers such as
‘123456’ and 112233°. There was also extensive use of character and case substitution.
Genre and site-specific passwords also make a notable appearance, with the likes of

‘whiterabbit’, ‘MonkPerl’, ‘eminem’ and ‘limpbizkit’.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 30

Users from both web sites made use of passwords from the “Top 500 Worst
Passwords” list (Burnett, 2005), such as ‘qwerty’, ‘letmein’, and ‘trustnol’, although

some went to the trouble of adding case and/or character substitution.

This knowledge of the current state of general password usage, in conjunction
with specific knowledge collected on the target environment, can then be carried forward

into the password generation process.

9.4. Payload Generation
Once the research for the target system has been completed, the username and
password payloads for that system can be generated. These payloads can be generated
using an external application and then loaded into Burp Intruder, or its payload

generation capability can be used; or a mixture of both.

Burp Intruder offers a suite of payload generation options, all accessible under the
Payloads tab. Since its functionality has a broader scope than just attacking credentials,
not all of the available payload options are useful for generating usernames and
passwords. Also, the generation techniques listed may be used to assist in the credentials
discover process in ways that aren’t covered here, and which will depend on the specifics

of the environment being tested.

As an example, Figure 19 uses the grep function with a numerical payload to
search for possible hidden portal access within a website. In this example, the numerical
payload was used to cycle through some combinations of a website’s URL structure,
while the grep function was used to look for the keywords ‘Username’ and ‘Password’. In
this way, the payload generation capabilities are able to be used to not just gain access to

accounts, but to find where they may be in the first place.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

Anumerical payload was used to iterate through
the ‘display’ value found in this site's URL

http://www.

il

Jsitefindex. zfm

‘argetypos‘o"s1im“m"uuyum(nm,k’////////;;r____—-‘—’

number of payloads: 2,001
number of requests: 3,001

payload set [1

[~] [numbers

e
from [Tod
to 00 |
sten O
how many

format

min integer digits
max integer digits
min fraction digits

max fraction digits

Figure 19 - Finding authentication portals

The Intruder Results page shows some
anomolous pages, which also contain

31

Enter Mysu;9: tent Here
Log in

Username
Password

[Login|

Forgot Your Password??

the key assword' and 'L
attack save view
request | payioad status error length | errof{_Password | Username rep|
1 00 O] [0 ss343] O L] v]
1 00 1 |1 53500 [vl =
138 00 Ll L0 47479 Ol]]
134 00 O O] 43671 ™] 2]
137| 00 43497| (] v
1 00 L1 L1 40029 [CJ]]
ST 00 o [l 615 [1] O 0]
00] |l 422| [] - O v
S 00 o g 73] O o] 2]
00 o[65| [v] v] v]
1 00 o g 64 [])] v
ST 00 1 L] 24502] [C m| v
1 00 O[O0 22273] [O]]
00 O o] 21508 [v vl]
00 - 9462 [- O v
Browsing directly to these pages provides
access to authentication portals that weren't
linked via the main site.
MySite

The following sections then, cover those generation techniques that can most

commonly be used to aid in the username and password discovery processes. This

includes dictionary attacks, character and case substitution, as well as more complex

tasks such as the creation of email addresses from lists of first and last names.

9.4.1. Payload — Username or Password Files

of course passwords as shown in Figure 20.

[target f proxy | spider ' scanner I intruder | repeater T sequencer | deco

Burp Intruder has a range of default payloads, including usernames, numbers, and

burp intruder repeater window help

(target | positions | payloads | options |

number of payioads: 3,424
number of requests: 3,424

payload set i -

‘ preset list "‘

|@#%$% =
| @#$%N =
|@#3%1N&
| @#$9%MN &
Iroot
$SRV add [
$secured
"3nogury | W~ add from list ... ‘v
@#$9M& add from list ... =
AM.I fuzzing - quick =
ABC123 | [fuzzing - ful L
ACCESS — |usernames

¢l ds

short words
e [Gommmody 3]

Az]

Figure 20 - Payload — Default Password File

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009,

attack save view.

request payload status | time of day | error redir.. [time. length
1l@#5% 401 18:27:59 M| OO 236
2)l@#s%n 401 18:27:59 MO0 236
3le#sre 401 18:27:59 M| OO 236
Al @435 8" 401 18:27:59 Ml Oolg 236
5iroot 401 18:27:59 W00 236
6[3SRV 401 18:27:59 M| OO 236
7|$secured 401 18:28:01 V]]] 236
8[*3noguru 401 18:28:00 v] |] 236
S|@#s e 401 18:28:00 M| O[O 236
10[AM.1 401 18:28:00 MO0 236
11[ABC123 401 18:28:03 W | O [O 236
12|ACCESS 401 18:28:02 M Oolg 236
13[ADLDEMO 401 18:28:02 MO0 236
14|ADMIN 401 18:28:01 W | O[O 236
15[ALLINT 401 18:28:06 M Oolg 236
16[ALLINIMAIL 401 18:28:05 MO0 236
17|ALLINONE 401 18:28:04 W | O[O 236
18[AM 401 18:28:03 MO0 236
19[AMI 401 18:28:09 W00 236
20[AMISW 401 18:28:08 M| OO 236
21[AMI.KEY 401 18:28:07 MO0 236
22[AMI.KEZ 401 18:28:07 W | O[O 236

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

32

The example shows the default password file. For larger engagements where the

list may be used repeatedly over an extended period of time, there’s the ability to

customize the default payload strings. This is achieved by editing and/or adding text files

to the ‘/burp/Payload Strings/’ directory. This allows the customized list to be quickly

selected from the payloads drop-down list rather than needing to import a file each time.

Folders

X

= I2) burp
[+ | class
) else
) extends
) for
=i
= if
F) implements
) instanceof
) interface
) media
) new
) PayloadStrings
() return
) throw
|2) while
[+) com
) META-INF
[+ D) org
[# [2) CAL9000

[+

=l

Name Size I Type I Date M ;I
|#]8 letter words.pay S81KE PAY File 19/08/:
J 9 letter words.pay 637 KB PAY File 19/08/:
J 10 letter words.pay 618KB PAY File 19/08):
;] 11 letter words.pay S48KE PAY File 19/08/:
j 12 letter words.pay 459 KB PAY File 19/08/:
ﬂA-Z pay 1KB PAY File 19/08/:
ﬂa-z.pay 1KE PAY File 19/08/:
~_"] directories.pay 7KB PAY File 19/08/:
ﬂextensions.pay 1KB PAY File 19/08/:
ﬂfilenames.pay 1KB PAY File 19/08/:
ﬂform field names.pay 1KB PAY File 19/08/:
i]form field values.pay 1KB PAY File 19/08/:
3F0rmat strings.pay 1KB PAY File 19/08/:
@ fuzzing - full.original 2KB ORIGINAL File 19/08/:
J fuzzing - full.pay 2KB PAY File 9/09/2(
i]Fuzzing - quick.pay 1KB PAY File 19/08/:
I;] passwords.pay 28KB PAY File 19/08/:
ﬂshort words.pay 201 KB PAY File 19/08/:
[B]usernames.pay | 70KE PAY File 1908/
| | i

Figure 21 - Payload directory

Alternatively, custom files can be loaded as shown in Figure 22, and can be of

benefit where the username or password file is being constantly updated.

add

jaddfromlist ...

CIW»[

[defete—|

paste

clear

|_|open

Look In: |[[JTools

oo
)

[
@)1

3 Burp

D custom.txt

0O facebook_crawl1.txt
D linkedin_crawl1.txt

D linkedin_crawl2.txt

D myspace_crawl1.txt

custom.txt

File Name:

Files of Type: fAllFiles.

[
| v

[Open

Cancel

Figure 22 - Payload - Custom Password File

[

attack saves view

:7fequest; ‘r‘"

1| password
12123456

| 3 querty

4 letmein

1 [abcl23

6 baseball

pajipad

7 trustnol
R 7

[status [error | length |

302
200
200
200
200
200
200

621
13271

13198
13201
13202
12951
13181

Given that relatively small password files are typically going to be used as part of

the on-line as opposed to off-line testing process, this method of password generation and

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009,

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 33

importation is likely to be one of the most beneficial.

9.4.2. Payload — Runtime File

A drawback with the importation of password files using the method shown in
Section 9.4.1 is that since the files are loaded into Burp Intruder before use, they consume
system resources. An alternative is to use the Runtime payload, which reads a single
record in at a time from an external file, as shown in Figure 23. Such an approach may be

useful where system resources are limited, or where a very large list of passwords is to be

burp intruder repeater window help attack save view
[target | proxy [spider | scanner [intruder | repeater | sequencer | decc request | status | error redir..|time...| length

110|betterid 401 v 236

target positions | payloads | options 401 v

401 %

number of payloads: 1,0 113|bevan 401 v

number of requests: 1,023 (approx) 401 v

401 v

payload set |1 w | | runtime file v]401 v

401 v

o 401 v

elect file /media/disk-1/pentest/
select file ... T i S 401 v
120|birdsall 401 v

Figure 23 - Payload - Runtime File

9.4.3. Payload — Brute Force

As its name suggests, the Brute Force payload allows for the configuration of the
minimum and maximum length of a password, as well as the characters that make up that
password. As shown in Figure 24 this payload works sequentially and methodically up
through the character set selected, so in the example shown, each time the attack is run, it
will start at ‘aaaa’, then move on to ‘baaa’ and ‘caaa’, and so on until all iterations are
complete. As such, this payload method may not be suitable for use with long passwords,

or where research hasn’t been able to narrow down the character set.

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 34

attack save view
burp intruder repeater window help L

request | payioad status | time of day | error redir..|time length
J[target | proxy | spider | scanner [intruder | repeater | sequencer | decc 1|aaaa 401 18:11:23 v
[target | positions | payloads | options 2lbaaa it 18:11:23 (A
3|caaa 401 18:11:23 v
number o oads: 62,145,792 4|daaa 401 1g:11:24 v
- e 5|eaaa 401 18:11:24 v
number of requests: 62,145,792 6lfaaa 201 181124 o
payload set 1 - brute forcer - 7lgaaa 4',)1 lc 11:25 C2
St — 8lhaaa 401 18:11:25 v
- 9liaaa 401 18:11:24 v
character set |abcdefghijkimnopgrstuvwxyz1234567890 10jjaaa 401 18:11:24 4
11lkaaa 401 18:11:27 v
min length 4 12|laaa 401 27 v
13|maaa 401 26 v
max length 5] 14|naaa 401 18 v
15/0aaa 401 18 v

Figure 24 - Payload - Brute Force
Based on the previous example of 10 passwords per second, it would take more
than 70 days to iterate through all of the ~62,000,000 permutations and combinations
available with an alpha-numeric password between four and five characters long. For

passwords longer than six characters this is unlikely to be a realistic avenue of attack.

A possible option to reduce this total number of permutations is to remove
characters that have a low occurrence rate in the English language, such as ‘k’, ‘v’, ‘x’,
‘z’,)’, and ‘q’ (askoxford.com, 2009) This would reduce the permutations and
combinations by more than half to ~25,000,000. Including only the numbers ‘0’ and ‘1’

will significantly reduce this even further.

9.4.4. Payload — Case Substitution

As shown in the MySpace, Perlmonks and Elitehackers examples, passwords
based on dictionary words are still in widespread use. Case substitution can be performed
on an old password rather than needing to generate a new password, and so Burp Intruder

provides two methods of performing this as shown in Figure 25.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder

password case sub

qwerty

[v] no change

administrator ———————— [v]to lower case

35

guest [v]to upper case
letmein [v] to Propername
[v] to ProperName

6 items

attack save view
request payload status | error [redir..[time...| length
1|password 401 v L L 236
2|Password 401 2 [™ 236
3|PASSWORD 401 v]] 236
4|qwerty 401 v [™ 236
S5|Qwerty 401 v]] 236
6|QWERTY 401 v ||] 236
7|admin 401 M | O] 236
8|Admin 401 v]] 236
9ADMIN 401 v ||] 236
10/administrator 401 2 [™ 236
11/Administrator 401 2 || ™ 236
12|ADMINISTRATOR 401 v ||] 236
13|guest 401 2 [™ 236
14|Guest 401 v ||] 236
15|GUEST 401 v]] 236
16/letmein 401 2 [™ 236
17|Letmein 401 M | O] 236
18|LETMEIN 401 v [m]] 236

case do not modif
add frol b
do not modify

lto lower case
match regex [to upper case
to Propername
replace with o properiame

burp intruder repeater window help
target } proxy [spider } scanner f intruder frepea(er [sequencer | decoc
\"zarget ' positions f payloads r'op!ions ‘
number of payloads: 22 (approx)
number of requests: 22 (approx)
payload set (1 [+] [case substitution [~]
admin

Figure 25 - Payload - Case Substitution

This may also be of use in instances where the imported password file has come

from the likes of a website crawl or other automated data collection technique where

words with a mixture of case may be present. The case substitution payload can then be

used, for example, to make sure that all words in the file are submitted as lowercase.

9.4.5. Payload — Character Substitution

Character substitution is one of the more useful generation techniques from a

password perspective. As shown in Figure 26, this payload allows a list of characters to

be defined, as well as the corresponding values that they should be substituted with.

«]

password
passwordl

mB

il

>

attack save view.

123456
abcl23
123abc

(10 B

a

>

dil

[] case sensitive
6 items

[ada |
add from list ...

[- delete](clear

burp intruder repeater window help

target | proxy | spider | scanner [‘intruder | repeater | sequencer | decc
ftarget] positions [payioads] options]

number of payloads: 48 (approx)

number of requests: 48 (approx)

payload set [1 |w| [character substitution

qwerty s

Figure 26 - Payload - Character Substitution

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009,

request payload status | error fredir.. time...| length |
1/password 401 v Ll [236
2|p4ssword 401 M O] O 236
3|paSsword 401 2 Ll L 236
4|p45sword 401 v] [m| 236
5|pasSword 401 v] L]] 236
6/p4sSword 401 2] [m| 236
7|pasSword 401 v] L]] 236
8|p455word 401 v Ll] 236
9|password 401 M| O] O 236
10|p4ssword 401 v Ll] 236
11[paSsword 401 M| OO 236
12|p45sword 401 v Ll] 236
13[pas5word 401 M| O[O 236
14|p4s5Sword 401 v] [236
15|pa55word 401 vl | | 236
16|p455word 401]] [236!
17|password1 401 v] [m| 236
18|p4sswordl 401 v] L]] 236
19|paSsword1 401 V]] [m] 236
20/p45Sswordl 401 v] L] [] 236
—

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder = 36

With ‘leetspeak’ being used as a common method of extending the life of an

existing password or adding complexity to a new one, this payload allows for up to

sixteen different character substitutions to occur. Only simple substitutions are allowed,

such as changing ‘a’ to ‘4’ and ‘b’ to ‘6’; changing to multiple characters such as ‘a’ to

‘/\> or ‘b’ to ‘13’ isn’t currently supported.

Using this payload, substitution changes can be made quickly without the need to

re-edit a password file. It also allows changes to be applied across multiple files, such as

those collected from a web-crawl or a names database, without impacting the integrity of

those files.

9.4.6. Payload — Numbers

Applicable to sites that make use of PINs, the Numbers payload allows for the

generation of a range of numbers ‘from’ a value ‘to’ another value, in whatever number

of ‘steps’ are required.

burp intruder repeater window help
|[target | proxy | spider | scanner [intruder | repeater | sequencer | decode

sitions | payloads | options

attack save view

3,001 request | paydoad
1

payload set 1 v numbers v

range format -

from min integer digits—+

to

max integer digits
step 1 min fraction digits
how many max fraction digits
® sequential @ decimal examples: 1.1

random hex 987654321.1234568

Figure 27 - Payload - Numbers

e EEE
]

time. length

o

NNEENEEEEESZ

These numbers can then be generated sequentially as shown in Figure 27, or

randomly by selecting the ‘random’ button and specifying how many numbers are to be

generated in the ‘how many’ field.

The numbers payload is a good example of the vital role that research into the

structure of usernames and passwords can play in the success of an attack; a dictionary

attack is very likely to fail against a site expecting six digit PINs.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009,

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 37

9.4.7. Payload — Custom lterations

Burp Intruder’s Custom Iterator provides the ability to quickly generate extensive
password lists that may be based on a couple of key words or values that are related to a
particular target. Each word or value is entered into one of eight ‘positions’, which are

then joined together (with a separator if required) in the final list.

burp intruder repeater window help
target | proxy [spider [scanner | intruder [repeater [sequencer | decos

target | positions | payloads | options attack save viey

request | vioad status | error redir..|time...| length
i 0 236

number of payloads: 30 o

number of requests: 30

payload set |1 w | | custom iterator S

scheme choose a preset scheme .2 clear all

position 2

separator

mus

10 items

add

N NEEEEREEEREREEEEREE

add from list v
load paste

v delete clear

Figure 28 - Payload - Custom Iterations

In the example shown in Figure 28, the password is assumed to be based on the
word ‘helpdesk’ and the year the password was created. Three variations of the word
‘helpdesk’ have been loaded into position 1, with the years 2000 through to 2009 loaded
into position 2. The final attack will iterate through each of the items listed in position
one in conjunction with the first record in position two, followed by each of the items in
position one in conjunction with the second record in position two, and so on until all
iterations are complete. This could be used equally well in the generation of username

payloads.

The Custom Iterator also comes loaded with some preset iteration schemes. One of
these, the ‘passwords + digit’ scheme, is applicable for credentials generation and is
shown in Figure 29. This preset iteration uses Burp Intruder’s default password list in
conjunction with the values 0 — 9 and a — z. The preset values can be modified if required,
such as removing the characters a — z so that only numbers are appended to each of the

passwords. Unless the underlying source files for the passwords or digits are changed,

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009, Author retains full rights.

these preset values will be reloaded the next time Burp Intruder is started.

burp intruder repeater window help

target | pro

number of payl

payload set

scheme

position 1

Figure 29 - Payload - Preset Iterations

A Fuzzing Approach to Credentials Discovery using Burp Intruder 38

spider scanner

target | positions | payloads

oads: 34,240

number of requests: 34,240

intruder repeater sequencer decod

1 w | | custom iterator v
passwords + digit v | | clearall
choose a preset scheme
directories / files . extensions
W two-digit hex
‘W passwords + digit
3424 items
add
add from list v
or load paste
|| delete clear

10. Saving Results

Saving results doesn’t mean the end of the process, but rather is something that is

status
—— w01
_Ja01
401
401
401
401
401
401
401
401
401
401
401
401
401
401
[401
401
401
401

error fredir..|time

10
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

likely to occur at multiple points throughout the testing exercise. The results of various

attacks may need to be compared with each other to identify further patterns or anomalies

that can be exploited further, or they may just need to be saved for auditing at a later date.

Attack configurations may also need to be saved so that they can be reliably repeated at a

later date either for the current exercise, or as part of a future one.

The ‘Save’ option within the Results window provides these abilities as shown in

Figure 30. Three options are provided: save the attack, save the results table, or save the

server responses; the option chosen will depend on the purpose and the size of the attack.

Karl Dawson, karldawsonl@gmail.com

© SANS Institute 2009,

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 39

Swveln jlventest ()i =1 (=] 3‘;\2, The parameters for the attack, as well
as its results, can be saved for use at
a later date. The results can include the
full requests and responses as required.
- {
— > -
include full requests &
< »| [Jinclude full responses
File Name:
attack SSENEN View Files of Type: |All Files -
!"?qUES‘ attack |_status | error [redir...time...| el
| results table ! L o save Cancel
S] e
EENE] VIOl oo o e T oo o]
v] | [2 | v [] N’
v v| | v]
|2} |l v]
= . B E
v V] | v] |
v v g = - 10
7 vl ® all rows] save header row

delimiter: @ tab © custom

v v|
g | Ud G4}
] | M vl status
| v V]~ ved response completed
v v
v v
1 72] V] error
{ = V) V] exception V] illegal V] invalid
Save In: | pentest V| v fail stack V] access
= vl V] directory file ¥ not found
uid=
varchar 0DBC saL
quotation mark v syntax ORA-
< save
3 111111 P grep
finisk SR e
cancel
concatenate 1o single file \
File Name: |/media/disk-1/pentest adl
Files of Type: |All Files : —
save Cancel
The results on their own can be saved as a text file
o for use in external programs such as spreadsheets.
Individual columns can be selected as required; these
The responses received from the target server during columns include the terms entered in the ‘grep match’
the attack can be saved. By default they're saved in criteria under the Options tab.

individual sequentially numbered files, Alternatively
they can be concatenated into a single file.

Figure 30 — Burp Intruder ‘Save’ options

10.1. Save - Attack
The ‘Save — Attack’ option saves all of the parameters associated with the attack,
as well as the results generated during the attack. This save method also provides the
option of saving either the full requests sent to the target or the full responses from the
target, or both. The saved attack can be reloaded by selecting ‘Intruder/open’ from the
main Burp menu. The results saved in this format aren’t readily available for viewing
with an external program; they would also need to be saved using the Results Table

option if this capability was required.

The ability to reload all of the parameters associated with a particular attack can help to
save time during an exercise, particularly if multiple attacks against different systems are

being conducted at the same time.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 40

10.2. Save — Results Table
The ‘Save — Results Table’ option saves the attack results in a format that’s
readily viewable in external programs such as spreadsheets. This option also allows for
all information to be saved, or for the selection of only those columns that are relevant to
the attack, as shown in Figure 30. The columns displayed include those that relate to
terms that have been entered in the ‘grep match’ criteria under the Options tab. The
selected columns may therefore only need to be the payload, such as the username and/or

password, and the column showing whether the grep function detected a match.

This save method should be used at the completion of each attack.

10.3. Save - Server Responses
The ‘Save — Server Responses’ option effectively provides a debugging capability
by saving all of the responses returned by the server during an attack. This is particularly
useful during the discovery process as a way of identifying possible keywords. It can also
be used to search through the site’s source code to look for username and password
structures and boundaries. By default, server responses are saved in individual
sequentially numbered files, but can also be grouped into a single file by selecting the

‘concatenate to single file’ option.

11. Passwords Discovered

Each aspect of the credentials discovery has now been discussed, and so an
example of the end to end process can now be demonstrated. This example is based on
the results of a number of real-world engagements, all of which ended in the successful
compromise of the target systems by using the described approach. For the sake of a
name, the target organization will be referred to as IntruderCorp. IntruderCorp is a mid-
sized organization that provides an online portal to a variety of backend applications for
its employees and some customers. These applications include web-based e-mail, asset
management systems, and directory services. No multi-factor authentication solution had

been implemented.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder 41

Welcome to IntruderCorp

Please log in.

Password

Figure 31 - IntruderCorp login

11.1. Usernames

IntruderCorp’s portal had been designed not to leak information regarding the
differences between valid and invalid usernames, however an analysis of the server
responses showed that the username was required in the format of an e-mail address.
Researching the organization allowed a list of a few hundred e-mail addresses to be
compiled. Using these addresses a first pass attack was conducted, in conjunction with
the passwords ‘password’ and ‘password1’. A valid account was found, but it only had
limited access. It did however have access to the IntruderCorp corporate address book,
and from that a complete list of current e-mail addresses was obtained. Testing with this

account also showed that account lockouts were disabled.

11.2. Using the Human Element
Using the name, address and phone number details associated with the
compromised account, a call was made to the IntruderCorp help desk claiming that the
password had been forgotten, and needed to be reset. The help desk obliged, and reset it
to the corporate default of ‘Helpdesk2009’. In addition to this, no change of the password

was required upon first login.

11.3. Preparing Intruder
The complete list of e-mail addresses totaled more than 770, and this was loaded

in as a custom username payload file. It was now suspected that passwords needed to

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

© SANS Institute 2009,

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 42

contain numbers, since both of those discovered contained them (password1 and

Helpdesk2009), and there were no occurrences of the password ‘password’.

With no account lockouts to worry about, four passwords were loaded as a second
custom payload. The additional two passwords were chosen from the list of “Top 500
Worst Passwords’ (Burnett, 2005). In order to test all passwords against all usernames,
the cluster-bomb attack type was selected, as shown in Figure 32. This results in more

than 3,000 username/password combinations being tried.

Alist of passwords is being used against a list of
usernames, so a Cluster Bomb attack-type is being used

burp \intruder repeater window help

proxy | spider [‘intruder | repeater | sequencer | decoder | comparer | comms | alerts
target ’pos\tlons payloads | options
attack type |cluster bomb 5 -
POST /LoginServlet HTTP/L.1 2dd s
Host: wi gics com
: Mozilla/S.0 (X11; U; Linux i686; en-US; n:1.9.0.14) Gecko/2009090216 Ubuntu/9.04 (jaunty) Firefox/3.0.14 -
A / html+xml,applicationfxml;q=0.9,%%q=0.8 clear§
S
auto §
\utf-8;q=0.7,%,q=0.7
refresh
flogin.jsp?null |]
ASPSESSIONID: =" proxy [spider [‘intruder | repeater | sequencer | decoder | comparer
fx-www-form-urlencoded I = 1
target | positions [payloads | options
username==&est§&pwd=&ests number of payloads: 4
Sea = ezone=use_server§ pwd=1 =&server=&ipovel e=0& a a
je-auth=&timezone=use_server&entpwd=0&goto=&server=&ipoverride=0&initialStal number of requests: 3,084
payload set |2 v | | preset list N
| [Helpdesk2009
passwordl)
123456
| |letmneln
I8
2 positions add
add from list ... v
load ... paste
delete clear

Atargeted list of passwords is being used.
‘Helpdesk2009' is known to be the password new accounts
at this organisation are reset to. The remaining three common
passwords have been selected since they also contain numbers.

Figure 32 - Preparing the attack
If none of these passwords were successful, further searches of social networking
sites using the list of e-mail addresses would take place, with a view to compiling a more

extensive word list. In this instance however, that wasn’t required.

11.4. Launching the Attack
An updated attack was launched, with the results appearing as shown in Figure 33.
This provided access to an additional 20 accounts; one extra with a password of
‘password1’, and 19 with a password of ‘Helpdesk2009°. In addition to these, there was

also another account that responded with a different length to all others, and required

Karl Dawson, karldawsonl@gmail.com

Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 43

further investigation.

To speed up the testing of accounts and to reduce the volume of network traffic,
Burp Intruder was configured not to follow 3xx redirects. This meant that the
authentication process was taking place, but the full versions of the resulting web pages
weren’t being returned. A consequence of this was that the grep function was unable to

detect keywords in the responses; in this instance though that wasn’t an issue.

19 accounts were found to have the default password of The grep function was used to search for the presence of the words ‘username’ or
Ipdesk2009', and 2 had a p of 'p 1" ‘password' in the server responses. However, the following of redirects
This was clearly identified by sorting the results by the length column was disabled in an effort to reduce network traffic and the processing

time for each request. As a result, the application never progressed
far enough to display the keywords.

attack save view

request payloadl pavload2 status | error| timeout | length | erfor|username password
21 Helpdesk2009 500 ! s72p [N B -
120 Helpdesk2009 500 572 I; 1=
149 Helpdesk2009 500 4 572 W
184 Helpdesk2009 [500 7 572 [N\ - .
340 Helpdesk2009 (500 572 vl redirects
349 Helpdesk2009 500 572| [v] ‘t
350 Helpdesk2009 500 [572 1 L follow 3xx redirects (onsite only)
394/ Helpdesk2009 500 | 572| v [}
399 Helpdesk2009 500 1 572 W |1 process cookies in redirects
404 Helpdesk2009 (500 1 572 1 [- I
405 Helpdesk2009 500 1 572| v [}
409 Helpdesk2009 500 1 572| v
474 Helpdesk2009 500 | 572| v |}
572 Helpdesk2009 (500 || 572 W |1
573 Helpdesk2009 500 572 [v] | |
584 Helpdesk2009 (500 [1_ 572 @ *
686! Helpdesk2009 500 A 572| v}
688! Helpdesk2009 500 % 572 [v|§
722 Helpdesk2009 [500 [[L 572 4 T
1539 passwordl 500 C 2572 P pEEsdarempararily
1540 |passwordl [s00 | O | 572) v
16| Helpdesk2009 302 [m] [mE| 592
1 Helpdesk2009," |302 L 2590,
2] Helpdesk2009 302 [L 4 599 \L
3 Helpdesk2009 [302 C 7 599 Ik
4 Helpdesk2009 302 [[599 [
E] Helpdesk2009 302 L I 599
5 Helpdesk2009 302 [I soo[O
7 |Helpdesk2009 302 [L \ 599
8 _|Helpdesk2009 [302 C L 599 [1
9 __|Helpdesk2009 302 [\ 599 [
0 Helpdesk2009 302 [L 5991
3 11 Helndesk2009 302 599f | \ L~
finished | » -
This anomalous result requires 771 accounts were tested, and an incorrect password The server responses were logged, and used in conjunction
further investigation attempt returned a respose length of 599 bytes in all cases. with manual testing. This was to verify that the 500 internal server

error responses, possibly generated as a result of not following
the redirects, were in fact valid accounts.

Figure 33 — Passwords Discovered

A total of 21 compromised accounts provided enough access to a variety of the

portal’s systems that further password attempts weren’t required at this stage.

11.5. Investigating Anomalies
Further investigation into the anomalous result was still required. In a lot of cases
this may have been the result of a corrupted request or response, but there’s no harm in

checking.

As shown in Figure 34, further testing found that this account logged into the

portal, but was then presented with another login, which required different credentials.

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 44

Server Login

The anomalous result belonged to an account that was presented with
a different form of access to the others. When further testing was
conducted against this account, it led to Administrative server access.
This access may have gone using p

discovery techniques.

You are not authorized to perform this operation

Please type your user name and password

User name:
Password:

LogIn
B People & Groups | Files | Server.. | Messaging...| Repication | Configuration | Ologowt [Preferences |[JHelp
|
@ You [Notes Adminisiatar] afe connected to:
{73
= Server name:
Host name [1
Version and buid Release 6.5.3FP1 (135)
Operating system: Windows 2000, Service Pack 4 (Windows/32)
Directery & parttion Y S A S
Server date & time: = =
a Elapsed up-time: 114 days, 15:22:26 You got a rock solid server here! Great uptime!
Transactions/minute: Last minute: 21; Last hour. 370; Peak: 11470
Peak Hof sessions: 174 at -
Transactions 11834150, Mas. concurrent: 20
Waiting tasks: 0
Availabiity Index: 58 (state: AVAILABLE)
Mail domain
Mailracking Not Enabled
Mail journalling: Not Enabled
Shared mail Not Enabled
Mailbores: 1
Pending mait 0.Dead mait 0
Transactionallogging: ~ Not enabled
Activity logging: Not enabled
Faul recovery Not enabled
Server controler Not enabled
Lotus Demino Weeb Administrator e

Figure 34 - Anomaly uncovered
Another round of testing was conducted on this second portal, following the same
methodology as before. Unfortunately for IntruderCorp the same structures and controls
were used across both environments, and a correct login was soon discovered. Unlike the
rest of the accounts however, this second portal provided access to the administrative
console of the first portal, allowing full control of the environment. If a traditional
password cracking methodology had been used, this level of access may have gone

unnoticed.

12. Conclusion

Gaining access to a web application via compromised credentials is as much about
the knowledge of the target system and the users of that system as it is about the tools and
techniques used to carry out the compromise. Cracking the credentials of an online
system has inherent speed limitations when compared to off-line cracking, and so the

methodology used needs to cater for that.

Burp Intruder, an HTML fuzzer, can be used to not just crack credentials, but to

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 45

discover their format, the pages where they can be used, and to exploit them in a way that
minimizes disruption to the target system. This is achieved by looking for differences in
the responses returned for valid as opposed to invalid credentials. The primary methods
of detecting this are to look for patterns in either the number of bytes returned, a notable
difference in the length of time taken to process a particular request, or by looking for

keywords.

The human brain is excellent at detecting these patterns and anomalies (Teoh,
Soon Tee, 2001) and Burp Intruder’s simple but effective attack output leverages off this

to make the discovery process so much easier.

This of course continues to be helped by poor password selection techniques.
Password usage is subject to the vagaries of human memory, and the need for people to
retain an increasingly large number of passwords for a variety of disparate systems.
Added to this is the need for an organization to make sure that a// passwords are
maintained at a suitable level a/l of the time, whereas an attacker may only need to
compromise one account, and they have time on their side to do it. Burp Intruder can be
configured to exploit these poor selection techniques through the use of a variety of

character, case, number, and complex customized iteration payloads.

A target system can be patched and have unnecessary services removed, and be
placed behind firewalls and intrusion detection systems. But it can also still be

compromised by a bit of research, a weak password, and Burp Intruder.

13. References

Kessler, Gary C. (1996) “Passwords — Strengths and weaknesses.” Retrieved from
http://www.garykessler.net/library/password.html

Grimes, Roger A. (2006) “MySpace password exploit: Crunching the numbers (and
letters)” Retrieved from InfoWorld, http://www.infoworld.com/d/security-
central/myspace-password-exploit-crunching-numbers-and-letters-983

Schneier, Bruce. (2006) “Real-World Passwords” Retrieved from
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 46

Brown, Stuart. (2006) “Top 10 Most Common Passwords”
Retrieved from Modern Life, http://modernl.com/article/top-10-most-common-passwords

anameless.com. (2003) “Default Admin Username and Password List” Retrieved from
http://www.anameless.com/blog/default-passwords.html

Rootsecurity. (2009) “Zero For Owned Summer Of Hax” Retrieved from
http://r00tsecurity.org/files/zf05.txt

OWASP. (2009) “Testing for Default or Guessable User Account (OWASP-AT-003).”
Retrieved from
http://www.owasp.org/index.php/Testing for Default or Guessable User Account (O
WASP-AT-003)

Web Application Security Consortium. (2005) “Threat Classification — Brute Force.”
Retrieved from http://www.webappsec.org/projects/threat/classes/brute force.shtml

Hitachi ID Systems. (2009) “Password Management Best Practices.” Retrieved from
http://www.psynch.com/docs/password-management-best-practices.html

Fielding, R et al. (1999) “Hypertext transfer Protocol - HTTP/1.1”
Retrieved from /ETF, http://tools.ietf.org/rfcmarkup?doc=2616#page-57

Braue, David. (2005) “Biometrics: Still searching for a pulse”

Retrieved from ZDNet Australia,
http://www.zdnet.com.au/insight/security/soa/Biometrics-Still-searching-for-a-
pulse/0,139023764,139187129,00.htm?feed=pt_biometrics

Felker, Mikhael. (2007) “Analysis of FFIEC Guidance: Technologies and Decisions on
Authentication” Retrieved from ISACA,
http://www.isaca.org/Template.cfm?Section=Home& CONTENTID=46065& TEMPLAT
E=/ContentManagement/ContentDisplay.cfm

OWASP. (2009) “Fuzzing” Retrieved from http://www.owasp.org/index.php/Fuzzing

OWASP. (2009) “OWASP Testing Guide Version 3” Retrieved from
http://www.owasp.org/images/5/56/OWASP_Testing Guide v3.pdf

OWASP. (2009) “HTTP proxying / editing” Retrieved from
http://www.owasp.org/index.php/Phoenix/Tools

Password Research Institute. (2006) “Authentication Statistic Index” Retrieved from
http://passwordresearch.com/stats/statindex.html

NIST. (1985) “FIPS PUB 112 — Password Usage” Retrieved from
http://www itl.nist.gov/fipspubs/fip112.htm

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

A Fuzzing Approach to Credentials Discovery using Burp Intruder =~ 47

Burnett, Mark. (2005) “Perfect Passwords: The Top 500 Worst Passwords of All Time”
Retrieved from http://www.smashingpasswords.com/top-500-worst-passwords-all-time

Openwall.com. (2009) “Openwall wordlist collection” Retrieved from
http://www.openwall.com/passwords/wordlists/

University of Oxford. (2009) “Wordlists” Retrieved from ftp://ftp.ox.ac.uk/pub/wordlists/

Outpost9.com. (2006) “Word Lists” Retrieved from
http://www.outpost9.com/files/WordLists.html

Theargon.com. (2007) “Wordlists” Retrieved from
http://www.theargon.com/achilles/wordlists/

Packetstormsecurity.org (2009) “Wordlists” Retrieved from
http://packetstormsecurity.org/Crackers/wordlists/

Sourceforge.net. (2008) “Kevin’s Word List Page” Retrieved from
http://wordlist.sourceforge.net/

TechRepublic. (2008) “Chapter 8 — Password Cracking / Brute-force Tools. Reproduced
from the book “Anti-Hacker Tool Kit, Third Edition." Copyright © 2006, The McGraw-
Hill Companies, Inc.” Retrieved from
http://techrepublic.com.com/i/tr/downloads/home/0072262877 chapter 8.pdf

Codenomicon. (2009) “The BUZZ on FUZZING” Retrieved from
http://www.codenomicon.com/products/buzz-on-fuzzing.shtml

Teoh, Soon Tee. (2001) “Computer Science Department University of California. A
Visual Technique for Internet Anomaly Detection.” Retrieved from
http://www.laas.ft/ METROSEC/DOC/CGIMO02.pdf

CIRT.net. (2008) “Default Passwords.” Retrieved from
http://www.cirt.net/passwords

OWASP. (2009) “Testing for user enumeration (OWASP-AT-002)” Retrieved from
http://www.owasp.org/index.php/Testing for user enumeration (OWASP-AT-002)

Askoxford.com. (2009) “What is the frequency of the letters of the alphabet in English?”’
Retrieved from http://www.askoxford.com/asktheexperts/fag/aboutwords/frequency

Karl Dawson, karldawsonl@gmail.com
© SANS Institute 2009, Author retains full rights.

