
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 1

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Getting Owned By Malicious PDF - Analysis

GIAC (GPEN) Gold Certification

3%1$4(5!6#$"%&!3'!7#$"#)*!"#$"%&+,-'.(/.,%(01-2"-!

3&80/4(5!74&).-!9#%&:.!

3,,.;1.&5!!

3'/1(#,1!
Year 2008 was not so good for Adobe Acrobat Reader users especially for
those using versions prior to version 9. Core Security had released the
advisory to address about util.printf stack buffer overflow vulnerability on
Adobe Acrobat Reader with CVE tag CVE-2008-2992. An attacker can exploit
this issue to execute arbitrary code with the privileges of the user running
the application or crashing the application, denying service to the legitimate
user. A more detailed description by CoreSecurity researcher about the
vulnerability and exploitation analysis is available for further information on
this vulnerability.

On the 5th of November 2008, a working exploit was uploaded to Milw0rm’s
site ready to be abused by cybercriminal. The exploit code published on
Milworm’s website comes complete with a code to trigger the vulnerability
with a heap spray code. The heap spray code enables us to obtain a more
reliable exploitation against the vulnerability. The vulnerability was fixed by
Adobe by releasing a new security patch for versions prior to 8.1.13.
Recently, more vulnerabilities on PDF readers have been disclosed or
privately used to attack PDF reader.

A lot of attacks were observed trying to abuse the bug by hosting malicious
PDF files on the Internet. The modus operandi involved is in lurking people to
open malicious PDF files by using social engineering attacks. The emails were
sent with a link to a PDF file or by attaching the malicious PDF file directly to
trap victim to open the files.

MyCERT of CyberSecurity Malaysia has collected samples of malicious PDF
files. Some of these have been analyzed and are discussed in this paper.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 2

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

1.0 Introduction
The last two years was not so good for Adobe Acrobat Reader users especially for

those using versions prior to version 9. Core Security had released the advisory to
address about util.printf stack buffer overflow vulnerability on Adobe Acrobat Reader
with CVE tag CVE-2008-2992 (CoreSecurity, 2008). An attacker can exploit this
issue to execute arbitrary code with the privileges of the user running the application
or crashing the application, denying service to the legitimate user. More information
on this vulnerability can be obtained by reading a paper on the vulnerability and
exploitation analysis written by a CoreSecurity researcher via this link
http://www.coresecurity.com/content/adobe-reader-buffer-overflow.

On the 5th of November 2008 a working exploit was uploaded to Milw0rm’s site
at http://milw0rm.com/sploits/2008-APSB08-19.pdf (Milw0rm, 2008) ready to be
abused by cybercriminal. The exploit code published on Milworm’s website comes
complete with a code to trigger the vulnerability with a heap spray code. The heap
spray code enables us to obtain a more reliable exploitation against the vulnerability.
The vulnerability was fixed by Adobe by releasing a security patch for the version
prior to version 8.1.13.

A lot of the attacks were observed trying to abuse the bug by hosting malicious
PDF files on the Internet. The modus operandi involved was social engineering
techniques which lure people in opening a malicious PDF file (The Register, 2010).
One of the ways was by sending users an email with a link to a PDF file or by
attaching the malicious PDF file directly to trap victims to open the files.

As for the targeted attacks, the modus operandi remains similar to random target,
but the emails and contents of the malicious PDF files are more convincing. Other
than contents, the exploitation and obfuscation technique observed are much more
advanced. An example of a targeted attack is instead of just crashing Adobe Acrobat
Reader after opening the malicious PDF file, a shellcode will be executed to install a
backdoor and re-open a benign PDF file. The end user will end up not knowing that
their machines have been compromised.

A *NIX based operating system will be used for the analyses. Below are the tools
that are used in the analysis:

i. Text editor (vi is recommended for this article).

ii. ClamAV antivirus (http://www.clamav.net/lang/en/download/).

iii. Pdftk ((http://www.accesspdf.com/pdftk/).

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 3

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

iv. Patched SpiderMonkey
(http://www.didierstevens.com/files/software/js-1.7.0-mod.tar.gz.).

v. Libemu’s sctest.(http://libemu.carnivore.it/).

vi. Immunity Debugger (https://www.immunityinc.com/products-
immdbg.shtml).

MyCERT of CyberSecurity Malaysia has collected samples of malicious PDF
files. Some of these samples have been analyzed and are discussed in this paper.

2.0 PDF Format 101
Portable Document Format (PDF) is a file format developed by Adobe for portable

and cross platform document exchange. The PDF format used to be a proprietary
format but was released by Adobe to the community back in the year 2008 as an open
standard format. The PDF format consists primarily of objects, of which there are
eight types:

• Boolean values, representing true or false

• Numbers
• Strings

• Names
• Arrays, ordered collections of objects

• Dictionaries, collections of objects indexed by Names
• Streams, usually containing large amount of data

• The Null object

For further information, please refer to Adobe Portable Document Format

Specifications at http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
(Adobe, 2009).

In analyzing a malicious PDF file, knowing the common and basic object structure

inside a PDF is sufficient. Figure 2.1 shows a diagram of a PDF format.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 4

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 2.1 Diagram for PDF format

Every PDF file must start with a header, which identifies it as a PDF file. The

header includes the specific version of the PDF file like %PDF-1.1. Similar to a PDF
file header, the end of a PDF file will end with %%EOF which indicates the end of
file.

The second element for each PDF file to have is the obj object. The syntax of
the object obj starts with a reference number followed by a version number, obj
keyword, the object container and endobj to indicate the end of the object. Figure 2.2
shows the obj object basic specification. Figure 2.2 shows the object 1 starts with a
reference number 1, version number 0 and obj keyword. The object container for
object 1, start with a << sign and ended with a >> sign. More details on the object
container will be explained later in this article. The object 1 ended the object with a
endobj keyword.

<!

=!

>!

?!

@!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 5

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 2.2 obj object basic specification

The object container of a PDF may consist of various objects. The most
common object is dictionary. A dictionary is written as a sequence of key-value pairs
enclosed in double angle brackets (<< ... >>). A dictionary object is an associative
table containing pairs of objects, known as the dictionary’s entries. The first element
of a dictionary entry is the key and the second element is the value. Figure 2.3 shows
a dictionary object with its key and value. The key for this example is Type and the
value is Catalog.

Figure 2.3 Dictionary object with the key and the value.

Any object in a PDF file may be labeled as an indirect object. This gives the
object a unique object identifier by which other objects can refer to it (for example, as
an element of an array or as the key of Outlines and the value of 2 0 R of a dictionary
entry shown on Figure 2.3). The Outlines key is pointing to the indirect object of 2 0.
Figure 2.4 shows the relationship of the indirect object. Figure 2.4 shows a dictionary
of Pages has an indirect object pointing to 3 0 R which is an object of 3 0 obj.

!
<!A!4'B!
CC!
!DE-;.!D9#1#:4F!!DG%1:0)./!=!A!7!
!DH#F./!>!A!7!
II!
.)&4'B!

J.-!

K#:%.!

!
<!A!4'B!
CC!
!DE-;.!! D9#1#:4F!
!DG%1:0)./!!=!A!7!
!DH#F./!>!A!7!
II!
.)&4'B!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 6

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 2.4 Relationship of the indirect object

Another important object of a PDF file is the stream object. A stream object,

like a string object, is a sequence of bytes. A stream object consists of a dictionary
followed by zero or more bytes bracketed between the keywords stream and
endstream. A stream can be of unlimited length, whereas a string is subject to an
implementation limit. For this reason, objects with potentially large amounts of data,
such as images and page descriptions, are represented as streams. Figure 2.5 shows a
normal stream object. Part of rectangle shows the stream contents of string
“JavaScript Example” with multiple formating for the string.

Figure 2.5 Normal Stream Object

One of the optional entries for stream dictionary is Filter. Filter is the value
which indicates whether the stream will be decompressed or decoded. The Filter's key
will indicate the method of decompression or decoding for the stream. In current PDF
attacks, the attacker normally will implement this filter to increase the difficulty of
analysis and for the evasion or bypassing of antivirus protection. The filter can also be
used for image format decompression. Figure 2.6 shows the filtered stream object
with FlateDecode.

L)&0(.,1!G'B.,1!4M!!"#$%!
;40)10)F!14!4'B.,1!&'(')*+'

G'B.,1!>!A!4'B!

!
<!A!4'B!
CC!
!DE-;.!! D9#1#:4F!!!
DG%1:0)./!!=!A!7!
!
!
!DH#F./!>!A!7!
!
!
II!
.)&4'B!
!
!
>!A!4'B!
CC!
DJ0&/!N?!A!7O!
DE-;.!DH#F./!
D94%)1!<!
II!
!

@!A!4'B!
CC!DP.)F1$!@Q!II!
/1(.#"!
RE!DS<!<=!EM!<AA!TAA!E&!<@!EP!UV#8#W,(0;1!.X#";:.Y!EB!ZE!
.)&/1(.#"!
.)&4'B!

!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 7

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 2.6 Filtered Stream object with FlateDecode

There are multiple encoding and compression methods which are used inside a

PDF file. Below is a list of a few filters for a PDF file:

• ASCII85Decode a deprecated filter used to put the stream into 7-bit
ASCII

• ASCIIHexDecode similar to ASCII85Decode but less compact
• FlateDecode a commonly used filter based on the DEFLATE or Zip

algorithm
• LZWDecode a deprecated filter based on LZW Compression
• RunLengthDecode a simple compression method for streams with

repetitive data using the Run-length encoding algorithm and the image-
specific filters

• DCTDecode a lousy filter based on the JPEG standard
• CCITTFaxDecode a lossless filter based on the CCITT fax

compression standard
• JBIG2Decode a lousy or lossless filter based on the JBIG2 standard,

introduced in PDF 1.4
• JPXDecode a lousy or lossless filter based on the JPEG 2000 standard,

introduced in PDF 1.5

JavaScript name directory is one of the common objects inside a PDF file.
Adobe JavaScript’s engine itself suffered a few vulnerabilities requiring an attacker to
use JavaScript to trigger the vulnerabilities (Securityfocus, 2009; Zerodayinitiative,
2008; Zerodayinitiative, 2009). Majority of in-the-wild malicious PDF file attacks
rely on JavaScript to trigger the vulnerability. Besides using JavaScript as the attack
vector, JavaScript is also being used as a heap spray generator for exploitation
reliability (ShadowServer, 2009).

=Q!A!4'B!

CCDS0:1.(!D!"#$%&%'()%!
DP.)F1$!@Q!
II!
/1(.#"!
XC[,I\]J*7U^_2UH`aZbacC[#Ideee!fghijkaEl;Cm<ICmQInaaVV!
HaKUoeepa3C[<IaSqa3f8ar/!
.)&/1(.#"!
.)&4'B!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 8

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

JavaScript name directory starts with /JavaScript /JS java_script_code. For

the variable java_script_code, it can be a JavaScript itself to be executed or can be an
indirect object pointing to a different JavaScript. Figure 2.7 shows the JavaScript
inside a PDF file.

Figure 2.7: JavaScript Name pointing to an indirect object

3.0 Analysis: Vanilla and Plain Malicious PDF

In this section analysis will focus on a vanilla malicious PDF file. The first
analysis is quite an obvious attack against vulnerability on util.printf which was
previously discussed in section 1.0. The vulnerability is caused by a boundary error
when parsing format strings containing a floating point specifier in the "util.printf()"
JavaScript function. Successful exploitation of the vulnerability requires users to open
a maliciously crafted PDF file thereby allowing attackers to gain access to vulnerable
systems and assume the privileges of a user running Acrobat Reader (CoreSecurity,
2008).

The payload for a malicious code is also identical and self-explanatory. It is
always good to start an analysis by scanning the PDF file to identify whether the file
is recognized as malicious or not. In this analysis, ClamAV antivirus software will be
used.

It would be best to upload the PDF file to the VirusTotal’s website at
www.virustotal.com for a virus scan. However, this practice is not recommended if
the PDF file contains confidential company data because the file might be shared with
other users (VirusTotal, 2010).

!
T!A!4'B!
CC!
DP.)F1$!=A@!
II!
/1(.#"!
M%),104)!M%)E04)U;4:01*sss*#&&nM*;414Y!
t!
8#(!XX!u!;4:012(.;:#,.UDn(%!;4;!>=DF*sssYv!
(.1%()!XXv!
w!
.)&/1(.#"!
.)&4'B!
m!A!4'B!
CCDVW!T!A!7DW!DV#8#W,(0;1II!
.)&4'B!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 9

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

The analysis can begin by scanning the pdf file called doc.pdf (md5:
6c1c23c62526dc78471c97edb3b4abc6) with ClamAV antivirus. As shown in Figure
3.1, ClamAV did not detect the file as a malicious file at this time of writing. The
ClamAV antivirus used is of version 0.92 and the main virus signature database
version is 52.

Figure 3.1 Result of ClamAV virus scan for doc.pdf

Next step for analysis is to open the file with any preferred text editor. In this
analysis, vi editor will be used. Scrolling down a little bit further inside the file
reveals a JavaScript function which contains a few variables commonly used inside an
exploit code such as payload and heap spray variable (SANS, 2009). Figure 3.2
shows the JavaScript found inside doc.pdf. In this case, the JavaScript directory is not
using any compression method. This makes for an easier analysis.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 10

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 3.2 JavaScript inside doc.pdf file

Based on Figure 3.2, it can clearly be seen that the doc.pdf file have been
modified by the attacker to inject the exploit and shellcode using a JavaScript code.
The variable payload is an unescape value which contains a shellcode. After the
payload variable, there are a few lines of JavaScript code to generate heap allocation
using heap spray technique. The heap spray code and the exploit code triggering the
vulnerability on the util.printf function will be discussed later. The shellcode analysis
needs to be done to be able to understand what the shellcode is about to execute when
the exploitation manages to be executed. In this article, a simple shellcode analysis
using libemu’s toolkit called sctest from http://libemu.carnivore.it/ by Paul Baecher &
Markus Koetter (Paul & Markus, 2009) will be conducted. In-depth analysis of the
shellcode is beyond the scope of this article.

The next step is to extract the payload variable and put it into a different file.
This step can be achieved by selecting the value inside the unescape function. Once
the shellcode is copied into a different file, it needs to be switched from the Unicode
format to a normal code by replacing the bytes order for each character’s position.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 11

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 3.3 shows the Perl code that will automate the process of replacing the
characters.

Figure 3.3 Perl script and extracted shellcode from the exploit code

Figure 3.3 shows the output of the Perl command line, which changes the
shellcode from a modified Unicode format to binary format. The binary format later
on will be piped to hexdump command for better output. Based on the new shellcode
gathered from the Perl script, the output is redirected to a file name called sheel.txt as
shown in Figure 3.4. The shellcode can then be feed to sctest to conduct a shellcode
analysis.

Figure 3.4 shows the shellcode executed inside libemu’s sctest. Based on

Figure 3.4, it can be observed that the shellcode will try to establish a reverse
connection to IP address x.x.85.36 on port 7777. Prior to establishing the reverse
connection to the said IP address, the shellcode will call a function called
LoadLibraryA to load a dll library. The shellcode later will initiate a standard
connection startup by calling a sequence of functions which are “WSAStartup”,
“WSASocket” and WSAConnect.” The WSAConnect function will receive a set of
parameters, which will be used later to connect to the IP address and the port number
7777.

shell> cat article-pdf-exp.txt | perl –pe ‘s/\%u(..)(..)/chr(hex($2)).chr(hex($1))/ge’ | hexdump -C

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 12

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 3.4 The shellcode executed inside sctest

Observing further, the JavaScript also contains a set of NOP instruction sleds
(%u9090%u9090) referred to as no operation in assembly language as shown in
Figure 3.5. The main purpose of having NOP instruction sled inside an exploit code is
to have better exploitation execution to hit into shellcode rather than hitting to the
wrong return address of the shellcode (Aleph1, 1996). Hitting the wrong return
address will cause application crash instead of code execution. The exploitation
process details are beyond the scope of this article. It is recommended that readers
study on exploitation technique materials for better understanding.

The attacker also implemented a heap spray technique for a more reliable
exploitation process as recommended by the original advisory of this vulnerability.
The heap spray technique is a technique developed by a security researcher, Berend-
Jan Wever known as SkyLined to get a reliable exploitation by manipulating
JavaScript to generate a huge memory allocation which allocates shellcode inside the
memory region created by the attacker (SkyLined, 2004). Figure 3.5 shows the heap
spray technique used by an attacker to get a reliable exploitation process.

Figure 3.5 Heap Spray Technique used by attackers

shell> cat article-pdf-exp.txt | perl –pe ‘s/\%u(..)(..)/chr(hex($2)).chr(hex($1))/ge’ > sheel.txt

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 13

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Scrolling down further, the vulnerability exploited by the attacker to exploit
Adobe Acrobat Reader can be spotted. Figure 3.6 shows the vulnerability function
util.printf being used. To trigger the vulnerability, an attacker is required to call the
util.printf function with a floating point and a large number as an argument into it. In
Figure 3.6, the num is assigned with a long floating number, which later will be used
inside the util.printf function as a parameter. A CoreSecurity analyst has provided
more details about the vulnerability research (Damian, 2008)

Figure 3.6 Adobe Acrobat Reader util.printf vulnerability used in exploit

The analysis for this PDF file is much easier since it is very straightforward. The
attacker uses a JavaScript to exploit the Adobe util.printf() vulnerability. The payload
used in this attack is a unicode shellcode that will establish a reverse connection to the
malicious server x.x.85.36 on port 7777. The analysis steps can be summarized as
below:

i. Acquire the PDF file sample.
ii. Scan the PDF file sample against any antivirus software.
iii. Open the PDF file with any text editor. In this article, ‘vi’ editor is

recommended.
iv. Analyze the PDF file by looking for suspicious object such as

“JavaScript” or “JS” name directories.
v. Analyze and study the JavaScript. Extract any suspicious shellcode or

payloads into a different file.
vi. Analyze the shellcode using sctest tool. The sctest tool will generate a

report for the shellcode.

4.0 Analysis: Compressed Stream Malicious PDF

In this section, analysis will focus on a malicious PDF file with compressed
data inside its stream object. The first analysis discussed in section 3.0 is a quite
obvious attack against the vulnerability util.printf. The payload for the malicious code
in the first analysis also is quite obvious for the malicious JavaScript. Therefore, this
analysis will examine a PDF utilizing compression on its contents.

The analysis begins by scanning the pdf file called 1[1].pdf (md5:
16249da0fc1f66d3c34ae568ae92150d) with ClamAV antivirus. Based on Figure 4.1,
ClamAV did not detect the file as a malicious file at this time of writing. The version
of ClamAV used is 0.92 and the main virus signature database is version 52.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 14

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 4.1 Result of ClamAV Scan on 1[1].pdf

Next, open the file with any preferred text editor. In this analysis, vi editor will
be used. Scrolling down a little bit further inside the file, the JavaScript function
inside /JS object can be observed. Figure 4.2 shows the JavaScript function name. The
name of the JavaScript function seems to be a little bit odd and it is a good indicator
to start digging deeper.

Figure 4.2 Suspicious JavaScript function name

As mentioned in section 2.0, a JavaScript object needs to have a JavaScript
function or an indirect reference for execution. In this particular case, it tries to
execute a JavaScript function pointing to Z0pEA5PLzPyyw. Searching for the function
name (Z0pEA5PLzPyyw) did not bring any clue at all. However, it was found that
there were a few stream names in compressed format. Figure 4.3 shows the stream tag
compressed using the /Fl /AHx format.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 15

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

As mentioned previously, PDF specifications allow multiple filters to be
applied to compress a stream. In this case, the [/Fl /AHx] abbreviation belongs to
FlateDecode and ASCIIHexDecode filter. If more than one filter is applied on a
stream, it will be called cascaded filtering or multi-layer filtering. FlateDecode filter
uses zlib library for its compression and ASCIIHexDecode uses hexadecimal
characters to decode streams. Based on Figure 4.3, Acrobat Reader will apply
FlateDecode filter and will later apply ASCIIHexDecode filter for its decompression
process.

Figure 4.3 FlateDecode and ASCIIHExDecode Filter used to compress data inside a
stream

Pdftk is software that will be used to decompress the PDF file. Please
download and install pdftk from pdftk’s website (http://www.accesspdf.com/pdftk/).
Figure 4.4 shows how to use the pdftk application dump and get uncompress data
from a compressed PDF file.

shell> pdftk 1[1].pdf output output-article.pdf uncompress

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 16

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 4.4 Decompressing a compressed PDF file using pdftk

Base on Figure 4.4, pdftk successfully generated the output from the original
file. Pdftk will try to evaluate the filters and will decompress the pdf file accordingly.
It is possible to just decompress selected stream by applying the correct
decompression format. However, it is recommended to decompress the compressed
data as a whole file. The pdftk tool is capable of decompressing a compressed stream
inside a PDF file as a whole. Next is to analyze the new file called output-article.pdf
to determine whether the file is malicious or not. The new file can be opened by using
vi editor.

In the new decompressed PDF file, a JavaScript function called
Z0pEA5PLzPyyw can be observed. Searching further for the Z0pEA5PLzPyyw
JavaScript function brings to a new JavaScript function as shown in Figure 4.5. The
JavaScript function contains a URL which is pointing to a binary location. Judging
based on this output, it can be concluded that this file is obviously malicious as it is
very rare to find a URL pointing to a binary planted inside a legitimate PDF file.

Figure 4.5 The Malicious link found inside the JavaScript function

Through further analysis, it is discovered that the JavaScript also has a
unicode shellcode assigned to variable payload. A similar shellcode analysis is
conducted to further analyze what the shellcode is about to do when it gets executed.

Further analysis on the shellcode shows that the shellcode downloads a binary
from the link found previously and will later execute the downloaded binary.
Analyzing further the decompressed PDF file, the vulnerability abused and exploited
by the attacker can be found. Figure 4.6 shows that the exploited vulnerability is the

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 17

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

same as the in the first example. The only difference is that this PDF file contains
compressed data streams.

Figure 4.6 Adobe util.prinft()’s vulnerability has been used by attacker

The analysis for this PDF file is a bit trickier since it needs to deal with
compressed data inside stream tags. By using the right tools such as pdftk, the
compressed file can be decompressed for further analysis. The major difference
between the first analysis and the second analysis is that the data inside the stream
name in the first analysis is in a normal and readable format. As for the second
analysis, all data inside the stream names were compressed and needs to be
decompressed first for further analysis to take place.

In this analysis, the attacker is using a JavaScript to exploit the Adobe util.printf()
vulnerability. The payload used in this attack is a Unicode shellcode to download and
execute a binary assigned to a URL. The analysis steps can be summarized as below:

i. Acquire the PDF file sample.
ii. Scan the PDF file sample against any antivirus software.
iii. Open the PDF file with any text editor. In this article, ‘vi’ editor is

recommended.
iv. Decompress the PDF file by using pdftk.
v. Re-analyze the PDF file by looking for suspicious object such as

“JavaScript” or “JS” name directories.
vi. Analyze and study the JavaScript.
vii. Extract any suspicious shellcode or payloads into a different file.
viii. Analyze the shellcode using sctest. The sctest tool will generate a

report for the shellcode.

5.0 Analysis: Obfuscated JavaScript Payload

In this section, analysis will focus on a malicious PDF file, which contains
compressed data streams and an obfuscated JavaScript. Since the JavaScript engine
inside the PDF reader applications (in this case is Adobe’s engine) has its own way of
interpreting execution, understanding how its syntax work is crucial. This example
focuses on analyzing and interpreting the execution of JavaScript inside the PDF file.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 18

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

The exploit used inside this PDF file is util.printf(). The details of this vulnerability
have already been discussed in the previous section.

The analysis starts with scanning the PDF file called s.pdf (md5:!
>&'.mQmTT@[>>&AQ=AMQ>#QM??m[>#M,). Figure 5.1 shows the scan result from
ClamAV. ClamAV did not detect the file as malicious at this time of writing. _.X1!
/1.;!0/!14!4;.)!1$.!HsS!M0:.!%/0)F!,-'.&014(2!

Figure 5.1 Result from ClamAV detection.

When opening the PDF file via vi editor, there were not any useful string
related to JavaScript except the standard PDF names found. Through proper
observation, the data inside the stream names seems to be compressed. Figure 5.2
shows the compressed data inside stream tag with FlateDecode filter.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 19

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 5.2 The compressed data inside stream tag

Similar steps as conducted in the second analysis, which involves using pdftk,

can be followed to decompress the compressed data. Figure 5.3 shows pdftk was used
to decompress the data stream.

Figure 5.3 Using pdftk to decompress compressed PDF file.

It can be seen that pdftk successfully generated the output from the original
file. The new file called output-3th.pdf needs to be analyzed to verify whether the
PDF file is malicious or not. Open the newly generated PDF file by using vi editor
again for further analysis.

Scrolling a bit further inside the file, a JavaScript portion with a typical base64
encoding function can be observed. Inside the function, there is another JavaScript
function call to the eval() function. Figure 5.4 shows the JavaScript function found in
the PDF file. That is obviously an obfuscated JavaScript function, which tries to make
analysis more difficult (Marco et al, 2010).

Figure 5.4: Obfuscated JavaScript inside PDF file

shell> pdftk 1[1].pdf output output-article.pdf uncompress

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 20

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

The obfuscated JavaScript requires further analysis to understand its function.
By judging the nature of the PDF exploits on previous cases, the exploits normally
come together with a working shellcode. Therefore, the JavaScript must be analyzed
within a safe environment or a different approach can be used which is by using a
JavaScript-debugging tool like SpiderMonkey, Rhino and Tamarin. In this analysis,
the latter method, which involves using the SpiderMonkey JavaScript analyzer, will
be used. However, SpiderMonkey alone is not very effective for analyzing malicious
JavaScript because SpiderMonkey is unable to produce any logs for eval() or
document.write() functions. However, Didier Steven’s patch for SpiderMonkey is
capable to produce logs for eval() and document.write() functions. Didier Steven’s
patch can be downloaded from the URL
http://www.didierstevens.com/files/software/js-1.7.0-mod.tar.gz. The software is
required to be compiled first but the how-to on compilation will not be covered in this
article. Please read Didier Steven’s how-to for the software compilation steps via
http://blog.didierstevens.com/programs/spidermonkey/.

Let’s go back to analysis. E$.!V#8#W,(0;1!M%),104)!)..&/!14!'.!,4;0.&!0)14!#!
M0:.! #)&! 0)! 1$0/! #)#:-/0/! 1$.! M0:.!x0::! '.!)#".&!#/!"#:0,04%/^B/2B/. The JavaScript
function require minor modification to be made by removing the character ^M. E$.!
a6! ,$#(#,1.(! x#/! F.).(#1.&! '-! ;&M1n! application. Then, execute the Didier
Steven’s patch code to analyze the JavaScript. Figure 5.5 shows the method and result
of executing the file using a patched version of SpiderMonkey.

Figure 5.5 Result from running patched SpiderMonkey JavaScript analyzer

From the result, there are two new files created. As can be seen, the file name

prefix started with eval which is related with a function discovered in the previous
JavaScript code. The newly created file called eval.001.log requires further analysis.
Each of the result from the patched SpiderMonkey will generate a file starting with
prefix eval for any eval() function and document.write for any document.write()
function being called inside the JavaScript code. The log file name also indicates how
many times the functions have been called by adding number iteration. In this

shell> pdftk 1[1].pdf output output-article.pdf uncompress

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 21

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

example eval.001.log means that the function was only called once in the JavaScript
code.

Open the eval.001.log file with vi editor for further analysis. From the file, it is
obvious that another JavaScript function was created from the obfuscated JavaScript.
The JavaScript is pretty much similar to what was discussed in the first and second
analysis. It starts with variable lemiros using an unescape function with unicode value
inside the function. As learnt in the previous analysis, the value inside the unescape
function is a Unicode shellcode used to execute an attacker’s instruction. As observed
on the last line of the JavaScript, the vulnerable function, util.printf() was again being
abused by the attacker. Figure 5.6 shows the JavaScript function which was retrieved
from the obfuscated JavaScript.

Figure 5.6 De-obfuscated JavaScript

The next step is to conduct the shellcode analysis, which can be conducted by
feeding the shellcode into the sctest application. From the analysis, the shellcode will
call a function “URLDownloadToFileA” triggering to load another DLL library,
URLMON.DLL. The “URLDownloadToFileA” function needs to receive a location to
save the data, hence the next function to be called is “GetSystemDirectoryA". The
shellcode will download a binary file from a URL and save the file inside Windows’s
system directory called a.exe. The a.exe file will later be executed after it is
downloaded into the system32 directory due to a function called “WinExec” which is
being called after the a.exe file is downloaded. Figure 5.7 shows the shellcode
behavior as explained.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 22

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 5.5: Shellcode behavior

It is quite challenging to analyze an obfuscated JavaScript. However, using
pdftk,SpiderMonkey and a patch from Didier Steven facilitates the analysis process of
the obfuscated JavaScript. This third case involved a compressed JavaScript inside
stream names and the JavaScript is highly obfuscated making the analysis more
difficult. The shellcode analysis was done similar to the previous analysis by using
libemu’s sctest application. The analysis steps can be summarized as below:

i. Acquire the PDF file sample.
ii. Scan the PDF file sample against any antivirus software.
iii. Open the PDF file with any text editor. In this article, ‘vi’ editor is

recommended.
iv. Decompress the PDF file by using pdftk if the PDF file is compressed.
v. Re-analyze the PDF file by looking for suspicious object such as

“JavaScript” or “JS” name directories.
vi. Analyze and study the JavaScript using patched SpiderMonkey .
vii. Extract any suspicious shellcode or payloads into a different file.
viii. Analyze the shellcode using sctest tool. The sctest tool will generate a

report for the shellcode.

6.0 Analysis: PDF Syntax Obfuscation

For the previous analysis on malicious PDF files, there are a few ways to
obfuscate the attacks. Due to the PDF syntax inside the PDF reader applications (in
this case is Adobe’s engine) has its own way of interpreting execution, understanding
how PDF syntax works is crucial. In this example, the analysis process will focus on
how to interpret and analyze the interpretation of PDF syntax inside the PDF file.
Attackers use the technique of manipulating PDF syntax to make analysis harder. The
three vulnerabilities used in this PDF file are:

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 23

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

• Collab.collectEmailInfo (CVE-2007-5659)
• util.printf (CVE-2008-2992)
• Collab.getIcon (CVE-2009-0927)

The analysis starts by scanning the PDF file called inputtaiment.pdf (md5:!
#>Mm#?&Qm=T?>T<==,@=T',#@@=,.,,<). Figure 6.1 shows the scan result from
ClamAV. ClamAV did not detect the file as malicious at this time of writing. Further
investigation for this PDF file is required to determine whether it is a malicious PDF
file or not.

Figure 6.1 Scan result from ClamAV.

Next step is to open the PDF file with any text editor, and again, vi editor will
be used. Similar to the third analysis, the PDF file is using a compressed stream to
properly hide itself. A similar method as used in the third analysis can be carried out
to decompress the compressed stream data. Figure 6.2 shows how to decompress the
stream data inside the PDF file.

Figure 6.2 PDFTK can be used to decompress the compressed PDF file.

Upon successfully decompressing the PDF file, analysis continues by looking
for any suspicious JavaScript. Looking further inside the file, it was found that the
PDF file contains a few JavaScript codes, which does not have PDF syntax for calling
JavaScript inside a PDF. Further analysis is required to investigate how it is possible

shell> pdftk 1[1].pdf output output-article.pdf uncompress

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 24

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

to execute a JavaScript function without calling the JavaScript object. Figure 6.3
shows the JavaScript functions, which do not have JavaScript tags.

Figure 6.3 JavaScript inside PDF without JavaScript object

Analysis in this case will have to start from the beginning of the PDF file
itself. When analyzing the original PDF file, object 1 was found to have a dictionary
called Names. The dictionary Names has a JavaScript name pointing to a different
object, which is object 8. Figure 6.4 shows the dictionary Names is pointing to object
8.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 25

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 6.4 Element Names pointing to object 8 with JavaScript tag

Inspection on elements inside object 8 is necessary. Figure 6.5 shows that

object 8 is having another Names element pointing to object 7.

Figure 6.5 Element Names pointing to object 7

Inspecting object 7 shows that it contains a JavaScript element pointing to
object 6. Figure 6.6 shows object 7 having a JavaScript element pointing to an object
which will eventually execute JavaScript code inside object 6.

Figure 6.6 Object 7 pointing to object 6 which JavaScript name enabled

Inspecting object 6 reveals that the content inside this object is compressed
using FlateDecode filter. Figure 6.7 shows the compressed data inside object 6.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 26

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 6.7 Compressed data inside object 6

Since the original PDF file has been decompressed previously, the
uncompressed file (output-4th.pdf) will be analyzed. Inspecting the uncompressed
object 6 data reveals the JavaScript code. Figure 6.8 shows the uncompressed data.

Figure 6.8 JavaScript inside uncompressed data on object 6

Normally the next step is to execute this code by using the patched version of

SpiderMonkey. However, SpiderMonkey will surely fail to execute this properly due
to a missing object declared for variable ‘T9sTwhuAhtMG6t2T1eC6’ as shown in
Figure 6.8. By analyzing the code, it is obvious that the variable
‘T9sTwhuAhtMG6t2T1eC6’ is pointing to object ‘this.info.title’. What does data
‘this.info.title’ variable contain? Normally in a programming stand point of view, the
variable ‘this’ is pointing to itself. So ‘this’ is pointing to the PDF file itself. The

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 27

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

variable ‘info’ is pointing to Info object. Next step is to identify the ‘Info’ object
inside the PDF file (the original file). Carefully looking at the bottom of the file,
there is a dictionary object called Info. Figure 6.9 shows the Info dictionary object
within the Trailer object.

Figure 6.9 The Info dictionary object.

It is interesting enough to observe that the Info dictionary object points to
another object. In this case, the dictionary object is pointing to object 9. Again,
analysis on object 9 is required to inspect the contents. Searching for object 9, the
result will show that object 9 has a dictionary object with multiple keys and values. It
is interesting to observe that one of the keys is called Title. As for now, the
connection of ‘this.info.title’ contents is revealed. It goes from This document,
referencing to Info dictionary object and next pointing to Title key. Figure 6.10 shows
the keys and values inside object 9.

Figure 6.10 Dictionary object for object 9

As shown by Figure 6.10, Title key is pointing to another object, which in this
case is object 5. Further analysis on the data inside object 5 is required to know what
data have been stored inside object 5. Analyzing object 5 shows that the data have
been compressed with FlateDecode filter as displayed in Figure 6.11.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 28

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 6.11 Partial Compressed data inside object 5

Decompressing the stream reveals a very long and unrecognizable string.
Figure 6.12 shows a portion of the decompressed data.

Figure 6.12 A portion of the uncompressed data inside object 5

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 29

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

The string data found on object 5 can be used to assign it to the variable
‘T9sTwhuAhtMG6t2T1eC6.’ Modification of the JavaScript (Figure 6.8) is necessary
by changing the value this.info.title to the data contained in object 5 (obj 5 0). The
next step is to run the script against the patched SpiderMonkey application. After
running the JavaScript with the patched SpiderMonkey, two files called eval.001.log
and eval.002.log will be generated. Inspecting further inside the files reveals two
more JavaScript codes. Figure 6.13 and 6.14 shows the two JavaScript codes.

Figure 6.13 JavaScript code from obfuscated script.

var NCWlN7dj6i5VIHUGucDf = unescape(caDzyc8wlduDEopQE1zB);

!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 30

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 6.14 JavaScript code from obfuscated script.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 31

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

The JavaScript shown in Figure 6.15 is one of the eval function output from
the previous JavaScript. The variable NCWlN7dj6i5VIHUGucDf holds data of
variable caDzyc8wlduDEopQE1zB which will later be changed to an unescape format
as shown in Figure 6.15.

Figure 6.15 JavaScript code from obfuscation script.

The JavaScript shown in Figure 6.14 clearly reveals that three different

exploits have been used by the attacker by embedding the exploits inside the PDF file.
As mentioned at the beginning of this topic, the three vulnerabilities used in this PDF
file are:

• Collab.collectEmailInfo (CVE-2007-5659)
• util.printf (CVE-2008-2992)
• Collab.getIcon (CVE-2009-0927)

Shellcode analysis on this script cannot be done using the same technique

mentioned earlier in this article. This is because libemu’s sctest is unable to simulate
the shellcode instructions thus will fail to provide a useful analysis. At this time of
writing, the shellcode analysis is conducted by using libemu version 0.2.0. A different
approach will be used for the shellcode analysis where the shellcode will be converted
into a binary PE format to be executed inside a debugger.

Converting the shellcode to a binary PE format can be done easily by using a

tool from Sandsprite (Sandsprite, 2010). The unicode payload needs to be copied and
passed into a field provided in the Sandsprite tool. Sandsprite will automatically
generate the binary format. Immunity debugger will then be used in this example to
debug the binary of the shellcode. Immunity debugger can be downloaded from
Immunity’s website via https://www.immunityinc.com/products-immdbg.shtml.
Shellcode analysis by using Immnunity debugger is beyond the scope of this article.

The result of the analysis shows that the shellcode will download a binary file

from a URL and save the file inside a Windows’s system directory called e.exe. The
e.exe file will be executed after it is downloaded into user temp directory. Figure 6.16
shows a few steps of the shellcode behavior.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 32

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

Figure 6.16 Shellcode behavior

From the fourth analysis, it can be concluded that it is quite challenging to analyze

a combination of complex obfuscation methods used by an attacker. Triggering the
vulnerability for exploitation inside JavaScript code obviously makes it difficult to
conduct analysis without analyzing the JavaScript itself. Applying PDF properties
such as “this.info.title” to prevent automation on JavaScript analysis makes analysis
on this sample a bit annoying. Combination of multiple vulnerabilities is the latest
trend used by attackers to maximize the percentage of infection. Different approaches
for shellcode analysis are required when libemu’s sctest fails to emulate the shellcode
instruction. One of the approaches is to use debugger to manually go through the
assembly code of the shellcode. The analysis steps can be summarized as below:

i. Acquire the PDF file sample.
ii. Scan the PDF file sample against any antivirus software. In this article,

ClamAV is used.
iii. Open the PDF file with any text editor. In this article, ‘vi’ editor is

recommended.
iv. Decompress the PDF file by using pdftk if the PDF file is compressed.
v. Re-analyze the PDF file by looking for suspicious object such as

“JavaScript” or “JS” name directories.
vi. Analyze and study the JavaScript by using a patched version of

SpiderMonkey.
vii. Analyze the PDF syntax used in the PDF file by following the

reference used by the object.
viii. Extract any suspicious shellcode or payloads into a different file.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 33

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

ix. Analyze the shellcode using sctest tool. The sctest tool will generate a
report for the shellcode. If the sctest fails to emulate the shellcode,
conduct a manual debugging for the shellcode if necessary. The
shellcode can be converted into binary format by using SandSprite’s
“shellcode to bin” tool. Immunity debugger can be used to debug the
shellcode.

7.0 Mitigation and Prevention

Analyses mentioned in the previous sections shows that it is possible to detect a

malicious PDF file. The first good mitigation for this attack is by having an updated
version of Adobe Acrobat Reader software. The latest version of Adobe Reader 9.3.0
at the time of writing is free from the vulnerabilities discussed in this article. The
latest version of Acrobat Reader can be downloaded from Adobe’s website
(http://get.adobe.com/reader/). However, the latest version of Acrobat Reader does
not completely provide protection against any 0day attacks. In cases of any 0day
attacks, using alternative applications is probably one of the approaches that can be
done to reduce the risks of getting compromised.

 It is impossible to prevent someone from sending a PDF file format. The best
way to handle this is by using PGP’s signing process. Users may then only open any
PDF files sent by trusted PGP’s key and not by email addresses.

Having the latest version of antivirus with updated virus signatures also helps in

defending from this type of attack. However, relying heavily on antivirus solutions
alone to prevent this attack is not a really good practice. Attackers may find ways to
bypass antivirus signatures and by enabling JavaScript, attackers are in the advantage
to easily bypass antivirus detection. Disabling the JavaScript feature in PDF reader is
also a good practice to reduce security risks. Ways to disable JavaScript features can
be followed from MyCERT’s advisory via this URL
http://www.mycert.org.my/en/services/advisories/mycert/2010/main/detail/723/index.
html.

Having decent rules on network perimeters such as firewall, IDS, or IPS is also

helpful. Filter egress firewall connections so if the executable is downloaded and
installed, the outbound attempt may be filtered. Any connections attempt to download
a exe file from the Internet needs to be blocked from non-authorized connections.
Even though blocking can be configured at perimeters, attackers nowdays have
moved on to using other methods in delivering their malware. Instead of requiring the
shellcode to fetch the malware from the Internet, the attacker planted their malware
inside the PDF file itself. Once exploited, the shellcode will be executed and will
search from the memory the location of the malware file. Once found, it will execute
the malware! file. This type of shellcode is called egg-hunting shellcode. A more

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 34

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

detailed explanation about egg-hunt shellcode can be read from Matt Miller’s
excellent paper via http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf.

Modern operating systems and CPU processor are already equipped with
exploitation prevention technologies such as Data Execution Prevention (DEP),
Address Space Layout Randomization (ASLR) and No eXecute (NX). All these
technologies are capable in reducing and mitigating the exploitation threats. The latest
version of Acrobat Reader is already compiled with the ASLR feature. Adobe on their
advisory is also recommending users to enable all these features to minimize the risk
of successful exploitations (Adobe, 2009). Due to the latest technique of JIT Heap
Spray, there will be risks of how attackers can bypass the ASLR protection and DEP
as well.

8.0 Conclusion

The attack vectors may come from various angles such as network services,
application services, as well as social engineering attacks. The attacks used to only
target network services for remote exploitation. However, the trend has shifted to
attacks on applications or client applications itself. Due to this, there is a need for the
ability to analyze malicious PDF files as it is needed in detecting any form of PDF
attacks.

Analysis on malicious PDF files requires an analyst to understand the structure of

PDF syntax as well as the JavaScript language. Obfuscation techniques such as
JavaScript obfuscation and PDF syntax obfuscation are some of the challenges when
analyzing malicious PDF file. JavaScript obfuscation can be analyzed by using a
patched version of SpiderMonkey. A patched SpiderMonkey is capable to emulate,
execute, and log the result from an obfuscated JavaScript into log files. While PDF
syntax obfuscation can be tricky, understanding how PDF syntax works will help
when dealing with this type of obfuscation.

Shellcode analysis can be conducted by using libemu’s sctest. Sctest is capable in

emulating about 30 plus shellcode variants. Manual debugging is required for the
shellcode analysis if sctest is unable to emulate the shellcode. Immunity Debugger
can be used to conduct the manual shellcode analysis. Manual analysis will require an
analyst to convert the shellcode into a binary file. A tool from Sandsprite can be used
to convert the ascii shellcode into an executable file. The executable file will then be
attached or opened inside the Immunity Debugger for further analysis. Going through
the assembly code of the shellcode will require an analyst to understand the assembly
language as well as the Windows API function.

This article focuses on adobe reader; however, keep in mind that the attacks can

also occur on other high profile applications. Applications used on a daily basis like
browsers, music or video players, and file readers will be the favorite targets of

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 35

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

attackers. Therefore, users must make sure that all of the software installed in their
system is patched with the latest update. Enabling the exploitation prevention features
such as ASLR, DEP, NX or any exploitation prevention is highly recommended to
reduce the success rate of exploitation.

The merge of a complex system such as JavaScript engine with applications like

PDF reader enables exploitation processes to become more reliable. This is because
features such as the JavaScript language embedded in PDF reader can be misused to
obtain a more stable exploitation process. To get reliable exploitation, attackers
commonly use heap spray technique relying on JavaScript. Detecting heap spray
behaviors is difficult; analyzing the malicious code is required to figure out the heap
allocation inside the process.

From this article, it is hoped that the public at large is aware about this current

threat and analysts will produce analysis tools for analyzing malicious PDF files.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 36

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

9.0 Reference

Adobe System Incorporated (2006). PDF Reference Sixth Edition. Retrieved Mar 10,
2010 from Adobe Web Site:
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

Aleph1 (1996). Smashing The Stack For Fun And Profit. Phrack Magazine 47th
Edition. Retrieved Mar 10, 2010 from Phrack WebSite:
http://www.phrack.com/issues.html?issue=49&id=14#article

Adobe (2009). Security Advisory for Adobe Reader and Acrobat. Retrieved Mar 10,
2010 from Adobe WebSite:
http://www.adobe.com/support/security/advisories/apsa09-07.html

Damian (2008). Adobe Reader Javascript Printf Buffer Overflow. Retrieved March
10, 2010, from CoreSecurity Web site: http://www.coresecurity.com/content/adobe-
reader-buffer-overflow

Elazar (2008). Adobe Reader util.printf() JavaScript Function Stack Overflow
Exploit. Retrieved March 10, 2010, from Milw0rm Website:
http://milw0rm.com/sploits/2008-APSB08-19.pdf

CoreSecurity Technologies (2008). Adobe Reader Javascript Printf Buffer Overflow.
Retrieved March 10, 2010 from CoreSecurity Web site:
http://www.coresecurity.com/content/adobe-reader-buffer-overflow

Marco.C, Crishtoper.K and Giovanni.V (2010). Detection and Analysis of Drive-by-
Download Attacks and Malicious JavaScript Code. ACM 978-1-60558-799-8/10/04.
Retrieved March 10, 2010 from Chishtoper Kruegel Website:
http://www.cs.ucsb.edu/~chris/research/doc/www10_jsand.pdf

Paul.B And Markus.K (2009). Libemu-x86 shellcode detection and emulation.
Retrieved March 10, 2010, from libemu Website:
http://libemu.carnivore.it/index.html

SANS (2009). PDF malware analysis. Retrieved March 10, 2010 from SANS
Website: http://blogs.sans.org/computer-forensics/2009/12/14/pdf-malware-analysis/

Sandsprite (2010). Shellcode 2 EXE. 2! !Retrieved March 10, 2010, from Sandsprite
website: http://sandsprite.com/shellcode_2_exe.php

Wn-P0).&! U=AA?Y2! ! y#,n0)FDy.#;! W;(#-2! ! Retrieved March 10, 2010, from
SkyLined website. $11;5DD/n-;$.(2,4"Dx0n0D0)&.X2;$;Dy#,n0)FDy.#;z/;(#-0)F!
!

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Getting Owned By Malicious PDF - Analysis 37

!

!

!

"#$"%&!#'!(#$"#)*!"#$"%&+,-'.(/.,%(01-2"-! ! !

!

W.,%(01-S4,%/U=AA[Y2! 3&4'.! 7.#&.(! #)&! 3,(4'#1! {).x;:#-.(UY{! V#8#W,(0;1!
6.1$4&! 7."41.! 94&.! ZX.,%104)! K%:).(#'0:01-2! Retrieved March 10, 2010 from
SecurityFocus Web site: http://www.securityfocus.com/bid/37331

ShadowServer(2009). When PDFs Attack - Acrobat [Reader] 0-Day On the Loose.
Retrieved March 10, 2010 from ShadowServer
website:http://www.shadowserver.org/wiki/pmwiki.php/Calendar/20090219

The Register (2010). Poisoned PDF pill used to attack US military contractor.
Retrieved May 16,2010 from The Register Website:
http://www.theregister.co.uk/2010/01/18/booby_trapped_pdf_cyber_espionage/

VirusTotal (2010). LEGAL NOTICE - PRIVACY POLICY. Retrieved May 16,2010
from VirusTotal Website: http://www.virustotal.com/privacy.html

Zerodayinitiative (2008), Adobe Acrobat PDF Javascript printf Stack Overflow
Vulnerability. Retrieved March 10, 2010, from Zero Day Initiative (ZDI)
Website:http://www.zerodayinitiative.com/advisories/ZDI-08-072/

Zerodayinitiative (2009), Adobe Acrobat getIcon() Stack Overflow Vulnerability.
Retrieved March 10, 2010, from Zero Day Initiative (ZDI)
Website:http://www.zerodayinitiative.com/advisories/ZDI-09-014/

