
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Egress Filtering: Why and How
Why Use Egress Filtering

So much attention is given to protecting hosts and network perimeters from external attack, that many
times ingress filtering is the only direction even considered when building a defense. But a well-rounded
defense looks at traffic going both ways. For starters, there are some dangers that ingress filtering alone
cannot address:

· No matter how tough the firewall, there is always the risk of unforeseen vulnerabilities, failures, etc.
that could allow a host to be compromised. From a compromised host, attacks could be waged
against other sites.

· A user already inside the network (an employee who wants to do a little hacking of his own, a
consultant who gains physical access, etc.) might use network resources to attack other sites. To the
degree that it is possible, the firewall policy should include measures to control and detect such
infractions.

In addition to these risks, using egress filtering can make the job of stopping network information
probes easier. It is difficult to predetermine all the ways an attacker may try to gather information about the
network, so it is wise (and easy) to also include filtering rules to stop the answers from being sent.

In the case of attacks from inside (by either physical access or a compromised system), if the attacker
does nothing to hide his source address, eventually you will probably hear about it and be able to track it
down. But if they spoof the source address, the only way to reliably handle the situation is to filter spoofed
packets leaving your network. Fortunately, this is quite simple to do.

How to Use Egress Filtering
To cover the above-mentioned issues, the two main types of traffic that an egress filter should look for

are: packets whose source address is not a legal address in the internal network, and responses to requests
that are not necessary for outsiders according to your security policy (for example, “destination
unreachable” messages that can be used to map a network by silence).

For my example syntax, I will use ipchains and a simple network similar to the one I am tasked with
securing, which is a class C address space with no subnetting – we’ll call it 10.10.10.0. The external router
is connected to eth0, and eth1 goes to the internal network. Imagine these commands as being in an
appropriate order in complete chains that include ingress filtering as well, and have defaults as follows:
ipchains –P input DENY
ipchains –P output ACCEPT

Be sure that any catch-alls “apply”s at the end of the input chain don’t include packets coming into
eth1. For catching spoofed source addresses, the following syntax would be used, which accepts packets
coming into the internal network interface card that have an legitimate (internal network) source IP:
ipchains –A input –i eth1 –s 10.10.10.0/24 –j ACCEPT

The default deny in the input chain will catch packets with any other source address.
As an example of an outgoing response to stop, here is the syntax to deny ICMP “destination

unreachable” messages. It is put in the output chain for the interface card to the router so that answers from
the firewall itself are also checked:
ipchains –A output –i eth0 –p icmp –icmp-type destination-unreachable

To test the first rule, the most direct method is to use a tool that can generate packets with spoofed
source addresses, if available. An alternative would be to put a machine on the internal network just for
testing that has an IP address that is not part of the normal address space, which may require taking the
firewall off-line and having an isolated test network. Monitor the packet traffic on both sides of the firewall

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

firewall off-line and having an isolated test network. Monitor the packet traffic on both sides of the firewall
and verify that the offending packets were stopped. Be sure also to test valid packets, also, to make sure
they get through.

To test the second rule, use a host outside the firewall, either on the internet or on the DMZ if you
have one. If you have ingress rules covering all known offending inquiries, comment out one of those rules
from your script, reconstruct the chain, and test using that request. Don’t forget to re-insert the rule
afterward and reconstruct the chain again.

Firewall Policy Violations
Preface

The small company I work for has no firewall yet (setting one up is my job), and since I work only
two days a week and am busy with missionary work the rest of the time, there was no time to set up a test
network to attack (although I would have liked to do that, as I would have learned a lot). So I looked
through some of the recent detects on the GIAC web site and selected a few that I thought represented a
variety of types of attacks. I will show the detect log entries as they appeared on the web site, explain the
type of attack and how to read the logs, and give a typical example rule that would have caught the
violation. Although the logs are from different firewall devices and software (routers, ipchains, and
commercial firewall software), for simplicity I will give all the rule examples in ipchains syntax.

Violation #1: NetBios Scan
Date Time Rule that detected it Protocol Source IP Source port Dest. IP Dest. port

Jun 6 13:22:36 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.1.137
Jun 6 13:22:38 fwall 15 deny: UDP from 10.1.1.2.137 to mysubnet.1.137
Jun 6 13:22:38 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.1.137
Jun 6 13:22:38 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.1.137
Jun 6 13:22:39 fwall 15 deny: UDP from 10.1.1.2.137 to mysubnet.1.137
Jun 6 13:22:55 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.2.137
Jun 6 13:22:57 fwall 15 deny: UDP from 10.1.1.2.137 to mysubnet.2.137
Jun 6 13:22:57 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.2.137
Jun 6 13:22:57 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.2.137
Jun 6 13:23:03 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.3.137
Jun 6 13:23:05 fwall 15 deny: UDP from 209.179.192.145.137 to mysubnet.3.137

These logs represent a typical UDP scan that is looking for Windows NT/9x hosts using the NetBios
UDP port 137. Most of the scans come from host 209.179.192.145 (or a mystery host using that as a
spoofed source address), also using port 137 as the source, but alternately a second source address (10.1.1.2,
a typical internal address) was also used to probe the same machines, perhaps as a different tactic to try to
fool the firewall into thinking it was normal NetBios traffic. The destination addresses were probed
incrementally starting with mysubnet.1, and each host was probed several times each. Presumably this
pattern continued until the hacker gave up, realizing that either a firewall was quietly catching his attacks
(the truth) or there weren’t any Windows machines there.

An ipchains rule that would catch this scan is:
ipchains –A input –i EXT_NIC –dport 137:139 –j DENY -l

If this scan had not been caught, the attacker may have been able to determine the IP addresses of
Windows machines on the network, and then searched for Windows vulnerabilities to exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Violation #2: Port Scan
Date Time Action Direction Protocol Source IP Source port Dest. IP Dest. port

Jun 05 2000 21:30:30: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1051
Jun 05 2000 21:32:30: Deny inbound UDP from 169.132.184.211/6801 to

x.x.x.31/1052
Jun 05 2000 21:34:30: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1053
Jun 05 2000 21:36:31: Deny inbound UDP from 169.132.184.211/6801 to

x.x.x.31/1054
Jun 05 2000 21:38:31: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1055
Jun 05 2000 21:40:31: Deny inbound UDP from 169.132.184.211/6801 to

x.x.x.31/1056
Jun 05 2000 21:42:31: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1057
Jun 05 2000 21:44:31: Deny inbound UDP from 169.132.184.211/6801 to

x.x.x.31/1058
Jun 05 2000 21:46:31: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1059
Jun 06 05:55:14: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1303
Jun 06 05:59:06: Deny inbound UDP from 169.132.184.211/6801 to x.x.x.31/1304
Jun 06 06:01:08: Deny inbound UDP from 216.53.10.1/6801 to x.x.x.31/1305

This seems to be a semi-random UDP port scan of a particular host (x.x.x.31) masquerading as
coming from two different sources, presumably to fool firewall software looking for repeating patterns. The
packets are clearly manufactured, because the source port, although an ephemeral port, is always the same.
The rules that would catch this scan are a set that would block all UDP to any ports that are not needed on
that machine. For example, if the machine in question was a DNS server, port 53 would be needed for
requests, so in that case, the rule would look like:
ipchains –A input –p udp –d x.x.x.31/0 !53 –j DENY -l

Similar rules could be written for TCP ports, other hosts, etc. The logs would clearly show that a scan
was attempted, although in this case, since it is obvious that at least one of the source addresses was
spoofed, probably both of them were, so catching the perpetrator would be difficult.

If this scan had not been caught, any ports that might be opened by the target host to access other
hosts as a client (i.e. ephemeral ports) might be attacked.

Violation #3: Looking for Back Doors
Date Time Rule that detected it Source location

 Source IP Source port Dest. location Dest. IP Dest. port

Jun 6 18:40:55 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.13/31337

Jun 6 18:40:55 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.86/31337

Jun 6 18:40:55 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.104/31337

Jun 6 18:40:55 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.121/31337

Jun 6 18:40:55 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.139/31337

Jun 6 18:40:56 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.156/31337

Jun 6 18:40:56 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.174/31337

Jun 6 18:40:56 : Deny inbound udp src outside:
 63.22.106.113/1037 dst lb-dmz:x.x.x.210/31337

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This attacker is looking for Windows machines that have the Trojan backdoor Back Orifice installed,
which uses TCP port 31337 to allow entry. Although the destination IP addresses are not all the hosts in the
Class C space, the person who submitted these logs noted that not all the hosts that actually exist were
probed, so it is likely that rather than the attacker knowing the IP addresses of the hosts on the network and
methodically probing only them, he was probably doing a random low-and-slow probe to avoid being
noticed.

To block this scan at the firewall, you could try anticipating all the high-numbered ports that are used
by the various backdoors, but a simpler solution is to simply shut down all packets destined for ephemeral
ports, unless there is some (very unusual, non-standard) legitimite application that uses them.
ipchains –A input –i EXT_NIC –dport !1:1023 –j DENY -l

If this scan had not been blocked, nothing particularly terrible would happen as long as no backdoors
were installed on any of the PCs. But who wants to guarantee that? :-o

Violation #4: Syn-Fin Scan
Date Time Host Program[Rule#?] Attack Type Source IP Source port Dest. IP Dest. port

Jun 6 02:37:55 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.c.19:53
Jun 6 02:37:55 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.c.32:53
Jun 6 02:37:55 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.c.33:53
Jun 6 02:37:56 hosth /kernel: Connection attempt to TCP a.b.c.62:53 from

63.226.11.117:53
Jun 6 02:37:56 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.c.51:53
Jun 6 02:38:01 hosth snort[256]: spp_portscan: portscan status from

63.226.11.117: 17 connections across 17 hosts: TCP(17), UDP(0) STEALTH
Jun 6 02:38:01 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.d.52:53
Jun 6 02:38:06 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.e.79:53
Jun 6 02:38:07 hosth snort[256]: spp_portscan: portscan status from

63.226.11.117: 10 connections across 10 hosts: TCP(10), UDP(0) STEALTH
Jun 6 02:38:07 hosth snort[256]: SCAN-SYN FIN: 63.226.11.117:53 -> a.b.e.91:53
Jun 6 02:38:26 hosth snort[256]: spp_portscan: End of portscan from

63.226.11.117

From the fact that the source and destination port were both 53, it seems that the attacker was hoping
to find a host running DNS that had a vulnerability he could exploit, perhaps involving zone transfers
(which come from 53). But the main point about these detects is that the packet had both the SYN and FIN
flags set. The SYN flag is used to indicate a request to begin a connection session, but a three-way
handshake is required before the connection is considered opened. The FIN flag should only be used to
request termination of an active, fully open session, so the use of those flags together is a violation of the
TCP standard. Some intrusion detection systems don’t properly process packets with both those flags set, so
the attacker can try to hide his tracks that way.

Ipchains seems to also be a system that cannot detect this flag combination specifically, but it is the
sort of low-level trick that is best caught at the router anyway, unless you’ve bought one of those high-
powered commercial firewalls. I can’t seem to lay my hands on the syntax for an ACL entry on a Cisco
router (not yet owning such a router, and only having downloaded small parts of the documentation off the
Cisco web site), but the key is specifying the individual flags set on the packet in question – if both SYN
and FIN are set, no matter what else is in the packet or where it came from, you want to dump it.

If this is not caught, it will be a way for the hacker to scan the system without being detected if the
IDS won’t pick it up either. There very well may be a DNS out there that has a hole…

Violation #5: Echo Request Network Mapping
Date Time Host Rule# Action Protocol Source IP Dest. IP Message Type

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jun 4 16:41:47 fwall 11 deny: icmp from 38.27.213.54
 to xxx.xxx.xxx.255 type Echo Request
Jun 4 16:41:47 fwall 12 deny: icmp from 38.27.213.54
 to xxx.xxx.xxx.0 type Echo Request
Jun 4 16:41:48 fwall 11 deny: icmp from 38.27.213.54
 to xxx.xxx.xxx.255 type Echo Request
Jun 4 16:41:48 fwall 12 deny: icmp from 38.27.213.54
 to xxx.xxx.xxx.0 type Echo Request

This attacker seems to want to know what IP addresses are real hosts on this Class C network. He is
sending ICMP echo request packets (i.e. ping) to two addresses: one with the host section all zeros and the
other all ones. The all zeros address is typically used to refer to the network as a whole (in filtering rules,
documentation, etc.), but I don’t really know what it would actually do as the destination address of a
packet. But all ones in the broadcast address for the network, a popular destination for hackers mapping a
network using ICMP. (Note: ICMP has no such thing as ports, so there is no port numbers listed in the
detects.)

The command to catch all pings from the Internet is:
ipchains –A input –i EXT_NIC –p icmp –icmp-type echo-request

Or if you only want to stop these specific ones (especially the one destined for the broadcast address is
a good one to filter), you would use the following:
ipchains –A input –i EXT_NIC xxx.xxx.xxx.0 –p icmp –icmp-type echo-request
ipchains –A input –i EXT_NIC xxx.xxx.xxx.255 –p icmp –icmp-type echo-request

If the ones to the broadcast address are left unfiltered, and the answers going back out are also
unfiltered (see the above paper on Egress Filtering), each host that has ping enabled (which is typically
everybody, since it is often used for network troubleshooting) would reply to the request. With one simple
command the attacker would get a very nice list of all the hosts that are awake and responding to pings.

Violation #6: Heinz 57 Mixture
I know you asked for five violations, but I’ll throw in one more for extra credit, or just for amusement,

anyway. This list of logs was detected during a single day on a home PC connected to a cable modem,
proving that it’s not just Amazon.com and Bank of America that get attacked!
Date Time (I don’t know) Messsage Type? Protocol ?? Source IP Source port Dest.

IP Dest. port

Jun 3 00:34:01 cc1014244-a kernel: securityalert: tcp if=ef0
 from 24.3.6.190:4421 to 24.3.21.199 on unserved port 27374
Jun 3 00:41:57 cc1014244-a kernel: securityalert: tcp if=ef0
 from 24.3.6.190:2649 to 24.3.21.199 on unserved port 27374
Jun 3 00:57:49 cc1014244-a kernel: securityalert: tcp if=ef0
 from 24.3.6.190:2086 to 24.3.21.199 on unserved port 27374
Jun 3 01:51:17 cc1014244-a kernel: securityalert: tcp if=ef0
 from 24.3.9.15:1567 to 24.3.21.199 on unserved port 27374
Jun 3 05:39:48 cc1014244-a kernel: securityalert: udp if=ef0
 from 62.125.37.168:60000 to 24.3.21.199 on unserved port 2140
Jun 3 11:11:06 cc1014244-a kernel: securityalert: tcp if=ef0
 from 210.140.231.147:109 to 24.3.21.199 on unserved port 109
Jun 3 11:33:22 cc1014244-a kernel: securityalert: tcp if=ef0
 from 208.191.77.182:2982 to 24.3.21.199 on unserved port 8080
Jun 3 11:33:23 cc1014244-a kernel: securityalert: tcp if=ef0
 from 208.191.77.182:2982 to 24.3.21.199 on unserved port 8080
Jun 3 14:25:20 cc1014244-a kernel: securityalert: tcp if=ef0
 from 24.6.159.44:1242 to 24.3.21.199 on unserved port 27374

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Jun 3 14:47:54 cc1014244-a kernel: securityalert: udp if=ef0
 from 24.15.67.242:137 to 24.3.21.199 on unserved port 137

The first four detects, coming from various ephemeral ports to port 27374, look like a check for a
Trojan called SubSeven 2.1. Then someone else checked port 2140 once, perhaps looking for Deep Throat
or The Invasor. Next came a packet, again from someone new, to port 109, which is the designated port for
accessing a POP2 server (not likely to have much luck there with a PC). The next two are hits from
somebody else on Wingate (port 8080), then a different person looking for SubSeven 2.1, and finally
somebody checking the NetBios UDP port 137. It’s a busy day on the Internet!

To block all this stuff, you would filter requests to any port you’re not needing to answer on, which
for a typical PC might be everything if, for TCP, your firewall software can differentiate between incoming
requests for a connection and incoming answers to a request you made. Basically, any incoming SYN
packet could be suspect. (Obviously ipchains is not the protocol you would be using on a Windows PC, but
this is just an example.) The –y option specifies that we’re only looking for packets with the SYN flag set:
ipchains –A input –i EXT_NIC –p tcp –y -dport !1:1023 –j DENY -l

For UDP, you can’t be so clever (since it is a stateless protocol), but unless the cable modem ISP
needs NetBios broadcasts for something (maybe to assign you an IP address? I have never used cable
modems, as they don’t have them in Japan yet to my knowledge), you could just block any traffic to
NetBios ports using the example given for Violation #1.

If this traffic was not filtered, eventually you might end up with a Trojan you’re not aware of and then
someone might find it. Or they might find an ephemeral port open for a current connection you have to a
web site and manage to exploit it. Best to be on the safe side!

Defense in Depth Architecture – DDOS Resistance
The keys to being resistant to distributed denial of service attacks is two-fold:
· To protect the site from being victimized by a flood of packets from many sites at once

· To prevent the site from being used as one of the “attacking” sites

I haven’t yet had a chance to study various commercial firewall products in detail, but I know that
ipchains does not look robust enough to keep a flood of packets from overwhelming it to the point where it
doesn’t let legitimate traffic through. But that’s more the job of routers, anyway, rather than firewall hosts.
The day before writing this paper, I got approval to purchase a Cisco router for my company’s network (our
current router is not very robust for security, and I wanted a second router in order to construct a screened
subnet architecture). In my brief first look at a little of the documentation for the IOS software, I noticed
that they have a special feature called “TCP Intercept” that is specifically designed to control the most
typical type of DOS attacks - that of a flood of SYN packets to a server with unreachable return addresses,
which leaves the server in the awkward position of having to maintain a ton of half-open connections until
it can handle no more and ends up refusing legitimate requests. The TCP Intercept feature uses an extended
access list to maintain a list of the servers, and rather than sending the SYN packet on, tries to finish
establishing the connection as a proxy on behalf of the server. If the connection is established (i.e. its return
SYN/ACK is ACKed), it makes a connection with the server and “knits” the two connections together.
Meanwhile, it has settings to control the number of half-open connections it allows and the timeouts on
those connections, going into what is called “aggressive” mode when thresholds are surpassed (so that it
doesn’t allow itself to get overwhelmed, either, when a DOS attack is launched).

Based on what I have read, I would say that Cisco routers would be good choices for this network. I
note that this configuration is to have two connections to the Internet. It would certainly be a possibility to
simply use one router with two interfaces, as Cisco routers can also do load balancing, but if we are really
paranoid about DDOS attacks, maybe two routers would be even better. I also think it is safe to assume that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

paranoid about DDOS attacks, maybe two routers would be even better. I also think it is safe to assume that
if this company is worried about distributed DOS attacks, they must be a site that gets a lot of traffic and
therefore has a high volume setup for servicing the public (if they were just an ordinary, small site with one
server, attackers would not need to employ lots of attacking sites in a coordinated effort in order to bring it
down). So although it is not specified in the assignment, I will draw the site as having three servers with a
load balancer.

Dual Internet Connection Topography for DDOS Resistance

Defense in Depth Architecture – Internal Subnetworks
I see two possibilities for what is meant by the question, and I feel the need to address both. The

statement, “…for the most effective protection,” could be interpreted to mean specifically what it talked
about in the problem, that is, the two critical subnetworks. The second way of looking at it is the broader
view, assuming that there is more to the company than those two subnetworks, and that they want decent
protection from the Internet as well. There might even be a web and/or DNS server that, since it must be
more exposed than the network containing the computers for marketing, production, support, etc., should be
on a separate, more DMZ-type network. Performance also is not mentioned as a concern, but in the second
way of thinking, would also be considered. I will approach these two ways of thinking individually.

The Approach of Focusing Only on the Stated Need
First let’s look at how to make accounting and research as safe as possible, without much regard for

other aspects. There is no mention of encryption in the scheme, so I will not use it in my design, but I think
it would be good to mention that using encryption, as if the connection to each department was a VPN,
would provide even more insulation. Now, getting into the topography discussion, it does not say which of
the two departments is more critical, but we can make one of them even more secure without lowering the
safety of the other by layering them. For the sake of example say that research is more sensitive. A no-
holds-barred, “tighten research as much as possible and accounting almost as much” solution might look
like the following:

Single Need Focused Topography

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The Well-Rounded Approach
Although other needs are not mentioned in the assignment, I prefer, rather than the above approach, to

assume that this is a normal company. That means that there are other company functions besides research
and accounting that don’t want to get trashed by hackers. It also means that even from the vantage point of
research, the marketing department is more “trusted” than badguy.com. Also I assume that everyone,
including the two sensitive departments, wants to access the Internet with decent performance. I also
suspect that the company is likely to have a web server and a DNS server, and maybe some other stuff that
should have a little distance from even such “unimportant” parts of the company such as marketing and
production. Considering those things, the above solution looks a bit extreme. I think the guy who ordered
the equipment before he left may have been thinking this way, too, because the equipment list seems to lend
itself well to a solution that considers a little bit of everything. With the router and the proxy firewall, they
can start with a nice, sensible company firewall that has a place for hardened external servers. Then, the
bridging firewalls can be used to separate each of the sensitive departments from the rest, resulting in three
layers of protection (router, proxy, appliance firewall) between each sensitive department and the big, bad
world. The network traffic is completely separated, so no one can sniff where they’re not supposed to
without breaking through a firewall. Network Address Translation can be used to insulate even the network
structures from each other. In the end, I seems to me that even though the statement, “…this equipment…
cannot be sent back,” sounds like I’m supposed to wish I had something else to work with, I’m actually
pretty content with what the guy ordered. Here is the way it would look:

Well-Rounded Approach Topography

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

My Test
You work for a 20-person company that currently runs on a single network, with two servers, shared

printers, etc., connected to the Internet by a consumer-type router that has a little filtering capability but
would definitely not be considered a firewall solution. One server is a fairly new NT-based machine that
you use for the important company info (product source code, accounting, etc.), the other is an old but
perfectly functional Linux server that currently serves as their web server, DNS, and mail server.

The company is now getting concerned about both security and Internet services, and has assigned you
the job of figuring out what best to do (since you took the GIAC course and are now the resident security
expert!). They want a real firewall, and they want to add ftp and expand their web site to include functions
that will require cgi scripts. They are also concerned about their e-mail privacy, not wanting their e-mail
mailboxes too exposed. But they have a limited budget of $2000 to work with. Here are the prices of some
items you might consider:
Cisco 802 router with one Ethernet port, one
ISDN port, IOS software

$700

Cisco 1605 router with two separately filterable
Ethernet ports and card slot for add-ons, IOS
software

$1100

Add-on card for Cisco #2 with an ISDN port $400
Basic Intel box with no software, adequate to run
as a Linux server or as a firewall with ipchains
or other open-source software

$500

A little faster and bigger Intel box with Windows
NT

$1300

Hubs, Ethernet cards for Intel boxes negligible for the sake of this exercise
Cisco PIX Firewall 506, 2 Ethernet ports $1500

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Here are a few possible solutions, as I see it. There may very well be other good solutions. In my
diagrams I don’t show the rest of the network (NT server, client PCs, printers), but they would be on the
internal network.

Textbook Screened Subnet Architecture
The first idea is to purchase the Cisco 1605 or PIX firewall and one more Linux server (total $2100 or

$2500) and set up a standard screened subnet architecture, using the new servers to cover the external server
jobs, and just store-and-forward the mail to the existing server, which would reside on the internal net to
protect the mailboxes, and also do intrusion detection.

Modified Screened Subnet Architecture
A variation on the first idea is to get both the Cisco 1605 router and the ISDN add-on card, and put

the current router to rest (it could serve as a backup in case of a hardware failure of the Cisco). With the
two interfaces, the basic functions of a screened subnet can still be achieved, and the more powerful filtering
capability of the Cisco can be applied to the outer interface as well.

Open-Source Linux Firewall Solution
Another alternative is to use a dual-hosted Linux server for the firewall with the current router,

selecting software such as ipchains packet filtering or squid proxy software, or a combination of both types.
That would be less secure at the perimeter, but allow purchase of up to three more Linux servers (or an NT
server, if they are so inclined, but that’s not what I would do), to allow a lot more separation for the
different servers, and even a dedicated box for intrusion detection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

different servers, and even a dedicated box for intrusion detection.

References: www.techadvice.com/help/Products/F/firewall.htm (for info and prices on commercial

software), www.tribecaexpress.com/Cisco (for info and prices on Cisco products), local computer shops (for
prices on PCs).

