
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents ...1
Mario_Serrano_GCFW.doc..2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Mario Serrano
GCFW Version 1.6
GIAC Enterprises Fortunes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

I - Security Architecture

GIAC Enterprises deals in the online sale of fortune cookie sayings. It has:

Customers that purchase bulk online fortunes.•
Suppliers that supply fortunes.•
International partners that translate and resell fortunes.•

Customers will connect to the web-based online ordering system and place their orders. Encryption
will be required (that means HTTPS). Once an order has been validated, the paper fortune cookie
sayings will be shipped.

Suppliers are connected to, in order to ask for more popular sayings, according to inventory levels.
They have no special access to GIAC Enterprises' systems. All connections are initiated from GIAC,
and are done using their encrypted web-based ordering system, where GIAC has an account.

International partners browse through the cookie sayings catalog on GIAC's web server. They place
orders as clients do, so that they can be shipped materials to, for reselling purposes. They also have a
web-based application available to them, that can be used to specify translated phrases, and the amount
of paper cookie sayings to be shipped to them. Their accounts have to be preprogrammed into GIAC's
systems, and their access must come, network-wise, from the VPN connection (validated). GIAC
doesn't like getting stuck with unsold foreign language inventory, so translated material is contracted to
suppliers and then shipped entirely to partners.

The security architecture reflects these facts. It includes several devices to implement it. There is a
filtering router, an external firewall, a VPN box to connect to the business partners and internal
firewalls.

Filtering router

We chose a Cisco 3640. It has good performance, and supports technologies such as Access Control
Lists, Commited Access Rate (CAR). Its operating system, IOS, is well known. We will just make sure
that we have a fairly recent version, since there might be denial of service problems with older ones.

It is placed right at the end of the link that connects GIAC to its ISP. It has one WAN interface, and
two Fast Ethernet interfaces. An extra WAN interface can be added, since it is a modular router, in
order to have redundancy in case of network problems.

The router has to have several things configured, besides Access Control Lists. Among them we can
mention:

Source routing support eliminated. This prevents several attacks. Can be easily done with a single •
command.
No web configuration for the router. It is usually cause for problems such as denial-of-service •
attacks.
“No ip unreachables” command set, to avoid sending extra information to hackers.•
Use of the rate-limit command to set permissible levels for SYN packets. This command, part of the •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CAR (Committed Access Rate) package from Cisco could limit the damage from SYN Flood
attacks.
Small services (both UDP and TCP) must be disabled. This prevents usage of things like the echo •
service. The commands “no service udp-small-servers” and “no service tcp-small-servers” must be
used for this purpose.
Enable (high security level) secret defined in the configuration, instead of an enable password that •
can be decrypted easily.
Interfaces should have no support for ip redirects and ip directed-broadcasts (the latter to avoid •
Smurf-type attacks).
This device will do NAT for the private address networks used in several firewall interfaces.•
Classless configuration is enabled.•
Cisco command “ip subnet-zero” must be enabled too, since it allows us to use the IP addresses we •
want in this case.

One LAN connection is connected to the firewall. The other one to the VPN system.

External firewall

GIAC has knowledgeable Linux/UNIX staff. A RedHat Linux 7.1 (http://www.redhat.com/)box has
been configured to be its firewall. All unnecessary services have been eliminated, and all patches
available until early October 2001 have been installed. Among the patches, there is a new version of the
Linux Kernel: 2.4.5, that fixes several vulnerabilities.

IPChains is used. The advantage of the platform chosen is that if desired, the firewall can be configured
using IPTables, a stateful filtering technology. It is not used in this project because we have not finished
evaluating its stability. Nevertheless we have an upgrade path available.

Six NICs have been installed:

eth0: Internal Network interface
eth1: External network interface
eth2: DNS/Syslog interface
eth3: VPN interface
eth4: WWW interface
eth5: Database interface

The firewall is placed at the core of the system. It separates the networks, isolating them to prevent
further security problems if systems are compromised. All traffic will pass through it.

This device is also the point where GIAC would consider improvements in its security architecture.
Once the stateful IPTables technology is trusted enough, a good measure would be to substitute a single
firewall configuration with a two firewall one. The firewall closest to the filtering router would be the
fastest, an IPChains-based one; it would then pass connections to a second IPTables-based one, that
would inherit all other connections.

VPN

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Since GIAC is a Linux/Unix shop, it is installing a Linux solution. Free/SWAN is the standard in Linux
for IPSec VPN. Unfortunately it requires Kernel patching and further configuration. Therefore a
preconfigured, prepatched Linux distribution with Free/SWAN is used for simplicity's sake.

Smoothwall 0.99 (http://www.smoothwall.org), a Linux distribution with Free/SWAN 1.9 support built
in was chosen. It will be installed in a fast, two network-interface box just for this task.

Smoothwall allows for easy web-based VPN configuration, using shared secrets. It also supports PPTP.
Under-the-hood configuration would be required if GIAC wishes to use RSA certificates.

The VPN box receives connections directly from the filtering router, but also passes decoded,
unencrypted traffic to one interface of the firewall. We do not inject traffic directly to the internal
network.

We have given the outer VPN box interface a public IP address. This will allow GIAC to use packet
header authentication, since there is no NAT-related conversions taking place.

Internal firewalls

They use Linux, and IPChains, as mentioned above. They protect internal, important systems such as
accounting databases from internal users.

Intrusion Detection Systems

Snort 1.81 (http://www.snort.org) is used as IDS. One system is placed at the WWW/Mail network,
and another at the firewall's internal network interface.

The network layout is as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

II - Security Policy

Border router policy

It is a Cisco box, which can handle several protocols; IP is just one of them. It is possible to perform
filtering using Cisco's Access Control Lists.

Access Control Lists, or ACLs are specified in the configuration mode, accessed with the configuration
terminal command, given the permissions to do it and the usage of the enable-level access (accessed
with the enable command).

ACLs can be thought as checklists that are used whenever a packet goes to or from an interface. Those
checklists have to be unique. Only one can be used outbound or inbound. It is possible, though, to
have two assigned to a given interface: one inbound and one outbound.

Cisco ACLs are written with the syntax

access-list number action matching_conditions

number has to be between 0 and 199 to specify rules used for the IP protocol. If it is between 0 and 99,
we are referring to Standard IP ACLs, in which the matching conditions can only be specified as a
function of the source address only (and for IP only!). If number is between 100 and 199 it is an
Extended IP ACL, that can specify both source and destination addresses, with ports for both UDP and
TCP. Since our rules are complex, we will use Extended IP ACLs.

Action can be either word, permit or deny. This would be the action that would be taken if the
matching_conditions do that, match the packet. Any checklist or ACL is processed from the first line
downward. Whenever a match is done, action is taken: permit allows the packet to go on to whichever
interface it is destined to. deny would prevent a packet from reaching its destination.

Regarding matching_conditions for an Extended IP ACL, they are specified protocol first, source
second, destination, third. A source or destination address can be specified using three parameters:

IP address: This is just the same old IP address written in the normal notation, like 192.168.0.0
Cisco netmask: This is where it is important to be careful! Instead of the “normal” netmask

notation, in which binary “1” is used on each bit belonging to the network address,
this is its complement. For example, the normal netmask for a class C network
would be 255.255.255.0; the Cisco netmask would be 0.0.0.255

Port specification: Ports can be specified as direct matches (eq 80), ranges (range 135 139),
inequalities (gt 1024 , lt 1024 - greather than, and less than, respectively).
Established is a keyword that can specify that matching packets are the ones
belonging to “established” TCP connections (those that do not have their SYN bit
set). There are several modes, that will not be covered in this document. It is
possible to look at all the available options by pressing “?” at the precise place in the
command line.

There are shortcuts for the IP address/Cisco netmask combination. Those are meant for two specific

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

cases: a single host and any host. A single host can be specified with host IP (for example, host
192.168.0.1). Any host can be specified with the keyword any.

There is one important tip regarding Cisco ACLs. There is an implicit last rule, a “deny everything ip
from anywhere to anywhere” rule. If things do not work well, perhaps this has not been taken into
account.

ACLs can be assigned for both incoming or outgoing packets. In the router configuration, the only
thing needed would be to specify, FOR THE RESPECTIVE INTERFACE, access-group number in
(incoming) or access-group number out (outgoing packets), where number is the access list number we
have already configured.

Proper configuration would have us defining both inbound and outbound ACLs to be applied at the
router's WAN interface. The commented Cisco ACL configuration goes as follows:

! Inbound ACL. Note that the ACL number is 140, indicating an extended IP ACL.
! Other important thing is that “!” indicates a comment line.
!
! First we deny any access to traffic from any private address coming through the WAN interface
! We need to block both TCP and UDP. The easy way is then to block the whole IP protocol.
! The addresses to block are 192.168.0.0/16, 10.0.0.0/8, and 172.16.0.0/12. Other important
! thing to note here is that the lines end up with “log”. This means that any match will be
! logged. If a syslog server has been configured, the router will send the information to it.
!
! The next line is the one the router will try to match packets against first. Then all others go.
access-list 140 deny ip 192.168.0.0 0.0.255.255 any log
access-list 140 deny ip 10.0.0.0 0.255.255.255 any log
access-list 140 deny ip 172.16.0.0 0.15.255.255 any log
!
! Note that netmasks should be specified using Cisco's notation. Also, the “any” keyword
! has been used to indicate that any destination is to be considered, paired with each source.
!
! Denying IANA reserved address space to prevent spoof-based attacks.
! These addresses are not used anywhere, and could be used in spoofing attacks.
! Again, we block the whole IP protocol, blocking TCP, UDP and ICMP at the same time.
! any indicates “any destination”
access-list 140 deny ip 1.0.0.0 0.255.255.255 any log
access-list 140 deny ip 2.0.0.0 0.255.255.255 any log
access-list 140 deny ip 5.0.0.0 0.255.255.255 any log
access-list 140 deny ip 7.0.0.0 0.255.255.255 any log
access-list 140 deny ip 23.0.0.0 0.255.255.255 any log
access-list 140 deny ip 27.0.0.0 0.255.255.255 any log
access-list 140 deny ip 31.0.0.0 0.255.255.255 any log
access-list 140 deny ip 37.0.0.0 0.255.255.255 any log
access-list 140 deny ip 39.0.0.0 0.255.255.255 any log
access-list 140 deny ip 41.0.0.0 0.255.255.255 any log
access-list 140 deny ip 42.0.0.0 0.255.255.255 any log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

access-list 140 deny ip 58.0.0.0 1.255.255.255 any log
access-list 140 deny ip 60.0.0.0 0.255.255.255 any log
access-list 140 deny ip 63.0.0.0 0.255.255.255 any log
access-list 140 deny ip 64.0.0.0 0.255.255.255 any log
access-list 140 deny ip 65.0.0.0 0.255.255.255 any log
access-list 140 deny ip 66.0.0.0 0.255.255.255 any log
access-list 140 deny ip 67.0.0.0 0.255.255.255 any log
access-list 140 deny ip 68.0.0.0 0.255.255.255 any log
access-list 140 deny ip 69.0.0.0 0.255.255.255 any log
access-list 140 deny ip 70.0.0.0 0.255.255.255 any log
access-list 140 deny ip 71.0.0.0 0.255.255.255 any log
access-list 140 deny ip 72.0.0.0 0.255.255.255 any log
access-list 140 deny ip 73.0.0.0 0.255.255.255 any log
access-list 140 deny ip 74.0.0.0 0.255.255.255 any log
access-list 140 deny ip 75.0.0.0 0.255.255.255 any log
access-list 140 deny ip 76.0.0.0 0.255.255.255 any log
access-list 140 deny ip 77.0.0.0 0.255.255.255 any log
access-list 140 deny ip 78.0.0.0 0.255.255.255 any log
access-list 140 deny ip 79.0.0.0 0.255.255.255 any log
access-list 140 deny ip 80.0.0.0 15.255.255.255 any log
access-list 140 deny ip 96.0.0.0 15.255.255.255 any log
! The next line also includes the loopback address, that should not be coming through the WAN
! interface, anyway.
access-list 140 deny ip 112.0.0.0 15.255.255.255 any log
access-list 140 deny ip 217.0.0.0 0.255.255.255 any log
access-list 140 deny ip 218.0.0.0 0.255.255.255 any log
access-list 140 deny ip 219.0.0.0 0.255.255.255 any log
access-list 140 deny ip 220.0.0.0 63.255.255.255 any log
!
! We deny any class D Multicast address traffic, since we don't need anything like it
access-list 140 deny ip 224.0.0.0 15.255.255.255 any log
!
! Deny class E traffic
access-list 140 deny ip 240.0.0.0 7.255.255.255 any log
!
! An anti-spoofing rule. Since we use the 120.0.0.0/24 network, we should not expect to see
! incoming WAN packets with this address, going anywhere (that's the reason behind the any
! keyword). Hackers could use GIAC's same address space to
! fake traffic coming from a trusted IP address.
access-list 140 deny ip 120.0.0.0 0.0.0.255 any log
!
! Blocking Microsoft protocols. We'd better put these somewhere. The range keyword is used to
! indicate that the following two numbers represent the initial port and the final port in a range to
! be used for matching purposes.
! Ports 135 through 139 are used in Microsoft Networking protocols for W9x and Win NT
! Failure to block them could, in a network, result in denial of service attacks against it, or even
! unwanted file sharing across the Internet. They are meant to be used inside a LAN, anyway.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

! Source is any, destination is any: no matter the origin, no matter the destination, if the ports match,
! we want that traffic to be eliminated.
!
access-list 140 deny tcp any any range 135 139 log
access-list 140 deny udp any any range 135 139 log
!
! Port 445 is used from Windows 2000 forward for its networking. Since it is a single port,
! we use the “eq” keyword indicating “equals 445”.
access-list 140 deny tcp any any eq 445 log
access-list 140 deny udp any any eq 445 log
!
! We allow web traffic going to our web server address. Here we use its address as destination, using
! the host shortcut instead of writing its equivalent: 192.168.3.2 0.0.0.0
! any source could produce a match. We look then for any source, to the web server using ports used
! for HTTP (80) and HTTPS (443), since we use both. These are both TCP protocols that
! use a three-level handshake, and originate in high ports (greater than 1024).
! We need these protocols since they will be used by GIAC's customers.
! It is important, though to think that we allowing the traffic, but the protocol might not be HTTP,
! or that traffic could convey attacks such as Code Red. If CGI programs are not written well on
! GIAC's webserver, there could be problems, also.
! Also note that since we are doing NAT at this interface, we must specify the “real” private
! addresses instead of the “fake” public ones we will be announcing to the world. Otherwise,
! the rules won't work.
access-list 140 permit tcp any host 192.168.3.2 eq 80 log
access-list 140 permit tcp any host 192.168.3.2 eq 443 log
!
! We allow mail protocols into the mail server. Those protocols are SMTP (TCP port 25) and POP3
! (TCP port 110). Again, we are opening ports that with defective server programs to answer them,
! could cause system compromise. There have been serious bugs in SENDMAIL (a Unix SMTP server
! program) and QPOPPER (a Unix POP3 server program) that allowed remote superuser control
! over the server machine.
access-list 140 permit tcp any host 192.168.3.3 eq 25 log
access-list 140 permit tcp any host 192.168.3.3 eq 110 log
!
! Then, since we have a primary DNS for GIAC domain, we must allow DNS in (both TCP and UDP).
! DNS is a strange protocol. It usually works in UDP, but if a request is large enough, it will spill over
! TCP packets. There have been vulnerabilities in the BIND program (used in Unix to server DNS).
! Given that we have a primary DNS server, we'd better configure it so that it only gives the minimum
! information required. We do not want a hacker to be given complete intelligence over our network!
access-list 140 permit tcp any host 192.168.4.2 eq 53 log
access-list 140 permit udp any host 192.168.4.2 eq 53 log
!
! We have to let the IPSec information pass though. It was said that extended ACLs permitted
! selection of IP protocol. ESP is one of them, so we will open things for it.
! Right now the rule specifies that any host can use ESP against our VPN box. If there are few
! suppliers, we could just add their addresses here.
!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

access-list 140 permit esp any host 120.0.0.2 log
! We will use IKE, for automatic key management. It uses port 500 UDP.
access-list 140 permit udp any host 120.0.0.2 eq 500 log
!
! The previous rules were allowing several ports below 1024 belonging to some well-known protocols
! Since rules are checked from the first one, downward, we must provide specifics first, and
! general rules last. Denying access to well-known ports is a common catch-all rule. We don't
! like unauthorized access to any non-specified service that we might have forgotten to eliminate
! (not complying then with the defense-in-depth principle, but it is better to be safe than sorry).
! Please note that we are using “lt 1024”, meaning any port less than 1024. We do it for both
! TCP and UDP. In a couple of lines we are getting rid of NFS, finger, FTP and other services
! we might not have been interested to provide.
access-list 140 deny tcp any any lt 1024 log
access-list 140 deny udp any any lt 1024 log
!
! Then we allow answers to connections already established from the inside. These are connections
! without the SYN bit set. They are TCP by definition, since UDP doesn't keep state. This is done
! this way, instead of specifying “permit ip any any” since it adds a layer of protection. No TCP
! service would be permited on any port besides the ones we have already defined above.
access-list 140 permit tcp any any established

Then we have the outbound ACL. It will be assigned to the same interface, but with the “access-group
115 out” command, specifying outgoing packets. The ACL number is different than the one used for
the incoming ACL. If we were just using cut and paste, and used the same number, it would be just
appended to the other, and we would be left with only one access list.

! Outbound ACL
! Again, we will comment using the “!” character.
! First, we will block outgoing Microsoft networking protocols. The same considerations as for
! incoming traffic apply here.
access-list 115 deny tcp any any range 135 139
access-list 115 deny udp any any range 135 netbios-ss
access-list 115 deny udp any any eq 445
access-list 115 deny tcp any any eq 445
! Let's get rid of outgoing IRC, since it is used by several intruders to report to base.
access-list 115 deny tcp any any eq 6667 log
! Then we have to allow specific traffic.
! First we have DNS requests being made by our server. As in the incoming ACL, allow both
! TCP and UDP DNS requests since both will be used.
access-list 115 permit tcp host 192.168.4.2 any eq 53
access-list 115 permit udp host 192.168.4.2 any eq 53
! DNS requests done to our server must go out also.
access-list 115 permit udp host 192.168.4.2 eq 53 any
access-list 115 permit tcp host 192.168.4.2 eq 53 any
! Outgoing traffic from our LAN. We will fine-control it in the firewall. So we will just
! indicate that any traffic masked through the firewall, going everywhere, will be permitted.
access-list 115 permit tcp host 192.168.1.2 any log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

! Outgoing traffic from the web server
access-list 115 permit tcp host 192.168.3.2 eq 80 any log
access-list 115 permit tcp host 192.168.3.2 eq 443 any log
! SMTP and POP traffic
access-list 115 permit tcp host 192.168.3.3 eq 25 any
access-list 115 permit tcp host 192.168.3.3 eq 110 any
! We must allow our mail server to function. SMTP is used to send mail outside.
access-list 115 deny permit host 192.168.3.3 any eq 25
! Just to be paranoid, and be a good network citizen, we block outgoing traffic from private
! addresses. This in case something goes really wrong.
access-list 115 deny ip any 10.0.0.0 0.255.255.255 log
access-list 115 deny ip any 192.168.0.0 0.0.255.255 log
access-list 115 deny ip any 172.16.0.0 0.15.255.255 log
!
! We have to let the IPSec information pass though. It was said that extended ACLs permitted
! selection of IP protocol. ESP is one of them, so we will open things for it.
! Right now the rule specifies that any host can use ESP against our VPN box. If there are few
! suppliers, we could just add their addresses here.
!
access-list 115 permit esp host 120.0.0.2 any log
! We will use IKE, for automatic key management. It uses port 500 UDP.
access-list 115 permit udp host 120.0.0.2 any eq 500 log
!
! Finally, what is not explicitly allowed is blocked. The following line is the system default,
! but is better to write it down anyway, in order to make things clearer.
access-list 115 deny ip any any log

Testing rules

One way to actually test some of these router ACLs, would be, for the mail connections (ports 25 and
110) in the inbound rules, to use nmap from a point outside our network and make a TCP scan toward
the mailserver.

A machine running tcpdump would be placed just at the exit of the router interface that goes to the
firewall, listening to all traffic. It should only pick up traffic directed to ports 25 and 110 of the
mailserver.

Besides, a show ip access 140 command, on the Cisco router, should report “hits” whenever we, from a
point outside GIAC's network, access POP and SMTP services. These hits should appear in both the
incoming and outgoing ACL. This command could be used for debugging purposes.

External Firewall policy

Our firewall is Linux/IPChains based. To make configuration easier, a two-network IPChains setup tool
was used, and its output modified by hand. The tool was Tim Niemueller's IPchains Firewalling
Webmin Module.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Whenever the system reboots, the firewall is set up using a script, with the whole configuration in it. It
goes as follows:

#!/bin/sh
IPchains Firewalling Script File
Generated by IPchains Firewalling Webmin Module
Copyright (C) 1999-2000 by Tim Niemueller, GPL
http://www.niemueller.de/webmin/modules/ipchains/
Created on 28/Aug/2001 17:50
Modified for more interfaces by mserrano.

Flush/clean everything
/sbin/ipchains -F
/sbin/ipchains -X

##MODE 1
##LEVEL HIGH
##MASQ
##FWTYPE ROUTER

Set defaults to deny/reject everything not explicitly allowed.
/sbin/ipchains -P input DENY
/sbin/ipchains -P output DENY
/sbin/ipchains -P forward REJECT

/sbin/ipchains -A input -i lo -j ACCEPT
/sbin/ipchains -A output -i lo -j ACCEPT

#Do not accept packets from private class A on ext NIC
/sbin/ipchains -A input -i eth1 -s 10.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -d 10.0.0.0/8 -j DENY
/sbin/ipchains -A output -i eth1 -s 10.0.0.0/8 -j DENY
/sbin/ipchains -A output -i eth1 -d 10.0.0.0/8 -j DENY

#Do not accept packets from private class B on ext NIC
/sbin/ipchains -A input -i eth1 -s 172.16.0.0/12 -j DENY
/sbin/ipchains -A input -i eth1 -d 172.16.0.0/12 -j DENY
/sbin/ipchains -A output -i eth1 -s 172.16.0.0/12 -j DENY
/sbin/ipchains -A output -i eth1 -d 172.16.0.0/12 -j DENY

#Do not accept packets from private class C on ext NIC
/sbin/ipchains -A input -i eth1 -s 192.168.0.0/16 -j DENY
/sbin/ipchains -A input -i eth1 -d 192.168.0.0/16 -j DENY
/sbin/ipchains -A output -i eth1 -s 192.168.0.0/16 -j DENY
/sbin/ipchains -A output -i eth1 -d 192.168.0.0/16 -j DENY

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Loopback packets should not be handled from ext NIC
/sbin/ipchains -A input -i eth1 -s 127.0.0.0/8 -j DENY
/sbin/ipchains -A output -i eth1 -s 127.0.0.0/8 -j DENY

#Refuse Bogus Broadcasts
/sbin/ipchains -A input -i eth1 -s 255.255.255.255 -j DENY
/sbin/ipchains -A input -i eth1 -d 0.0.0.0 -j DENY

Refuse Requests from reserved IANA/ICANN adresses
/sbin/ipchains -A input -i eth1 -s 1.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 2.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 5.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 7.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 23.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 27.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 31.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 36.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 37.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 39.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 41.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 42.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 58.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 59.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 60.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 67.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 218.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 219.0.0.0/8 -j DENY
/sbin/ipchains -A input -i eth1 -s 68.0.0.0/6 -j DENY
/sbin/ipchains -A input -i eth1 -s 72.0.0.0/5 -j DENY
/sbin/ipchains -A input -i eth1 -s 80.0.0.0/4 -j DENY
/sbin/ipchains -A input -i eth1 -s 96.0.0.0/3 -j DENY
/sbin/ipchains -A input -i eth1 -s 220.0.0.0/6 -j DENY

Basic ICMP packages are needed for running a network
/sbin/ipchains -A input -i eth1 -p icmp --icmp-type source-quench -d 120.0.0.130 -j ACCEPT
/sbin/ipchains -A output -i eth1 -p icmp --icmp-type source-quench -d 0.0.0.0/0 -j ACCEPT
/sbin/ipchains -A input -i eth1 -p icmp --icmp-type parameter-problem -d 120.0.0.130 -j ACCEPT
/sbin/ipchains -A output -i eth1 -p icmp --icmp-type parameter-problem -d 0.0.0.0/0 -j ACCEPT
/sbin/ipchains -A input -i eth1 -p icmp --icmp-type destination-unreachable -d 120.0.0.130 -j ACCEPT
/sbin/ipchains -A output -i eth1 -p icmp --icmp-type destination-unreachable -d 0.0.0.0/0 -j DENY
/sbin/ipchains -A input -i eth1 -p icmp --icmp-type time-exceeded -d 120.0.0.130 -j ACCEPT
/sbin/ipchains -A output -i eth1 -p icmp --icmp-type time-exceeded -d 0.0.0.0/0 -j ACCEPT

##=> DNS-inout
##-> This allows a host in the internal network to lookup hostnames by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

##-> querying external nameservers. Used for internal DNS servers. Uses masquerading.

/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 53 -p udp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 53 -d 192.168.6.0/255.255.255.0 1024:65535 -p udp -j
ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 53 -d 192.168.6.0/255.255.255.0 1024:65535 -p udp -j
ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 53 -d 120.0.0.130 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 120.0.0.130 1024:65535 -d ! 192.168.6.1 53 -p udp -j ACCEPT
/sbin/ipchains -A forward -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 53 -p udp -j MASQ

##=> DNS-outfw
##-> Allows clients on the outside network to access the primary DNS server.
##->
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 1024:65535 -d 192.168.4.2 53 -p udp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.4.2 53 -d ! 192.168.6.1 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A output -i eth2 -s ! 192.168.6.1 1024:65535 -d 192.168.4.2 53 -p udp -j ACCEPT
/sbin/ipchains -A input -i eth2 -s 192.168.4.2 53 -d ! 192.168.6.1 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.4.2 53 -d ! 192.168.6.1 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A forward -i eth2 -s ! 192.168.6.1 1024:65535 -d 192.168.4.2 53 -p udp -j ACCEPT

##=> DNS-Mail
##-> Allows the mail server to access the primary DNS server.
##->
/sbin/ipchains -A input -i eth4 -s 192.168.3.3 1024:65535 -d 192.168.4.2 53 -p udp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s 192.168.4.2 53 -d 192.168.3.3 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A output -i eth2 -s 192.168.3.3 1024:65535 -d 192.168.4.2 53 -p udp -j ACCEPT
/sbin/ipchains -A input -i eth2 -s 192.168.4.2 53 -d 192.168.3.3 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s 192.168.4.2 53 -d 192.168.3.3 1024:65535 -p udp -j ACCEPT
/sbin/ipchains -A forward -i eth2 -s 192.168.3.3 1024:65535 -d 192.168.4.2 53 -p udp -j ACCEPT

##=> DNS-fwin
##-> Allows the firewall host to use a DNS server on the inside network to
##-> resolve names and adresses.
/sbin/ipchains -A output -i eth0 -s 192.168.6.1 1024:65535 -d 192.168.6.0/255.255.255.0 53 -p udp -j
ACCEPT
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 53 -d 192.168.6.1 1024:65535 -p udp -j
ACCEPT

##=> FTP.Active-inout
##-> Allows clients on the internal network to access external FTP servers
##-> via active FTP. This is more secure than passive FTP but is still a risk

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

##-> because FTP passwords are transferred as clear text!
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 21 -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 21 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 20 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 20 -d 192.168.6.0/255.255.255.0 1024:65535 -p tcp -j
ACCEPT
if [-e /lib/modules/$(uname -r)/ipv4/ip_masq_ftp.o]; then
if [-x /sbin/insmod]; then
if ! $(grep -s ip_masq_ftp /proc/modules >/dev/null); then
/sbin/insmod -p -s ip_masq_ftp

fi
fi

fi
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 21 -d 120.0.0.130 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 120.0.0.130 1024:65535 -d ! 192.168.6.1 21 -p tcp -j ACCEPT
/sbin/ipchains -A forward -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 21 -p tcp -j MASQ
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 20 -d 120.0.0.130 1024:65535 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 120.0.0.130 1024:65535 -d ! 192.168.6.1 20 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 20 -p tcp -j MASQ

##=> HTTP-inout
##-> Allows clients on the internal network to surf the web, and access our www server too!
Also allows clients on the external network to see our www server.

/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 80 -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 80 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 80 -d 120.0.0.130 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 120.0.0.130 1024:65535 -d ! 192.168.6.1 80 -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth1 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.2 80 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.3.2 80 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth4 -s 192.168.3.2 80 -d ! 192.168.6.1 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s ! 192.168.6.1 1024:65535 -d 192.168.3.2 80 -p tcp -j ACCEPT
Order is important here, since masquerading is the last option for all internal accesses to the web
except for the ones going to our webserver
/sbin/ipchains -A forward -i eth4 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.2 80 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth0 -s 192.168.3.2 80 -d ! 192.168.6.1 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.3.2 80 -d ! 192.168.6.1 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 80 -p tcp -j MASQ

##=> HTTPS-inout

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

##-> Allows clients on the internal network to surf the web, and access our www server too!
Also allows clients on the external network to see our www server. Both using HTTPS.

/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 443 -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 443 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -
j ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 443 -d 120.0.0.130 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 120.0.0.130 1024:65535 -d ! 192.168.6.1 443 -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth1 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.2 443 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.3.2 443 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth4 -s 192.168.3.2 443 -d ! 192.168.6.1 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s ! 192.168.6.1 1024:65535 -d 192.168.3.2 443 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.2 443 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth0 -s 192.168.3.2 443 -d ! 192.168.6.1 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.3.2 443 -d ! 192.168.6.1 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 443 -p tcp -j MASQ

##=> Traffic from the VPN.
We just remember that traffic comes from the 192.168.7.0/24 network on the other side.

/sbin/ipchains -A input -i eth3 -s 192.168.7.0/24 1024:65535 -d 192.168.3.2 80 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth3 -s 192.168.3.2 80 -d 192.168.7.0/24 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth4 -s 192.168.3.2 80 -d 192.168.7.0/24 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s 192.168.7.0/24 1024:65535 -d 192.168.3.2 80 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s 192.168.7.0/24 1024:65535 -d 192.168.3.2 80 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth3 -s 192.168.3.2 80 -d 192.168.7.0/24 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth3 -s 192.168.7.0/24 1024:65535 -d 192.168.3.2 443 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth3 -s 192.168.3.2 443 -d 192.168.7.0/24 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth4 -s 192.168.3.2 443 -d 192.168.7.0/24 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s 192.168.7.0/24 1024:65535 -d 192.168.3.2 443 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s 192.168.7.0/24 1024:65535 -d 192.168.3.2 443 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth3 -s 192.168.3.2 443 -d 192.168.7.0/24 1024:65535 ! -y -p tcp -j ACCEPT

##=> POP3-inout
##-> Allows clients on the internal network to fetch emails from our POP3 server.
##-> Also provides for external client access to the POP3 server.

/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d 192.168.3.3 110 -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s 192.168.3.3 110 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth1 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.3 110 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.3.3 110 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth4 -s ! 192.168.3.3 110 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.3 110 -p tcp -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/sbin/ipchains -A forward -i eth4 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.3 110 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.3.3 110 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth0 -s 192.168.3.3 110 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -
j ACCEPT

##=> Ping-infw
##-> Allows host on the inside network to ping the firewall host. Usually you
##-> want that to check the connection between computers and the firewall or
##-> if the firewall host is up.
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 -d 192.168.6.1 -p icmp --icmp-type echo-
request -j ACCEPT
/sbin/ipchains -A output -i eth0 -s 192.168.6.1 -d 192.168.6.0/255.255.255.0 -p icmp --icmp-type echo-
reply -j ACCEPT

##=> Ping-inout
##-> Allows clients on the internal network to ping other machines on the
##-> external network.
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 -d ! 192.168.6.1 -p icmp --icmp-type echo-
request -j ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 -d 192.168.6.0/255.255.255.0 -p icmp --icmp-type echo-
reply -j ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 -d 120.0.0.130 -p icmp --icmp-type echo-reply -j
ACCEPT
/sbin/ipchains -A output -i eth1 -s 120.0.0.130 -d ! 192.168.6.1 -p icmp --icmp-type echo-request -j
ACCEPT
/sbin/ipchains -A forward -s 192.168.6.0/255.255.255.0 -d ! 192.168.6.1 -p icmp --icmp-type echo-
request -j MASQ

##=> Ping-fwin
##-> Allows the firewall to ping hosts on the inside network.
/sbin/ipchains -A output -i eth0 -s 192.168.6.1 -d 192.168.6.0/255.255.255.0 -p icmp --icmp-type echo-
request -j ACCEPT
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 -d 192.168.6.1 -p icmp --icmp-type echo-
reply -j ACCEPT

##=> SMTP-inout
##-> Allows clients on the internal network to send emails through our SMTP
##-> server. Also provides for external contact to our SMTP server.
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d 192.168.3.3 25 -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s 192.168.3.3 25 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth1 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.3 25 -p tcp -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/sbin/ipchains -A output -i eth1 -s 192.168.3.3 25 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth4 -s ! 192.168.3.3 25 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.3 25 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s 0.0.0.0/0.0.0.0 1024:65535 -d 192.168.3.3 25 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.3.3 25 -d 0.0.0.0/0.0.0.0 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth0 -s 192.168.3.3 25 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT

##=> SMTP-mailserver
##-> Allows our mailserver to access other SMTP servers
##-> on the external network.
/sbin/ipchains -A input -i eth4 -s 192.168.3.3 1024:65535 -d ! 192.168.6.1 25 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s ! 192.168.6.1 25 -d 192.168.3.3 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 25 -d 192.168.3.3 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.3.3 1024:65535 -d ! 192.168.6.1 25 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.3.3 1024:65535 -d ! 192.168.6.1 25 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s ! 192.168.6.1 25 -d 192.168.3.3 1024:65535 ! -y -p tcp -j ACCEPT

##=> WWW to database
##-> Allows our webserver to access the PostgreSQL database
/sbin/ipchains -A input -i eth4 -s 192.168.3.3 1024:65535 -d 192.168.2.2 5423 -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth4 -s 192.168.2.2 5423 -d 192.168.3.3 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A input -i eth5 -s 192.168.2.2 5423 -d 192.168.3.3 1024:65535 ! -y -p tcp -j ACCEPT
/sbin/ipchains -A output -i eth5 -s 192.168.3.3 1024:65535 -d 192.168.2 5423 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth5 -s 192.168.3.3 1024:65535 -d 192.168.6.1 5423 -p tcp -j ACCEPT
/sbin/ipchains -A forward -i eth4 -s 192.168.2.2 5423 -d 192.168.3.3 1024:65535 ! -y -p tcp -j ACCEPT

##=> SSH-infw
##-> Allows SSH conntections from the inside network to the firewall.
/sbin/ipchains -A input -i eth0 -p tcp -s 192.168.6.0/255.255.255.0 1024:65535 -d 192.168.6.1 22 -j
ACCEPT
/sbin/ipchains -A output -i eth0 -p tcp ! -y -s 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 -j
ACCEPT
/sbin/ipchains -A input -i eth0 -p tcp -s 192.168.6.0/255.255.255.0 513:1023 -d 192.168.6.1 22 -j
ACCEPT
/sbin/ipchains -A output -i eth0 -p tcp ! -y -s 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 -j
ACCEPT

##=> SSH-inout
##-> Allows clients on the internal network to connect to secure shell
##-> servers on any network. There are lots of rules since there are lots of interfaces!.

/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth0 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth0 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth2 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth2 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth2 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth3 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth3 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth3 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth4 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth4 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth4 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth5 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth5 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth5 -s 192.168.6.0/255.255.255.0 1024:65535 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth0 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 1024:65535 ! -y -p tcp -
j ACCEPT
/sbin/ipchains -A input -i eth1 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth1 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth1 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth2 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth2 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ACCEPT
/sbin/ipchains -A forward -i eth2 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth3 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth3 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth3 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth4 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth4 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth4 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A input -i eth5 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT
/sbin/ipchains -A output -i eth5 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth5 -s 192.168.6.0/255.255.255.0 513:1023 -d ! 192.168.6.1 22 -p tcp -j
ACCEPT
/sbin/ipchains -A forward -i eth0 -s ! 192.168.6.1 22 -d 192.168.6.0/255.255.255.0 513:1023 ! -y -p tcp -j
ACCEPT

There are other things in the Linux firewall configuration that have to be considered:

Source routing blocking.•
SYN cookies (a form of protection against SYN floods).•

VPN Policy

Smoothwall, the solution used, supports Linux Free/SWAN 1.9. The configuration is done using a
simple web interface. The software comes preconfigured for the following:

Automatic key exchange using IKE.•
Encryption algorithm used: Triple DES, only.•
Use of shared secrets to authenticate machines during key negotiations.•

ESP will be used, since it is the one that actually encrypts packets. We will not be satisfied with
authentication, only.

We will assume that the supplier's VPN gateway address is 123.0.0.2, its router is 123.0.0.1 and the
private supplier's network is 192.168.7.0/24.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Our ipsec.secrets file contains:

120.0.0.2 123.0.0.2 : PSK "long_secret_random_phrase_with_lots_of_characters”

Our ipsec.conf file has:

config setup
interfaces=%defaultroute
klipsdebug=none
plutodebug=none
plutoload=%search
plutostart=%search
uniqueids=yes

Retry forever
keyingtries=0

conn supplier
left security gateway (public-network address)

left=120.0.0.2
next hop to reach right
leftnexthop=120.0.0.1
subnet behind left (omit if there is no subnet)
leftsubnet=192.168.5.0/24
right s.g., subnet behind it, and next hop to reach left
right=123.0.0.2
rightnexthop=123.0.0.1
rightsubnet=192.168.7.0/24
auto=start

Since there is no more data, defaults rule. Free/SWAN uses IKE for key exchange. Authenticates
using ESP, has 8 hours of key life and the IKE lifetime is one hour.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

III - Audit Your Security Architecture

PlanningGIAC's firewall has six interfaces. An audit of it should be considering these in a connectivity
matrix, where from each interface, connections should be tried toward each of the others. There are 30
different combinations possible. Successful connections should be registered and checked against the
desired behavior.

The automated way to perform the audit would be using a port scanner. Nmap
(http://www.insecure.org/nmap/) uses several approaches for this. It is possible to scan for TCP ports in
several ways, using a variety of header flags. UDP can be checked also. With only a single command, a
whole network can be checked for open TCP or UDP ports.

How much would it cost? Nmap runs on top of Linux. What would be required, in terms of hardware,
is a mobile computer (laptop) costing $1500, running Linux. Other costs are labor-related. The test is
fairly automated. The biggest effort required, besides planning, is related to the movement of the test
laptop among interfaces (six changes), the processing of information, and check of service continuation
after the tests.

When to plan for such an audit? Unfortunately, port scanning can be disruptive. In the past, scanning
has been known to freeze routers and other devices. Port scanning must be planned, therefore, in such
a way as to minimize its impact on heavy usage. If GIAC Enterprises' traffic is lower during the
weekend, for example, tests should start early Saturday morning. Shall the test take too long, it could
be paused and resumed the next weekend.

Another reason to avoid system usage is related to the laptop placement. If there are no switch ports
available for its usage on a given network, a small hub or switch should be placed, causing a slight
disruption in traffic flow.

Right from the start, though, due to the nature of the solution being used, we know that it is possible to
fool the firewall using IP packet fragmentation. IPChains uses simple packet filtering. If a second
packet arrives, claiming to be the next fragment of an already accepted one, it will be accepted
automatically, regardless of offsets overwriting, maybe, the old packet's header itself.

Audit results

As mentioned above, the tool that will be used is nmap.

Checks are be done using both TCP and UDP portscanning. To check UDP ports in the webserver, the
command is

nmap -sU 192.168.3.2/32

In order to check TCP ports, nmap offers several options: normal TCP connect scan (-sT), SYN scan (-
sS), FIN (-sF), Xmas (-sX), null scans (-sN). If the packet filtering rules are simple enough, there would
be differences, due to the ways option flags in TCP packets interact with them. Trial runs were done
then, with these options.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The report is that all these different TCP-scanning options produce exactly the same results. For
example, with the webserver, only ports 80 and 443 appear open in a quick portscan:

Starting nmap V. 2.54BETA7 (www.insecure.org/nmap/)
Interesting ports on (192.168.3.2):
(The 419 ports scanned but not shown below are in state: filtered)
Port State Service
80/tcp open http
443/tcp open https

Nmap run completed -- 1 IP address (1 host up) scanned in 415 seconds

What this means is that the elaborate scheme of INPUT, OUTPUT and FORWARD chains, configured
with SYN-bit discrimination successfully eliminate the possibility of intelligence gathering by complex
portscanning. The downside is that rules are unmanageable. More than 190 rules make error detection,
and network modifications almost heroic in nature.

Results:
192.168.3.2 is reachable for both ports 80 and 443 TCP from the external, internal and VPN interfaces.
192.168.3.3 is reachable from the internal and external interfaces for both ports 25 and 110 TCP
192.168.4.2 is reachable from the external interface.

In normal operations, services are reachable.

Audit evaluation

As it has been already mentioned, the firewall blocks elaborate TCP scans. These yield no extra
information.

One problem with the audit methodology used, is that the only way to produce complete results is to
substitute even the servers with the nmap station. There are ports that are open exclusively for certain
addresses, and that could be checked only by using them to perform the scans. A test such as the one
described could miss extra open ports from the servers' point of view. A more thorough test then
would need IP impersonation, and TCPDUMP running on a machine that could intercept TCP
handshake replies. Tests could be run only at very light usage times.

What is clear is the complexity of the rules. A rules check takes a long time. One way to reduce
complexity, and to increase security levels would add an extra firewall to the design. A stateful
IPTables firewall would inherit all interfaces except the VPN one from the current one. The IPChains
firewall would then be doing quick filtering and would remain with the illegal address removal. This
option is shown in the following graphic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

IV - Design Under Fire.

For this part, we will consider Scott Marshall's design. The paper's location is
http://www.sans.org/y2k/practical/Scott_Marshall_GCFW.zip

It uses Nokia IP440 firewalls, which he states, run CheckPoint's Firewall-1 4.1 SP2 on top of BSDI. For
the sake of this exercise, we assume that the system was installed and forgotten with that old version of
the firewall software.

Firewall vulnerabilities

A quick look at SecurityFocus.com reveals several vulnerabilities for that particular version:

2001-09-12: Check Point Firewall-1 GUI Log Viewer Vulnerability•
2001-09-08: Check Point Firewall-1 GUI Client Log Viewer Symbolic Link Vulnerability•
2001-07-18: Check Point Firewall-1 SecureRemote Network Information Leak Vulnerability•
2001-07-11: Check Point Firewall-1/VPN-1 Management Station Format String Vulnerability•
2001-01-17: Check Point Firewall-1 4.1 Denial of Service Vulnerability•
2000-12-14: Check Point Firewall-1 Fast Mode TCP Fragment Vulnerability•

Nokia IP440
Name(tas_ofw),

multihomed,
IP(33.33.33.253)

3C om Cisco XXXX Router
Name(tas_rtr1),
IP(33.33.33.254)

P WR

O K

WIC 0

A CT / C H0

A C T /C H 1

W IC 0

A C T /C H 0

A C T /C H 1

E TH

A CT

C O L

Nokia ,
Name(tas_v1),

IP(33.33.33.252)

Router(NIC1)

IFW(NIC4)

Router(NIC2)
OFW(NIC1)

Nokia IP440
Name(tas_ifw),

multihomed,
IP(192.168.1.253)

ID C

ID C

OFW(NIC2)

Screened
Network

C O L -

A C T -
S T A -

1 2 3 4 5 6 7 8 9 10 1 11 2

H S 1 H S 2 O K 1 O K 2 P S
C O N S O L E

I D C I D C

Private
Data

Services
Net

C O L -

A C T -
S T A -

1 2 3 4 5 6 7 8 9 1 01 11 2

H S 1 H S 2 O K 1 O K 2 P S
C O NS O L E

IFW(NIC3)

OFW(NIC3)
IFW(NIC1)

IFW(NIC2)

ID C

Application
Proxy(s)

Name(tas_apx),
IP(192.168.6.8)

LAN

Web database servers, etc
Name(tas_db1)
IP(192.168.6.4)

Private DNS
Name(tas_idns),
IP(192.168.0.6)

Public DNS
Name(tas_pdns),
IP(192.168.8.6)

Mail port forwarder
Name(tas_mfw),
IP(192.168.8.8)

ID C

ID C

ID C

Mail server
Name(tas_ml1),
IP(192.168.0.8)

Web servers, ...
Name(tas_web),
IP(192.168.8.4)

ID C

LDAP Server
Name(tas_ldp),
IP(192.168.6.10)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A description of three of these follows:

Regarding, BugTraq bug id 2238, Check Point Firewall-1 4.1 Denial of Service Vulnerability, Security
Focus states the following:

A problem with the license manager used with the Firewall-1 package could allow a Denial
of Service. The problem manifests itself when the internal interface receives a large number
of packets that are source routed and containing ficticious (or even valid) addresses. In a
system containing a license with a limited number of protected IP addresses, the license
manager calculates the address space protected by counting the number of addresses
crossing the internal interface. When the large number of packets cross the internal
interface, each IP address is added to the number calculated under license coverage. When
the number of covered IP addresses is exceeded, an error message is generated on the
console for each IP address outside of the covered range. With each error message
generated, the load on the Firewall system CPU raises. This makes it possible for a user with
malicious motives to make a firewall system inaccessible from the console by sending a
large number of IP addresses to the internal interface. (SecurityFocus, 2238)

This is clearly a type of vulnerability that cannot be exploited from the outside. Nevertheless, its
existance could cause problems with dangerous users.

There is another vulnerability. BugTraq id 3336, Check Point Firewall-1 GUI Log Viewer Vulnerability,
is described by SecurityFocus, as follows:

It has been reported that Firewall-1 may contain a buffer overflow vulnerability. The
vulnerability is allegedly in logging of authentication attempts by GUI log viewing clients.
It may be possible for remote attackers to execute arbitrary code as root on systems running
Firewall-1.
The attack must be launched from hosts who are permitted to view logs via the GUI
interface. (SecurityFocus, 3336)

This one is almost useless for attack purposes. Substantial permissions are required to exploit it.

A third vulnerability, that receives BugTraq's id 2143 is the Fast Mode TCP Fragment Vulnerability.
SecurityFocus describes it:

Check Point Software's VPN-1 and Firewall-1 products contain a vulnerability in their "Fast
Mode" option that may allow an attacker to bypass access control restrictions and access
certain blocked services. Fast Mode is a setting that turns off analysis of packets in tcp
sessions after the TCP 3-way handshake has completed for speed-crtitical services.
If this setting is enabled on a firewall, it may be possible for a remote attacker to access
blocked services on the host protected by the firewall using fastmode. It is also reportedly
possible to access hosts at least one hop away on the same interface as the target host being
protected.
In order for this to be possible, at least one TCP service on a host protected by the firewall
must be accessible by the attacker to which a SYN can be sent legitimately. The
vulnerability is due to a failure to handle malformed fragmented TCP segments.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This vulnerability may allow attackers to access vulnerable services normally protected by
the firewall ruleset. (SecurityFocus, 2143)

Among these, one that can be easily used for a theoretical attack against the firewall (at least the denial
of service flavor) is the first one. The last one could be used only if the firewall is configured to use Fast
Mode (by default CheckPoint isn't).

Any internal user could generate those source routed packets and hit the licence limit, increase the CPU
load and force reboot of the firewall due to complete lack of access to the console. Of course, that
implies:

The attack is internal. Only one machine belonging to the enterprise can be used for it.•
The firewall is not of the unlimited flavor. CheckPoint has several license sizes: several of them •
limited.
The user installs a program that can build IP packets, and source-route them to the firewall.•

If the administrator is unable to upgrade the system to prevent this Denial-Of-Service attack, one quick
fix could be to install a Linux machine with two interfaces just in front of the interface, and eliminate
source-routed packets there.

Denial of service attack using ICMP floods

The design has only one connection to the Internet, therefore flooding from several compromised
machines can saturate that link and put the network out of business.

Countermeasures? Well, there can be several, just to mitigate effects, but no complete cure is available.
For starts, the ISP must take part: it could filter reserved ICANN addresses, so as to mitigate spoofing.
Also Cisco's CAR (Commited Access Rate) technology could be used to limit the rate incoming ICMP
packets arrive at. In case ICMP floods do not use spoofing, the ISP could prevent that traffic from
reaching the link, using access control lists in its routers. It could become an arms race, in which the
ISP technicians would have to add new filters continuously.

One way to make the network more resilient would require extra bandwitdth (but it would be a short
matter of time for the script kiddie to grab more machines and use them against the network).

Another network link with another ISP would help. The other ISP would also be required to filter
things out. Due to the way the Internet works, it could be possible that the flood would not be
distributed evenly among the interfaces, so that one could still be using at a fraction of capacity.

Atack plan to compromise an internal system through the perimeter system

Scott's system uses a Nokia firewall appliance. Runs CheckPoint Firewall-1 on top of a BSD flavor of
Unix. There is no apparent bug on SecurityFocus that would allow an external user to take control of
the machine. So, for the time being, a direct attack to take control of the firewall is not possible.

In order to compromise an internal system through the perimeter system, it is easier to access what we
are actually permitted to do. That means, we'd better use the protocols that are actually passed through

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the firewall, such as SMTP, HTTP or DNS.

The weakest link, and best choice might be the web server. There are several reasons for this:

HTTP traffic passes through the firewall, and it is usually not checked syntactically against attacks. •
Because of the speed penalty, application-level firewalling is not commonly used for web.
There are vulnerabilities that affect common Web servers (Microsoft), and there are ways, using off-•
the-shelf programs, to take SYSTEM control over them.
If there is database access through the web, passwords could be stored in the server. Besides, access •
to the database for brute-force password attacks, denial of service is already granted due to firewall
rules.
If custom programming is used for web applications, it could be interesting to see if the application •
programmers have actually used safe practices to screen for illegal characters and excessive input
length.

What could we do:

Test if the server is Microsoft based. We could use nmap with the -O option to determine the operating
system. With any luck, it runs Microsoft Windows NT/2000 and Internet Information Server (IIS).
Chances are that it might be still unpatched. Given that, we could run Nessus (a vulnerability checker)
to check for common IIS vulnerabilities and look for the proper exploit to get access.

If the system does not run Microsoft, or is already patched, the next step would be to study the
interface. Check all the forms, and try to explore if the system accepts weird characters. If the system
is Perl-based, arguments could be passed directly to other parts due to sloppy programming.
If we get shell access finally, the next step would be to determine what to do: look at files, search for
database passwords or other sensitive information, or get administrator access using vulnerabilities of
the operating system used in the machine.

There is not an apparent way to get to a machine belonging to the internal network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

List of References

Security Focus. “ Check Point Firewall-1 4.1 Denial of Service Vulnerability” 17 Jan 2001. URL:
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=2238 (9 Oct 2001).

Security Focus. “ Check Point Firewall-1 GUI Log Viewer Vulnerability “ 12 Set 2001. URL:
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=3336 (9 Oct 2001).

SecurityFocus. “ Fast Mode TCP Fragment Vulnerability”. 14 Dec 2000. URL:
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=2143 (9 Oct 2001).

Ziegler, Robert. Linux Firewalls. Indianapolis: New Riders, 1999.

