
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents ...1
Vince_Streiff_GCFW.doc..2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Firewall Analyst (GCFW) Practical Assignment
v.1.7

GIAC Enterprises

Security for a Small Company

By Vincent R. Streiff

Fall 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(this page left intentionally blank)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.4

Table of Contents
OVERVIEW 2
Assignment 1: Security Architecture 3

Summary of the problem 3
Analysis and Goals 6

1. Customers 6
2. Suppliers 7
3. Partners 7
4. GIAC Enterprises’ On-site Employees 8
5. GIAC Enterprises Mobile Safes Force & Off-site Employees 9
6. Potential clients and other on-site visitors 10

New Network Architecture 12
Summary of new security policy 14

Assignment 2: Security Policy & Tutorial 18
Overview 18

Access requirements by component: 18
1. The Border Router: 20
A Tutorial for Configuring the Netopia R5300 20
2. The Primary Firewall 38

A. Firewall A: 39
B. Firewall B: 73

3. VPN(s) 84
A. Windows 2000 Routing & Remote Access (RRAS) using L2TP over IPSec. 85
Real World implementation hints: 116
B. Citrix Nfuse v. 1.7 117
C. SSH-2 119

Assignment 3: Verify the Firewall Policy 120
Overview 120

1. The Plan 120
Audit costs and risks: 123
2. Conducting the Audit 123
3. Evaluating the Audit 141

Assignment 4: Design under fire 149
Overview 150
A. Attacking the firewall 150

Result: 152
B. Denial of Service Attack 152

Result: 154
Countermeasure: 154

C. Compromise a machine through Perimeter 154
Result: 156
Conclusions: 157

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.5

Bibliography 158
Books & other print materials 158
On-line references 158

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.6

OVERVIEW

This paper is intended to show how even a fairly small company can have
excellent security.

The GCFW Practical Assignment version 1.7 has 4 parts:

Assignment 1 – Security Architecture (15 points)
Define a network security architecture for GIAC Enterprises, an e-
business which deals in the online sale of fortune cookie sayings.

Assignment 2 – Security Policy and Tutorial (35 points)
Based on the security architecture that you defined in Assignment 1,
provide a security policy for the following three components:

Border Router(s) •

Primary Firewall(s) •

VPN(s)•

Assignment 3 – Verify the Firewall Policy (25 points)
Conduct a technical audit of GIAC’s primary firewall in order to verify that
the policies are correctly enforced as described in Assignments 1 and 2.

Assignment 4 – Design Under Fire (25 points)
Select a network design from any GCFW practical posted in the previous 6
months; research and design the following three types of attacks against the
architecture:

An attack against the firewall itself. 1.

A denial of service attack. 2.

An attack plan to compromise an internal system through the perimeter 3.
system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.7

1 http://www.redhat.com/
2 http://www.elronsoftware.com/productfamily/firewall.shtml
3 PPTP capability was added with firmware version 4.4; IPSec support was added with version 4.8 -- see
http://www.netopia.com/en-us/equipment/tech/fmw_features.html

Assignment 1: Security Architecture

Summary of the problem

GIAC Enterprises has recently hired a new IT Manager, who immediately
recognized the need for significantly improved security. However, the very slim
profit margins of the fortune cookie business, combined with the current sagging
economy, require these changes to be made at minimum expense. For this
reason, the newly recognized needs will be met, wherever possible, using
existing equipment and software. With very few exceptions, open source
software will be used for any software needs not met by the current inventory, in
order to avoid unnecessary expenses. Red Hat Linux 7.31 (RH) will be used as
the open source platform for these purposes; while there are other open source
operating systems and other versions of Linux designed with security in mind,
Red Hat is the version the IT Manager is familiar with. Because each additional
operating system adds complexity, GIAC Enterprises will standardize on two
operating systems: Red Hat Linux 7.3 where feasible or prudent, Microsoft
Windows 2000 elsewhere.

The pre-existing infrastructure for GIAC Enterprises was fairly simple. The main
office, which includes the corporate offices, holds a staff of 37 (though this
fluctuates somewhat as temporary help is occasionally hired for data entry.)
The previous IT Manager – self-taught on the job – managed to keep things
running remarkably well, but security was not one of his priorities.

The corporate offices are running Windows 2000 entirely, with a single Active
Directory forest with a single domain. Messaging is handled by Exchange 2000.
There was a firewall (Elron Software’s Firewall 3.042), running on a Windows NT
machine, but no DMZ of any sort. This firewall has some nice features and
appeared to be working, but its logging capabilities were severely lacking, and
there was no intrusion detection system to confirm how well the firewall really
was, or was not, performing. It was also crashing rather frequently, disrupting
the office’s access to the Internet. Replacing this firewall was a top priority.

The office is connected to the Internet via a T-1 connection; the router is a
Netopia R5300. This router has limited packet filtering abilities, but those
abilities had never been implemented. This router was also monitored and
maintained via telnet up to this point, as the R5300 lacked the capability of any
form of secure remote management.3 Due to the severe security threats
sending the border router’s access information in plain text creates, this practice
was immediately stopped, and the router’s remote access capabilities were

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.8

turned off until after the firmware was upgraded and the telnet sessions could be
secured using PPTP. All router maintenance until then must be done via a
terminal directly connected to the router via serial cable. While inconvenient,
the security risks of using telnet were unacceptable. The IT Manager wanted to
replace the router immediately with more capable Cisco equipment; his request
was denied, however. A new router has instead been budgeted for next year; in
the meantime, the IT Manager will implement as much packet filtering on the
Netopia R5300 as performance will allow.

Citrix Metaframe had been recently implemented for both remote access and
internal use; however, the majority of clients were still using the old Windows
2000 RRAS (PPTP) server for remote access, because it enables them to
compose e-mail off-line, and then synchronize MS Outlook when they have an
Internet connection available. The IT Manager was able to significantly improve
both security and functionality of the remote access sessions by reconfiguring
the existing equipment; rather than PPTP, L2TP over IPSec will now be used.

The single biggest security concern, however, was the lack of physical security.
GIAC Enterprises’ servers and other critical networking equipment were located
in the large bay area that served as the previous IT Manager’s office. This
carpeted, open area served as a connector between two other hallways – in
effect, the servers themselves were located in a hallway anyone with access to
the floor had access to. This included the cleaning crew, who of course needed
to vacuum the carpet the server racks were sitting on. After recovering from the
shock, the new IT Manager explained the futility of trying to secure the computer
systems through software alone. Once they understood that anyone with
physical access could do pretty much anything they wanted, upper management
approved immediate restructuring of the computer facilities. Space vacated
during “rightsizing” was used to build a dedicated, secured (and un-carpeted)
network operations center. Building this secure area was the one large expense
approved in this endeavor.

We can see a sketch of the inherited network in Figure 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.9

Ethernet

Firewall

DC, DNS,
& AntiVirus

Conference Room (Internet access only)

Ethernet

Router

Laptop

City

Town

DC, DHCP, WINS

Exchange 2000

Web Server Farm

DNS

NfuseRRAS (PPTP)

File & Print Server

Citrix MetaFrame

CA

DC, DNS, RIS

Hub

PC PC PC PC PC

PC PC PC PC PC

Ethernet

Web Inspector

Wireless Access Point

SQL

Clients

10.0.0.100-10.0.0.199

10.99.99.0/24

Network Overview: Before

Servers
10.0.0.2-10.0.0.99

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.10

Analysis and Goals

Before making any changes, the new IT Manager met with all of the corporate
officers to determine GIAC Enterprises’ core business needs. These will guide
both the architecture and the implementation of the new security plan. During
this needs analysis, GIAC Enterprises identified the following classifications of
users of their computer facilities and services:

Customers, who require access to the GIAC Enterprises Web site, and 1.
who send e-mail to GIAC Enterprises staff.
Suppliers, particularly those who submit the fortune cookie sayings. 2.
GIAC Enterprises’ suppliers of other materials – paper, dough
ingredients, etc. – do not require direct or special access to the network;
inventory is recorded by staff manually. (There has been some
discussion of automating this process in the future, however, so the new
architecture will require flexibility to incorporate this later on without
requiring any architectural changes.)
Partners, which are international companies that translate and resell the 3.
fortunes.
GIAC Enterprises’ on-site employees.4.
GIAC Enterprises’ mobile sales force and other off-site employees.5.
Potential clients and other on-site visitors will be provided access to the 6.
Internet via connections in the conference room.

The new IT Manager then proceeded to define the following security architecture
and general policy, based on the needs of each of the 6 groups of users. The
new policy begins with an assumption that any access not specifically required
will be denied. In addition, naturally, there is an assumption that GIAC
Enterprises needs to continue operations during this transition. Lastly, the IT
Manager was instructed to spend an absolute minimum amount of money in
this endeavor.

1. Customers
GIAC Enterprises’ customers only need access to the public Web site, which
enables online orders via SSL. All data from the transactions is stored in a back-
end SQL database. The Web server (Windows 2000 Server running IIS) and the
database server (Microsoft SQL Server 2000) will use IPSec to secure their
communications with each other. These servers will be “hardened” to the
greatest extent possible, and the logs will be closely monitored.

The only connectivity required through the external firewall for the customer
traffic is TCP ports 80 (HTTP) and 443 (HTTPS). The Web server and the SQL
server housing the data will be located on a service network, or DMZ. Traffic
from the Web server that is neither a reply to an existing Internet connection nor

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.11

destined to the SQL server will generate immediate alerts in the new intrusion
detection system.

2. Suppliers
Suppliers have traditionally submitted their sayings by simply e-mailing MS
Word documents to GIAC Enterprises. Because of the constant, pervasive
threat of Word macro viruses & worms, the security concerns with sending core
business information across the Internet in e-mail, and because this process
makes tracking submissions very difficult, a new system will be put in place to
enable suppliers to submit their sayings online via a standard form. The existing
Web and SQL servers will be leveraged to provide this service, with a goal of
moving them to separate, dedicated hardware as soon as funding allows.
Suppliers will upload files in comma-separated or tab-delimited format; they will
then be able to review and edit them online, before confirming the submission.
In addition, GIAC Enterprises’ staffs’ computers will have MS Outlook 2002 re-
configured to its default setting of not allowing access to .DOC attachments.
(The previous IT Manager had enabled access to attachments with MS Office
extensions for convenience to staff.)

This submitted data will be stored on the Microsoft SQL Server 20000 backend
database. [While there is definitely concern about having so much of GIAC
Enterprises’ critical business information in the DMZ, the server was put there
because of the assumption that in the event of a server compromise, the
damage would hopefully be limited to the DMZ. The traffic from the Web server
to the SQL server is the same regardless of the SQL server’s placement; if the
SQL server were in the internal network, and it were to be successfully attacked,
a compromised server would then be inside the internal office network.] Storing
the data in the SQL server will facilitate vastly improved tracking of individual
supplier submissions, for purposes of tracking finances, quality assurance, etc.
(Though it’s never discussed outside of the office, there is some concern among
GIAC Enterprises’ accountants that the current system of e-mail and Word
documents lends itself to fraud, because the accounting department doesn’t
have the ability to easily cross-check the suppliers’ invoices with the goods
actually delivered.) The IT Manager expressed his concern over storing the
company’s key proprietary info – the fortune sayings – on a server located in the
DMZ, but was told not to change too much at once.

3. Partners
The international companies that translate and resell GIAC Enterprises’ fortunes
have been getting those fortunes e-mailed to them in Word format – often, the
Word documents submitted by GIAC Enterprises’ suppliers were simply
forwarded to the partners. In addition to the security concerns with sending their
core business information across the globe in e-mail, there has been at least
one embarrassing instance of a staff member forwarding a Word document that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.12

contained the supplier’s private information. Partners will now, therefore,
download the sayings via the Web site, from the same database the suppliers
submit them to. (Only records cleared by GIAC Enterprises staff will be
available for them to download, however.) This will, again, significantly improve
both security and tracking of accounts payable and accounts receivable. It’s
also hoped these improvements in accounting will improve the general
demeanor of the accounting department, though the staff views this as a long
shot.

Partners do not need access to any other information. There was hope for
generating additional revenue by licensing GIAC Enterprises’ unique dough
formula, but that has been put on hold due to the varying local food regulations
of the partners’ host countries.

4. GIAC Enterprises’ On-site Employees
Employees on-site obviously have the most extensive access requirements to
the network. Their access, however, does not need to be unlimited. Access to
specific resources will be based on job function and department; individuals will
not be given access to any resources they don’t need to perform their job. One
obvious example is that only members of the accounting department will have
access to the financial records.

General usage policies are outside the scope of this document. In a nutshell,
limited personal use is allowed, as long as it does not interfere with work; no
software of any kind may be installed by non-IT staff, however, and the uses of
instant messaging, chat, peer to peer and personal Web mail are strictly
prohibited.

Due to previous abuses, Internet usage is monitored via Elron Software’s Web
Inspector, currently at version 6.01. Accessing sites that contain questionable
material, such as pornography or other adult content, sends an alert via e-mail
to the HR department. Sites are not blocked, due to the concern for false
positives – we don’t want to accidentally block CNN, for example. E-mail traffic
is not currently monitored, though there has been some discussion of
implementing either Elron Software’s Message Inspector
(http://www.elronsoftware.com/productfamily/msginspector.shtml) or
SurfControl’s E-mail Filter software
(http://www.surfcontrol.com/products/email/).

In order to assist with stripping out any Java, ActiveX, or other potentially
harmful code, all out-bound Web traffic will be routed through a proxy. The
firewall will therefore be configured to only allow outbound Web traffic from the
internal network to go to the service network. (In fact, all outbound traffic of any
sort from the internal network to the Internet must be routed through the DMZ.)
It was determined that there is no legitimate business reason for the majority of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.13

4 http://csrc.nist.gov/itsec/guidance_W2Kpro.html
5 http://www.citrix.com/products/metaframexp.asp

staff to have the ability to download files from the Internet; therefore, Passive
FTP access will be available only from designated machines which only IT staff
have permission to log onto. Due to their determination to monitor regulatory
affairs via the Internet, people in the Advocacy Department have requested the
ability to use RealAudio and Windows Media Player for monitoring events on
Capitol Hill. (The IT Manager’s suggestions that the existing cable TV’s be used
instead were called tactless, and ignored.) Both of these services will therefore
be allowed, but configured to operate over HTTP, so no additional holes in the
firewall will be needed. The client software – Windows Media Player in
particular – will be closely monitored to ensure any and all security flaws are
patched or otherwise addressed immediately.

GIAC Enterprises also hires temporary staff occasionally for data entry. Temps
use well-hardened Windows 2000 Professional workstations to work from (they
meet or exceed the CIS Gold Standard.4) In addition, Active Directory’s Group
Policy is used to restrict them to running only the programs they need. These
workers are on-site only; they are denied Remote Access capability.

Internal staff who need to work on or with the SQL server will use IPSec to
communicate with it. This not only secures the communications, but also
simplifies the firewall’s rulesets; we only need to allow UDP 500 for IKE, and
protocols 50 (ESP) and 51 (AH) between the SQL server and the internal
network. These communications may be initiated from the internal network
only; the SQL server will not be able to initiate communication with the internal
network.

5. GIAC Enterprises Mobile Safes Force & Off-site Employees
The majority of remote access for staff will be provided via Citrix MetaFrame
XPa, Feature Release 25. This is the one large IT expenditure GIAC Enterprises
had this year, because the cost of implementation was not much higher than the
normal annual replacement of 1/3 of the computers. (GIAC Enterprises has
been on a 3-year replacement cycle for its PC’s for the past 4 years, and
generally spent in the neighborhood of $20,000 on PC replacements. By doing
a significant amount of the work themselves, GIAC Enterprises implemented
Citrix Metaframe at a cost of roughly $30,000. Because Citrix MetaFrame
enables the implementation of a “thin client” solution for the majority of staff, it
will eliminate the need for annual PC replacements; GIAC Enterprises expects
to see a return on investment of over $10,000 next year alone.) GIAC
Enterprises recognizes that Web-based services, such as a future .NET version
of Microsoft Office that doesn’t require local installation, may be cheaper than
Citrix when they are available. Truly Web-based office productivity applications
won’t be available for implementation next year, however, and the security
implications of such an architecture have not yet been adequately addressed;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.14

6 See RFC 2661, “Layer 2 Tunneling Protocol,” at http://www.ietf.org/rfc/rfc2661.txt.

Citrix still makes sense.

It also improves remote access security significantly, as the majority of needs
can be met through the Citrix NFuse Web interface, combined with Citrix Secure
Gateway (CSG). The implementation the IT Manager inherited, however, did not
take advantage of CSG, nor did the NFuse site use SSL. This resulted in staff
sending usernames and passwords over the Internet in plain text, plus required
opening additional holes in the firewall to enable ICA connections (tcp port
1494) directly to each of the Citrix MetaFrame servers. That situation was
immediately rectified to prevent sending passwords in unencrypted clear text,
and all users who had logged on were required to change their passwords.
Staff is excited that use of Citrix for remote access also means that they will see
the exact same settings for their programs whether they are in the office or
working from home; IT is looking forward to utilizing the “session shadowing”
capabilities to save on shoe leather during staff support calls.

Citrix is not a panacea, however, and more traditional VPN access will still be
required for the foreseeable future for the mobile sales force to synchronize MS
Outlook. Because they often need to work on planes and other areas without
Internet connectivity, they will use both Outlook’s “Send and Receive” function
and Windows 2000’s “Offline Files” functionality. Because synchronizing
Outlook can not be done via Citrix, VPN access of some sort is required. Due to
the need to avoid additional expenses, GIAC Enterprises will continue to use the
existing Windows 2000 RRAS service for this. However, both the server and the
clients will be reconfigured to improve security. Instead of PPTP sessions with
encryption based on user passwords, clients will now use L2TP over IPSec.6

This will require authentication based on digital certificates as well as a
username and password. [The IT Manager suggested implementing a smart
card solution, but management balked at the expense.] The list of servers that
can be accessed through the VPN sever will be restricted to domain controllers
and the Exchange server, in order to provide Outlook synchronization services
and as little else as possible. Lastly, the VPN server will be moved to a
separate, dedicated segment off the firewall in order to leverage Netfilter’s
logging and filtering capabilities.

IT Staff will also need remote access to the new Linux boxes for administrative
purposes. This will be done via OpenSSH; because of the security flaws in SSH-
1, only SSH-2 will be implemented. (www.openssh.org)

6. Potential clients and other on-site visitors
Connectivity to the Internet is provided for authorized guests in the conference
room; an 802.11b wireless access point was installed there last fall. The Board
of Directors has been advised this is a security risk, but they decided the need to
provide the service outweighs the risks. As a compromise, the wireless access

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.15

point will remain turned off when not in use, powered on only as needed. In
addition, this service is being moved to a separate, isolated network, so that any
unauthorized use of the wireless connection – wandering public, other tenants in
the building, etc., who succeed in connecting to the wireless access point – will
only succeed in getting Internet access. This will not only be on a separate
network, but will indeed have a separate firewall, though it will be connected to
the same router. The firewall will only allow outbound HTTP, HTTPS, and DNS
traffic from this point. The logs of both this firewall and the wireless access
point will be monitored for any questionable activity. [Because they will be used
very infrequently, the logs will simply be checked manually. Though
inconvenient, this was preferred over opening additional holes in the primary
firewall to allow syslog.]

Due to the current impossibility of adequately securing wireless traffic, GIAC
Enterprises’ staff is prohibited from using this wireless access point for any work-
related activity. If they must access the Internet while in the conference room,
they are required to use one of the multiple wired Ethernet drops. If GIAC
Enterprises’ own staff needs access to anything on the internal network while in
the conference room, they will simply connect via the encrypted Citrix NFuse
remote access solution as if they were anywhere else outside of the internal
network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.16

New Network Architecture

Ethernet

Firewall

DC, DNS,
& AntiVirus

Ethernet

Router

Laptop

City

Town

DC, DHCP, WINS

Exchange 2000

IDS

Web Server Farm

SSH

DNS Syslog & NTP

Nfuse, CSG

SMTP Relay

File & Print Server,
SUS

SQUID Proxy

Citrix MetaFrame

Syslog & NTP

IDS

DC, DNS, RIS

Hub

PC PC PC PC PC

PC PC PC PC PC

Ethernet

Web Inspector

SQL

Windows Update
Server & AntiVirus

Service Network

10.0.1.1-10.0.1.30

Servers

Clients

10.0.0.100-10.0.0.163

10.0.0.2-10.0.0.33

10.0.0.210

Firewall

Network Overview

CA

Conference Room (Internet access only)

Wireless Access Point

10.99.99.0/24

L2TP VPN Server

5.6.7.8

10.0.2.12

Figure 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.17

Several architectural changes are readily apparent in Figure 2. The most
obvious is the separation of the one single network into 4 separate networks:
one for the services accessible from the Internet, one for the internal office, one
for the L2TP VPN server, and one for the conference room. (Note that not all
client PC’s are shown in this drawing.)

The router, a Netopia R5300, has not been replaced or moved. As it is still our
connection to the Internet, making all the rest of our work possible (and
necessary), it must of course be on the outer edge of our network. It is also a
single point of failure; if our router fails, or is compromised, we have no other
access to the Internet. We won’t be able to get out, and our customers,
partners, suppliers, and off-site staff won’t be able to get to us. We will alter this
equipment somewhat, however, by implementing packet filtering; this is
described in much more detail later.

The old Elron Firewall on Windows NT has been replaced with Netfilter &
iptables running on a Red Hat Linux 7.3 bastion host. This is directly behind the
router, so that all traffic must go through the firewall immediately before or after
traversing the Internet. This runs on the same hardware as the previous firewall
[a Dell Optiplex GX-110 Pentium III 667 with 128 MB RAM], though it now boots
off of a CD instead of the local hard disks to prevent any successful access from
altering the operating system, installing a root kit, etc.; any and all changes will
be lost when the firewall is rebooted. This is our network’s primary defense,
acting as the traffic cop deciding what traffic is and is not allowed. A second
firewall, also running Netfilter on Red Hat 7.3, has been configured for the
conference room access. An old Pentium II 350 PC with 64 MB RAM proved
more than sufficient for this purpose.

The Citrix NFuse will still be the primary method for off-site staff to reach the
network; a valid username and password, sent over an encrypted SSL
connection using the RSA-SHA1 algorithm with a 128-bit key, will be required
for this connection. (Smart card logon would be preferred, but has not been
approved due to costs.) An L2TP over IPSec remote access solution is provided
for off-site to synchronize Microsoft Outlook if necessary, and SSH-2 is available
for IT staff to manage servers remotely. Non-staff do not require access to any
of these VPN services. All three of these VPN servers are located behind the
firewall, to leverage the firewall’s filtering and logging capabilities, but are
separated from the internal network to help isolate them.

Intrusion Detection Systems (IDS’s) have been added to the service network and
the internal network. In accordance with the “spend no money” mantra, this task
is performed via Snort (www.snort.org) running on Red Hat Linux 7.3. Decent
PC’s leftover from downsizing (Dell Optiplex GXi’s with Pentium III 733’s) have
been repurposed for this task after the addition of memory and hard disk space.
[Note that staff still using the 4-year old Pentium II 350’s were not necessarily
told all of these details…]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.18

7 http://enterprisesecurity.symantec.com/content/ProductJump.cfm?Product=155&PID=12930860&EID=0
8 http://enterprisesecurity.symantec.com/content/ProductJump.cfm?Product=36&PID=12930860&EID=0
9 ftp://ftp.cis.fed.gov/pub/postfix/index.html

One important change that is not visible in this diagram is that all machines will
have Symantec’s Antivirus Corporate Edition7 running, and will also have
personal firewall software installed. All Linux machines will use the
Netfilter/iptables solution for this firewalling; Windows 2000 machines will use
Symantec’s Desktop Firewall 2.0.8 (The purchase of the Symantec products
was approved because it was deemed too critical to put off until the next year’s
budget.) All personal firewalls will be configured to allow only the types of traffic
that are required.

E-mail is still handled by Exchange 2000 & Outlook 2002, but because it is
virtually impossible to “harden” an Exchange 2000 server due to the number of
services running, all SMTP traffic will be routed through a Postfix mail relay
located in the DMZ. (Note that this server will not be an “open relay;” it will be
configured to relay mail only for the internal Exchange server.)

The existing hubs and switches, comprised of 3Com SuperStack II Switch
3000’s and multiple 3Com “autosensing” SuperStack II 10/100 hubs, were
reused; new switches, including Gigabit Ethernet switches for the backbone,
have been budgeted for next year.

Summary of new security policy
All access levels will follow the principle of least privilege.1)
All Windows machines, whether servers or PC’s, will have up-to-date 2)
antivirus software running at all times. This will be provided by
Symantec’s AntiVirus Corporate Edition.
All Windows machines will have Symantec’s Desktop Firewall 2.0 3)
installed and configured. This will be distributed and managed from a
centralized server.
All Red Hat machines will take advantage of having Netfilter built into the 4)
Linux kernel, and will restrict all inbound and outbound traffic to only that
which is required for the service(s) the machine provides.
The router connected to the Internet will be reconfigured to provide as 5)
much filtering as possible without degrading performance. (A
replacement Cisco router with improved capabilities has been budgeted
for the next fiscal year, and will be purchased and implemented as soon
as possible.)
All e-mail will be routed through an SMTP relay server. This server will 6)
run Postfix Version 1.1 Patchlevel 119 on a Red Hat bastion host.
All e-mail, both inbound and outbound, will be scanned for viruses by 7)
both the Exchange 2000 Enterprise server and the Postfix SMTP relay
server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.19

Internal staff’s Internet access will be restricted to Web traffic, and will be 8)
filtered through a Red Hat server running Squid (http://www.squid-
cache.org/). Due to the lack of business need, staff will not have access
to Instant Messaging, Usenet News, or peer-to-peer software.
Traffic among servers within the service network or between the service 9)
network and internal network will be secured via IPSec whenever
possible. All authentication traffic, even if only within the internal
network, will be encrypted.

All administrative work done over the network must be secured. 10)
This will be done by using SSH-2 (www.openssh.org), IPSec, or
HTTPS/SSL.

All passwords will, at a minimum, adhere to Microsoft’s complexity 11)
requirements. Staff will be trained, and routinely reminded, how to
develop complex passwords they can remember. Passwords for
administrative and service accounts will use non-printing ASCII
characters. [Note that Windows 2000 enforces password requirements
universally; this means adhering to our policy for these administrative and
service accounts will be a manual endeavor, subject to human error...]

All servers, whether in the service network or the internal network, 12)
will be hardened to the greatest extent possible (with the understanding
that for some, such as Exchange 2000, the greatest extent isn’t very
great.)

All patches, updates, etc. will be applied as promptly as feasible. 13)
Multiple services will be subscribed to, and Websites routinely monitored,
to ensure IT staff are immediately aware of security flaws with software
used. [Lists monitored will include, but not necessarily be limited to, the
SANS newsletters (http://www.sans.org/newlook/digests/SAC.htm),
Windows & .NET Magazine’s Security Advisor newsletter
(http://secure.duke.com/nt/SecAdmin/index.cfm?Code=sawi251xna), and
the famous bugtraq (http://online.securityfocus.com/cgi-
bin/sfonline/subscribe.pl).] Microsoft’s Software Update Service will be
used for all Windows 2000 machines to minimize Internet traffic and
exposure.

Traveling staff will use Windows 2000’s Encrypting File System 14)
(EFS) to help protect data in the event of hardware theft.

Audits of the network will be performed on a regular basis. Logs 15)
will be monitored continually. Centralized syslog servers, one in the DMZ
and one in the internal network, will be configured to support this
purpose. All Windows 2000 servers will use NTSyslog
(http://ntsyslog.sourceforge.net/) to send their Application, Security, and
System event logs to the syslog servers.

All business data transmitted over the Internet by staff, suppliers, 16)
or partners will be encrypted and/or digitally signed.

Supplier, partner, and staff identities on the Web will be controlled 17)
by both standard username & passwords and by digital certificates,
issued (and revoked) by GIAC Enterprises.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.20

Any unauthorized installation of software will result in severe 18)
penalties, up to and including dismissal and criminal prosecution.

All Microsoft Windows 2000 computers, with the exception of 19)
servers on the service network, will be part of the GIACENT.COM Active
Directory domain (GIAC Enterprises’ public domain name is GIAC.COM).
Group Policy will be used to manage all of these Windows 2000
computers and, in particular, tighten their security. To the greatest extent
possible, all Windows 2000 Professional machines will conform to the
CIS Gold Standard (http://csrc.nist.gov/itsec/guidance_W2Kpro.html).

Microsoft Internet Explorer and Outlook will both be locked down 20)
as much as possible via the use of Group Policies and registry edits.

A detailed Business Continuity Plan will be developed and 21)
regularly reviewed. This will include data backup and recovery
procedures. Recent backups will be stored off-site in a secure location.

All servers and other critical network hardware will be located in a 22)
secured room, dedicated to that purpose. Access to this room will be
restricted.

With the exception of the public interface of the VPN server, all 23)
machines behind the firewall will use private, non-routable IP addresses;
the firewall will provide Network Address Translation (NAT) functionality.

No machines in the internal network will have direct access to the 24)
Internet. This includes the NTP server, which will synchronize with the
NTP server in the service network; the Norton AntiVirus server, which will
obtain its updates via passive FTP from the Norton AntiVirus server
located in the service network; and the Software Update Services server,
which will obtain its updates from the SUS server in the DMZ.

DNS used for Active Directory and the internal network will be “split 25)
brain” DNS. Only one of the internal DNS servers will have access to the
service network’s DNS server, which will serve as a caching DNS server.
This DNS server in the DMZ will host no information about either the
internal network or the DMZ. [Hosts files will be used on servers in the
DMZ when needed.]

The publicly accessible, authoritative DNS server for the GIAC 26)
Enterprises’ “giac.com” domain is currently hosted offsite. The IT
Manager routinely checks the security of this machine as best he can; he
has proposed bringing it in-house to better ensure its security and
accuracy, but that move has not yet been approved.

Remote access will be provided primarily via Citrix NFuse and 27)
Citrix Secure Gateway. Any VPN requirements not met by NFuse will be
provided by either SSH, where possible, or L2TP. Both inbound and
outbound SSH will terminate at a designated SSH server on the service
network; any further connections necessary will be made via SSH from
this server only.

Old, unused, yet functional PC’s will be reconfigured as Netfilter 28)
firewalls for home use by telecommuting staff; Pentium 133’s with 64 MB
RAM are currently being tested for this purpose, with great success.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.21

These will have the ability to be monitored and managed by GIAC
Enterprises’ IT staff via SSH. Windows laptops used by staff will have
Symantec’s Desktop Firewall 2.0 installed.

All remote access via SSH or L2TP over IPSec must be done from 29)
machines with personal firewall software installed and configured.

All traffic to the MS SQL server will be secured via IPSec, whether 30)
from the Web server or the internal network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.22

Assignment 2: Security Policy & Tutorial

Overview
There are three primary parts to implementing our new security policy. These
are the border router, the firewall, and the VPN servers. We will outline how we
use these to implement and enforce our policies defined above. In addition, our
explanation of the border router will include a tutorial for configuration.

We will use our border router as our first line of defense, blocking invalid (i.e.
spoofed) ip addresses and only allowing the types of traffic we want. This,
combined with our firewall, is the most obvious form of defense in depth.

Our firewall will also be configured to block invalid addresses, allowing only the
types of traffic our policy states we need. This will be our primary defense.

We will also implement Intrusion Detection Systems running Snort. We expect
a lot of false positives, particularly at the outset; hopefully this will improve over
time as we tweak our configuration.

We will also have 3 different methods of VPN access. The majority of remote
access will be secured through the use of Citrix NFuse with Citrix Secure
Gateway. “Road warriors” will be able to synchronize via an L2TP over IPSec
connection. The third method will be SSH-2, for IT administrators only. The
primary firewall will be leveraged for filtering and logging of all of this remote
access activity.

Logging will be done via syslog for Red Hat machines and NTSyslog for
Windows servers, with all logging in the perimeter going to a syslog server in the
DMZ. This server will send it’s info to a syslog server in the internal network.

Machines will use NTP in order to keep their times synchronized. This is critical
not only for having sensible logs, but much of our communications, such as
Kerberos, require it.

Access requirements by component:

1. Border Router

Our router just needs to allow the requisite traffic through. Inbound, this
amounts to HTTP, HTTPS (SSL), and SMTP (e-mail) for everyone except our
own remote staff, who also have access to the LT2P over IPSec VPN. Our IT
staff also has access to SSH-2, so we’ll let that in too. However, as this is just a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.23

border router, performing no authentication for traffic going through it, we have to
open up all that traffic to everyone.

For internal staff, the same traffic is allowed out, with the addition of FTP for IT
staff -- though again, the router doesn’t discriminate; it lets anyone inside use
FTP. Our router also allows PPTP traffic to itself, for the purposes of remote
maintenance by IT staff; this is only enabled on the LAN side of the router.
Nobody else needs or should have access directly to the router, so they won’t.

2. Primary Firewall

Our firewall, running Netfilter, will allow the same inbound traffic as the border
router, though it also performs Destination NAT (DNAT) to redirect that inbound
traffic to the appropriate server. This provides our customers, partners, off-site
staff, and suppliers with the access they require to our Web-based services.

Outbound traffic, again, is the same as the router, though for any traffic
generated in the DMZ or internal network, Source NAT’ing takes place so our
traffic will work out on the Internet. Our L2TP over IPSec traffic is left un-altered,
however (as it must be in order for IPSec to work.)

All traffic destined to or from the Internal network, aside from the authenticated
L2TP VPN users, must be routed through the DMZ to get to or from the Internet.

As with the border router, direct access to the firewall is provided for GIAC’s IT
staff; no other users require direct access. This will be via SSH-2, and only from
the DMZ.

3. Virtual Private Networking

As stated above, we have three methods of VPN. The overwhelming majority
will be through Citrix NFuse with Citrix Secure Gateway; this combination allows
staff to do the same work off-site that they do on-site, accessing all the same
resources. This doesn’t require any special firewall configuration on the outside;
we will be using HTTPS for this traffic (though ICA and SSL traffic will be
allowed from the DMZ to the Citrix MetaFrame servers on the internal network.)

The second VPN will be the L2TP for our traveling sales force. This will use
digital certificates issued (and revoked) by GIAC to establish IPSec tunnels
using 3DES (see the event log sample in the section on VPN’s, below.)
Assuming their machines are authenticated, they will then have to log on using
a username and password, which will be secured via MS-CHAP v2. Once they
have successfully connected, they will be able to synchronize Microsoft Outlook --
but very little else. We don’t expect this to be used very heavily.

The third VPN is SSH-2, via OpenSSH (www.openssh.org), for any off-site IT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.24

staff. This will enable them to monitor and manage the servers even in the rare
event the IT staff managed to escape from the office.

Non-staff do not require access to any of these 3 VPN methods, since they will
do everything via the Web site.

These three components combine to provide the following access:
1. Customers, Suppliers, Partners, and indeed anyone else on the Internet can

access the www.giac.com public Web server; access to the various services on
this machine will be controlled by IIS, digital certificates, and NTFS permissions.
Everyone will also be able to access the logon screen for Citrix NFuse, though
only users with valid usernames and passwords will be able to successfully log
on. [Note that this presents a potential Denial of Service, as someone could
lock out accounts by attempting brute force logins with a valid username! The
intent in the near future is to improve this through the use of digital certificates.]
2. Off-site staff with valid digital certificates will be able to access the L2TP over

IPSec and SSH-2 servers, and will also require valid usernames and passwords.
They will also be able to log onto the Citrix NFuse site.
3. On-site employees will be able to access the Internet, but only ports 80 and

443, and only via a proxy; they will not be able to access anything on the Internet
directly. IT staff will also have access to port 21 for passive FTP.
4. Potential clients will have access to the Internet when they are in the main

conference room.

All three of these components -- the border router, the firewall, and the VPN’s --
are described in much greater detail below. We will start with our tutorial on the
border router.

1. The Border Router:

A Tutorial for Configuring the Netopia R5300
We will begin our explanation of how to implement the security architecture
defined in Assignment 1 above at the outer edge of the GIAC Enterprises
network, at the router connected to the Internet. This connection is a T-1 line
(1,544 Mbps).

This router is, unfortunately, a lowly Netopia R5300
(http://www.netopia.com/equipment/pdf/spec/r5000.pdf). While it has the ability
to perform NAT, DHCP, and packet filtering, none of these capabilities had been
taken advantage of. The machine only has 1 MB of memory, which means it
probably lacks the brawn necessary to do everything fully without impacting its
performance. Fortunately, we don’t need it for NAT or DHCP. We will, though,
implement its packet filtering capabilities as much as we can. Even though the
filter is not stateful, the expectation was that we would have to limit how many
filter sets we implemented; much to our surprise, however, performance was not

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.25

significantly degraded.

As a result, the router is being used as the first line of defense for filtering out
any and all traffic with illegitimate source IP addresses. We use the IANA list,
located at: http://www.iana.org/assignments/ipv4-address-space, to define
“illegitimate.” [Note: the “public” IP addresses for GIAC Enterprises have been
replaced within this text, for security reasons, to an address block that we
classify as illegitimate. The exclusion of these illegitimate addresses from our
rulesets blocking spoofed addresses, and their inclusion elsewhere, is for
purposes of this text only. There are also reminders about this in the rulesets,
which have required slight altering to permit our “example” addresses.]

Configuring this router initially requires direct access via null modem cable.
While the router has the capability for IP-based access, there was initially no
encryption or security of any kind beyond a simple username and password,
sent in plain-text. This was deemed unacceptable, particularly since the traffic
is, by definition, outside the firewall; the IP access capability was therefore
disabled until a more suitable option was available. That option -- PPTP --
turned out to be available via an existing firmware upgrade.

Implementing the changes that follow therefore entailed connecting a laptop to
the router via null modem cable, starting the Windows 2000 HyperTerminal
program (located under
Start>Programs>Accessories>Communications>HyperTerminal), and
configuring our settings as per page 6-4 in the Netopia User Reference Guide on
the CD that accompanied the router or on the Internet at
http://www.netopia.com/equipment/pdf/manuals/r5000/leaseref.pdf. Note,
however, that the 56,700 baud settings recommended here may not work; I
recommend 9600 baud. [The R5300 allows you to configure the connection
speed at any range from 9600 to 56,700; however, only 9600 baud works
reliably for us.] Another “gotcha” is that in practice, it is entirely possible that
cycling the power on the router will be required to establish the connection! As
this obviously breaks the connection with the Internet, it’s important to ensure
this is only done during off-peak hours.

So, naturally, our work was done over the weekend, during the night, which is
traditionally a period with little or no business activity. Customers, partners, and
suppliers were all notified in advance that service could be interrupted during
this time due to “network maintenance.”

Below we see the screen the Netopia R5300 provides us after we log in. (Those
paying close attention will notice that, yes, this was done on a machine running
Windows XP Professional rather than Windows 2000, even though we stated
earlier that we were a fully Windows 2000 and Red Hat 7.3 shop. However, the
Windows XP machine in question has since been downgraded to Windows
2000 for the sakes of both conformity and performance, and because the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.26

Windows 2000 administrative MMC snapin tools do not function in Windows
XP. But I digress.)

Figure 3

First, we confirm the IP access capability is turned off. We do this before
anything and everything else in order to ensure we’re the only ones working on
the router, and to prevent someone else from altering any of our work.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.27

10 See http://www.netopia.com/en-us/equipment/upgrades/411Feat.html for a list of changes
11 Note that PPTP has been available since firmware version 4.4.

Figure 4

As you can see in Figure 4 above, both telnet and Web access were enabled
(this is the default setting.) Also note that as no filters have been applied at this
point, anyone on the planet with an Internet connection was free to bang away
attempting to guess the username & password as often and as long as they
wanted. We changed the Web Server and Telnet options to “No.”

The next step after establishing the connection via serial cable was to download
the router’s current configuration. Our plan was to edit it using our text editor of
choice, and then upload our new configuration to the router. This would be
vastly more efficient than the very tedious method of adding each ruleset one at
a time using the console interface. Figure 5 shows the process of downloading
the router’s configuration via X-Modem transfer; note that with HyperTerminal,
contrary to the documentation, we need to select “1k Xmodem” as the transfer
protocol in order to get this to work. Once we were certain the file transfer
process worked properly, we also uploaded updated firmware; this process had
never been done with this equipment previously, but as part of GIAC
Enterprises’ new policies, routine checking for firmware updates is now
standard. The latest firmware can be acquired from http://www.netopia.com/en-
us/equipment/purchase/fmw_update.html – the issues10 addressed by this
firmware upgrade (4.11 as of this writing) were numerous. The most important
additions for us were the addition of PPTP11 capability, the ability to designate

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.28

12 Our firmware upgrade actually added the ability to use text formatted configuration dumps, but
unfortunately we didn’t see that during our initial reading of the accompanying notes!

separate filter sets for the internal and external interfaces, and a text-formatted
configuration dump. We will take advantage of the PPTP addition, as it enables
us to turn the telnet over IP administrative functionality back on. Because our
telnet will be within the PPTP tunnel, it should be secure enough for our
purposes. (Note that as of firmware version 4.8, the R5300 can also use IPSec.
However, this won’t work for our purposes, because the machines we’d be
trying to connect with are NAT’ed.)

With our firmware upgrade, we also now have a separate “superuser” account
for configuring the WAN connection. This gives us an added level of security,
slightly limiting the damage a remote connection can do.

Figure 5, downloading the configuration

Our plan to edit the configuration file off-line was foiled, however, by the fact that
the configuration file we downloaded is in binary format. The good news is that
this method can be used to create a backup of the router’s configuration. The
bad news is that, unfortunately, modifying the file is not possible, as far as we
can tell. This means that we must resort to the glorious method of adding each
of our rules one ruleset at a time via the console interface. We will spare you
(and the trees, should you decide to print this) the zillions of screenshots
involved in outlining that entire process, and instead simply show the process
required to enter these entries. We will then list the completed rulesets.12

Next, we proceed to the meat of our activity, configuring the packet filtering. We
will use the IANA list (see above) to block all unassigned or restricted
addresses, then we will enable the traffic we want to allow. Everything else will
be dropped. The majority of the work we’ll be doing will be done under the
System Configuration option shown above in Figure 3. Figure 6 below shows
the options on the System Configuration sub-menu.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.29

Figure 6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.30

Figure 7

We had noticed previously that a “Basic Firewall” filter set already existed.
Whether it was built-in or simply a test by the previous IT Manager is not known;
in any event, before creating our own we decided to check it out. We found that
it denies tcp ports 2000 and 6000 – but seems to allow pretty much everything
else. We’ll make a new filter set that’s just a wee bit better.

As stated previously, the new firmware enables us to designate separate filter
sets for the internal and external interfaces. This is a mixed blessing; we are
still limited to a combined total of 255 rules in 8 filters. Of course, using them all
would probably overwhelm the little machine anyway and negatively impact
performance; we will therefore limit our “invalid” source address filtering to the
external interface.

Note that the Netopia R5300 gives us Input and Output filters; for the external,
Internet-facing interface, “Input” refers to traffic coming into the network, and
“Output” refers to traffic going out to the Internet. This is reversed on the
internal, LAN side interface; “Input” here refers to traffic coming into the router,
and “Output” refers to traffic going to the internal network.

Figure 8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.31

First, we select Display/Change Input Filter; Figure 9 shows we could just use
the included Basic Firewall by changing the rules.

Figure 9

The Netopia R5300 firewalling capabilities are not stateful, meaning we can not
keep track of whether or not a connection is “established.” (Given the router’s
1MB of RAM, this is probably a good thing! Otherwise, a Denial of Service
attack designed to fill up the state table in memory used to track connections
would be trivial.) We can designate protocol type, source and/or destination IP
address, source and/or destination port (if relevant), whether or not the filter is
active, and whether or not the filter should forward the packet. Rulesets are
applied sequentially, from #1 on up, so order is important for both proper
security and performance.

First, we created custom rulesets with friendly names. This is shown below, in
Figure 10.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.32

Figure 10

Next, we started by configuring our rulesets to block spoofed source addresses.
This is shown in Figure 11.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.33

Figure 11

After adding all of the IP addresses to check for – a very tedious process! – we
added rulesets for the “Input” traffic we want to allow. The first of these is
shown in Figure 12 below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.34

Figure 12

Note that while this screen shows an option for “Established TCP Conns. Only,”
this only checks for the ACK bit set. We will, however, take advantage of this
where appropriate. (Note that this setting and the subnet mask are only visible
on this screen; they will not show up in the screens listing our filters’ rulesets.)

The only traffic generated by the router itself that we’ll allow is syslog (UDP port
514) and replies to our PPTP sessions. As you can see in Figure 13 below, the
Netopia R5300 does in fact have the capability of sending its logs to our
centralized syslog server. There was much debate over whether or not to permit
syslog traffic into the network from the router. If the router were to be
compromised, or its filter set fail, we would essentially be opening up our syslog
server, and hence all of our logging, to input from the outside world. After
careful consideration of this risk, the decision was made to take advantage of
the logging capabilities anyway, because the odds that staff would actually view
and sort through the logs on the router manually each day are very slim. We will
use the filter sets of both the router and the primary firewall to help ensure the
incoming syslog traffic does indeed come from the router, understanding there
is no way to truly secure this traffic. In the Input filter, we drop any traffic with a
source IP address of the router; this prevents spoofing of our own address. In
the LAN-side’s Output filter, we allow only UDP port 514 from our router’s IP
address destined to our DMZ’s syslog server, plus our PPTP replies. (The
primary firewall itself will allow UDP port 514 only from our router’s address

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.35

destined to our DMZ’s syslog server. Note that while Netfilter can match based
on MAC address, there’s really no point in this since all traffic coming through
the router will come from the router’s internal MAC address.)

Note that we do, of course, want to log everything.

Figure 13, prior to firmware upgrade

As we see in Figure 13 prior to our upgrade the syslog capabilities don’t include
logging the packet filter violations. This was not added until firmware version
4.10; since we’re implementing 4.11, we can take advantage of it.

[There has been some philosophical discussion regarding whether or not it
would be better to simply not use the router’s filtering capabilities at all, enabling
the traffic to reach the primary firewall, since Netfilter’s significantly better
logging capabilities would enable GIAC Enterprises to better analyze attempts at
unauthorized access or other attacks. It was decided in the end, though, that
the added layer of security to prevent security breaches was more important
than the ability to watch those security breaches.]

At long last, here we see in Figure 14 a screenshot of the configured router’s
rulesets. Note that we can only see the first 16 lines here.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.36

Figure 14 (Normally we’d disallow 5.0.0.0 too)

As we mentioned previously, rather than multiple screenshots, we will simply
insert the entire ruleset as a whole for legibility. We begin by dropping all traffic
with an illegitimate source IP address. We then allow the inbound traffic we
want, followed by the traffic we want to allow from our firewall out to the Internet.
This allowed traffic will be either to or from the following addresses and ports:

5.6.7.1 – This is the Router’s IP address; we allow TCP 1723 (PPTP) and
IP protocol 47 (GRE), in the Ethernet side Input filter (and return traffic on the
Ethernet side’s Output filter set.) We also allow UDP 514 (syslog) out the LAN
interface to 5.6.7.12.

5.6.7.7 – This is the address we use for our primary firewall’s SNAT, i.e.
all of the traffic generated by us from machines with private, non-routable IP
addresses and headed out of the firewall to the Internet gets Source NAT’ed to
this address. The only traffic we allow out to the Internet is destined to TCP
ports 80, 443, 21 (ftp; we allow “passive” ftp only), 22 (SSH), 25 (SMTP) and
UDP port 123 (NTP); these are also the only source ports we allow back to this
address. Our Internet-bound traffic will go in the external interface’s Output filter;
rulesets for the replies to this traffic will go in the external interface’s Input filter
set.

5.6.7.8 – This is the public address of our L2TP VPN server; we need to
allow UDP ports 1701 (L2TP) and 500 (IKE), plus IP protocol 50 (ESP), inbound
from the Internet (the external interface’s Input filter.) Naturally, we also need to
allow the replies, which will go in the Output filter set of the external interface.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.37

5.6.7.10 – This is the public address of our Web server; we allow TCP
ports 80 (HTTP) and 443 (SSL). As this is also the public address of our SMTP
server, we allow TCP port 25. This goes in the external interface’s Input filter,
with replies in the external Output filter.

5.6.7.11 – This is the public address of our NFuse server; we allow TCP
ports 80 and 443. This goes in the external interface’s Input filter, with replies in
the external Output filter.

5.6.7.12 – This is the public address of our SSH and; we therefore need
TCP port 22 (SSH). This goes in the external interface’s Input filter, with replies
in the external Output filter.

5.6.7.13 – This is the address we use for our conference room’s firewall
(Firewall B) SNAT. Since we’re providing services, we allow TCP ports 80, 443,
21 (ftp; we allow “passive” ftp only), 22 (SSH), and 1723 (PPTP); UDP ports
1701 (L2TP) and 500 (IKE); and IP protocols 50 and 47 (ESP and GRE,
respectively). This all goes in the Ethernet side Input filter, with return traffic
enabled in the Ethernet side’s Output filter set.

5.6.7.14 – This is the public address for Firewall B. We want outbound
UDP 123 (NTP) for synchronization enabled in the Ethernet (LAN) side’s Input
filter, with the replies enabled in the Output filter.

Figure 15, adding ESP

Here is the Netopia R5300 External Interface Input filter. Note that this router

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.38

determines what the default policy is, i.e. what to do with packets that don’t
match, based simply on what the settings for “Fwd” within the filter are. If the
filter’s rulesets all forward traffic, then packets that don’t match will be dropped.
If the filter’s rulesets all drop traffic, then the packets that don’t match will be
forwarded. In the case of mixed rulesets, such as our Input filter which forwards
some and drops others, packets that don’t match are dropped.

Netopia R5300’s External Interface’s Input filter:
Source IP Dest IP Proto Sport Dport On? Fwd

1 1.0.0.0 0.0.0.0 ANY -- -- Yes No
2 2.0.0.0 0.0.0.0 ANY -- -- Yes No
3 3.0.0.0 0.0.0.0 ANY -- -- Yes No
4 7.0.0.0 0.0.0.0 ANY -- -- Yes No
5 23.0.0.0 0.0.0.0 ANY -- -- Yes No
6 27.0.0.0 0.0.0.0 ANY -- -- Yes No
7 31.0.0.0 0.0.0.0 ANY -- -- Yes No
8 36.0.0.0 0.0.0.0 ANY -- -- Yes No
9 37.0.0.0 0.0.0.0 ANY -- -- Yes No
10 39.0.0.0 0.0.0.0 ANY -- -- Yes No
11 41.0.0.0 0.0.0.0 ANY -- -- Yes No
12 42.0.0.0 0.0.0.0 ANY -- -- Yes No
13 49.0.0.0 0.0.0.0 ANY -- -- Yes No
14 50.0.0.0 0.0.0.0 ANY -- -- Yes No
15 58.0.0.0 0.0.0.0 ANY -- -- Yes No
16 59.0.0.0 0.0.0.0 ANY -- -- Yes No
17 60.0.0.0 0.0.0.0 ANY -- -- Yes No
18 70.0.0.0 0.0.0.0 ANY -- -- Yes No
19 71.0.0.0 0.0.0.0 ANY -- -- Yes No
20 72.0.0.0 0.0.0.0 ANY -- -- Yes No
21 73.0.0.0 0.0.0.0 ANY -- -- Yes No
22 74.0.0.0 0.0.0.0 ANY -- -- Yes No
23 75.0.0.0 0.0.0.0 ANY -- -- Yes No
24 76.0.0.0 0.0.0.0 ANY -- -- Yes No
25 77.0.0.0 0.0.0.0 ANY -- -- Yes No
26 78.0.0.0 0.0.0.0 ANY -- -- Yes No
27 79.0.0.0 0.0.0.0 ANY -- -- Yes No
28 82.0.0.0 0.0.0.0 ANY -- -- Yes No
29 83.0.0.0 0.0.0.0 ANY -- -- Yes No
30 84.0.0.0 0.0.0.0 ANY -- -- Yes No
31 85.0.0.0 0.0.0.0 ANY -- -- Yes No
32 86.0.0.0 0.0.0.0 ANY -- -- Yes No
33 87.0.0.0 0.0.0.0 ANY -- -- Yes No
34 88.0.0.0 0.0.0.0 ANY -- -- Yes No
35 89.0.0.0 0.0.0.0 ANY -- -- Yes No
36 90.0.0.0 0.0.0.0 ANY -- -- Yes No

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.39

37 91.0.0.0 0.0.0.0 ANY -- -- Yes No
38 92.0.0.0 0.0.0.0 ANY -- -- Yes No
39 93.0.0.0 0.0.0.0 ANY -- -- Yes No
40 94.0.0.0 0.0.0.0 ANY -- -- Yes No
41 95.0.0.0 0.0.0.0 ANY -- -- Yes No
42 96.0.0.0 0.0.0.0 ANY -- -- Yes No
43 97.0.0.0 0.0.0.0 ANY -- -- Yes No
44 98.0.0.0 0.0.0.0 ANY -- -- Yes No
45 99.0.0.0 0.0.0.0 ANY -- -- Yes No
46 100.0.0.0 0.0.0.0 ANY -- -- Yes No
47 101.0.0.0 0.0.0.0 ANY -- -- Yes No
48 102.0.0.0 0.0.0.0 ANY -- -- Yes No
49 103.0.0.0 0.0.0.0 ANY -- -- Yes No
50 104.0.0.0 0.0.0.0 ANY -- -- Yes No
51 105.0.0.0 0.0.0.0 ANY -- -- Yes No
52 106.0.0.0 0.0.0.0 ANY -- -- Yes No
53 107.0.0.0 0.0.0.0 ANY -- -- Yes No
54 108.0.0.0 0.0.0.0 ANY -- -- Yes No
55 109.0.0.0 0.0.0.0 ANY -- -- Yes No
56 110.0.0.0 0.0.0.0 ANY -- -- Yes No
57 111.0.0.0 0.0.0.0 ANY -- -- Yes No
58 112.0.0.0 0.0.0.0 ANY -- -- Yes No
59 113.0.0.0 0.0.0.0 ANY -- -- Yes No
60 114.0.0.0 0.0.0.0 ANY -- -- Yes No
61 115.0.0.0 0.0.0.0 ANY -- -- Yes No
62 116.0.0.0 0.0.0.0 ANY -- -- Yes No
63 117.0.0.0 0.0.0.0 ANY -- -- Yes No
64 118.0.0.0 0.0.0.0 ANY -- -- Yes No
65 119.0.0.0 0.0.0.0 ANY -- -- Yes No
66 120.0.0.0 0.0.0.0 ANY -- -- Yes No
67 121.0.0.0 0.0.0.0 ANY -- -- Yes No
68 122.0.0.0 0.0.0.0 ANY -- -- Yes No
69 123.0.0.0 0.0.0.0 ANY -- -- Yes No
70 124.0.0.0 0.0.0.0 ANY -- -- Yes No
71 125.0.0.0 0.0.0.0 ANY -- -- Yes No
72 126.0.0.0 0.0.0.0 ANY -- -- Yes No
73 172.16.0.0 0.0.0.0 ANY -- -- Yes No
74 172.17.0.0 0.0.0.0 ANY -- -- Yes No
75 172.18.0.0 0.0.0.0 ANY -- -- Yes No
76 172.19.0.0 0.0.0.0 ANY -- -- Yes No
77 172.20.0.0 0.0.0.0 ANY -- -- Yes No
78 172.21.0.0 0.0.0.0 ANY -- -- Yes No
79 172.22.0.0 0.0.0.0 ANY -- -- Yes No
80 172.23.0.0 0.0.0.0 ANY -- -- Yes No
81 172.24.0.0 0.0.0.0 ANY -- -- Yes No
82 172.25.0.0 0.0.0.0 ANY -- -- Yes No

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.40

83 172.26.0.0 0.0.0.0 ANY -- -- Yes No
84 172.27.0.0 0.0.0.0 ANY -- -- Yes No
85 172.28.0.0 0.0.0.0 ANY -- -- Yes No
86 172.29.0.0 0.0.0.0 ANY -- -- Yes No
87 172.30.0.0 0.0.0.0 ANY -- -- Yes No
88 172.31.0.0 0.0.0.0 ANY -- -- Yes No
89 172.32.0.0 0.0.0.0 ANY -- -- Yes No
90 172.33.0.0 0.0.0.0 ANY -- -- Yes No
91 192.168.0.0 0.0.0.0 ANY -- -- Yes No
92 197.0.0.0 0.0.0.0 ANY -- -- Yes No
93 222.0.0.0 0.0.0.0 ANY -- -- Yes No
94 223.0.0.0 0.0.0.0 ANY -- -- Yes No
95 240.0.0.0 0.0.0.0 ANY -- -- Yes No
96 241.0.0.0 0.0.0.0 ANY -- -- Yes No
97 242.0.0.0 0.0.0.0 ANY -- -- Yes No
98 243.0.0.0 0.0.0.0 ANY -- -- Yes No
99 244.0.0.0 0.0.0.0 ANY -- -- Yes No
100 245.0.0.0 0.0.0.0 ANY -- -- Yes No
101 246.0.0.0 0.0.0.0 ANY -- -- Yes No
102 247.0.0.0 0.0.0.0 ANY -- -- Yes No
103 248.0.0.0 0.0.0.0 ANY -- -- Yes No
104 249.0.0.0 0.0.0.0 ANY -- -- Yes No
105 250.0.0.0 0.0.0.0 ANY -- -- Yes No
106 251.0.0.0 0.0.0.0 ANY -- -- Yes No
107 252.0.0.0 0.0.0.0 ANY -- -- Yes No
108 253.0.0.0 0.0.0.0 ANY -- -- Yes No
109 254.0.0.0 0.0.0.0 ANY -- -- Yes No
110 255.0.0.0 0.0.0.0 ANY -- -- Yes No
111 0.0.0.0 5.6.7.7 TCP 80 -- Yes Yes
112 0.0.0.0 5.6.7.7 TCP 443 -- Yes Yes
113 0.0.0.0 5.6.7.7 TCP 21 -- Yes Yes
114 0.0.0.0 5.6.7.7 TCP 22 -- Yes Yes
115 0.0.0.0 5.6.7.7 TCP 25 -- Yes Yes
116 0.0.0.0 5.6.7.10 TCP -- 80 Yes Yes
117 0.0.0.0 5.6.7.10 TCP -- 443 Yes Yes
118 0.0.0.0 5.6.7.10 TCP -- 25 Yes Yes
119 0.0.0.0 5.6.7.11 TCP -- 80 Yes Yes
120 0.0.0.0 5.6.7.11 TCP -- 443 Yes Yes
121 0.0.0.0 5.6.7.8 UDP -- 1701 Yes Yes
122 0.0.0.0 5.6.7.8 UDP -- 500 Yes Yes
123 0.0.0.0 5.6.7.8 ESP -- -- Yes Yes
124 0.0.0.0 5.6.7.12 TCP -- 22 Yes Yes
125 5.127.25.23 5.6.7.7 UDP 123 -- Yes Yes
126 5.118.34.135 5.6.7.7 UDP 123 -- Yes Yes
127 0.0.0.0 5.6.7.13 TCP 80 -- Yes Yes
128 0.0.0.0 5.6.7.13 TCP 443 -- Yes Yes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.41

129 0.0.0.0 5.6.7.13 TCP 21 -- Yes Yes
130 0.0.0.0 5.6.7.13 TCP 22 -- Yes Yes
131 0.0.0.0 5.6.7.13 TCP 1723 -- Yes Yes
132 0.0.0.0 5.6.7.13 GRE -- -- Yes Yes
133 5.127.25.23 5.6.7.14 UDP 123 -- Yes Yes
134 5.118.34.135 5.6.7.14 UDP 123 -- Yes Yes

The Output filter for the external interface:
1 5.6.7.7 0.0.0.0 TCP -- 80 Yes Yes
2 5.6.7.7 0.0.0.0 TCP -- 443 Yes Yes
3 5.6.7.7 0.0.0.0 TCP -- 21 Yes Yes
4 5.6.7.7 0.0.0.0 TCP -- 22 Yes Yes
5 5.6.7.7 0.0.0.0 TCP -- 25 Yes Yes
6 5.6.7.10 0.0.0.0 TCP 80 -- Yes Yes
7 5.6.7.10 0.0.0.0 TCP 443 -- Yes Yes
8 5.6.7.10 0.0.0.0 TCP 25 -- Yes Yes
9 5.6.7.11 0.0.0.0 TCP 80 -- Yes Yes
10 5.6.7.11 0.0.0.0 TCP 443 -- Yes Yes
11 5.6.7.8 0.0.0.0 UDP 1701 -- Yes Yes
12 5.6.7.8 0.0.0.0 UDP 500 -- Yes Yes
13 5.6.7.8 0.0.0.0 ESP -- -- Yes Yes
14 5.6.7.12 0.0.0.0 TCP 22 -- Yes Yes
15 5.6.7.7 5.127.25.23 UDP -- 123 Yes Yes
16 5.6.7.7 5.118.34.135UDP -- 123 Yes Yes
17 5.6.7.9 0.0.0.0 ANY -- -- Yes No
18 5.6.7.7 5.6.7.1 GRE -- -- Yes Yes
19 5.6.7.13 0.0.0.0 TCP -- 80 Yes Yes
20 5.6.7.13 0.0.0.0 TCP -- 443 Yes Yes
21 5.6.7.13 0.0.0.0 TCP -- 21 Yes Yes
22 5.6.7.13 0.0.0.0 TCP -- 22 Yes Yes
23 5.6.7.13 0.0.0.0 GRE -- -- Yes Yes
24 5.6.7.14 5.127.25.23 UDP -- 123 Yes Yes
25 5.6.7.14 5.118.34.135UDP -- 123 Yes Yes

The LAN side Interface’s Input filter; this is almost the same as the external
interface’s Output filter, except for the addition of PPTP:
1 5.6.7.7 0.0.0.0 TCP -- 80 Yes Yes
2 5.6.7.7 0.0.0.0 TCP -- 443 Yes Yes
3 5.6.7.7 0.0.0.0 TCP -- 21 Yes Yes
4 5.6.7.7 0.0.0.0 TCP -- 22 Yes Yes
5 5.6.7.7 0.0.0.0 TCP -- 25 Yes Yes
6 5.6.7.10 0.0.0.0 TCP 80 -- Yes Yes
7 5.6.7.10 0.0.0.0 TCP 443 -- Yes Yes
8 5.6.7.10 0.0.0.0 TCP 25 -- Yes Yes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.42

9 5.6.7.11 0.0.0.0 TCP 80 -- Yes Yes
10 5.6.7.11 0.0.0.0 TCP 443 -- Yes Yes
11 5.6.7.8 0.0.0.0 UDP 1701 -- Yes Yes
12 5.6.7.8 0.0.0.0 UDP 500 -- Yes Yes
13 5.6.7.8 0.0.0.0 ESP -- -- Yes Yes
14 5.6.7.12 0.0.0.0 TCP 22 -- Yes Yes
15 5.6.7.7 5.127.25.23 UDP -- 123 Yes Yes
16 5.6.7.7 5.118.34.135UDP -- 123 Yes Yes
17 5.6.7.9 0.0.0.0 ANY -- -- Yes No
18 5.6.7.7 5.6.7.1 GRE -- -- Yes Yes
19 5.6.7.13 0.0.0.0 TCP -- 80 Yes Yes
20 5.6.7.13 0.0.0.0 TCP -- 443 Yes Yes
21 5.6.7.13 0.0.0.0 TCP -- 21 Yes Yes
22 5.6.7.13 0.0.0.0 TCP -- 22 Yes Yes
23 5.6.7.13 0.0.0.0 TCP -- 1723 Yes Yes
24 5.6.7.13 0.0.0.0 GRE -- -- Yes Yes
25 5.6.7.14 5.127.25.23 UDP -- 123 Yes Yes
26 5.6.7.14 5.118.34.135UDP -- 123 Yes Yes

Here is our Netopia R5300’s internal, LAN interface’s Output filter; with the
exception of the additions of syslog and PPTP, this is similar to the External
interface’s Input filter:
1 5.6.7.1 5.6.7.12 UDP -- 514 Yes Yes
2 5.6.7.1 5.6.7.13 GRE -- -- Yes Yes
3 0.0.0.0 5.6.7.7 TCP 80 -- Yes Yes
4 0.0.0.0 5.6.7.7 TCP 443 -- Yes Yes
5 0.0.0.0 5.6.7.7 TCP 21 -- Yes Yes
6 0.0.0.0 5.6.7.7 TCP 22 -- Yes Yes
7 0.0.0.0 5.6.7.7 TCP 25 -- Yes Yes
8 0.0.0.0 5.6.7.10 TCP -- 80 Yes Yes
9 0.0.0.0 5.6.7.10 TCP -- 443 Yes Yes
10 0.0.0.0 5.6.7.10 TCP -- 25 Yes Yes
11 0.0.0.0 5.6.7.11 TCP -- 80 Yes Yes
12 0.0.0.0 5.6.7.11 TCP -- 443 Yes Yes
13 0.0.0.0 5.6.7.8 UDP -- 1701 Yes Yes
14 0.0.0.0 5.6.7.8 UDP -- 500 Yes Yes
15 0.0.0.0 5.6.7.8 ESP -- -- Yes Yes
16 0.0.0.0 5.6.7.12 TCP -- 22 Yes Yes
17 5.127.25.23 5.6.7.7 UDP 123 -- Yes Yes
18 5.118.34.135 5.6.7.7 UDP 123 -- Yes Yes
19 0.0.0.0 5.6.7.13 TCP 80 -- Yes Yes
20 0.0.0.0 5.6.7.13 TCP 443 -- Yes Yes
21 0.0.0.0 5.6.7.13 TCP 21 -- Yes Yes
22 0.0.0.0 5.6.7.13 TCP 22 -- Yes Yes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.43

23 0.0.0.0 5.6.7.13 TCP 1723 -- Yes Yes
24 0.0.0.0 5.6.7.13 GRE -- -- Yes Yes
25 5.127.25.23 5.6.7.14 UDP 123 -- Yes Yes
26 5.118.34.135 5.6.7.14 UDP 123 -- Yes Yes

This gives us a total of 211 rulesets in 4 filters, well below our 255 rulesets in 8
filters limit.

2. The Primary Firewall
Connected directly to the Netopia router are two firewalls. Both are hardened
Red Hat 7.3 boxes running Netfilter & iptables; Firewall A is the primary firewall,
Firewall B is for providing Internet access to guests in the conference room.

Before continuing, we should address the frequent confusion regarding the
terminology here. The terms Netfilter and iptables are often used
interchangeably, but this is inaccurate. The best explanation comes from the
www.netfilter.org site itself:

netfilter is a set of hooks inside the linux 2.4.x kernel's network stack which
allows kernel modules to register callback functions called every time a network
packet traverses one of those hooks.
iptables is a generic table structure for the definition of rulesets. Each rule within
an IP table consists out of a number of classifiers (matches) and one connected
action (target).
netfilter, iptables and the connection tracking as well as the NAT subsystems
together build the whole framework.

(Taken from http://www.netfilter.org/documentation/index.html#whatis,
September 14, 2002). You could also think of Netfilter as the frame the iptables
rules are attached to. Without the iptables userland command, Netfilter isn’t
really doing anything for us; without Netfilter, there’s nothing for iptables to work
with. For simplicity’s sake, unless expressly described otherwise, references in
this text to Netfilter can generally be assumed to refer to the combination of
Netfilter and iptables.

We’ll deal with Firewall A first.

A. Firewall A:

Because we have fairly low traffic demands, we can get away with using an
older PC for this role. Because it was sufficiently running the previous firewall
software on Windows NT, we anticipated the same hardware would be not only
sufficient, but perform better, as a streamlined RH box. We were quite pleased
with the performance from our lowly Dell OptiPlex GX-110, a Pentium III 667
with 128 MB RAM. We’ve added 3 additional NIC’s in order to provide an
interface for the DMZ, and 2 interfaces to connect the Windows 2000 RRAS
VPN server. Fortunately for us, this machine is the “mini-tower” model, with one

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.44

on-board NIC, so it had enough PCI slots for us to add all the NIC’s we wanted.
5 NIC’s is not possible on a lot of PC’s! As an added bonus, the box is just
small enough to fit on its side on a shelf in our server cabinet.

One advantage to using existing PC hardware in this manner is that we have
multiple PC’s available to use, left over from last year’s annual PC upgrade,
because the overworked network admin never got around to finding new homes
for the old equipment. This enables us to configure and test on the hardware in
question without disrupting services. It also means that if our firewall PC fails,
we’ll have parts readily available for immediate replacement. Most importantly,
as far as the Board of Directors was concerned, no additional equipment
purchases were necessary.

The first step was to install Red Hat Linux 7.3 onto the machine. A fairly
minimal installation was performed. While a full-blown Linux installation tutorial
is outside the scope of this document, we will touch on a few of the key points
here. Note that once we have things configured as we want, we will make a
bootable CD, pull out the hard drive, and go from there. Doing the initial
configuration on hardware identical to that which will be used helps us minimize
the headaches involved with compiling the kernel and making the bootable CD,
and generally eases testing.

One important aspect of Red Hat installation we should point out is the prompt
to select the type of firewall to install. This is a definite “gotcha.” During
installation, Red Hat offers choices of Medium Security, High Security, Custom
Security, or No Firewall. Though it seems counter-intuitive, the correct answer –
even when, as in our case, the machine is only going to be a firewall – is “No
Firewall.” This is because Red Hat uses the outdated ipchains stateless packet
filter by default, rather than the much-improved Netfilter/iptables. Because the
two are incompatible, choosing anything other than “No Firewall” will require you
to deal with removing ipchains before you can configure and use Netfilter.

Also note that the Netfilter version with RH 7.3 is not the latest, so we will
download the current version (1.2.7a as of this writing) from
http://www.netfilter.org/download. As Netfilter is part of the Linux kernel, this is
not simply an RPM we can install; we must not only build Netfilter from source,
but have to rebuild our kernel as well. This is a good thing, as it forces us to
take the time to harden and tune our kernel. Also note that there are multiple
additional patches and modules available in Netfilter’s “Patch-o-Matic” (POM)
system, which is a separate download. We will be using a couple of modules
from POM.

There are of course other configuration steps required, as we need to “harden”
this machine – removing unnecessary services, configuring Tripwire
(www.tripwire.com), etc. [Note that if we configure Tripwire at this stage, it will
bark at us when we make the changes required to implement our firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.45

13 Thanks to Oskar Andreasson’s iptables tutorial 1.1.11, section 2.2, “Kernel Setup” at
http://www.netfilter.org/documentation/tutorials/blueflux/iptables-tutorial.html#AEN70
14 This module is currently found in the “Patch-O-Matic” system under “pending.” Note that POM modules
may break some other modules within Patch-O-Matic, and may have limitations. See
http://www.netfilter.org/documentation/FAQ/netfilter-faq-1.html#ss1.5 for information on Patch-O-Matic,
http://www.netfilter.org/documentation/pomlist/pom-submitted.html#ip_conntrack_protocol_destroy for
details on the IP_CONNTRACK_PROTOCOL_DESTROY module.
15 This module is also found in the “Patch-O-Matic” system under “pending.” See

That’s OK, we’ll be able to update Tripwire’s settings.] A detailed explanation of
all the steps required to harden a Linux machine is beyond the scope of this
document, however.

As explained above, we must compile our own kernel. Instructions for just how
to do this are outside the scope of this document too; however, we do need to
mention the modules related to Netfilter that we’re including. Because we know
what our needs are, we’re just compiling most of them into the kernel rather
than adding them as modules via insmod later on. Some, however, we’ll
include as modules either because we have to or we just want them around to
apply if something comes up and we need it. We need the following in our
kernel:13

CONFIG_PACKET - not really Netfilter-specific, but needed
CONFIG_NETFILTER - self explanatory…
CONFIG_IP_NF_CONNTRACK - for keeping track of connections, i.e.

NAT
CONFIG_IP_NF_FTP - for ftp connection tracking; we’re adding this as a

module, even though we’re using passive ftp; just in case an emergency crops
up, it’s there if we need it

CONFIG_IP_NF_IPTABLES - for filtering and NAT; our firewall won’t do
much without it…

CONFIG_IP_NF_MATCH_LIMIT - we use this to aid in preventing DoS
attacks

CONFIG_IP_NF_MATCH_MULTIPORT - for matching packets based on a
range of destination or source ports.

CONFIG_IP_NF_MATCH_TOS - for matching Type of Service field,
obviously. We’re not doing this currently, but may want to; it’s in as a module.

CONFIG_IP_NF_MATCH_STATE - this is what makes it a “stateful”
firewall.

CONFIG_IP_NF_FILTER - self explanatory. Pointless without it…
CONFIG_IP_NF_TARGET_REJECT - allows us to reject packets with

ICMP or TCP RST. Very nice.
CONFIG_IP_NF_NAT - self explanatory.
CONFIG_IP_NF_TARGET_LOG - self explanatory; glorious…
IP_CONNTRACK_FTP - we add this module for passive FTP.
IP_NAT_FTP - again, this module is for passive FTP.
IP_CONNTRACK_PROTOCOL_DESTROY14 - needed to make GRE

work
IP_CONNTRACK_PROTOCOL_UNREGISTER15 - needed to make GRE

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.46

http://www.netfilter.org/documentation/pomlist/pom-submitted.html#ip_conntrack_protocol_unregister for
details.

work.

Getting the POM modules into the kernel involves running the POM command
./runme pending and telling it where the kernel is located. After that comes
configuring and compiling the custom kernel; we also have to build the iptables
userland command. Don’t forget to delete the older command, or you may get
confused (and annoyed) when you accidentally use the wrong one and your
scripts don’t work!

Now that we have our machine up & running, we get to configure iptables. We
could, in theory, do this line by line (as we were required to do for our Netopia
R5300 router). However, this is both tedious and error-prone. Instead, we write
a simple BASH script to do the job for us. This has several benefits: it’s easier
to proofread, it’s easier to troubleshoot, and it’s easier to reproduce (even on a
different machine) if need be.

We’ll include the entire script here, with comments explaining what’s going on
where necessary.

We start by defining simple variables. Even though they’re all static values,
doing so makes our script both easier to read, and easier to change in the
future. For example, if we change ISP’s and therefore have to change our public
IP addresses, we only need to alter them in the variables up front, run the script,
and we’re right where we left off.

Note that with Netfilter, the order of rules is critical. This is because packets
flow through sequentially, from first to last. We must filter out traffic that is
invalid, such as spoofed source addresses or invalid TCP flag settings, before
we accept anything based on destination. Performance is also affected by the
order of the rules; we want to put the most common traffic types as close to the
beginning as possible, in order to minimize the number of rules, and hence the
amount of time, Netfilter has to scan before it can decide what to do with any
given packet. So, we order first by security requirements, second by frequency
of the packet type, and third for legibility.

Before we get to the actual script, let’s take a look at the general logic flow of
our firewall. We have flowcharts to help guide us through the maze of tables
and chains; they don’t necessarily show us the exact packet flow, but they do
make it easier to visualize what’s going on. We’ve added color backgrounds to
the different chains in our script, to make references between the script and the
network flowchart easier. These colors, of course, are not included in the plain-
text script actually run on the firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.47

Data Enters
Firewall

INPUT or
FORWARD?

Data Exits Firewall

Filter INPUT
Filter

FORWARD

Mangle
PREROUTING

(GIAC Enterprises’
implementation does not
currently use mangling)

NAT
PREROUTING

(GIAC Enterprises’
implementation does not
currently use mangling)

To
Local Process

From
Local Process

(Not used here, done in
POSTROUTING)

Mangle
OUTPUT

NAT
OUTPUT

Filter
OUTPUT

NAT
POSTROUTING

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

General OverviewFirewall Flow
Acknowledgement

This chart is based on the flowchart in
Oskar Andreasson’s iptables tutorial

at “http://www.netfilter.org/documentation/
tutorials/blueflux/iptables-tutorial.html#

TRAVERSINGOFTABLES” -- thanks to
Mr. Andreasson for the inspiration

for this and the following flowcharts!

Figure 16, Netfilter’s traffic flow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.48

NAT
PREROUTING

To
Which Address?

5.6.7.10
TCP 80

External; Return, exiting
PREROUTING

5.6.7.11
TCP 80

Map to
10.0.1.2

Return, exiting
PREROUTINGNote:

Remember this is designed to
show logic flow, not necessarily
packet flow!

Private/NAT’ed; Return, exiting
PREROUTING

NAT PREROUTING chainFirewall Flow

5.6.7.12
TCP 22 Other5.6.7.10

TCP 443
5.6.7.12
UDP 514

5.6.7.12
TCP 443

5.6.7.11
TCP 443

Map to
10.0.1.9

Map to
10.0.1.6

Map to
10.0.1.11

5.6.7.10
TCP 25

Map to
10.0.1.15

Map to
10.0.1.8

5.6.7.7

Replies Mapped
based on state

tracking

Explanation
These public IP addresses are for:

5.6.7.12 - CSG, SSH, Syslog
5.6.7.10 - WWW, SMTP
5.6.7.11 - Citrix Nfuse
5.6.7.7 - SNAT’ed outbound traffic

Figure 17, PREROUTING chain

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.49

TCP_FLAG
chain

Filter
INPUT

Packet enters
which interface?eth0 (Router)

eth1 (internal),
eth2 (DMZ), eth3
(Int L2TP), eth4
(Public L2TP)

To
SOURCE_CHECK

chain

TCP protocol? YesNo

Spoofed
(invalid) Source

address?

Log & Drop

SOURCE_
CHECK
chain

YesNo

To
TCP_FLAG

chain

SSH from
DMZ’s SSH

server?

Yes

Return

No

Log & Accept

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

INPUT chainFirewall Flow

Log & Drop

NTP reply
from DMZ’s NTP

server?
No

Yes

Figure 18, INPUT, TCP_FLAG, and SOURCE_CHECK chains

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.50

Filter
FORWARD

Packet enters
which interface?eth0 (Router)

eth1 (internal),
eth2 (DMZ), eth3
(Int L2TP), eth4
(Public L2TP)

To
SOURCE_CHECK

chain

TCP protocol? TCP protocol?Yes

No

Yes

No

Spoofed
(invalid) Source

address?
Log & Drop

SOURCE_
CHECK
chain

Yes

No

Spoofed
internal Source

address?
Log & Drop

EX_SOURCE_
CHECK chain

Yes

No

To
SOURCE_CHECK

chain

eth0

To
TCP_FLAG

chain

To
TCP_FLAG

chain

Which
Protocol?

TCP — to
TCP chain

ICMP — to
ICMP chain

UDP — to
UDP chain

Other — to
OTHER chain

Return

eth1, eth2, eth3, eth4

Return

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

FORWARD chainFirewall Flow

To
EX_SOURCE_
CHECK chain

Figure 19, FORWARD, TCP_FLAG, EX_SOURCE_CHECK chains

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.51

TCP Chain

Which service?

HTTP HTTPS SSH
FTP

(to/from
Squid only) SMTP

To which
server?

Other, log & drop

Valid state?

Which
direction?

Log & drop

In from
Internet

Out from
DMZ to
Internet

In from DMZ
to office

Valid Reply
from Nfuse or

WWW?

Squid Proxy

Nfuse
(no FTP)

WWW.GIAC.COM
(no FTP)

AcceptYes

Accept

Yes

No

In from
Office to

DMZ

Valid traffic
from Squid

proxy?
No

Yes

No

To or From
internal L2TP

interface?

No Yes

Log & drop

Valid
state?

Log & Accept

YesNo

No

From Internet to
DMZ SMTP?

From DMZ SMTP
to Internet?

From office SMTP
to DMZ SMTP?

From DMZ SMTP
to office SMTP?

No

No

No

Accept

Log & drop

No

Valid
state?

Yes

No

Yes

To or From
DMZ SSH?

No

Log & Accept

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

TCP chainFirewall Flow

Yes

PPTP AD or
Exchange

Allowed
port? Yes

Figure 20, TCP chain

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.52

Valid DNS, NTP,
or Syslog?

YES; Accept

NO; Log & Drop

UPD chain

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

OTHER
chain

UDP, OTHER, & OUTPUT chainsFirewall Flow

Filter
OUTPUT

Established,
Related SSH to
the DMZ SSH

server?

YES; Accept

NO; Log & DropNo

Valid GRE (type 47) or
ESP (type 50), or AH

(type 51)?

YES; Accept

NO; Log & Drop

NTP request to
DMZ NPT?

Syslog to DMZ
Syslog?No No

Figure 21, UDP, OTHER, and OUTPUT chains

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.53

ICMP
chain

Inbound or
Outbound?

In from
Internet

Address of
provided
service?

Yes, REJECT with
Host Prohibited

No, REJECT with
Host Unreachable

Out to
Internet

Reply, Ping, or
Other?

Ping

Related
Echo Reply

Other

Accept Related Host
Unreachable?

Yes, Accept No, Log & Drop

Ping?

Yes, Accept No, Log & Drop

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

YES; Return

NO; Log & Drop If TCP, are
flags valid?

TCP_FLAG
chain

T
C
P
_
F
L
A
G
c
h
ai
n

ICMP & TCP_FLAG chainsFirewall Flow

Figure 22, ICMP and TCP_FLAG chains

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.54

NAT
POSTROUTING

Note:
Remember this is designed to
show logic flow, not necessarily
packet flow!

Traffic from
private network to

Internet?
Return No

From which
address?

Other10.0.1.3 (DNS) 10.0.1.15 (SMTP)

Return, exiting
POSTROUTING

Yes

10.0.1.7 (Squid
proxy)

SNAT to 5.6.7.7

Because this chain is in the NAT
table, and packets have already
traversed the filter table, we do no
filtering here. [See IPTABLES
TUTORIAL.] Traffic not from one
of the addresses listed here
should be established/related to
reach this point, and an entry for it
already exists in NAT; SNAT’ing it
at this point would break the
connection...

NAT POSTROUTING chainFirewall Flow

Figure 23, POSTROUTING chain

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.55

Now, let’s take a look at our filter script.

###############################
#
GIAC Enterprises v.1.7 Netfilter Primary Firewall script
#
Written by Vincent R. Streiff, Fall 2002
#
This could not have been possible without guidance from the iptables
tutorial written by Oskar Andreason, located at:
http://www.netfilter.org/documentation/tutorials/blueflux/
#
A plethora of other tutorials which may help can be found at:
http://www.netfilter.org/documentation/index.html#HOWTO
#
#
Our general guidelines:
Maximize performance, but not at the expense of security
Since complexity is bad, there may be instances where script
legibility takes precedence over streamlining for performance
#
###############################

#####
#
For starters, to make all this legible and editable, we set our
variables used in the script
#

IPTABLES="/usr/local/sbin/iptables" # path to the iptables command; your
milage may vary depending on where you put it.

EXT_IF="eth0" # This is the interface facing the Internet, connected to
our router

INT_IF="eth1" # This is the interface facing the internal network
DMZ_IF="eth2" # The interface to the service network (DMZ)
VPN_EXT_IF="eth3" # Interface connected to the VPN's public interface
VPN_INT_IF="eth4" # Interface connected to the VPN's internal interface
PUB_NET="5.6.7.0/28" # This gives us 5.6.7.0-5.6.7.1.15
INT_NET="10.0.0.0/23" # This gives us 10.0.0.0-10.0.1.255
DMZ_NET="10.0.1.0/27" # This gives us 10.0.1.1-10.0.1.30 (usable) for DMZ
L2TP_PRIV_NET="10.0.2.32/27" # Gives us 10.0.2.33-10.0.2.62 (usable) for L2TP
EXT_ROUTER="5.6.7.1" # The address of our Netopia R5300 router
PUB_NTP1="5.127.125.23" # Not really of course; you can often use ISP's

routers.
PUB_NTP2="5.118.34.135" # We're using stratum 2 servers -- after notifying

the admins of those servers, of course -- to keep
ourselves as accurate as possible. We use 2 NTP
servers for redundancy; note that coordination with

 # the "official" time isn't as critical as keeping
all of our servers synchronized with each other.
See www.ntp.org for more on Network Time Protocol

PUB_FW="5.6.7.9" # Public address of our firewall (eth0)
DMZ_FW="10.0.1.1" # IP address of our firewall's DMZ NIC (eth2)
INT_FW="10.0.0.1" # IP address of firewall's internal NIC (eth1)
PUB_FW_L2TP="5.6.7.2" # IP address of firewall's NIC connected to PUB_L2TP
DMZ_FW_L2TP="10.0.2.1" # IP address of firewalls NIC connected to DMZ_L2TP
PUB_L2TP="5.6.7.8" # External, public IP address of our L2TP VPN
DMZ_L2TP="10.0.2.12" # IP address of our L2TP inward facing NIC

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.56

PUB_WWW="5.6.7.10" # Public IP address of the GIAC.COM Web server
DMZ_WWW="10.0.1.2" # Private, "real" IP address of the GIAC.COM

Web server
PUB_NFUSE="5.6.7.11" # Public IP address of Citrix NFuse Web Server
DMZ_NFUSE="10.0.1.9" # Private, "real" IP address of NFuse server
PUB_CSG="5.6.7.12" # Public IP address for Citrix Secure Gateway
DMZ_CSG="10.0.1.6" # Private, "real" IP address for Citrix Secure

Gateway; note that this is the same server as
NFuse, but uses a different NIC and addresses
since we need inbound TCP 443 to both CSG and NFuse
See http://hqextsrvsft01.citrix.com/cgi-
bin/webcgi.exe/,/?Session=4822373,U=1,ST=187,N=0005,
K=1249,SXI=12,Case=obj(13815) for how to get Citrix

 # Secure Gateway and NFuse to run on the same server. (Note:
URL wraps across multiple lines)
Also see MS TechNet article Q238131, How to
disable socket pooling

PUB_SSH="5.6.7.12" # Public IP address of our SSH server
DMZ_SSH="10.0.1.11" # Private, "real" IP address of our SSH server
PUB_SMTP="5.6.7.10" # Public IP address of our mail server
DMZ_SMTP="10.0.1.15" # Private, "real" IP address for mail relay
INT_SMTP="10.0.0.15" # IP address of our Exchange server
INT_VIP="10.0.0.0/27" # 10.0.0.1-10.0.0.30 to use for servers
INT_IT_NET="10.0.0.32/27" # Addresses for IT staff's PC's

(10.0.0.33-10.0.0.62)
INT_CITRIX1="10.0.0.29" # Citrix Metaframe server number 1
INT_CITRIX2="10.0.0.30" # Citrix Metaframe server number 2
INT_NET_CLIENTS="10.0.0.128/26" # Our staff PC's, assigned via DHCP; this

gives us 10.0.0.129-10.0.0.190 to assign to PCs
Note that if the office expands, we’ve still
got plenty of unused addresses; if needed, we
can always use additional addresses within
the 10.0.0.0/24 subnet

PUB_SYSLOG="5.6.7.12" # This is so our router can send syslog info
INT_SYSLOG="10.0.0.8" # IP address of our internal Syslog server
DMZ_SYSLOG="10.0.1.8" # IP address of our syslog server on the DMZ
DMZ_SQUID="10.0.1.7" # IP address of our Squid proxy server
DMZ_DNS="10.0.1.3" # IP address of "caching" DNS server in the DMZ
INT_DNS="10.0.0.21" # IP address of our internal DNS server (we

have 2, but since Windows clients generally
won't use the secondary even if configured, we just deny
the backup DNS access - so no reference needed.

DMZ_NTP="10.0.1.8" # IP address of our DMZ's time server
INT_NTP="10.0.0.8" # IP address of internal network time server
DMZ_SQL="10.0.1.28" # IP address of the MS SQL 2000 server
INT_DC1="10.0.0.21" # IP address of the AD Global Catalogue DC
INT_DC2="10.0.0.22" # IP address of second AD domain controller
INT_DC3="10.0.0.23" # IP address of third AD domain controller
DMZ_SUS=”10.0.1.17” # IP address of DMZ Windows Update & Norton A/V Server
INT_SUS=”10.0.0.17” # IP address of internal Windows Update Server
INT_NAV=”10.0.0.22” # Address of the internal Norton Antivirus server
DMZ_NAV=”10.0.1.17” # Address of the DMZ Norton Antivirus server
SNAT_IP="5.6.7.7" # IP address used for NATing our public traffic
UNUSED_IP1="5.6.7.3" # Unused IP address in our public subnet
UNUSED_IP2="5.6.7.4" # Unused IP address in our public subnet
UNUSED_IP3="5.6.7.5" # Unused IP address in our public subnet
UNUSED_IP4="5.6.7.6" # Unused IP address in our public subnet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.57

16 See http://www.netfilter.org/documentation/tutorials/blueflux/iptables-tutorial.html#TABLES which
states in part, “The rest of the packets in the stream will… …not go through this table again, but instead they
will automatically have the same actions taken to them as the first packet in the stream. This is one reason
why you should not do any filtering in this table…

###
#
Make sure Netfilter is pristine before we start
#

First, we flush things out, just to be safe
#
$IPTABLES -F
$IPTABLES -X # Delete any existing custom chains before we start
$IPTABLES -t nat -F
$IPTABLES -t mangle -F # We aren’t using this table, but still want it clean

##
Next, we set the default policies for our tables; we drop by default
according to our policy of least required privilege; we only want traffic
we specifically allow to get through.
$IPTABLES -P INPUT DROP # Default policy of Drop
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -t nat -P PREROUTING ACCEPT # We want to avoid filtering here16

$IPTABLES -t nat -P POSTROUTING ACCEPT # No filtering here, that’s been done
$IPTABLES -t nat -P OUTPUT ACCEPT
$IPTABLES -t mangle -P PREROUTING ACCEPT # We avoid filtering here
$IPTABLES -t mangle -P INPUT ACCEPT
$IPTABLES -t mangle -P FORWARD ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT
$IPTABLES -t mangle -P POSTROUTING ACCEPT

###
#
Kernel preparations:
Most scripts have them at the beginning, we're putting them at the
end to avoid the momentary exposure -- Netfilter lets us set rules
before interfaces even exist, so we can wait until it's ready before
we turn on any routing
#
This would also be a good place to add any modules that weren't compiled in
the kernel. We don't need to do that, though.

##
Now we get to the real fun, writing filters!

First, we create our "custom" chains

For the filter table -- i.e. INPUT, FORWARD, & OUTPUT
$IPTABLES -t filter -N TCP_FLAG
$IPTABLES -t filter -N SOURCE_CHECK
$IPTABLES -t filter -N EX_SOURCE_CHECK
$IPTABLES -t filter -N ICMP
$IPTABLES -t filter -N TCP
$IPTABLES -t filter -N UDP
$IPTABLES -t filter -N OTHER

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.58

####
#
Start with the PREROUTING chain, so we've got a logical, legible flow here
#
$IPTABLES -t nat -A PREROUTING -d $PUB_WWW -p tcp --dport 80 -j DNAT \

--to-destination $DMZ_WWW
$IPTABLES -t nat -A PREROUTING -d $PUB_WWW -p tcp --dport 443 -j DNAT \

--to-destination $DMZ_WWW
$IPTABLES -t nat -A PREROUTING -d $PUB_NFUSE -p tcp --dport 80 -j DNAT \

--to-destination $DMZ_NFUSE
$IPTABLES -t nat -A PREROUTING -d $PUB_NFUSE -p tcp --dport 443 -j DNAT \

--to-destination $DMZ_NFUSE
$IPTABLES -t nat -A PREROUTING -d $PUB_CSG -p tcp --dport 443 -j DNAT \

--to-destination $DMZ_CSG
$IPTABLES -t nat -A PREROUTING -d $PUB_SSH -p tcp --dport 22 -j DNAT \

--to-destination $DMZ_SSH
$IPTABLES -t nat -A PREROUTING -d $PUB_SMTP -p tcp --dport 25 -j DNAT \

--to-destination $DMZ_SMTP
$IPTABLES -t nat -A PREROUTING -d $PUB_SYSLOG -p udp --dport 514 -j DNAT \

--to-destination $DMZ_SYSLOG

####
#
INPUT chain - any traffic going TO the firewall itself
#
First, check for invalid flags & invalid sources
We check for invalid flags first for logging purposes -- assume
most would also be caught with source_check, but
want to be able to find them in the logs!
#
$IPTABLES -A INPUT -p tcp -j TCP_FLAG
$IPTABLES -A INPUT -j SOURCE_CHECK
$IPTABLES -A INPUT -i $EXT_IF -j EX_SOURCE_CHECK

Note on EX_SOURCE_CHECK: all traffic coming into the EXT_IF interface will
get dropped anyway, but we still want to check it for logging purposes.
Note also that if we're seeing invalid sources here, it means our border
router's filtering has failed!!

We don't actually allow ANY direct access to the firewall from the Internet
or the internal network, so if it hasn't been dropped & logged already,
do so now. Also implement rate limiting, to help mitigate DoS attacks.
#
$IPTABLES -A INPUT -i $EXT_IF -m limit --limit 3 -j LOG --log-level warn \

--log-prefix "FW ACCESS ATTEMPT: "
$IPTABLES -A INPUT -i $EXT_IF -j DROP
$IPTABLES -A INPUT -i $INT_IF -m limit --limit 3 -j LOG --log-level warn \

--log-prefix "FW ACCESS ATTEMPT: "
$IPTABLES -A INPUT -i $INT_IF -j DROP

Now we analyze -- it would be easy to just filter everything we want
right here, since the only traffic we allow to the firewall itself is SSH
from DMZ & NTP replies. It'll be easier to cross-check open ports later,
though, if we check it in the TCP & UDP chains. Note also that doing it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.59

here instead would be more efficient; we don't expect a performance
problem, though, so this shouldn't be an issue.

$IPTABLES -A INPUT -p tcp -j TCP
$IPTABLES -A INPUT -p udp -j UDP

Log & drop anything else that made it this far through the INPUT chain
#
$IPTABLES -A INPUT -j LOG --log-level warn --log-prefix "FW ACCESS ATTEMPT: "
$IPTABLES -A INPUT -j DROP

####
#
FORWARD chain - filters anything going THROUGH the firewall
#
First, check for invalid flags & invalid sources.
We check for invalid flags first for logging purposes -- assume
most would probably be caught with source_check, but
want to be able to find them in the logs!
#
$IPTABLES -A FORWARD -p tcp -j TCP_FLAG
$IPTABLES -A FORWARD -j SOURCE_CHECK
$IPTABLES -A FORWARD -i $EXT_IF -j EX_SOURCE_CHECK
Note that if we're seeing invalid sources here, it means our border router's
filtering has failed!!

#
If the traffic made it through, we check to see if we want it. We break it
down by protocol so it's easier to read; plus, we can list rules by protocol
to ease cross-checking later, after we're up & running
#
Order is important here. We jump to TCP first, since that's the bulk
of our traffic; the OTHER chain goes at the end because we can't
exclude a range or group of protocols; by putting it at the end, traffic for
tcp, udp, and icmp has already been filtered out, leaving only the other
protocols such as GRE and ESP. If, for some reason, traffic comes back here
after jumping to one of the first three chains, it will go through the OTHER
chain, but that really doesn't hurt anything; it's just one more place to
drop it...

$IPTABLES -A FORWARD -p tcp -j TCP
$IPTABLES -A FORWARD -p udp -j UDP
$IPTABLES -A FORWARD -p icmp -j ICMP
$IPTABLES -A FORWARD -j OTHER

If it made it back here somehow, log for analysis & drop
#
$IPTABLES -A FORWARD -j LOG --log-level warn --log-prefix "FUNKY TRAFFIC: "
$IPTABLES -A FORWARD -j DROP

####
TCP_FLAG Chain
#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.60

Checks for invalid TCP Flags
#
#

$IPTABLES -A TCP_FLAG -p tcp ! --syn -m state --state NEW -j LOG \
--log-level debug --log-prefix "NEW not SYN: "

$IPTABLES -A TCP_FLAG -p tcp ! --syn -m state --state NEW -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL NONE -j LOG --log-level warn \

--log-prefix "TCP FLAGS = NONE: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL NONE -j DROP

#
We tell iptables which flags to examine, followed by which flags to match
#
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL ALL -j LOG --log-level warn \

 --log-prefix "TCP FLAGS = ALL: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL ALL -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,PSH,URG FIN,PSH,URG -j LOG \

--log-level warn --log-prefix "TCP FLAGS = CHRISTMAS: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,PSH,URG FIN,PSH,URG -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,SYN FIN,SYN -j LOG \

 --log-level warn --log-prefix "TCP FLAGS = SYN-FIN: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,SYN FIN,SYN -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags SYN,RST SYN,RST -j LOG \

--log-level warn --log-prefix "TCP FLAGS = SYN-RST: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags SYN,RST SYN,RST -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,RST FIN,RST -j LOG \

 --log-level warn --log-prefix "TCP FLAGS = FIN-RST: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,RST FIN,RST -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,ACK FIN -j LOG --log-level warn \

--log-prefix "TCP FLAGS = FIN no ACK: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,ACK FIN -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags PSH,ACK PSH -j LOG --log-level warn \

--log-prefix "TCP FLAGS = PSH no ACK: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags PSH,ACK PSH -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags URG,ACK URG -j LOG --log-level warn \

--log-prefix "TCP FLAGS = URG no ACK: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags URG,ACK URG -j DROP

####
#
SOURCE_CHECK chain
#
Checks for invalid (reserved/spoofed) source address
#
Note: this could be streamlined somewhat with better masking in some areas
(e.g. /3 instead of /8); that might be somewhat more efficient, but for now
we're listing each Class A address block individually to make the script
easier to read. We could also use some fancier scripting, rather than doing
this line by line. Again, this method is simple to read and understand.
#
See http://www.iana.org/assignments/ipv4-address-space for up-to-date
listing of assigned addresses.

$IPTABLES -A SOURCE_CHECK -s 1.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 1.0.0.0/8 -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.61

$IPTABLES -A SOURCE_CHECK -s 2.0.0.0/8 -j LOG --log-level warn \
 --log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 2.0.0.0/8 -j DROP

##
#
NOTE: In reality, we also include the 5.0.0.0/8 block; for purposes of this
text, however, we comment it out since this is the address we're pretending
to use. Note that in reality, this is of course not the address block GIAC
Enterprises uses!
#
$IPTABLES -A SOURCE_CHECK -s 5.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 5.0.0.0/8 -j DROP
#

$IPTABLES -A SOURCE_CHECK -s 7.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 7.0.0.0/8 -j DROP

#
We leave this next address block for the "EX_SOURCE_CHECK" so we don't drop
all of our own traffic!
#
$IPTABLES -A SOURCE_CHECK -s 10.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 10.0.0.0/8 -j DROP
#

$IPTABLES -A SOURCE_CHECK -s 23.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 23.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 27.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 27.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 31.0.0.0/8 -j LOG --log-level warn \
 --log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 31.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 36.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 36.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 37.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 37.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 39.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 39.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 41.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 41.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 42.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 42.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 49.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 49.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 50.0.0.0/8 -j LOG --log-level warn \
 --log-prefix "SPOOFSOURCE: "

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.62

$IPTABLES -A SOURCE_CHECK -s 50.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 58.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 58.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 59.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 59.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 60.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 60.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 69.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 69.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 70.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 70.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 71.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 71.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 72.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 72.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 73.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 73.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 74.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 74.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 75.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 75.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 76.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 76.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 77.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 77.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 78.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 78.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 79.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 79.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 82.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 82.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 83.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 83.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 84.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 84.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 85.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 85.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 86.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 86.0.0.0/8 -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.63

$IPTABLES -A SOURCE_CHECK -s 87.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 87.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 88.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 88.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 89.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 89.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 90.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 90.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 91.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 91.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 92.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 92.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 93.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 93.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 94.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 94.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 95.0.0.0/8 -j LOG --log-level warn \
 --log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 95.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 96.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 96.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 97.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 97.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 98.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 98.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 99.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 99.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 100.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 100.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 101.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 101.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 102.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 102.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 103.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 103.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 104.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 104.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 105.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 105.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 106.0.0.0/8 -j LOG --log-level warn \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.64

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 106.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 107.0.0.0/8 -j LOG --log-level warn \
 --log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 107.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 108.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 108.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 109.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 109.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 110.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 110.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 111.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 111.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 112.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 112.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 113.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 113.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 114.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 114.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 115.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 115.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 116.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 116.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 117.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 117.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 118.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 118.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 119.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 119.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 120.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 120.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 121.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 121.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 122.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 122.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 123.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 123.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 124.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 124.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 125.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.65

$IPTABLES -A SOURCE_CHECK -s 125.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 126.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 126.0.0.0/8 -j DROP

#
Don't log or drop legitimate loopback traffic!
#
$IPTABLES -A SOURCE_CHECK -s 127.0.0.0/8 -i ! lo -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 127.0.0.0/8 -i ! lo -j DROP

$IPTABLES -A SOURCE_CHECK -s 197.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 197.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 221.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 221.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 222.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 222.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 223.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 223.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 240.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 240.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 241.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 241.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 242.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 242.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 243.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 243.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 244.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 244.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 245.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 245.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 246.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 246.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 247.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 247.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 248.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 248.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 249.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 249.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 250.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 250.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 251.0.0.0/8 -j LOG --log-level warn \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.66

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 251.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 252.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 252.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 253.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 253.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 254.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 254.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 255.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 255.0.0.0/8 -j DROP

####
#
EX_SOURCE_CHECK chain
#
Check to make sure packets from the outside aren't spoofing our internal
address
#
$IPTABLES -A EX_SOURCE_CHECK -i $EXT_IF -s 10.0.0.0/8 -j LOG --log-level \

warn --log-prefix "SPOOFSOURCE: "
$IPTABLES -A EX_SOURCE_CHECK -i $EXT_IF -s 10.0.0.0/8 -j DROP

####
#
TCP chain - filters all tcp traffic (IP protocol 6)
#
Allow only the traffic we really need, obviously, based on our Security
Policy; that breaks down to SSH,HTTP,HTTPS/SSL,SMTP,Passive FTP, L2TP.
We've tried to put the most frequently used traffic first; note that when
we use the iptables -L <CHAIN> -v -n --line-numbers command later to analyze
and audit our rulesets, we'll be able to see the amount of traffic matching
each rule. We will then be able to adjust order if/as needed to improve
performance. In the meantime, we're making an educated guess on how to
start. We expect most of our traffic to be outbound Web traffic from
internal staff.
We're using a Squid proxy; we only allow this traffic from the clients (not
our servers) to the proxy, and from the proxy to the Internet. Replies
follow the reverse path. The connection tracking will enable us to ensure
replies are valid.
#
Lastly, note that we'll be using Netfilter on the Squid proxy itself;
if we need to do any port redirecting/forwarding for Squid itself, we'll do
it there. This way, we have a "transparent" proxy for our clients; our
primary firewall's script meanings are obvious; and we can reconfigure
Squid if desired without have to touch our firewall's settings.
#
Office Web traffic from inside to the DMZ proxy:
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_NET_CLIENTS -d $DMZ_SQUID \

-p tcp --dport 80 -m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_NET_CLIENTS -d $DMZ_SQUID \

-p tcp --dport 443 -m state --state NEW -j ACCEPT

Office Web traffic from the proxy to the Internet:
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SQUID -p tcp --dport 80 \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.67

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SQUID -p tcp --dport 443 \

-m state --state NEW -j ACCEPT

Office Web traffic from the Internet back to the proxy (valid replies only!)
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SQUID -p tcp --sport 80 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SQUID -p tcp --sport 443 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

Office Web traffic from the proxy back to the inside (valid replies only!)
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SQUID -d $INT_NET_CLIENTS \

-p tcp --sport 80 -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SQUID -d $INT_NET_CLIENTS \

-p tcp --sport 443 -m state --state ESTABLISHED,RELATED -j ACCEPT

Next on our list comes e-mail (SMTP). We allow both inbound and outbound;
like the Web traffic above, this goes through the DMZ in both directions.
We use our Postfix SMTP relay both to protect our Exchange server from
direct exposure to the Internet, and to filter out the headers as well to
disguise from the rest of the world doesn't even know we using Exchange.
Mail's not worth logging, too much traffic!

Inbound mail, from Internet to DMZ (Postfix SMTP relay)
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SMTP -p tcp --dport 25 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SMTP -p tcp --sport 25 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

Inbound mail from DMZ relay to internal Exchange
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SMTP -d $INT_SMTP -p tcp \

--dport 25 -m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_SMTP -d $DMZ_SMTP -p tcp \

--dport 25 -m state --state ESTABLISHED,RELATED -j ACCEPT

Outbound mail traffic, from Exchange to Postfix
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_SMTP -d $DMZ_SMTP -p tcp \

--dport 25 -m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SMTP -d $INT_SMTP -p tcp \

--sport 25 -m state --state ESTABLISHED,RELATED -j ACCEPT

Outbound mail from Postfix relay to the Internet
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SMTP -p tcp --dport 25 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SMTP -p tcp --sport 25 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

Next, we need to let the world reach our public www.giac.com Web server.
Too much to log here, so we'll have to rely on the logs from our IDS and the
Web server itself. We'll add in some rate limits here, since it's a likely
DoS target.

We allow HTTP, HTTPS from the Internet to our Web server
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_WWW -p tcp --dport 80 \

-m state --state NEW -m limit --limit 3 -j ACCEPT
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_WWW -p tcp --dport 443 \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.68

-m state --state NEW -m limit --limit 3 -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_WWW -p tcp --sport 80 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_WWW -p tcp --sport 443 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

We also allow our internal staff to get to the server.
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_NET_CLIENTS -d $DMZ_WWW \
 -p tcp --sport 80 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_NET_CLIENTS -d $DMZ_WWW \
-p tcp --sport 443 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_WWW -d $INT_NET_CLIENTS \
 -p tcp --sport 80 -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_WWW -d $INT_NET_CLIENTS \
-p tcp --sport 443 -m state --state ESTABLISHED,RELATED -j ACCEPT

Next, we allow external staff to access the Citrix NFuse server. This also
requires access to the Citrix Secure Gateway. (Note that without CSG, we
would have to open up port 1494 from the Internet to our internal Citrix
Metaframe servers!)
We want to log this. We allow both HTTP and HTTPS, though the HTTP access
just results in a message telling the client to use HTTPS.

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_NFUSE -p tcp --dport 80 \
-m state --state NEW -j LOG --log-level debug --log-prefix \
"NFUSE ACCESS: "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_NFUSE -p tcp --dport 80 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_NFUSE -p tcp --dport 443 -m \
state --state NEW -j LOG --log-level debug --log-prefix " NFUSE ACCESS: "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_NFUSE -p tcp --dport 443 -m \
state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_CSG -p tcp --dport 443 \
-m state --state NEW -j LOG --log-level debug --log-prefix "CSG ACCESS: "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_CSG -p tcp --dport 443 \
-m state --state NEW -j ACCEPT

And, of course, we need the replies to this NFuse & CSG traffic
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_NFUSE -p tcp --sport 80 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_NFUSE -p tcp --sport 443 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_CSG -p tcp --sport 443 \

 -m state --state ESTABLISHED,RELATED -j ACCEPT

Citrix NFuse will use the Citrix SSL Relay to authenticate users on the
MetaFrame servers, so we need 443 open to them as well.

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_NFUSE -d $INT_CITRIX1 -p tcp \
--dport 443 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_NFUSE -d $INT_CITRIX2 -p tcp \
--dport 443 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_CITRIX1 -d $DMZ_NFUSE -p tcp \
--sport 443 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_CITRIX2 -d $DMZ_NFUSE -p tcp \
--sport 443 -m state --state NEW -j ACCEPT

CSG also requires access to the Citrix Metaframe servers. Note that this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.69

traffic will also be using IPSec; IPSec's needs are handled in the UDP and
OTHER chains.

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_CSG -d $INT_CITRIX1 -p tcp \
--dport 1494 -m state --state NEW -j LOG --log-level debug --log-prefix \
"ICA: "

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_CSG -d $INT_CITRIX1 -p tcp \
--dport 1494 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_CSG -d $INT_CITRIX2 -p tcp \
--dport 1494 -m state --state NEW -j LOG --log-level debug --log-prefix \
"ICA: "

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_CSG -d $INT_CITRIX2 -p tcp \
--dport 1494 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_CITRIX1 -d $DMZ_CSG -p tcp \
--sport 1494 -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_CITRIX2 -d $DMZ_CSG -p tcp \
--sport 1494 -m state --state ESTABLISHED,RELATED -j ACCEPT

We need to allow our internal Microsoft Software Update Server to get to the
SUS server on the DMZ.
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_SUS -d $DMZ_SUS -p tcp \

--dport 80 -m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SUS -d $INT_SUS -p tcp \

--sport 80 -m state --state ESTABLISHED,RELATED -j ACCEPT

Similarly, we need to allow Norton Antivirus to update
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_NAV -d $DMZ_NAV -p tcp \

--dport 21 -m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_NAV -d $INT_NAV -p tcp \

--sport 21 -m state --state ESTABLISHED,RELATED -j ACCEPT

The other VPN we're providing for staff is L2TP. That runs over UDP -- we
still need to open up a whole lot of stuff for the internal L2TP interface
connection to and from the internal network. We'll put the TCP parts of
that here.

Traffic to the Global Catalogue servers (and replies as well):
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 3268 \

-m state --state NEW -j LOG --log-level debug --log-prefix "GC ACCESS: "
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 3268 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp --sport 3268 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 3268 \

-m state --state NEW -j LOG --log-level debug --log-prefix "GC ACCESS: "
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 3268 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp --sport 3268 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

Other traffic to our Domain Controllers. We have 3, including the GC;
our tests failed unless the VPN server has access to all. There may be a
registry setting somewhere to fix that, but until we find it we'll have to
open up holes to all three. Note that because of the security implications
of opening up these ports, many organizations simplify their rules by just
allowing all communications, rather than specifying all of these.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.70

Our belief (and our policy) is that if there's no need for access, there
should be no access.
#
What we have here are Kerberos, RPC, Netlogon, RPC Service ports, LDAP,
Netbios and of course all the replies associated with this traffic.
These ports are further explained in the following text on the L2TP VPN.
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 88 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp --sport 88 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 135 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp --sport 135 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 139 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp --sport 139 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 389 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp --sport 389 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp --dport 445 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp --sport 445 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 88 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp --sport 88 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 135 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp --sport 135 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 139 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp --sport 139 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 389 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp --sport 389 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp --dport 445 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp --sport 445 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 88 \
 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 88 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 135 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 135 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 139 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 139 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.71

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 389 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 389 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 445 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 445 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p tcp \
--dport 5555:5655 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p tcp \
--sport 5555:5655 -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p tcp \
--dport 5555:5655 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p tcp \
--sport 5555:5655 -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp \
--dport 5555:5655 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp \
--sport 5555:5655 -m state --state ESTABLISHED,RELATED -j ACCEPT

Enable the L2TP to update its AntiVirus software. (We won’t use SUS for this
server, would rather do it manually to ensure nothing breaks)
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_NAV -p tcp --dport 21 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_NAV -p tcp --sport 21 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

L2TP VPN Traffic with the Exchange server. Again, this is explained in the
VPN text below; we'll log most of this:
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp --dport 4444 \

-m state --state NEW -j LOG --log-level debug --log-prefix "EXCH SA: "
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp --dport 4444 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp --dport 4445 \

-m state --state NEW -j LOG --log-level debug --log-prefix "EXCH NSPI: "
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp --dport 4445 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp --dport 4446 \

-m state --state NEW -j LOG --log-level debug --log-prefix "EXCH IS: "
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp --dport 4446 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p tcp \

--dport 5555:5655 -m state --state NEW -j ACCEPT

Replies from Exchange to L2TP:
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_SMTP -p tcp --sport 4444 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_SMTP -p tcp --sport 4445 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_SMTP -p tcp --sport 4446 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_SMTP -p tcp \

--sport 5555:5655 -m state --state ESTABLISHED,RELATED -j ACCEPT

Other traffic to Exchange

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.72

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 88 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 88 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 135 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 135 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A TCP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p tcp --dport 445 \
-m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p tcp --sport 445 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

Next, we'll enable outbound passive FTP. This is similar to the Web
traffic.
Note that we're also using the Squid proxy's firewall to restrict which
internal machines have access to FTP.
We'll log this. Note that when we review our logs, there should be
corresponding entries for both trips through the firewall, in both
directions; if not, something odd's going on!

Traffic from inside to the DMZ proxy:
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_IT_NET -d $DMZ_SQUID \

-p tcp --dport 21 -m state --state NEW -j LOG --log-level debug \
--log-prefix "FTP : "

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_IT_NET -d $DMZ_SQUID \
-p tcp --dport 21 -m state --state NEW -j ACCEPT

FTP traffic from the proxy to the Internet:
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SQUID -p tcp --dport 21 \

-m state --state NEW -j LOG --log-level debug --log-prefix "FTP : "
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SQUID -p tcp --dport 21 \

-m state --state NEW -j ACCEPT

FTP traffic from the Internet back to the proxy (valid replies only!)
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SQUID -p tcp --sport 21 \

-m state --state ESTABLISHED,RELATED -j LOG --log-level debug \
--log-prefix "FTP : "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SQUID -p tcp --sport 21 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

FTP traffic from the proxy back to the inside (valid replies only!)
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SQUID -d $INT_IT_NET \

-p tcp --sport 21 -m state --state ESTABLISHED,RELATED -j LOG \
--log-level debug --log-prefix "FTP : "

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SQUID -d $INT_IT_NET \
-p tcp --sport 21 -m state --state ESTABLISHED,RELATED -j ACCEPT

Last FTP we need is our DMZ NAV server to the outside for updates
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_NAV -p tcp --dport 21 -m state \

--state NEW -j ACCEPT
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_NAV -p tcp --sport 21 -m state \

--state ESTABLISHED,RELATED -j ACCEPT

#
Our next step is to enable SSH. This, too, must go through a proxy in the
DMZ. Unlike our FTP, though, this is enabled in both directions. We do want

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.73

to log all of this.

First, we set up the outbound traffic.

SSH traffic from inside to the DMZ proxy; this is only allowed from the IT
staff's computers:
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_IT_NET -d $DMZ_SSH \

-p tcp --dport 22 -m state --state NEW -j LOG --log-level debug \
--log-prefix "SSH OUT: "

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_IT_NET -d $DMZ_SSH \
-p tcp --dport 22 -m state --state NEW -j ACCEPT

SSH traffic from the proxy to the Internet:
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -p tcp --dport 22 \

-m state --state NEW -j LOG --log-level debug --log-prefix "SSH OUT: "
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -p tcp --dport 22 \

-m state --state NEW -j ACCEPT

SSH traffic from the Internet back to the proxy (valid replies only!)
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SSH -p tcp --sport 22 \

-m state --state ESTABLISHED,RELATED -j LOG --log-level debug \
--log-prefix "SSH OUT-REPLY: "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SSH -p tcp --sport 22 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

SSH traffic from the proxy back to the inside (valid replies only!)
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SSH -d $INT_IT_NET \

-p tcp --sport 22 -m state --state ESTABLISHED,RELATED -j LOG \
--log-level debug --log-prefix "SSH OUT-REPLY: "

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SSH -d $INT_IT_NET \
-p tcp --sport 22 -m state --state ESTABLISHED,RELATED -j ACCEPT

Next, we set up the ability for IT staff to SSH in from remote locations; we
don't expect this to happen very often, though the likelihood of needing SSH
always seems higher when IT staff are out of the office...

SSH traffic from outside to the DMZ
$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SSH -p tcp --dport 22 \

-m state --state NEW -j LOG --log-level debug --log-prefix \
"SSH IN: "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -d $DMZ_SSH -p tcp --dport 22 \
-m state --state NEW -j ACCEPT

SSH traffic from the DMZ to the internal network; since our staffs' Windows
clients don't have SSH installed, this should only be going to servers:
$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SSH -d $INT_VIP -p tcp \

--dport 22 -m state --state NEW -j LOG --log-level warn --log-prefix \
"SSH IN: "

$IPTABLES -A TCP -i $DMZ_IF -o $INT_IF -s $DMZ_SSH -d $INT_VIP -p tcp \
--dport 22 -m state --state NEW -j ACCEPT

SSH traffic from the inside back to the DMZ (valid replies only!) This
should only be coming from servers...
$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_VIP -d $DMZ_SSH -p tcp \

--sport 22 -m state --state ESTABLISHED,RELATED -j LOG --log-level \
debug --log-prefix "SSH IN-REPLY: "

$IPTABLES -A TCP -i $INT_IF -o $DMZ_IF -s $INT_VIP -d $DMZ_SSH -p tcp \
--sport 22 -m state --state ESTABLISHED,RELATED -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.74

SSH traffic from the DMZ back to the Internet (valid replies only!)
$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -p tcp --sport 22 \

-m state --state ESTABLISHED,RELATED -j LOG --log-level debug \
--log-prefix "SSH IN-REPLY: "

$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -p tcp --sport 22 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

We also want to allow SSH to the Firewall itself
$IPTABLES -A TCP -i $DMZ_IF -s $DMZ_SSH -d $DMZ_FW -p tcp --dport 22 \

-m state --state NEW -j LOG --log-level warn --log-prefix "SSH TO FW: "
$IPTABLES -A TCP -i $DMZ_IF -s $DMZ_SSH -d $DMZ_FW -p tcp --dport 22 \

-m state --state NEW -j ACCEPT
$IPTABLES -A TCP -o $DMZ_IF -s $DMZ_FW -d $DMZ_SSH -p tcp --sport 22 \

-m state --state ESTABLISHED,RELATED -j LOG --log-level debug \
--log-prefix "SSH TO FW-REPLY: "

$IPTABLES -A TCP -o $DMZ_IF -s $DMZ_FW -d $DMZ_SSH -p tcp --sport 22 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

We also need to enable our PPTP sessions to the Netopia border router. Note
that while the telnet we use to talk with the Netopia R5300 will be
tunneled inside the PPTP session so we don't need to tell the firewall
about it. Lastly, note that in accordance with our policy of not letting
traffic directly between the internal network and the Internet, this will be
done by first using SSH to the DMZ server (see above) and then establishing
the PPTP session to the border router from there.

$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -d $EXT_ROUTER -p tcp \
--dport 1723 -m state --state NEW -j LOG --log-level debug --log-prefix \
"PPTP TO ROUTER: "

$IPTABLES -A TCP -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -d $EXT_ROUTER -p tcp \
--dport 1723 -m state --state NEW -j ACCEPT

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -s $EXT_ROUTER -d $DMZ_SSH -p tcp \
--sport 1723 -m state --state ESTABLISHED,RELATED -j LOG \
--log-level debug --log-prefix "PPTP FROM ROUTER: "

$IPTABLES -A TCP -i $EXT_IF -o $DMZ_IF -s $EXT_ROUTER -d $DMZ_SSH -p tcp \
--sport 1723 -m state --state ESTABLISHED,RELATED -j ACCEPT

Lastly, we sends RST's to Ident traffic as a nice neighbor; no sense making
them wait.
$IPTABLES -A TCP -i $EXT_IF -p tcp --dport 113 -j REJECT --reject-with \

tcp-reset

If we get here, we want to know what's going on; it's not something we want,
so log it & then drop it.
$IPTABLES -A TCP -j LOG --log-level debug --log-prefix "DISALLOWED TCP: "
$IPTABLES -A TCP -j DROP

####
#
UDP chain - filters all udp traffic (IP protocol 17)
#
Obviously, we allow only the UDP we want, according to our security policy
-- which is outbound DNS & NTP and their replies; Syslog; and L2TP & IKE
NOTE: though it sounds strange, Netfilter actually lets us track "state" of
UDP to some extent

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.75

First, allow DNS queries. This goes from our internal network, to the
caching DNS server in the DMZ, and from there to the Internet -- and then
back again.
There's too much traffic to log all of this. (Note: we're only allowing
udp, since we don't want zone transfers. This isn't compliant with the DNS
specifications; large replies will try to use TCP and fail. That shouldn't
be a problem for us, though; if anything, blocking such large DNS replies
may help block would-be cache poisoning. See RFC 1035, which describes
DNS, at http://www.ietf.org/rfc/rfc1035.txt
#
Too much traffic here to log...

DNS queries out to the Internet via the DMZ:
$IPTABLES -A UDP -i $INT_IF -o $DMZ_IF -s $INT_DNS -d $DMZ_DNS -p udp \

--dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $DMZ_IF -o $EXT_IF -s $DMZ_DNS -p udp --dport 53 \

-m state --state NEW -j ACCEPT

DNS replies back from the Internet
$IPTABLES -A UDP -i $EXT_IF -o $DMZ_IF -d $DMZ_DNS -p udp --sport 53 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $DMZ_IF -o $INT_IF -s $DMZ_DNS -d $INT_DNS -p udp \

--sport 53 -m state --state ESTABLISHED,RELATED -j ACCEPT

DNS queries by our L2TP server & clients:
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DNS -p udp --dport 53 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DNS -p udp --sport 53 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

#
Let the firewall send syslog to DMZ_SYSLOG server
Note: This could also go in the OUTPUT chain

$IPTABLES -A UDP -o $DMZ_IF -s $DMZ_FW -d $DMZ_SYSLOG -p udp --dport 514 \
-m state --state NEW -j ACCEPT

Let the Border Router send syslog info to the DMZ syslog server
$IPTABLES -A UDP -i $EXT_IF -o $DMZ_IF -s $EXT_ROUTER -d $DMZ_SYSLOG -p udp \

--dport 514 -m state --state NEW -j ACCEPT

Let the L2TP VPN server's NTSyslog send info to the DMZ syslog server
$IPTABLES -A UDP -i $VPN_INT_IF -o $DMZ_IF -s $DMZ_L2TP -d $DMZ_SYSLOG \

-p udp --dport 514 -m state --state NEW -j ACCEPT

Let the DMZ's syslog server send info to the Internal syslog server
$IPTABLES -A UDP -i $DMZ_IF -o $INT_IF -s $DMZ_SYSLOG -d $INT_SYSLOG -p udp \

--dport 514 -m state --state NEW -j ACCEPT

NTP, so we can keep things synchronized
#
First, let the internal time server get to the DMZ's time server
$IPTABLES -A UDP -i $INT_IF -o $DMZ_IF -s $INT_NTP -d $DMZ_NTP -p udp \

--dport 123 -m state --state NEW -j ACCEPT

Next, let the DMZ time server get to the server on the Internet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.76

$IPTABLES -A UDP -i $DMZ_IF -o $EXT_IF -s $DMZ_NTP -d $PUB_NTP1 -p udp \
--dport 123 -m state --state NEW -j ACCEPT

$IPTABLES -A UDP -i $DMZ_IF -o $EXT_IF -s $DMZ_NTP -d $PUB_NTP2 -p udp \
--dport 123 -m state --state NEW -j ACCEPT

Also let our L2TP server synchronize
$IPTABLES -A UDP -i $VPN_INT_IF -o $DMZ_IF -s $DMZ_L2TP -d $DMZ_NTP -p udp \

--dport 123 -m state --state NEW -j ACCEPT

Now we need to let the NTP answers back in
From the Internet to the DMZ
$IPTABLES -A UDP -i $EXT_IF -o $DMZ_IF -s $PUB_NTP1 -d $DMZ_NTP -p udp \

--sport 123 -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $EXT_IF -o $DMZ_IF -s $PUB_NTP2 -d $DMZ_NTP -p udp \

--sport 123 -m state --state ESTABLISHED,RELATED -j ACCEPT

From the DMZ to the inside
$IPTABLES -A UDP -i $DMZ_IF -o $INT_IF -s $DMZ_NTP -d $INT_NTP -p udp \

--sport 123 -m state --state ESTABLISHED,RELATED -j ACCEPT

From the DMZ back to the L2TP server:
$IPTABLES -A UDP -i $DMZ_IF -o $VPN_INT_IF -s $DMZ_NTP -d $DMZ_L2TP -p udp \

 --sport 123 -m state --state ESTABLISHED,RELATED -j ACCEPT

Now, we need to add in our L2TP VPN's UDP requirements

Kerberos
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p udp --dport 88 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p udp --dport 88 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p udp --dport 88 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_SMTP -p udp --dport 88 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p udp --sport 88 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p udp --sport 88 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p udp --sport 88 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_SMTP -p udp --sport 88 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

LDAP
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DC1 -p udp --dport 389 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DC1 -p udp --sport 389 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DC2 -p udp --dport 389 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DC2 -p udp --sport 389 \

-m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A UDP -i $VPN_INT_IF -o $INT_IF -d $INT_DC3 -p udp --dport 389 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $INT_IF -o $VPN_INT_IF -s $INT_DC3 -p udp --sport 389 \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.77

-m state --state ESTABLISHED,RELATED -j ACCEPT

IKE, needed for IPSec
$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 500 \

-m state --state NEW -j LOG --log-level debug --log-prefix "IKE: "
$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 500 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $VPN_EXT_IF -o $EXT_IF -s $PUB_L2TP -p udp --sport 500 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

L2TP itself
$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 1701 \

-m state --state NEW -j LOG --log-level debug --log-prefix "L2TP: "
$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 1701 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $VPN_EXT_IF -o $EXT_IF -s $PUB_L2TP -p udp --sport 1701 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

NetBIOS & Login -- in theory we think Win2k should work without this, but not
in practice

$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 137 \
-m state --state NEW -j LOG --log-level debug --log-prefix "137: "

$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 137 \
-m state --state NEW -j ACCEPT

$IPTABLES -A UDP -i $VPN_EXT_IF -o $EXT_IF -s $PUB_L2TP -p udp --sport 137 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 138 \
-m state --state NEW -j LOG --log-level debug --log-prefix "138: "

$IPTABLES -A UDP -i $EXT_IF -o $VPN_EXT_IF -d $PUB_L2TP -p udp --dport 138 \
-m state --state NEW -j ACCEPT

$IPTABLES -A UDP -i $VPN_EXT_IF -o $EXT_IF -s $PUB_L2TP -p udp --sport 138 \
-m state --state ESTABLISHED,RELATED -j ACCEPT

We also want IKE for IPSec with the DMZ - these communications must come
from the inside, not the DMZ.
$IPTABLES -A UDP -i $INT_IF -o $DMZ_IF -p udp --dport 500 \

-m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $DMZ_IF -o $INT_IF -p udp --sport 500 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

Drop all other UDP traffic; because Windows machines are so chatty (e.g. UDP
137) we'll only log stuff coming into the External and DMZ interfaces.
#

$IPTABLES -A UDP -i $EXT_IF -p udp -j LOG --log-level warn \
--log-prefix "DISALLOWED UDP: "

$IPTABLES -A UDP -i $DMZ_IF -p udp -j LOG --log-level warn \
--log-prefix "DISALLOWED UDP: "

$IPTABLES -A UDP -p udp -j DROP

####
#
ICMP chain - filters all icmp traffic (IP protocol 1)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.78

#
We only allow the stuff we really need

We want to be able to PING
$IPTABLES -A ICMP -o $EXT_IF -s $INT_NET -p icmp --icmp-type 8 -m state \

--state NEW -j ACCEPT
$IPTABLES -A ICMP -i $EXT_IF -d $INT_NET -p icmp --icmp-type 0 -m state \

--state ESTABLISHED,RELATED -j ACCEPT

#
Destination Unreachables, so we don't have to wait to time out
#
$IPTABLES -A ICMP -i $EXT_IF -d $INT_NET -p icmp --icmp-type 3 -m state \

--state ESTABLISHED,RELATED -j ACCEPT
#
Let the outside world think they're able to ping our public addresses
#
$IPTABLES -A ICMP -i $EXT_IF -p icmp --icmp-type 8 -d $PUB_NET -m state \

--state NEW -j REJECT --reject-with icmp-host-prohibited

Log & Drop all the rest
$IPTABLES -A ICMP -p icmp -j LOG --log-level warn --log-prefix "DENIED ICMP: "
$IPTABLES -A ICMP -p icmp -j DROP

#####
#
OTHER chain - this filters traffic of any other IP protocol
#
We need ESP (type 50) for our L2TP/IPSec VPN, and for some of our traffic
between the DMZ and the inside
#
Note that there's no point enabling it from the DMZ to the Internet, since
our NAT will break IPSec anyway!

First, allow establishment between outside and L2TP VPN
$IPTABLES -A OTHER -i $EXT_IF -o $VPN_EXT_IF -p 50 -j LOG --log-level debug \

--log-prefix "ESP: "
$IPTABLES -A OTHER -i $EXT_IF -o $VPN_EXT_IF -p 50 -j ACCEPT
$IPTABLES -A OTHER -i $VPN_EXT_IF -o $EXT_IF -p 50 -j LOG --log-level debug \

--log-prefix "ESP: "
$IPTABLES -A OTHER -i $VPN_EXT_IF -o $EXT_IF -p 50 -j ACCEPT

Next, enable it between internal network and DMZ; since this comprises a
huge amount of traffic, we won't bother to log it
$IPTABLES -A OTHER -i $DMZ_IF -o $INT_IF -p 50 -j ACCEPT
$IPTABLES -A OTHER -i $INT_IF -o $DMZ_IF -p 50 -j ACCEPT

We also want to use AH for communication with the DMZ servers
$IPTABLES -A OTHER -i $DMZ_IF -o $INT_IF -p 51 -j ACCEPT
$IPTABLES -A OTHER -i $INT_IF -o $DMZ_IF -p 51 -j ACCEPT

We also need PPTP, but only from DMZ to the border router & back
$IPTABLES -A OTHER -p 47 -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -d $EXT_ROUTER \

 -j LOG --log-level debug --log-prefix "PPTP: "
$IPTABLES -A OTHER -p 47 -i $DMZ_IF -o $EXT_IF -s $DMZ_SSH -d $EXT_ROUTER \

-j ACCEPT
$IPTABLES -A OTHER -p 47 -i $EXT_IF -o DMZ_IF -s $EXT_ROUTER -d $DMZ_SSH \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.79

 -j LOG --log-level debug --log-prefix "PPTP: "
$IPTABLES -A OTHER -p 47 -i $EXT_IF -o DMZ_IF -s $EXT_ROUTER -d $DMZ_SSH \

-j ACCEPT

Drop any other type of traffic
#
$IPTABLES -A OTHER -j LOG --log-level warn --log-prefix "ODD PROTOCOL: "
$IPTABLES -A OTHER -j DROP

#####
#
OUTPUT chain - this filters traffic generated by the firewall itself
#
As with the INPUT chain, we could filter things here -- the only thing that
should be coming out is syslog, NTP, & SSH replies -- but we put it in the
TCP & UDP chains for cross-checking purposes
#

Send everything to the appropriate chain
$IPTABLES -A OUTPUT -p tcp -j TCP
$IPTABLES -A OUTPUT -p udp -j UDP
$IPTABLES -A OUTPUT -p icmp -j ICMP
$IPTABLES -A OUTPUT -j OTHER

Log & drop everything that gets returned to here...

$IPTABLES -A OUTPUT -j LOG --log-level warn --log-prefix "FW COMPROMISE?: "
$IPTABLES -A OUTPUT -j DROP

#####
#
POSTROUTING chain -- this just Source NAT's our outbound traffic, since our
private addresses aren't routable and we need a valid public address to
communicate with the outside world. We do no filtering here, that was done
in the "filter" table already; now we're in the "nat" table, "it should
only be used to translate the packet's source field or destination field"1
We SNAT everything headed to the Internet except our L2TP traffic
$IPTABLES -t nat -A POSTROUTING -s $INT_NET -j SNAT \

--to-source $SNAT_IP

This concludes our ruleset creation! That wasn't so bad, now, was it? ;^)

####
#
Kernel preparations, now that Netfilter is up & running.
#
Note that these could also be put into a different startup script entirely
#

touch /var/lock/subsys/local
Make sure the firewall responds to NAT replies
/sbin/ifconfig eth0:0 5.6.7.7 netmask 255.255.255.240

Drop ICMP broadcasts in kernel
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.80

Drop source-routed packets in kernel
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
echo 0 > $f

done

Drop ICMP redirect packets in kernel
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
echo 0 > $f

done

Do not create ICMP redirect packets in kernel
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
echo 0 > $f

done

Just in case this didn't happen elsewhere already,
enable IP forwarding so we can route
echo 1 > /proc/sys/net/ipv4/ip_forward

Set up our routing table
/sbin/route add -net 5.6.7.0 netmask 255.255.255.240 gw 5.6.7.9
/sbin/route add 5.6.7.8 gw 5.6.7.2

The final preparatory step is to burn our pre-configured, pre-hardened operating
system onto a bootable CD. This is so that it is not possible for anyone without
physical access to alter the startup routine in any way. One of the first actions
taken in the event of a successful compromise is often to force the machine to
reboot in order to alter the programs launched or installed during bootstrapping.
Because the attacker will have no means to alter the files on the CD, a reboot
will simply return the firewall to its desired state. (Note that the CD-ROM drive
used for booting the firewall lacks the capability to write to CD.)

An explanation of how to make a bootable Linux firewall CD is beyond the scope
of this document. See http://rr.sans.org/linux/cdrom.php for a nice summary
(note: this site requires free registration.) There is also an intriguing project at
http://cd-linux.org/build-qs.htm with a goal of helping people make CD-based
Linux systems. And, of course, there’s also the ubiquitous Linux HOWTO’s; see
the Boot Disk howto, which contains a section dealing specifically with CD’s at:
http://www.linux.org/docs/ldp/howto/Bootdisk-HOWTO/cd-roms.html.

B. Firewall B:

We also have a separate firewall for guest Internet access in the conference
room. This is a much simpler configuration. Note that the basics of preparing
and hardening the machine are the same for this machine as for the primary
firewall. Rather than repeat all of that, we will simply list the different firewall
configuration script here:

##############################

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.81

#
GIAC Enterprises v.1.7 Netfilter Conference Room Firewall script
#
Written by Vincent R. Streiff, Fall 2002
#
This could not have been possible without guidance from the iptables
tutorial written by Oskar Andreason, located at:
http://www.netfilter.org/documentation/tutorials/blueflux/
#
A plethora of other tutorials which may help can be found at:
http://www.netfilter.org/documentation/index.html#HOWTO
#
#
Our general guidelines:
Maximize performance, but not at the expense of security
Since complexity is bad, there may be instances where script
legibility takes precedence over streamlining for performance
#
###############################

#####
#
For starters, to make all this legible and editable, we set our
variables used in the script
#

IPTABLES="/user/sbin/iptables # path to the iptables command; your milage may
vary depending on where you put it.

EXT_IF="eth0" # This is the interface facing the Internet,
connected to our router

INT_IF="eth1" # This is the interface facing the internal network
EXT_ROUTER="5.6.7.1" # The address of our Netopia R5300 router
PUB_FW="5.6.7.13" # Public address of our firewall (eth0)
INT_FW="10.99.99.1" # IP address of firewall's internal NIC (eth1)
PUB_NTP1="5.127.125.23" # Not really of course; you can often use ISP's routers.
PUB_NTP2="5.118.34.135" # We’re using “stratum 2” servers -- after notifying

the admins of those servers, of course -- to keep
ourselves as accurate as possible. We use 2 NTP
servers for redundancy; note that coordination with
the “official” time isn’t as critical as keeping
all of our servers synchronized with each other.
See www.ntp.org for more on Network Time Protocol

GIAC_SNAT_IP=”5.6.7.7” # IP address used by the GIAC offices for NAT. We
only allow SSH to this firewall from that address

SNAT_IP=”5.6.7.14” # IP address used for NAT’ing our public traffic

###
#
Make sure Netfilter is pristine before we start
#

First, we flush things out, just to be safe
#
$IPTABLES -F
$IPTABLES -X # Delete any existing custom chains before we start
$IPTABLES -t nat -F
$IPTABLES -t mangle -F # We aren’t using this table, but still want it clean

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.82

17 See http://www.netfilter.org/documentation/tutorials/blueflux/iptables-tutorial.html#TABLES which
states in part, “The rest of the packets in the stream will… …not go through this table again, but instead they
will automatically have the same actions taken to them as the first packet in the stream. This is one reason
why you should not do any filtering in this table…

##
Next, we set the default policies for our tables; we drop by default
according to our policy of least required privilege; we only want traffic
we specifically allow to get through.
$IPTABLES -P INPUT DROP # Default policy of Drop
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -t nat -P PREROUTING ACCEPT # We want to avoid filtering here17

$IPTABLES -t nat -P POSTROUTING ACCEPT # No filtering here, that’s been done
$IPTABLES -t nat -P OUTPUT ACCEPT
$IPTABLES -t mangle -P PREROUTING ACCEPT # We avoid filtering here
$IPTABLES -t mangle -P INPUT ACCEPT
$IPTABLES -t mangle -P FORWARD ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT
$IPTABLES -t mangle -P POSTROUTING ACCEPT

###
#
Kernel preparations:
Most scripts have them at the beginning, we're putting them at the
end to avoid the momentary exposure -- Netfilter lets us set rules
before interfaces even exist, so we can wait until it's ready before
we turn on any routing
#

Now we add our custom chains.

For the filter table -- i.e. INPUT, FORWARD, & OUTPUT
$IPTABLES -t filter -N TCP_FLAG
$IPTABLES -t filter -N SOURCE_CHECK
$IPTABLES -t filter -N EX_SOURCE_CHECK
$IPTABLES -t filter -N ICMP
$IPTABLES -t filter -N TCP
$IPTABLES -t filter -N UDP
$IPTABLES -t filter -N OTHER

PREROUTING chain isn’t used, since we aren’t providing any services

####
#
INPUT chain – any traffic going TO the firewall itself
#
First, check for invalid flags & invalid sources
We check for invalid flags first for logging purposes -- assume
most would also be caught with source_check, but
want to be able to find them in the logs!
#
$IPTABLES -A INPUT -p tcp -j TCP_FLAG
$IPTABLES -A INPUT -j SOURCE_CHECK
$IPTABLES -A INPUT -i $EXT_IF -j EX_SOURCE_CHECK
Note on EX_SOURCE_CHECK: all traffic coming into the EXT_IF interface will get
dropped anyway, but we still want to check it for logging purposes. Note also
that if we’re seeing invalid sources here, it means our border router’s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.83

filtering has failed!!

We don't actually allow ANY direct access to the firewall from the Internet or
the internal network, so if it hasn't been dropped & logged already,
do so now
#
$IPTABLES -A INPUT -i $EXT_IF -j LOG --log-level warn -j log-prefix \

"FW ACCESS ATTEMPT: "
$IPTABLES -A INPUT -i $EXT_IF -j DROP
$IPTABLES -A INPUT -i $INT_IF -j LOG --log-level warn -j log-prefix \

"FW ACCESS ATTEMPT: "
$IPTABLES -A INPUT -i $INT_IF -j DROP

Now we analyze -- it would be easy to just filter everything we want
right here, since the only traffic we allow to the firewall itself is SSH
from DMZ & NTP replies. It’ll be easier to cross-check open ports later,
though, if we check it in the TCP & UDP chains. Note also that doing it here
instead would be more efficient; we don’t expect a performance problem, though,
so this shouldn’t be an issue.

$IPTABLES -A INPUT -p tcp -j TCP
$IPTABLES -A INPUT -p udp -j UDP

Log & drop anything else that made it this far through the INPUT chain
#
$IPTABLES -A INPUT -j LOG --log-level warn --log-prefix "FW ACCESS ATTEMPT: "
$IPTABLES -A INPUT -j DROP

####
#
FORWARD chain – filters anything going THROUGH the firewall
#
First, check for invalid flags & invalid sources.
We check for invalid flags first for logging purposes -- assume
most would probably be caught with source_check, but
want to be able to find them in the logs!
#
$IPTABLES -A FORWARD -p tcp -j TCP_FLAG
$IPTABLES -A FORWARD -j SOURCE_CHECK
$IPTABLES -A FORWARD -i $EXT_IF -j EX_SOURCE_CHECK
Note that if we’re seeing invalid sources here, it means our border router’s
filtering has failed!!

#
If the traffic made it through, we check to see if we want it. We break this
down by protocol so it's easier to read; plus, we can list rules by protocol
to ease cross-checking later, after we’re up & running
#
Order is important here. We put the jump to TCP first, since that’s the bulk
of our traffic; the jump to the OTHER chain goes at the end because traffic
for tcp, udp, and icmp will already be filtered out, leaving a couple fewer
protocols. If, for some reason, traffic comes back here after jumping to one
of the first three chains, it will go through the OTHER chain, but that really
doesn’t hurt anything; it’s just one more place to drop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.84

it...

$IPTABLES -A FORWARD -p tcp -j TCP
$IPTABLES -A FORWARD -p udp -j UDP
$IPTABLES -A FORWARD -p icmp -j ICMP
$IPTABLES -A FORWARD -j OTHER

If it made it back here somehow, log for analysis & drop
#
$IPTABLES -A FORWARD -j LOG --log-level warn --log-prefix "FUNKY TRAFFIC: "
$IPTABLES -A FORWARD -j DROP

####
TCP_FLAG Chain
#
Checks for invalid TCP Flags
#
#

$IPTABLES -A TCP_FLAG -p tcp ! --syn -m state --state NEW -j LOG \
--log-level warn --log-prefix "NEW not SYN: "

$IPTABLES -A TCP_FLAG -p tcp ! --syn -m state --state NEW -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL NONE -j LOG --log-level warn \

--log-prefix "TCP FLAGS = NONE: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL NONE -j DROP

#
We check for all-flag scans before the more specific ones, otherwise log
prefixes could be misleading. This is because we tell iptables which flags to
examine, followed by which flags to match. A packet with all flags on
would give us a false positive hit on all of the following rules...
#
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL ALL -j LOG --log-level warn \

--log-prefix "TCP FLAGS = ALL: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags ALL ALL -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,PSH,URG FIN,PSH,URG -j LOG \

 --log-level warn --log-prefix "TCP FLAGS = CHRISTMAS: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,PSH,URG FIN,PSH,URG -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,SYN FIN,SYN -j LOG \

--log-level warn --log-prefix "TCP FLAGS = SYN-FIN: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,SYN FIN,SYN -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags SYN,RST SYN,RST -j LOG \

--log-level warn --log-prefix "TCP FLAGS = SYN-RST: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags SYN,RST SYN,RST -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,RST FIN,RST -j LOG \

--log-level warn --log-prefix "TCP FLAGS = FIN-RST: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,RST FIN,RST -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,ACK FIN -j LOG --log-level warn \

--log-prefix "TCP FLAGS = FIN no ACK: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags FIN,ACK FIN -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags PSH,ACK PSH -j LOG --log-level warn \

--log-prefix "TCP FLAGS = PSH no ACK: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags PSH,ACK PSH -j DROP
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags URG,ACK URG -j LOG --log-level warn \

--log-prefix "TCP FLAGS = URG no ACK: "
$IPTABLES -A TCP_FLAG -p tcp --tcp-flags URG,ACK URG -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.85

####
#
SOURCE_CHECK chain
#
Checks for invalid (reserved/spoofed) source address
#
Note: this could be streamlined somewhat with better masking in some areas
(e.g. /3 instead of /8); that might be somewhat more efficient, but for now
we're listing each Class A address block individually to make the script
easier to read
#
See http://www.iana.org/assignments/ipv4-address-space for up-to-date
listing of assigned addresses.

$IPTABLES -A SOURCE_CHECK -s 1.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 1.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 2.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 2.0.0.0/8 -j DROP

##
#
NOTE: In reality, we also include the 5.0.0.0/8 block; for purposes of this
text, however, we comment it out since this is the address we're pretending
to use. Note that in reality, this is of course not the address block GIAC
Enterprises uses!
#
$IPTABLES -A SOURCE_CHECK -s 5.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 5.0.0.0/8 -j DROP
#

$IPTABLES -A SOURCE_CHECK -s 7.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 7.0.0.0/8 -j DROP

#
We leave this next address block for the "EX_SOURCE_CHECK" so we don't drop
all of our own traffic!
#
$IPTABLES -A SOURCE_CHECK -s 10.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 10.0.0.0/8 -j DROP
#

$IPTABLES -A SOURCE_CHECK -s 23.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 23.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 27.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 27.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 31.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 31.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 36.0.0.0/8 -j LOG --log-level warn \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.86

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 36.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 37.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 37.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 39.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 39.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 41.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 41.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 42.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 42.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 49.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 49.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 50.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 50.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 58.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 58.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 59.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 59.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 60.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 60.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 69.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 69.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 70.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 70.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 71.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 71.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 72.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 72.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 73.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 73.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 74.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 74.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 75.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 75.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 76.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 76.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 77.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 77.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 78.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.87

$IPTABLES -A SOURCE_CHECK -s 78.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 79.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 79.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 82.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 82.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 83.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 83.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 84.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 84.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 85.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 85.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 86.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 86.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 87.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 87.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 88.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 88.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 89.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 89.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 90.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 90.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 91.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 91.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 92.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 92.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 93.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 93.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 94.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 94.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 95.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 95.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 96.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 96.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 97.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 97.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 98.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 98.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 99.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 99.0.0.0/8 -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.88

$IPTABLES -A SOURCE_CHECK -s 100.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 100.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 101.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 101.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 102.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 102.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 103.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 103.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 104.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 104.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 105.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 105.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 106.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 106.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 107.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 107.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 108.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 108.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 109.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 109.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 110.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 110.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 111.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 111.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 112.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 112.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 113.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 113.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 114.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 114.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 115.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 115.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 116.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 116.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 117.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 117.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 118.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 118.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 119.0.0.0/8 -j LOG --log-level warn \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.89

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 119.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 120.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 120.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 121.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 121.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 122.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 122.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 123.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 123.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 124.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 124.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 125.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 125.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 126.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 126.0.0.0/8 -j DROP

Don't log or drop legitimate loopback traffic!
#
$IPTABLES -A SOURCE_CHECK -s 127.0.0.0/8 -i ! lo -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 127.0.0.0/8 -i ! lo -j DROP

$IPTABLES -A SOURCE_CHECK -s 197.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 197.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 221.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 221.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 222.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 222.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 223.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 223.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 240.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 240.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 241.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 241.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 242.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 242.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 243.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 243.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 244.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 244.0.0.0/8 -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.90

$IPTABLES -A SOURCE_CHECK -s 245.0.0.0/8 -j LOG --log-level warn \
--log-prefix "SPOOFSOURCE: "

$IPTABLES -A SOURCE_CHECK -s 245.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 246.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 246.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 247.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 247.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 248.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 248.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 249.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 249.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 250.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 250.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 251.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 251.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 252.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 252.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 253.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 253.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 254.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 254.0.0.0/8 -j DROP
$IPTABLES -A SOURCE_CHECK -s 255.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A SOURCE_CHECK -s 255.0.0.0/8 -j DROP

####
#
EX_SOURCE_CHECK chain
#
Check to make sure packets from the outside aren't spoofing our internal
address
#
$IPTABLES -A EX_SOURCE_CHECK –i $EXT_IF -s 10.0.0.0/8 -j LOG --log-level warn \

--log-prefix "SPOOFSOURCE: "
$IPTABLES -A EX_SOURCE_CHECK –I $EXT_IF -s 10.0.0.0/8 -j DROP

####
#
TCP chain - filters all tcp traffic (IP protocol 6)
#
We allow outbound Web (& DNS) traffic. We will also allow SSH and PPTP.
Normal Web surfing traffic, and associated replies

$IPTABLES -A TCP -i $INT_IF -o $EXT_IF -p tcp --dport 80 -m state --state NEW \
-j ACCEPT

$IPTABLES -A TCP -i $INT_IF -o $EXT_IF -p tcp --dport 443 -m state --state NEW \
-j ACCEPT

$IPTABLES -A TCP -i $EXT_IF -o $INT_IF -p tcp --sport 80 -m state --state \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.91

ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A TCP -i $EXT_IF -o $INT_IF -p tcp --sport 443 -m state --state \

ESTABLISHED,RELATED -j ACCEPT

Since we’re allowing outbound PPTP...
Outbound PPTP
$IPTABLES -A TCP -i $INT_IF -o $EXT_IF -p tcp --dport 1723 -m state \

--state NEW -j ACCEPT
$IPTABLES -A TCP -i $EXT_IF -o $INT_IF -p tcp --sport 1723 -m state --state \

ESTABLISHED,RELATED -j ACCEPT

SSH-2, for maintenance & log checking
$IPTABLES -A TCP -i $EXT_IF -s $GIAC_SNAT_IP -p tcp --dport 22 -m state \

--state NEW -j ACCEPT
$IPTABLES -A TCP -o $EXT_IF -d $GIAC_SNAT_IP -p tcp --sport 22 -m state \

--state ESTABLISHED,RELATED -j ACCEPT

####
#
UDP chain – filters all udp traffic (IP protocol 17)
#
Obviously, we allow only the UDP we want, according to our security policy
-- which is outbound DNS queries, plus we also want to allow our firewall to
use an outside NTP server.
#
We wish we could provide L2TP over IPSec capability as well, but we’re using
NAT so that won’t work.

First, allow DNS queries. (As with Firewall A, we’re only allowing udp,
since we don’t want zone transfers. This isn’t compliant with the DNS
specifications; large replies will try to use TCP and fail. That shouldn’t be
a problem for us, though; if anything, blocking such large DNS replies may
help block would-be cache poisoning. See RFC 1035, which describes DNS, at
http://www.ietf.org/rfc/rfc1035.txt

DNS
$IPTABLES -A UDP -i $INT_IF -o $EXT_IF -p udp --dport 53 -m state --state NEW \

-j ACCEPT
$IPTABLES -A UDP -i $EXT_IF -o $INT_IF -p udp --sport 53 -m state --state \

ESTABLISHED,RELATED -j ACCEPT

NTP, so these logs are reasonably close to our other machines’ logs
$IPTABLES -A UDP -o $EXT_IF -s $PUB_FW -d $PUB_NTP1 -p udp \

--dport 123 -m state --state NEW -j ACCEPT
$IPTABLES -A UDP -o $EXT_IF -s $PUB_FW -d $PUB_NTP2 -p udp \

--dport 123 -m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $EXT_IF -s $PUB_NTP1 -d $PUB_FW -p udp \

--sport 123 -m state --state NEW -j ACCEPT
$IPTABLES -A UDP -i $EXT_IF -s $PUB_NTP2 -d $PUB_FW -p udp \

--sport 123 -m state --state NEW -j ACCEPT

Log & drop anything else from the outside, it’s unwanted
$IPTABLES -A UDP -i $EXT_IF -p udp -j LOG --log-level warn \

--log-prefix “DISALLOWED UDP: “
$IPTABLES -A UDP -i $EXT_IF -p udp -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.92

####
#
ICMP chain – filters all icmp traffic (IP protocol 1)
#
We only allow the stuff we really need
#

We want to be able to PING
$IPTABLES -A ICMP -o $EXT_IF -s $INT_NET -p icmp --icmp-type 8 -m state \

--state NEW -j ACCEPT
$IPTABLES -A ICMP -i $EXT_IF -d $INT_NET -p icmp --icmp-type 0 -m state \

--state ESTABLISHED,RELATED -j ACCEPT

#
Destination Unreachables, so we don't have to wait to time out
#
$IPTABLES -A ICMP -i $EXT_IF -d $INT_NET -p icmp --icmp-type 3 -m state \

--state ESTABLISHED,RELATED -j ACCEPT
#
Let the outside world think they're able to ping us
#
$IPTABLES -A ICMP -i $EXT_IF -p icmp --icmp-type 8 -m state \

--state NEW -j REJECT --reject-with icmp-host-prohibited

Log & Drop all the rest
$IPTABLES -A ICMP -p icmp -j LOG --log-level warn --log-prefix "DENIED ICMP: "
$IPTABLES -A ICMP -p icmp -j DROP

#####
#
OTHER chain - this filters traffic of any other IP protocol

#
We’ll let our guests use GRE (type 47) in case they need PPTP.
#

Allow GRE for PPTP
$IPTABLES -A OTHER -p 47 -i IN_IF -o $EXT_IF -j ACCEPT
$IPTABLES -A OTHER -p 47 -i EXT_IF -o $INT_IF -j ACCEPT

#
Drop any other type of traffic
#
$IPTABLES -A OTHER -j LOG --log-level warn --log-prefix "ODD PROTOCOL: "
$IPTABLES -A OTHER -j DROP

#####
#
OUTPUT chain – this filters traffic generated by the firewall itself
#
Since we’re checking our logs manually on this firewall, the only thing
outbound should be NTP requests and SSH replies. Those are, of course,
handled in the appropriate protocol chains.
#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.93

18 Oskar Andreasson, http://www.netfilter.org/documentation/tutorials/blueflux/iptables-
tutorial.html#AEN595

Send everything to the appropriate chain
$IPTABLES -A OUTPUT -p tcp -j TCP
$IPTABLES -A OUTPUT -p udp -j UDP
$IPTABLES -A OUTPUT -p icmp -j ICMP
$IPTABLES -A OUTPUT -j OTHER

Log & drop everything that gets returned to here...

$IPTABLES -A OUTPUT -j LOG --log-level warn --log-prefix "FW COMPROMISE?: "
$ITPABLES -A OUTPUT -j DROP

#
POSTROUTING chain -- this just Source NAT’s our outbound traffic, since our
private addresses aren’t routable and we need a valid public address to
communicate with the outside world. We do no filtering here, that was done in
the "filter" table already; now we’re in the "nat" table, "it should only be
used to translate the packet's source field or destination field"18

We SNAT everything headed to the Internet (which is why we can’t provide IPSec
for our visitors).
$IPTABLES -t nat -A POSTROUTING -i $INT_IF -o $EXT_IF -j SNAT \

--to-source $SNAT_IP

This concludes our ruleset creation!

####
#
Kernel preparations, now that Netfilter is up & running.
#
Note that these could also be put into a different startup script entirely
#

touch /var/lock/subsys/local
Make sure the firewall responds to NAT replies
/sbin/ifconfig eth0:0 5.6.7.14 netmask 255.255.255.240

Drop ICMP broadcasts in kernel
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

Drop source-routed packets in kernel
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
echo 0 > $f

done

Drop ICMP redirect packets in kernel
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
echo 0 > $f

done

Do not create ICMP redirect packets in kernel
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
echo 0 > $f

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.94

19 http://www.rsasecurity.com/company/news/releases/pr.asp?doc_id=1264, “RSA Security and Citrix
Systems Provide Stronger Security for the Virtual Workplace” and
http://www.rsasecurity.com/company/news/releases/pr.asp?doc_id=180, RSA Security Expands Licensing
of its E-Security Software to Citrix

done

Just in case this didn't happen elsewhere already,
enable IP forwarding so we can route
echo 1 > /proc/sys/net/ipv4/ip_forward

As with our primary Firewall A, we will make a bootable CD for actual
implementation of this firewall.

Now that we’ve got 2 nice, new firewalls up and running, we can breathe a little
sigh of relief -- though we certainly have no false beliefs that we’re safe or
secure by any means. Firewalls and packet filtering in general are only one part
of an effective security policy. They are certainly a very important part, but
monitoring and maintenance are just as critical. This is not a case of “set it and
forget it.”

We also can’t rest for too long because we’re not done building our perimeter
yet. We still need to configure our remote access.

3. VPN(s)
GIAC Enterprises will have 3 methods of remote access; each of the three could
be called a “Virtual Private Network.” Those three methods are Citrix NFuse (in
conjunction with Citrix Secure Gateway), SSH-2, and L2TP over IPSec. The
overwhelming majority of our remote access will take place using Citrix NFuse,
because it provides very fast response, even over dial-up modems; it can be
accessed from any contemporary browser with an Internet connection; and, it is
secure.19 SSH is provided for IT staff, in the event they need to monitor or
manage something remotely. The L2TP over IPSec connection is provided for
our “road warriors,” staff outside of the office who need to synchronize Microsoft
Outlook for off-line use.

Because these off-site staff are often using slow, dial-up modem connections to
get to the Internet, they will first use the Citrix NFuse Website to check the
status of their e-mail. If they find new messages they need access to offline, or
have time-sensitive e-mail they composed offline and need to send out, they will
then connect to the L2TP over IPSec VPN in order to synchronize their Outlook
clients. This is generally viewed as a method of last resort, due to the large
amount of bandwidth involved; synchronizing Outlook via dial-up has been
compared to having teeth pulled while watching grass grow.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.95

For similar reasons, they won’t perform Windows 2000 off-line files
synchronization remotely. They will instead transfer files via the Citrix
connection on an as-needed basis.

We will discuss here the process of setting up the L2TP over IPSec server. For
Citrix NFuse and SSH-2, we will discuss the important specifics but will spare
you the step-by-step configuration. Citrix NFuse configuration, in particular,
could easily comprise a book by itself.

A. Windows 2000 Routing & Remote Access (RRAS) using L2TP
over IPSec (a mini-tutorial).

We will be keeping the existing RRAS server (minus the dial-in modems), but
we want to harden this server and tighten its security as much as possible.
PPTP access was previously used, but this has known security limitations
(basically, the quality of the encryption hinges upon the complexity of the user’s
password; see http://www.counterpane.com/pptpv2-paper.html, “Cryptanalysis
of Microsoft's PPTP Authentication Extensions (MS-CHAPv2)”). Instead, we will
configure the server to allow only L2TP with IPSec access for roaming staff. We
use both the RRAS server’s filtering capabilities and those of Firewall A to
restrict, as much as we can, what the clients who connect here will be able to
reach. While for the time being we are only implementing the server for client
access, our configuration will make it possible to create server to server VPN
connections using L2TP with IPSec with a minimal amount of effort; all that
would be required would be to create the connection (our side of it, anyway) and
modify our filter sets as needed, depending on which servers access was
allowed to. [Though how easy or hard this would really be is of course
contingent upon the type of hardware & software used on the other end; if they
aren’t using Windows 2000’s RRAS, all bets are off…]

We are able to use IPSec, even though our internal network uses NAT, because
we aren’t altering the tunneled packets. We intentionally put our L2TP server on
a separate firewall interface and gave it a “real” public IP address. While the
traffic to and from this interface will be filtered by the firewall, the packets we
allow will be forwarded without alteration. The VPN server will then give the
connected clients ip addresses on the NAT’ed network; since that traffic is all
encapsulated within the IPSec traffic, NAT isn’t broken. This is best explained
with a diagram, shown in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.96

Firewall

Card

Card

Card

Card

Card

Switches for
Internal
Network

Switch for
DMZ

Router to Internet

10.0.1.0/28

10.0.0.0/24

10.0.2.32/27

VPN (L2TP)
Server

Card

Card

5.6.7.0/28

5.6.7.2 5.6.7.8

Figure 24 below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.97

Firewall

Card

Card

Card

Card

Card

Switches for
Internal
Network

Switch for
DMZ

Router to Internet

10.0.1.0/28

10.0.0.0/24

10.0.2.32/27

VPN (L2TP)
Server

Card

Card

5.6.7.0/28

5.6.7.2 5.6.7.8

Figure 24

As there was no way to ensure our existing server hadn’t already been
compromised, it was decided after careful deliberation that the best course of
action was to simply rebuild the machine from scratch. [This course of action
was also taken with the other existing servers, including the Web servers
running IIS and the SQL server. Whenever possible, a new machine was
configured ahead of time, which was then swapped with the existing server in a
matter of minutes.]

Again, the details of hardening a Windows 2000 computer are beyond the
scope of this document. We will, however, go over the basics. First, before the
computer is physically connected to the network, the operating system
(Windows 2000 Server) is installed, followed immediately by all relevant patches
and updates. These patches and updates are installed from CD, rather than
over the network, to prevent the machine from being compromised before we
can patch it. Note that during installation, no unnecessary services, such as IIS,
or unnecessary programs, such as the “accessories,” were installed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.98

Note that for a larger network, it would be worthwhile to set up an isolated Active
Directory network and use Windows 2000’s Remote Installation Services (RIS)
to roll out pre-configured Windows 2000 machines. There are a few tweaks
required to distribute Windows 2000 Server images this way; see Mark Minasi’s
Mastering Windows 2000 Server and “Roll Out Secure Servers,” also by Minasi,
at http://www.winnetmag.com/Articles/Index.cfm?ArticleID=24892.

The next step is to disable all services we don’t expressly need; this can be
accomplished by simply right-clicking on the unwanted services and changing
the startup to Disabled, as shown below in Figure 25. We then adjust the file
access permissions on the NTFS partitions to severely restrict who has access;
as there is really no reason for anyone to access or use any programs installed
on this machine, we limit permissions to the Administrators group only, though
the System needs the ability to access some files as well. Some programs
installed by default, such as tftp.exe and cmd.exe, are classic examples of
programs that should be deleted outright if possible; in our case, they won’t be
needed, so we delete them.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.99

Figure 25, Disabling services through the MMC

Next, we install and configure the personal firewall software and antivirus
software. Although these can be distributed and managed remotely, for the
servers in the DMZ we’ll install these programs from CD, so we can have them
fully functional before we ever connect to the network. Because we’re dealing
with a very limited number of machines, this does not present a problem. For
our L2TP server, we need to open the following traffic inbound from the Internet
side interface:

1. UDP destination port 500, for IKE
2. UDP destination port 1701, for L2TP
3. IP Protocol 50 (ESP) for IPSec

We also need to allow the outbound reply traffic (i.e., source ports of 500 and
1701).

The internal interface is much more complicated. This is because we need to
allow the traffic required to authenticate both the VPN server itself and the
remote users on the Active Directory domain, and we need the ability to
communicate with the Exchange 2000 server. We have 3 domain controllers,
and we’ll enable authentication traffic to all three.

This requires opening the following traffic inbound from the internal side of the
L2TP VPN server to the Global Catalogue Domain Controller and the Exchange
server on the internal network. These ports are the same we configured in our
primary firewall A’s ruleset above.

1. TCP, UDP 88 - These are used by Kerberos
2. TCP 135 - RPC portmapper; this falls in the category of “ports you have

a firewall to block access to.” Opening the firewall to this port is definitely a
concern, but our risk is minimized because we’re authenticating by both
computer certificate and username & password to get to this point.

3. UDP 137 & 138 - NetBIOS & login; thought it would work without it, but
it didn’t…

4. TCP 139 - NetBIOS, login
5. TCP 389 - LDAP
6. TCP 445 - Netlogon; this, too, is definitely something to block normally.

The default list of ports required by the Exchange server could be summed up
as, “Pretty much everything.” However, we’ll make some registry changes to
slim this down a little bit. First, we’ll follow the recommendations in Microsoft
KB article Q270836, “XCLN: Exchange 2000 Static Port Mappings.” On the
Exchange server – after a good backup, of course! – we will add a value to the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
\MSExchangeSA\Parameters subkey. We create a new value called TCP/IP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.100

Port, Data type: REG_DWORD. The Radix is Decimal; for Value data, we enter
the port number we want to use. It needs to be between 1024 and 5000; we will
use 4444, simply because it’s easy to remember. (Note that this port is actually
assigned to a couple of different services -- but since we don’t use either of
them, this doesn’t present a problem.) In this same subkey, we also need to
add a REG_DWORD value called TCP/IP NSPI Port for the Directory NSPI Proxy
Interface; we will assign it a decimal value of 4445. Lastly, we also need to add
a TCP/IP Port value on the Exchange 2000 server to the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
\MSExchangeIS\ParametersSystem subkey. For this Information Store
parameter, we’ll use port 4446.

We also need to specify a range of RPC Service ports. Normally, Windows
2000 simply uses dynamically allocated ports from anywhere in the upper range
(1024-65,535). Opening up all of those is a bigger risk than we feel comfortable
with, so we’ll follow the guidelines in Microsoft KB article Q154596, “HOWTO:
Configure RPC Dynamic Port Allocation to Work with Firewall.” This leads us to
the following Registry changes on our Exchange 2000 server and our Domain
Controllers. Under the HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc key,
we add a new key called Internet. We then create a new value of type
REG_MULTI_SZ called Ports. (Note that to creating this type of value requires
using REGEDT32.EXE rather than the older REGEDIT.EXE!) The data we put
in will be a range, 5555-5655. We can really use just about any range we want;
Microsoft suggests using ports above 5000, and allocating a minimum of 20.
We’ve chosen numbers that are easy to remember, and keep us way above the
minimum; since we’ve got lots of internal clients connecting as well, we’d rather
not take the risk of running low. Basically, we’re balancing the needs for
security with the needs for stability.

Within this same Internet key, we also need to create two more values, both of
type REG_SZ. The first of these is called PortsInternetAvailable, the second is
UseInternetPorts. These values take case-insensitive data values of Y or N; the
PortsInternetAvailable value specifies whether our range entered in the Ports
value is the ports available to use (Y) or the ports excluded from use (N). As
with the rest of our security policies, we’re specifying only what is allowed, so
we assign a value of Y. The UseInternetPorts value specifies whether or not to
limit our ports to those specified in the Ports value -- basically, this value tells
our server to implement the changes we’ve just made. We naturally give it a
value of Y.

Note that if Exchange were running on the Global Catalogue server itself, there’d
be another registry change; see KB article Q298369, “How to Configure a Global
Catalog Server to Use a Specific Port When Servicing MAPI Clients.”

Now that we’ve made all of these registry changes, we say a quick prayer and
reboot our Exchange server to implement them. (Tip: if you stop the Exchange

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.101

services manually before rebooting, you can save yourself as much as 45
minutes on this step!)

We’ll have to enable all of the ports mentioned above in our VPN filters, and on
our primary firewall as well (between the NIC on the L2TP server’s inside
adapter and the firewall’s inside adapter; this was already taken care of in the
firewall script shown above.)

As a result, we need to allow the following additional traffic out the interface on
the internal side:

4. TCP ports 4444, 4445 and 4446 to the Exchange server
5. TCP 5555-5655 - RPC Service ports, as per our registry hack.
6. TCP 3268 - Global Catalogue access to the GC domain controller

We also need to enable traffic to our DNS and NTP servers:

7. UDP 53 - DNS, so our clients know where to find our GC and
Exchange servers. (We could, if we chose, use manual entries in the Hosts
files of the clients to avoid needing to open this up. For the time being, we have
chosen to simply use DNS to avoid the administrative headache.)

8. UDP 514 - Syslog; this is so that our VPN server’s NTSyslog software
can send the logs to our syslog server. (Note that this is opened to the DMZ
syslog server, rather than the internal server. Why allow unneeded traffic to the
internal network?)

9. UDP 123 - NTP; this is so the time on our VPN server can synchronize.

We will also need to allow the replies associated with all of this traffic.

We are now ready to connect our machine to the network, and join it to the
GIACENT.COM Active Directory domain. We make it part of the domain
because we will be using Windows to authenticate our connecting users.

Before we configure the Routing and Remote Access service, we will rename
our network interfaces to make them easier to work with. This is shown below
in Figure 26. This will make our lives much easier later on.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.102

Figure 26

We are now finally ready to start configuring the Routing and Remote Access
Service. This is done via the aptly named Routing and Remote Access MMC
Snap-in, found under Start>Programs>Administrative Tools. We begin by right
clicking on our server and selecting “Configure and Enable Routing and Remote
Access.” Naturally, this brings up the welcome screen to the Routing and
Remote Access Server Setup Wizard which basically tells us, in case we didn’t
know, that we just clicked on “Configure and Enable Routing and Remote
Access.” (As an aside, I wish we could turn off a lot of Windows 2000’s
Wizards. At the very least, I’d like to be able to turn off these welcome screens.)

In Figure 27 we see the first choice we have in the Wizard. We want to
configure this server as a VPN server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.103

Figure 27

We are next asked to confirm we have the network protocols we need; since the
only protocol we’re using is TCP/IP, that’s the only one shown. Note the
wording of the Yes and No choices; we can’t choose which protocols we want
here, it’s an all or nothing deal. Choosing “No” will exit the wizard, presumably
to let you install the protocols you need. If we were also using something like
IPX/SPX for a Novell network, we would have to enable that here also; we would
then have to disable it later on.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.104

Figure 28

We are next asked to select which interface is on the Internet side, and which is
on our protected network. This is one example where renaming the services
earlier makes things a little less confusing later on; this is shown in Figure 29.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.105

Figure 29

We are also asked which interface is on the LAN side.

We are then asked if we want to use DHCP to assign local IP addresses to our
clients or assign them from a static pool. Because we know the range of IP
addresses we want to use, and using DHCP would simply add complexity, we’ll
use addresses from a static pool. This is shown below in Figure 30.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.106

Figure 30

In Figure 31 we see our address range selection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.107

Figure 31

Next, we have to tell Windows whether or not we’re using a RADIUS server for
user authentication. Since we’re a fairly small shop, don’t have multiple VPN
servers to synchronize, and are under severe pressure not to spend money,
we’re just going to use our existing Active Directory domain controllers for
authentication. This does generate some cause for concern, as our domain
controllers – by definition – contain all the keys to our little kingdom. This
concern, in fact, is why our L2TP server is on a separate, dedicated network
with both interfaces tied directly to dedicated interfaces on the primary firewall
via cross-over cables. There is no way to “sniff” packets on this segment
without compromising either the VPN server or the firewall itself; if either of
those things were to happen, authenticating through an intervening RADIUS
server that itself got its information from our domain controller would only
provide a minimum amount of additional security anyway.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.108

Figure 32

This ends our trip through the Routing and Remote Access Server Setup
Wizard. We click Finish on the closing screen – and are, for no apparent
reason, reminded that we haven’t configured DHCP for our clients yet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.109

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.110

Figure 34

The first thing we notice is that the Wizard has generously configured our server
for 256 concurrent connections (128 via PPTP and 128 via L2TP.) Rather
curious, as we’ve already told it we’ve only got a range of 30 IP addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.111

Figure 35

We’ll fix this. First, we’ll disable the insecure PPTP. Windows 2000 VPN
clients will, by default, attempt to connect using L2TP; if that fails, they will then
revert to PPTP. We want to ensure that if IPSec fails, the session fails. (Since
our firewall doesn’t allow GRE to the VPN server, PPTP would fail anyway.)
Note in Figure 36 that Windows will not let us specify a number of PPTP ports
lower than 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.112

Figure 36

Next, we’ll configure the L2TP ports to the number we want to allow. Note that
we don’t want our server to be able to generate sessions, only answer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.113

Figure 37

Next, we’ll configure the properties of the RRAS server. We do this in the MMC
by simply right-clicking on our server and selecting Properties. First, we see the
General tab; we’ll change this so it doesn’t act as a router.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.114

Figure 38

Next, we click on the Security tab, as shown in Figure 39. This is where we
configure the authentication methods for L2TP. Note that this is somewhat
confusing, as we’re using IPSec and our sessions will use computer certificates
to encrypt and ensure the IP communications. The settings here are for user
authentication, after the IPSec tunnel has been established. We’re using MS-
CHAP v2; we’d use EAP if we had smart cards, but we don’t. As mentioned
earlier, MS-CHAP v2 does suffer from the fact that the strength of its encryption
is contingent upon the complexity of the passwords; however, we are a)
requiring complex passwords, and b) tunneling this over IPSec anyway, so this
does not present a significant security problem for us. In other words, our
clients must first authenticate via digital certificates for IPSec to function; they
must then supply a valid username and password.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.115

Figure 39

Figure 40 shows the IP tab. Because our ultimate goal is to access servers
behind this one, we have to enable IP routing. While we’re here, we’ll double-
check the IP addresses we’ll be handing out, and set the adapter for clients to
use to get networking services to use the internal DMZ adapter.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.116

Figure 40

The “Event Logging” tab is where we tell the server how much, if at all, to log.
We’re going for the maximum allowed here.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.117

Figure 41

It’s important to note, however, that this doesn’t necessarily give us all the
logging we could get. As we see in Figure 42, we still need to scroll down to
“Remote Access Logging,” right-click on the file, and check off the things we
want our log file to include:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.118

Figure 42

We now move on to configuring the filters for the interfaces. We start with the
“Internet” external interface; all we want to allow is inbound UDP to ports 500
(IKE) and 1701 (L2TP), and outbound we allow traffic from those same ports.
Note that we do not need to set filters here to allow IP protocol 50 (ESP), as the
IPSec module takes affect, removing the headers, before (or after, depending on
traffic direction) the packets reach these RRAS filters.

We get to the screens for configuring the filters by expanding the IP Routing
node in the tree in the left-hand side of the MMC, highlighting General, and right-
clicking the Internet interface in the resulting right-hand detail window and
selecting Properties. This brings up the interface properties window shown in
Figure 43 below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.119

Figure 43

Obviously, we add input IP filters by clicking on the Input Filters button, and then
clicking on the Add button. This brings up the screen shown in Figure 44, adding
an IP filter in which we’re adding the filter to allow traffic inbound to L2TP. Note
that with Service Pack 3, we found filters pre-configured for us for UDP 1701
and 500.

The Output filters have the same numbers, but obviously in the opposite
direction, with the source address of the VPN server’s external interface.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.120

Figure 44, adding an IP filter

In Figure 45 we have the completed Input filter for the Internet interface.
Incoming traffic is only allowed to UDP ports 500 and 1701. Note also we have
selected the radio button for “Drop all packets except those that meet the criteria
below.” This is in accordance with our overall policy of least required
permissions; it is also not the default, which is to only reject packets that meet
the filters defined here!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.121

Figure 45

We will spare you the screenshots of configuring the internal interface. It is
configured with an Input filter that is the same as those used in the personal
firewall, outlined above. We allow only the required traffic to our Exchange and
DC servers.

Now that we have our server configured, we need to configure the clients. The
IPSec we’re going to implement uses 3DES encryption. This is, of course,
overkill for our purposes, but it’s available so we’ll use it. (That’s easier than
trying to explain to upper management why it’s OK to use DES even though it’s
been cracked.) While we could theoretically use pre-shared keys, this is both
more effort and less secure. Instead, we will use computer certificates issued
by our Certificate Authority (a Windows 2000 server. Note that our “root” CA is
an older machine kept off-line, only fired up when the issuing CA’s certificate
needs renewing.) This enables us to distribute our certificates via Active
Directory’s Group Policy, and revoke certificates easily if and when we need to.
(We also use this CA to issue certificates to our partners for their authentication
over the Web.)

Note that the clients will not get their certificates until Group Policy is refreshed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.122

This can be done via the command line but, given the technical prowess of our
users, we simply tell them to reboot. It’s important for them to do this while still
connected to the internal network, as they won’t be able to use the VPN
connection to get their certificates before they have their certificates!

Actually configuring the client is pretty simple. We go to
Start>Settings>Network and Dial-up Connections, and double-click on Make
New Connection. Naturally, we first see the welcome screen telling us what we
just clicked on; moreover, before we are given the option to click on Next, we are
prompted with a Location Information window asking for information we must fill
out “Before you can make any phone or modem connections…” My experience
has been this window will pop up even on machines without a modem; but,
clicking Cancel here will actually exit us out of the Network Connection Wizard.
So, we simply enter our area code, click OK twice, and proceed on our way.
Naturally, that means clicking Next on the welcome screen.

This brings up the screen we see in Figure 46, which asks us to choose the type
of connection we want to make.

Figure 46

We are obviously setting up a VPN, so we select that option and click Next. We

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.123

are then asked for the name or IP address of the server we want to connect to;
we could enter a fully qualified domain name, such as vpn.giac.com, but since
we know the IP address and don’t expect it to change any time soon, we’ll just
enter it here. This has the slight advantage of not needing to rely on DNS to
connect successfully.

Figure 47

We then have the choice of making this connection available to all users, or just
ourselves. As staff with desktop PC’s do occasionally borrow machines from
our “pool” of communal laptops, we configure it for all users.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.124

Figure 48

That’s it for the wizard, aside from naming our connection. Windows defaults to
Virtual Private Connection; we change it to “Outlook Synchronization via
Internet.”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.125

Figure 49

Our L2TP VPN is not yet ready to go, though. We still need to confirm the
properties of our resulting connection, so we open it up and click on Properties.
On the resultant screen, we click on the Security tab, and click to configure
Advanced settings. Again, we’re only using MS-CHAP v2.

Here is an example of what we see in our server’s Security logs (and, of course,
on our syslog server) after a successful IPSec connection. There are many
other events logged along with this, but this one shows us the juicy details about
our IKE session.

Event Type: Success Audit
Event Source: Security
Event Category: System Event
Event ID: 541
Date: 10/9/2002
Time: 12:00:10 PM
User: BUILTIN\Administrators
Computer: L2TP
Description:
IKE security association established.
Mode:

Data Protection Mode (Quick Mode)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.126

Peer Identity:
Certificate based Identity.
Subject test-client.giacent.com
Issuing Certificate Authority mis@giac.com, US, DC, Washington, GIAC
Enterprises, IT, GIAC Issuing CA
Root Certificate Authority mis@giac.com, US, DC, Washington, GIAC
Enterprises, IT, GIAC Root CA
Peer IP Address: 5.6.23.147

Filter:
Source IP Address 5.6.7.8
Source IP Address Mask 255.255.255.255
Destination IP Address 5.6.23.147
Destination IP Address Mask 255.255.255.255
Protocol 17
Source Port 0
Destination Port 1701

Parameters:
ESP Algorithm Triple DES CBC
HMAC Algorithm MD5
AH Algorithm None
Encapsulation Transport Mode
InboundSpi -1763540297
OutBoundSpi 1046241578
Lifetime (sec) 3600
Lifetime (kb) 250000

Real World implementation hints:
Getting a VPN connection to work can be pretty difficult. My suggestion, to help
ease implementation and troubleshooting, is to follow these steps:

1) After configuring both the server and a client, test them without any
intervening routers or firewalls.

2) After you’ve got step 1 working, add the firewall machine, but with filtering
turned off and routing enabled. If you can’t get it to work without filtering, you’ll
never get it to work with it! Watch out for the routing tables on not just the
firewall/router and the VPN server, but the client as well. (We found we had to
edit the routing table on our VPN server to get it to work, as the routes it set up
by default didn’t know what to do with replies to our external connection.)

3) After step 2 is working, then you can turn on your packet filtering and see if it
still works.

In summary, we’re configuring our VPN server’s interfaces to allow only the
same traffic that our primary firewall allows. We do this with both the Symantec
firewall software and the IP filters within RRAS; the only difference between the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.127

firewall and the IP filters is that the firewall allows ESP (IP protocol 50) for
IPSec.

Filters for the external interface:

1. Allow inbound UDP destined to port 1701, and replies.
2. Allow inbound UDP destined to port 500, and replies.
3. Allow IP protocol 50 (firewall only.)

That’s it. Since we’re using digital certificates to establish the IPSec
connections, and the opportunity to enter a username and password doesn’t
occur until after the IPSec connection is successful, we don’t have to worry
about people locking out our accounts simply by banging away at the VPN.

Filters for the internal interface. (Replies to all of these are allowed as well.)
Unless otherwise specified, ports are TCP.

1. Outbound 88 (Kerberos)
2. Outbound 135 (RPC portmapper)
3. Outbound UDP 137-138 (login sequence, NetBIOS)
4. Outbound 139 (login sequence, NetBIOS)
5. Outbound 389 (LDAP, DC’s only)
6. Outbound 445 (NetBIOS)
7. Outbound 3268 (Global Catalogue, DC’s only)
8. Outbound 4444-4446 (Exchange server only)
9. Outbound 5555-5655

B. Citrix NFuse v. 1.7

Citrix NFuse, in our case, runs on Microsoft Internet Information Server 5.0 (IIS
5). This is certainly cause for alarm, as the number of security flaws, and
working exploits for them, is legion. Hardening IIS and making it reasonably
secure is not impossible, however. We don’t delude ourselves into believing
we’re safe from Denial of Service attacks, but have taken all the steps we can to
minimize, to the greatest extent possible, the odds of our server being
compromised. As with the firewall and RRAS descriptions above, a HOW-TO
for hardening IIS is beyond the scope of this document. There is a nice overview
at http://www.secadministrator.com/articles/index.cfm?ArticleID=22365&pg=1,
“Secure Web Server Installation on Win2K: Create a bastion host IIS machine.”
The fundamental concepts, however are as follows:

1. Harden the underlying operating system (i.e. Windows 2000 Server) by
disabling any services not absolutely required, make registry edits to harden the
TCP/IP stack, delete unnecessary files, apply service packs and hotfixes, etc.

2. Use NTFS permissions to lock down access to the hard drives, registry

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.128

20 See Mark Minasi’s “Windows 2000/NT Newsletter Issue #16 August 2001” in the archives at
http://www.minasi.com/showdoc.asp?docname=nws0108.htm, noting in particular the section titled “How I
Mostly Avoided Code Red Problems.” Note that this site requires free registration.
21 http://support.microsoft.com/default.aspx?scid=kb;EN-US;q238131, “How to Disable Socket Pooling”

keys, etc.
3. Place the files presented by the Web server (i.e., the Website itself) on

a separate partition from the operating system. Note that Citrix NFuse does not
offer a choice as to where it installs itself -- it always goes to the default folder
on the C: drive. These files can, and should, be moved; however, there are
scripts that must be run afterwards to update the NFuse configuration files;
these are available from Citrix. See http://hqextsrvsft01.citrix.com/cgi-
bin/webcgi.exe/,/?Session=4892759,U=1,ST=96,N=0005,K=29837,SXI=12,Cas
e=obj(4043), “NFuse Classic 1.7 Error: Blank page at redirect.asp after moving
web pages” for details.

4. Run the available Microsoft utilities, such as the IIS Lockdown tool
(http://www.microsoft.com/downloads/release.asp?ReleaseID=33961&area=se
arch&ordinal=2).

This is by no means a complete listing of the tasks required. If you’re running
an IIS Web server, expect to invest a considerable amount of time locking it
down.

Also note that performing all of these tasks is by no means a guarantee you’re
safe or secure. However, it can go a very long way; servers that were properly
locked down were not infected with Code Red or Nimda even if they didn’t have
the corresponding patches applied yet.20

We will be installing Citrix Secure Gateway (CSG) on this same server.
Because both CSG and our NFuse Website will be using HTTPS/SSL (tcp port
443), we will have to jump through a few hoops to make this work. This process
is described at http://hqextsrvsft01.citrix.com/cgi-
bin/webcgi.exe/,/?Session=4822373,U=1,ST=187,N=0005,K=1249,SXI=12,Cas
e=obj(13815), “Running Citrix Secure Gateway and IIS/NFuse on the same
server.” In a nutshell, the problem is IIS binds itself to all network interfaces by
default; see Microsoft Knowledge Base article Q238131, “How to Disable
Socket Pooling.”21

Connecting to the NFuse site will be a very simple matter for staff; they will
simply have to point their browsers to office.giac.com. Because they will be
sending their usernames and passwords across the Internet, this site will use
128 bit encryption using the RSA SHA-1 algorithm. While this is no guarantee,
it should provide sufficient security for GIAC Enterprises as the costs involved in
cracking the cipher would be prohibitive.

As with everything else, our policy will be to allow only those services that are
required. This means that staff will have access to the applications they need,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.129

22 http://www.openssh.org/portable.html
23 http://www.counterpane.com/blowfish.html
24 http://www.openssh.org/txt/iss.adv
25 http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-ssh-configfiles.html

nothing more and nothing less.

The personal firewall rulesets for this server are pretty simple. The Internet side
allows only TCP ports 80 and 443; the DMZ side needs 443 and 1494 (Citrix
ICA.)

C. SSH-2

GIAC Enterprises’ IT staff will use SSH-2 for remotely accessing servers in the
DMZ, the primary firewall, and the internal network. This will be done in all
cross-subnet cases by first using SSH to connect to a dedicated SSH server
located in the DMZ; this will be true whether the access is from the internal
network to the DMZ, firewall, or Internet (for managing a staff members’ home
firewall, when that capability is implemented) or when they’re accessing
anything on the network from the Internet. In other words, the only SSH traffic
permitted by the firewall in any direction will be to or from the DMZ’s SSH
server. Once authenticated to this “proxy” server, staff will then initiate SSH
sessions to the servers being managed.

This will be done using OpenSSH version 3.522, using Blowfish23 for encryption
(with 128 bit keys) because it’s fast and secure enough for our needs.

Key distribution will be closely monitored. There was some brief discussion of
using the same Certificate Authority servers GIAC Enterprises uses for Windows
2000, but pursuing that has been put off until there’s time to deal with it; it’s not
a big enough hassle maintaining them separately to be worth the hassle of
attempting to integrate.

We will not be including a tutorial on SSH implementation here, but we do want
to reiterate that we will not even install SSH-1 capability because of the inherent
security flaws. We should also point out that, in accordance with our security
policy, we apply patches and updates as they become available; the recent
security alert24 for SSH-2 enabling privilege escalation has, for example, been
addressed and patched.

The Official Red Hat Linux 7.3 Reference Guide25 also has a very nice, detailed
explanation of how to configure OpenSSH.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.130

26 netcat can be found at http://www.atstake.com/research/tools/nc110.tgz
27 nmap can be found at http://www.insecure.org/nmap/

Assignment 3: Verify the Firewall Policy

Overview

We need to make sure our primary firewall (Firewall A) properly enforces our
policy. There will be 3 primary parts to our firewall audit. Obviously, the first
step is to plan the audit, since without a detailed list of tasks and methods, we’ll
be floundering aimlessly, never knowing when we’re finished. Secondly, we
have to actually conduct the audit, following our plan. Lastly, we’ll evaluate our
work; this is, of course, the whole point. If we find in this third part of the audit
that our firewall does not perform as intended, or in any other way does not
correctly enforce our policies outlined in Assignment 1, we will probably have to
make adjustments to the firewall -- but it is theoretically possible that we will
instead need to re-evaluate our policies, as there has not yet been an audit of
the policies themselves. We will operate under the assumption, however, that
any failures of our firewall to properly enforce our policies will be corrected by
changes to the firewall. Also note that if we make changes to our firewall, we
will have to re-start our audit from step 1.

1. The Plan

Our policy requires providing services as well as blocking ports, so we need to
test to ensure the services we need actually work, as well as test to ensure we
can’t get to anything we don’t need. This would ideally be done through the use
of netcat,26 to simulate traffic and loads. However, our upper management is
skeptical of “fake” traffic, and has requested we actually use each service in
question (for example, by connecting to the Citrix NFuse server and launching
applications.) If we were auditing more than just our firewall, we would also
utilize tcpdump to verify that our traffic is, indeed, encrypted as intended, since
we place little faith in the existence of the little yellow key icon in Internet
Explorer. (For example, we would log into the Citrix NFuse server and analyze
the traffic.) However, our assignment here is to audit the firewall, not the entire
policy implementation; as such, we won’t be performing such in-depth traffic
analysis at this point.

Naturally, any usernames & passwords used during this testing will be
temporary accounts set up for this purpose and deleted after the audit. We will
be further testing our firewall’s implementation of our (intended) rulesets
primarily through the use of nmap27 scans. We use nmap because, as stated by
McClure et al:

“When nmap scans a host, it doesn’t just tell you which ports are open or closed,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.131

28 Hacking Exposed, Third Edition, Stuart McClure et al, p. 485

it tells you which ports are being blocked. The amount (or lack) of information received
from a port scan can tell a lot about the configuration of the firewall.”28

Also, nmap is the tool most likely to be used against us in the real world, so it’s
important to know how our firewall reacts to it.

Our audit will therefore take the following course:

A. First, we need to do a simple “sanity” check. We will re-read our policy, then
proofread our firewall rulesets on paper. We will not only be looking for typo’s,
which could have disastrous results in our firewall’s functionality, but we will
also be double-checking to make sure the rules we’ve written look like they
should be implementing our policies. We will simply be asking ourselves,
“Does what we wrote make sense?”

This can be done during normal office hours, because it will not disrupt the
office network in any way. It should be completed within a single day.

B. Because our firewall boots off of a CD, and runs on an older PC model we
have multiple copies of, we will begin the actual testing of rulesets by setting up
a test firewall. Because it will be on identical hardware, running the same,
identical configuration, we should get accurate results. This will enable us to
perform scans and tests against our firewall without disrupting the office staff in
any way. This will act as the second stage of our “sanity” check, ensuring the
ports we think we’ve opened are, in fact, open, and all the ports we did not
intend to open are in fact closed. Because the test machine is not connected to
a “live” network, we will be able to scan our firewall on each of its 5 network
interfaces, including the 2 used by the L2TP VPN server. We will, however,
connect machines to each interface to respond to any scans that get through.
We need these machines on each interface because nmap treats scans that
receive no response as either filtered or open depending on the type of
connection. For example, a TCP SYN scan that receives no response is
considered a filtered port; a UDP scan that receives no response is considered
open. If we scan our firewall without anything connected to it, the firewall
wouldn’t have anyplace to send a SYN packet to; since our firewall’s ICMP
filters prevent host unreachables, our scans would never receive a reply and
nmap would report all the ports as filtered.

This can be done during normal office hours, because it will not disrupt the
office network in any way. This also enables us to use fairly aggressive scans
without concern for disrupting our legitimate traffic, though we will also want to
perform some more “stealthy” scans for comparison; nmap sometimes seems
to have better success that way. Because of the desire to use these slower,
less obtrusive scans, this step will take several days to complete. However,
most of that time will not require any staff time, because it will simply be a
matter of waiting for the scans to run.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.132

Assuming we haven’t found anything wrong [a risky assumption, given the
complexity of our rulesets!], we will then move on to step C. If we do find any
problems, we will address them and restart from step A above, repeating steps
A and B until we’ve eliminated all the errors.

C. Testing the functionality of services is the next step. This will have to be done
on the “live” network, which means we need to be more conscious of when we
perform our testing. While simply connecting to a service should not disrupt
office work in any way -- and, in fact, we need to ensure accessing the services
during normal business hours doesn’t present our network with any
performance problems -- if we were performing a full audit we would want to
perform some of our tests off-hours to improve the accuracy of our analysis.
Using the example cited above, if we tried to perform tcpdump scans of our
Citrix NFuse logon while staff were using it, there would be much more effort
required to sift through the scans looking for our relevant traffic. Again, we’re
only testing our firewall now though, so those off-hour tests are not necessary.

The list of services we need to test functionality for is as follows:
1. Citrix NFuse with Citrix Secure Gateway
2. L2TP over IPSec, with Outlook synchronization
3. SSH-2

a. from outside the network to the DMZ
b. from inside the network to the DMZ
c. from the DMZ to inside and outside the network.

4. The GIAC.COM Website
5. Accessing the World Wide Web from the internal office.
6. Passive FTP from the internal office
7. Sending and receiving e-mail
8. Our Syslog servers in both the DMZ and the internal networks
9. Out Snort IDS systems. (While this is not directly related to the

firewall, we thought it best to check them while the types of normal traffic
patterns we’re dealing with are fresh in our minds.)

We will ensure our services work manually. While this is a laborious, low-tech
method of testing, it has been requested by some in upper management, who
don’t understand netcat and, therefore, don’t trust it.

Because of the need to do things manually, some of which must be done from
outside of the network, this will be a fairly lengthy endeavor, taking several days
to complete. The IT staff recognizes the need to accurately log their work; they
will have to use screenshots as much as possible to verify things for upper
management. (These screenshots are not, however, included in this paper.)

D. The next step will be to review the work done to check for completeness.
This will be, in effect, a mini-audit of our audit. Because it will simply be a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.133

29 These changes are already been reflected in the corrected script presented in Assignment 2
above.

matter of comparing work with checklists, this should only take a couple of
hours at most to complete.

E. Once we are confident the work was thorough, we will then evaluate the
audit. This will involve comparing expected results with actual results.
Discrepancies or problems will be identified.

F. Lastly, we will make recommendations for any changes that would improve
security.

Audit costs and risks:
The total costs for the audit are difficult to judge. The use of an independent
company to perform the audit was obviously not approved, so the work will be
done by GIAC Enterprises’ own IT staff. This fact, combined with the fact that
the tools used are free, means the only costs involved should be the time
involved. Assuming all goes well, billable labor time is estimated to be less than
one week, though because of the time required for some of the scans the
process may actually take as much as three weeks.

The risks involved with this audit are primarily that we may temporarily disrupt
GIAC Enterprises’ business; some of our nmap scans will be sending mal-
formed packets, which can cause some TCP/IP stacks to crash. We don’t
expect that reaction from either Red Hat or Windows 2000, so this risk is
deemed low and acceptable. The risks involved with sending information over
the Internet will be minimized by using temporary accounts created solely for the
purpose of testing. A separate account will be created and used for each test;
these accounts will then be deleted immediately upon test completion.

In addition, some ISP’s have guidelines that prohibit the use of scanning tools
from within their networks. Because our scans will be done on a test server,
this should not be a problem; care will be taken, however, to ensure any scans
over the Internet that are determined necessary are done only from suitable
locations.

2. Conducting the Audit
A. As stated in the Plan, we will begin with a “sanity” check. This resulted in a
couple of corrections to our firewall script29:

1. We had forgotten the Citrix NFuse server in the DMZ needs access to
the Citrix MetaFrame servers in the internal network in order to authenticate user
logons. This is done via the Citrix SSL Relay service, so we had to open up tcp
port 443.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.134

2. We had configured DNS traffic from the L2TP VPN server to go to the
DMZ DNS server, protecting our internal server. However, because the DNS
queries coming from the VPN will be for servers located in the internal network,
about which our DMZ DNS server knows nothing, we had to change the rules.
The firewall now allows DNS access (UDP 53) for the L2TP VPN server to the
internal DNS server.

3. Several “typos,” such as single dashes instead of double.

B. Our next step is to scan the various interfaces, using nmap. This first
requires adding enough NIC’s to our test machine, then popping our bootable
CD into the PC and starting it up. We do our scans from a Red Hat Linux 7.3
workstation; the only machines on this test network are the firewall, one
machine on each interface running netcat in listening mode to mimic the
services provided on that interface, and the scanning workstation. We connect
our scanning workstation directly to the interface being scanned via cross-over
cable. We will be performing multiple scans here, in the hopes of being as
thorough as possible.

Each “listening” workstation had IP aliases set up in its ifcfg-eth0 file enabling it
to listen on all the required ip addresses. We also set up netcat in listening
mode, so there is something listening in the event our scans get through the
firewall. Note that we want to listen to all ports on all assigned ip addresses, so
our scripts are pretty simple. We do have to limit the number of listening ports,
however, as our machines run out of resources if we open up too many. We’ll
open up all the ports we need, plus enough extras to ensure any openings get
noticed. (Remember, we aren’t programmers, so no snide comments about the
script are necessary; we have no doubts there’s a more efficient way to do this,
but this is easy to read and it works.)

Note that the “listening” script for any given interface will not be used when that
is the interface being scanned.

The first “listening” script is for the external interface.

External interface listening script

First, set up our IP alias addresses
/sbin/ifconfig eth0:0 5.6.7.1/24 5.6.7.9 # Router
/sbin/ifconfig eth0:1 5.6.7.10/24 5.6.7.9 # WWW & SMTP servers’ address
/sbin/ifconfig eth0:2 5.6.7.11/24 5.6.7.9 # Citrix NFuse server
/sbin/ifconfig eth0:3 5.6.7.12/24 5.6.7.9 # CSG, SSH, Syslog servers
/sbin/ifconfig eth0:4 5.6.7.7/24 5.6.7.9 # Source NAT address

Next, start listening

PORT=1

while [$PORT -lt 1025]; do
nc -l -p $PORT &

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.135

let PORT=PORT+1
done

nc -l -p 1494 &
nc -l -p 1701 &
nc -l -p 1723 &

PORT=4444

while [$PORT -lt 4447]; do
nc -l -p $PORT &
let PORT=PORT+1

done

PORT=5555

while [$PORT -lt 5700]; do
nc -l -p $PORT &
let PORT=PORT+1

done

Here’s the script for listening on the Internal interface.

Internal interface listening script

First, set up our IP addresses
/sbin/ifconfig eth0:0 10.0.0.15/24 10.0.0.1 # SMTP server
/sbin/ifconfig eth0:1 10.0.0.34/24 10.0.0.1 # IT staff PC
/sbin/ifconfig eth0:2 10.0.0.29/24 10.0.0.1 # Citrix Metaframe server #1
/sbin/ifconfig eth0:3 10.0.0.30/24 10.0.0.1 # Citrix Metaframe server #2
/sbin/ifconfig eth0:4 10.0.0.131/24 10.0.0.1 # Staff PC
/sbin/ifconfig eth0:5 10.0.0.8/24 10.0.0.1 # Syslog server
/sbin/ifconfig eth0:6 10.0.0.21/24 10.0.0.1 # DC1 server
/sbin/ifconfig eth0:7 10.0.0.22/24 10.0.0.1 # DC2 server
/sbin/ifconfig eth0:8 10.0.0.23/24 10.0.0.1 # DC3 server
/sbin/ifconfig eth0:9 10.0.0.17/24 10.0.0.1 # SUS server

Next, start listening

PORT=1

while [$PORT -lt 1025]; do
nc -l -p $PORT &
let PORT=PORT+1

done

nc -l -p 1494 &
nc -l -p 1701 &
nc -l -p 1723 &

PORT=4444

while [$PORT -lt 4447]; do
nc -l -p $PORT &
let PORT=PORT+1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.136

done

PORT=5555

while [$PORT -lt 5700]; do
nc -l -p $PORT &
let PORT=PORT+1

done

We also need a script for our DMZ mimic.

DMZ interface listening script

First, set up our IP addresses
/sbin/ifconfig eth0:0 10.0.1.2/24 10.0.1.1 # WWW server
/sbin/ifconfig eth0:1 10.0.1.9/24 10.0.1.1 # NFuse server
/sbin/ifconfig eth0:2 10.0.1.6/24 10.0.1.1 # CSG server
/sbin/ifconfig eth0:3 10.0.1.11/24 10.0.1.1 # SSH server
/sbin/ifconfig eth0:4 10.0.1.15/24 10.0.1.1 # SMTP relay
/sbin/ifconfig eth0:5 10.0.1.8/24 10.0.1.1 # Syslog, NTP server
/sbin/ifconfig eth0:6 10.0.1.7/24 10.0.1.1 # Squids proxy
/sbin/ifconfig eth0:7 10.0.1.3/24 10.0.1.1 # DNS server
/sbin/ifconfig eth0:8 10.0.1.28/24 10.0.1.1 # SQL server
/sbin/ifconfig eth0:9 10.0.1.17/24 10.0.1.1 # SUS, NAV server

Next, start listening

PORT=1

while [$PORT -lt 1025]; do
nc -l -p $PORT &
let PORT=PORT+1

done

nc -l -p 1494 &
nc -l -p 1701 &
nc -l -p 1723 &

PORT=4444

while [$PORT -lt 4447]; do
nc -l -p $PORT &
let PORT=PORT+1

done

PORT=5555

while [$PORT -lt 5700]; do
nc -l -p $PORT &
let PORT=PORT+1

done

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.137

We don’t need to add the IP aliases for the L2TP VPN interfaces, since there’s
only one IP address connected to each interface; all we need is the listening
script. For both of these interfaces, this is identical to the “start listening”
section of the scripts above, so we won’t repeat it here.

In order to do our scans as logically as possible, we wrote a simple script for
scanning each interface we intend to scan. The bulk of the scans will be the
same from each interface, though we’ll have to customize them a little bit for the
scans in which we spoof the address we’re scanning from.

One limitation to what we’re doing here is that nmap does not scan ALL ports by
default, only those known to have services associated with them. This is
because scans would otherwise take much, much longer to complete. We
won’t waste our time with such scanning unless we see something that raises
suspicions.

We start with the external interface. Since we’re doing this sitting next to the
firewall, our job is a little easier; we just set our network interface to the ip
address we want (in this case, 5.6.7.1). We’ll add aliases in some of our other
scripts, but for the External interface that’s all we need.

External Interface Scanning Script:

External Interface Firewall Scanning Script

Part 1: scanning the subnet

First, do a standard TCP scan. We use the following switches:
#
-n This tells nmap not to resolve IP addresses to names;
it's a little bit faster, plus we don't need names
#
-r This tells nmap NOT to randomize port scans; this makes
our log review a bit easier
#
-vv This tells nmap to give us detailed, verbose logs
#
-sT We're doing a "TCP Connect" scan; very noisy & obvious
#
-O This tells nmap to attempt OS identification
#
-P0 We don't need to do Pings; in fact, nmap will tell us the target
host is unavailable if we don’t include this.

-oN Log in human-readable format in the filename that follows

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.138

#
5.6.7.2,7-12 The addresses we're scanning

nmap -n -r -vv -sT -O -P0 -oN eth0-sT.log 5.6.7.2,7-12 &&

Next, we make the following changes:
#
-sS We're doing a SYN scan now, not a full connect

nmap -n -r -vv -sS -P0 -oN eth0-sS.log 5.6.7.2,7-12 &&

Now we try an ACK scan, using the -sA switch. This is a good way to
see if a firewall is stateful or not.

nmap -n -r -vv -sA -P0 -oN eth0-sA.log 5.6.7.2,7-12 &&

Perform a FIN scan, using -sF; this is a bit stealthier than -sS

nmap -n -r -vv -sF -P0 -oN eth0-sF.log 5.6.7.2,7-12 &&

Try a "Christmas Tree" scan; this sends packets with FIN, PSH, and
URG. Note that this probably won't show different port results than
the FIN scan, but we want to see how our firewall reacts to it; we’re
expecting to see it on the firewall’s logs.

nmap -n -r -vv -sX -P0 -oN eth0-sX.log 5.6.7.2,7-12 &&

Null scan, using -sN. As with -sX, we're mostly just testing the
firewall's reaction

nmap -n -r -vv -sN -P0 -oN eth0-sN.log 5.6.7.2,7-12 &&

IP Protocol scan. Any non-response is viewed as an open port by nmap,
so this should try to tell us all protocols are allowed...

nmap -n -r -vv -sO -P0 -oN eth0-sO.log 5.6.7.2,7-12 &&

Ping scan. This takes the -sP option; sends ACK's as well.
Note that the -P0 option wouldn't make sense here...

nmap -n -r -vv -sP -oN eth0-sP.log 5.6.7.2,7-12 &&

UDP scan. Unreliable; like -sO, all non-rejects are assumed open.

nmap -n -r -vv -sU -P0 -oN eth0-sU.log 5.6.7.2,7-12 &&

Now that we've completed our "generic" scans, we try some more
directed ones.
The -g option lets us specify a source port for our scans to come from.
We'll check HTTP, HTTPS, SMTP, SSH, PPTP, ICA, L2TP, DNS, syslog, IKE,
and NTP.
For comparison, we'll also try RPC (TCP 135) and ICA (TCP 1494), which

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.139

we allow in some places but not on this interface. Lastly, note that
these are pretending to be replies, so we want -sA or -sU.

nmap -n -r -vv -sA -P0 -g 80 -oN eth0-sport80.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 443 -oN eth0-sport443.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 21 -oN eth0-sport21.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 25 -oN eth0-sport25.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 22 -oN eth0-sport22.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 1723 -oN eth0-sport1723.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sU -P0 -g 500 -oN eth0-sport500.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sU -P0 -g 1701 -oN eth0-sport1701.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sU -P0 -g 53 -oN eth0-sport53.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sU -P0 -g 514 -oN eth0-sport514.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sU -P0 -g 123 -oN eth0-sport123.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 1494 -oN eth0-sport1494.log 5.6.7.2,7-12 &&
nmap -n -r -vv -sA -P0 -g 135 -oN eth0-sport135.log 5.6.7.2,7-12 &&

The last scan we want to do of this subnet will be a slower, more
stealthy scan, to see if patience gives us anything extra.
We do this by adding the -T Sneaky option, which waits 15 seconds
between scans.
This will take quite a while to run!

nmap -n -r -vv -sS -P0 -T Sneaky -oN eth0-sS-Sneaky.log 5.6.7.2,7-12 &

Part 2 - other subnets
#
Since we know our firewall is acting as a router, we will try to scan
the subnets on the other side of it. We expect these to fail.
#
We’ll just do a couple here; if any of these give us anything, then
we’ll have to do perform a much more thorough examination to find out
what’s wrong.

First, set up our routing table

route add -net 10.0.1.0/24 gw 5.6.7.9 # DMZ
route add -net 10.0.0.0/24 gw 5.6.7.9 # Internal network
route add -net 10.0.2.0/24 gw 5.6.7.9 # L2TP VPN’s internal interface

Next, try to reach a machine on each subnet

nmap -n -r -vv -sS -P0 -oN eth0-DMZ-sS.log 10.0.1.2 && # Web server
nmap -n -r -vv -sS -P0 -oN eth0-INT-sS.log 10.0.0.21 && # DC server
nmap -n -r -vv -sS -P0 -oN eth0-VPN-sS.log 10.0.2.12 && # L2TP VPN

That's it for this interface (we hope...) Note that we’ll do
some more scanning on the live firewall as well, just to be sure.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.140

External Interface Scan Results and Analysis:

Mostly good results. Our logs successfully notified us of the invalid TCP flag
scans, as well.

We see here we were unable to reach the firewall’s NIC attached to the L2TP
VPN’s external interface (5.6.7.2), the Source NAT’ed address (5.6.7.7), or the
firewall’s external interface (5.6.7.9).

nmap (V. 2.54BETA31) scan initiated Thu Oct 10 10:41:25 2002 as: nmap -n -r -vv -sT -O -P0 -oN eth0-
sS.log 5.6.7.2,7-12
Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1 closed
TCP port
All 1554 scanned ports on (5.6.7.2) are: filtered
Too many fingerprints match this host for me to give an accurate OS guess
TCP/IP fingerprint:
SInfo(V=2.54BETA31%P=i386-redhat-linux-gnu%D=10/10%Time=3DA595CD%O=-1%C=-1)
T5(Resp=N)
T6(Resp=N)
T7(Resp=N)
PU(Resp=N)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1 closed
TCP port
All 1554 scanned ports on (5.6.7.7) are: filtered
Too many fingerprints match this host for me to give an accurate OS guess
TCP/IP fingerprint:
SInfo(V=2.54BETA31%P=i386-redhat-linux-gnu%D=10/10%Time=3DA59A04%O=-1%C=-1)
T5(Resp=N)
T6(Resp=N)
T7(Resp=N)
PU(Resp=N)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1 closed
TCP port
All 1554 scanned ports on (5.6.7.9) are: filtered
Too many fingerprints match this host for me to give an accurate OS guess
TCP/IP fingerprint:
SInfo(V=2.54BETA31%P=i386-redhat-linux-gnu%D=10/10%Time=3DA5A150%O=-1%C=-1)
T5(Resp=N)
T6(Resp=N)
T7(Resp=N)
PU(Resp=N)

Even without any communication, nmap accurately guessed we were running
Red Hat Linux.

Our scans of the other publicly accessible ports provided the expected results.
Our scan of the 5.6.7.12 address, for example shows this:
Port State Service
22/tcp open ssh
25/tcp open smtp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.141

443/tcp open https

Our attempts to scan the other, private subnets from here failed as expected.
The logged output from our scan of the domain controller shows this:

nmap (V. 2.54BETA31) scan initiated Thu Oct 10 10:13:21 2002 as: nmap -e eth0 -n -r -vv -sS -P0 -oN
eth0-INT-sS.log 10.0.0.21
All 1554 scanned ports on (10.0.0.21) are: filtered

Nmap run completed at Thu Oct 10 10:20:23 2002 -- 1 IP address (1 host up) scanned in 1680 seconds

Next, we scanned the internal interface. We simply scan all three subnets
(DMZ, VPN, and public address space).

Script for scanning the internal interface:

Internal Interface Firewall Scanning Script

Before we start scanning, we need to set up our computer to be able to
respond to the IP addresses to use

/sbin/ifconfig eth0:0 10.0.0.15/24 10.0.0.1 # Our SMTP server
/sbin/ifconfig eth0:1 10.0.0.17/24 10.0.0.1 # Our SUS server
/sbin/ifconfig eth0:2 10.0.0.21/24 10.0.0.1 # A DC server
/sbin/ifconfig eth0:3 10.0.0.29/24 10.0.0.1 # A Citrix server
/sbin/ifconfig eth0:4 10.0.0.34/24 10.0.0.1 # An IT staff’s PC
/sbin/ifconfig eth0:5 10.0.0.131/24 10.0.0.1 # A staff PC

First, do a standard TCP scan. We use the following switches:
#
-n This tells nmap not to resolve IP addresses to names;
it's a little bit faster, plus we don't need names
#
-r This tells nmap NOT to randomize port scans; this makes
our log review a bit easier
#
-vv This tells nmap to give us detailed, verbose logs
#
-sT We're doing a "TCP Connect" scan; very noisy & obvious
#
-O This tells nmap to attempt OS identification
#
-P0 We don't need to do Pings; in fact, nmap will tell us the target
host is unavailable and quit if we don’t include this.

-oN Log in human-readable format in the filename that follows
#
10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 - The addresses we're scanning

nmap -n -r -vv -sT -O -P0 -oN eth1-sT.log \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.142

 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Next, we make the following changes:
#
-sS We're doing a SYN scan now, not a full connect

nmap -n -r -vv -sS -P0 -oN eth1-sS.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Now we try an ACK scan, using the -sA switch. This is a good way to
see if a firewall is stateful or not.

nmap -n -r -vv -sA -P0 -oN eth1-sA.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Perform a FIN scan, using -sF; this is a bit stealthier than -sS

nmap -n -r -vv -sF -P0 -oN eth1-sF.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Try a "Christmas Tree" scan; this sends packets with FIN, PSH, and
URG. Note that this probably won't show different port results than
the FIN scan, but we want to see how our firewall reacts to it; we’re
expecting to see it on the firewall’s logs.

nmap -n -r -vv -sX -P0 -oN eth1-sX.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Null scan, using -sN. As with -sX, we're mostly just testing the
firewall's reaction

nmap -n -r -vv -sN -P0 -oN eth1-sN.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

IP Protocol scan. Any non-response is viewed as an open port by nmap,
so this should try to tell us all protocols are allowed...

nmap -n -r -vv -sO -P0 -oN eth1-sO.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Ping scan. This takes the -sP option; sends ACK's as well.
Note that the -P0 option wouldn't make sense here...

nmap -n -r -vv -sP -oN eth1-sP.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

UDP scan. Unreliable; like -sO, all non-rejects are assumed open.

nmap -n -r -vv -sU -P0 -oN eth1-sU.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Now that we've completed our "generic" scans, we try some more

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.143

directed ones.
The -g option lets us specify a source port for our scans to come from.
We'll check HTTP, HTTPS, SMTP, SSH, PPTP, ICA, L2TP, DNS, syslog, IKE,
and NTP. We will use the -S option here to specify the source address.
Lastly, note that these are pretending to be replies, so we want -sA
or -sU.

nmap -n -r -vv -sA -P0 -S 10.0.0.131 -g 80 -oN eth1-sport80.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.131 -g 443 -oN eth1-sport443.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.131 -g 21 -oN eth1-sport21.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.34 -g 21 -oN eth1-IT-sport21.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.15 -g 25 -oN eth1-sport25.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.34 -g 22 -oN eth1-sport22.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.34 -g 1723 -oN eth1-sport1723.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 500 -oN eth1-sport500.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 1701 -oN eth1-sport1701.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 53 -oN eth1-sport53.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 514 -oN eth1-sport514.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 123 -oN eth1-sport123.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.29 -g 1494 -oN eth1-sport1494.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.0.34 -g 135 -oN eth1-sport135.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

We also need to check the upper ports we’ve opened. We expect them to
be closed, since only ESTABLISHED,RELATED traffic should be getting
through.

nmap -n -r -vv -sS -P0 -p 4000-7000 -oN eth1-sS-dports4k-7k.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -p 4000-7000 -oN eth1-sA-dports4k-7k.log \
 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

The last scan we want to do of this subnet will be a slower, more
stealthy scan, to see if patience gives us anything extra.
We do this by adding the -T Sneaky option, which waits 15 seconds
between scans.
This will take quite a while to run!

nmap -n -r -vv -sS -P0 -T Sneaky -oN eth1-sS-Sneaky.log \

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.144

 10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

That's it for the eth1 interface (we hope...)

Internal Interface Scan Results and Analysis:

The results of these scans were all as expected; we’ll spare you the repetitive
output. See Part 3-E below.

We then scan the service network’s interface (eth2). As with the Internal
interface above, we simply set our script to scan each of the other 3 subnets.

Script for scanning the DMZ:

DMZ Interface Firewall Scanning Script

Before we start scanning, we need to set up our computer to be able to
respond to the IP addresses to use

/sbin/ifconfig eth0:0 10.0.1.2/24 10.0.1.1 # Our WWW server
/sbin/ifconfig eth0:1 10.0.1.6/24 10.0.1.1 # Our CSG server
/sbin/ifconfig eth0:2 10.0.1.11/24 10.0.1.1 # The SSH server
/sbin/ifconfig eth0:3 10.0.1.7/24 10.0.1.1 # The Squid proxy
/sbin/ifconfig eth0:4 10.0.1.17/24 10.0.1.1 # SUS, NAV server
/sbin/ifconfig eth0:5 10.0.1.15/24 10.0.1.1 # SMTP relay server

First, do a standard TCP scan. We use the following switches:
#
-n This tells nmap not to resolve IP addresses to names;
it's a little bit faster, plus we don't need names
#
-r This tells nmap NOT to randomize port scans; this makes
our log review a bit easier
#
-vv This tells nmap to give us detailed, verbose logs
#
-sT We're doing a "TCP Connect" scan; very noisy & obvious
#
-O This tells nmap to attempt OS identification
#
-P0 We don't need to do Pings; in fact, nmap will tell us the target
host is unavailable and quit if we don’t include this.

-oN Log in human-readable format in the filename that follows
#
10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 - The addresses we're scanning

nmap -n -r -vv -sT -O -P0 -oN eth2-sT.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Next, we make the following changes:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.145

#
-sS We're doing a SYN scan now, not a full connect

nmap -n -r -vv -sS -P0 -oN eth2-sS.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Now we try an ACK scan, using the -sA switch. This is a good way to
see if a firewall is stateful or not.

nmap -n -r -vv -sA -P0 -oN eth2-sA.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Perform a FIN scan, using -sF; this is a bit stealthier than -sS

nmap -n -r -vv -sF -P0 -oN eth2-sF.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Try a "Christmas Tree" scan; this sends packets with FIN, PSH, and
URG. Note that this probably won't show different port results than
the FIN scan, but we want to see how our firewall reacts to it; we’re
expecting to see it on the firewall’s logs.

nmap -n -r -vv -sX -P0 -oN eth2-sX.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Null scan, using -sN. As with -sX, we're mostly just testing the
firewall's reaction

nmap -n -r -vv -sN -P0 -oN eth2-sN.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

IP Protocol scan. Any non-response is viewed as an open port by nmap,
so this should try to tell us all protocols are allowed...

nmap -n -r -vv -sO -P0 -oN eth2-sO.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Ping scan. This takes the -sP option; sends ACK's as well.
Note that the -P0 option wouldn't make sense here...

nmap -n -r -vv -sP -oN eth2-sP.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

UDP scan. Unreliable; like -sO, all non-rejects are assumed open.

nmap -n -r -vv -sU -P0 -oN eth2-sU.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

Now that we've completed our "generic" scans, we try some more
directed ones.
The -g option lets us specify a source port for our scans to come from.
We'll check HTTP, HTTPS, SMTP, SSH, PPTP, ICA, L2TP, DNS, syslog, IKE,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.146

and NTP. We’ll use the -S option to specify source.
Lastly, note that these are pretending to be replies, so we want -sA
or -sU.

nmap -n -r -vv -sA -P0 -S 10.0.1.7 -g 80 -oN eth2-sport80.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.7 -g 443 -oN eth2-sport443.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.7 -g 21 -oN eth2-sqd-sport21.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.17 -g 21 -oN eth2-nav-sport21.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.15 -g 25 -oN eth2-sport25.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.11 -g 22 -oN eth2-sport22.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.11 -g 1723 -oN eth2-sport1723.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 500 -oN eth2-sport500.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 1701 -oN eth2-sport1701.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 53 -oN eth2-sport53.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 514 -oN eth2-sport514.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 123 -oN eth2-sport123.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -S 10.0.1.6 -g 1494 -oN eth2-sport1494.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 135 -oN eth2-sport135.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

The last scan we want to do of this subnet will be a slower, more
stealthy scan, to see if patience gives us anything extra.
We do this by adding the -T Sneaky option, which waits 15 seconds
between scans.
This will take quite a while to run!

nmap -n -r -vv -sS -P0 -T Sneaky -oN eth2-sS-Sneaky.log \
 10.0.0.0/24,10.0.2.0/26,5.6.7.0/28 &&

That's it for the DMZ interface (we hope...)

DMZ Interface Scan Results and Analysis:

Like the internal interface above, we’ll simply state at this point that all went
well. The summary of the per-address results are shown below in Part 3-E,
“Evaluating the Audit.”

Internal L2TP interface scanning script:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.147

Here, too, we will scan the other three subnets. We’ll also scan a few extra
ports here, since we know there are more opened up here.

Internal L2TP Interface Firewall Scanning Script

First, do a standard TCP scan. We use the following switches:
#
-n This tells nmap not to resolve IP addresses to names;
it's a little bit faster, plus we don't need names
#
-r This tells nmap NOT to randomize port scans; this makes
our log review a bit easier
#
-vv This tells nmap to give us detailed, verbose logs
#
-sT We're doing a "TCP Connect" scan; very noisy & obvious
#
-O This tells nmap to attempt OS identification
#
-P0 We don't need to do Pings; in fact, nmap will tell us the target
host is unavailable and quit if we don’t include this.

-oN Log in human-readable format in the filename that follows
#
10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 - The addresses we're scanning

nmap -n -r -vv -sT -O -P0 -oN eth3-sT.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Next, we make the following changes:
#
-sS We're doing a SYN scan now, not a full connect

nmap -n -r -vv -sS -P0 -oN eth3-sS.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Now we try an ACK scan, using the -sA switch. This is a good way to
see if a firewall is stateful or not.

nmap -n -r -vv -sA -P0 -oN eth3-sA.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Perform a FIN scan, using -sF; this is a bit stealthier than -sS

nmap -n -r -vv -sF -P0 -oN eth3-sF.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Try a "Christmas Tree" scan; this sends packets with FIN, PSH, and
URG. Note that this probably won't show different port results than
the FIN scan, but we want to see how our firewall reacts to it; we’re

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.148

expecting to see it on the firewall’s logs.

nmap -n -r -vv -sX -P0 -oN eth3-sX.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Null scan, using -sN. As with -sX, we're mostly just testing the
firewall's reaction

nmap -n -r -vv -sN -P0 -oN eth3-sN.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

IP Protocol scan. Any non-response is viewed as an open port by nmap,
so this should try to tell us all protocols are allowed...

nmap -n -r -vv -sO -P0 -oN eth3-sO.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Ping scan. This takes the -sP option; sends ACK's as well.
Note that the -P0 option wouldn't make sense here...

nmap -n -r -vv -sP -oN eth3-sP.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

UDP scan. Unreliable; like -sO, all non-rejects are assumed open.

nmap -n -r -vv -sU -P0 -oN eth3-sU.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Now that we've completed our "generic" scans, we try some more
directed ones.
The -g option lets us specify a source port for our scans to come from.
We'll check HTTP, HTTPS, SMTP, SSH, PPTP, ICA, L2TP, DNS, syslog, IKE,
and NTP.
Lastly, note that these are pretending to be replies, so we want -sA
or -sU.

nmap -n -r -vv -sA -P0 -g 80 -oN eth3-sport80.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 443 -oN eth3-sport443.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 21 -oN eth3-sport21.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 25 -oN eth3-sport25.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 22 -oN eth3-sport22.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 1723 -oN eth3-sport1723.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 500 -oN eth3-sport500.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 1701 -oN eth3-sport1701.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.149

nmap -n -r -vv -sU -P0 -g 53 -oN eth3-sport53.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 514 -oN eth3-sport514.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 123 -oN eth3-sport123.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 1494 -oN eth3-sport1494.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 135 -oN eth3-sport135.log \
10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

Next, we’ll scan a broader range of upper ports since we know a lot of
them are open. We won’t limit this to the internal network, though,
since we need to make sure they’re closed to places we don’t want.

nmap -n -r -vv -sS -P0 -p 4000-7000 -oN eth3-dports4k-7k.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

The last scan we want to do of this subnet will be a slower, more
stealthy scan, to see if patience gives us anything extra.
We do this by adding the -T Sneaky option, which waits 15 seconds
between scans.
This will take quite a while to run!

nmap -n -r -vv -sS -P0 -T Sneaky -oN eth3-sS-Sneaky.log \
 10.0.0.0/24,10.0.1.0/26,5.6.7.0/28 &&

That's it for the eth3 interface (we hope...)

Internal L2TP Interface Scan Results and Analysis:

No surprises here either. As expected, there’s a lot open to the domain
controllers and Exchange server on the internal network. This is shown in the
analysis below.

Script for scanning the L2TP VPN’s external interface:

This is, naturally, very similar to the previous scripts, only the addresses of the
subnets scanned (and the accompanying logfile names, of course) are different.
We do want to scan all four subnets from here, though. (We shouldn’t be able
to get to any of the internal subnets at all.)

External L2TP Interface Firewall Scanning Script

First, do a standard TCP scan. We use the following switches:
#
-n This tells nmap not to resolve IP addresses to names;
it's a little bit faster, plus we don't need names
#
-r This tells nmap NOT to randomize port scans; this makes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.150

our log review a bit easier
#
-vv This tells nmap to give us detailed, verbose logs
#
-sT We're doing a "TCP Connect" scan; very noisy & obvious
#
-O This tells nmap to attempt OS identification
#
-P0 We don't need to do Pings; in fact, nmap will tell us the target
host is unavailable and quit if we don’t include this.

-oN Log in human-readable format in the filename that follows
#
10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 - The addresses we're scanning

nmap -n -r -vv -sT -O -P0 -oN eth4-sT.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Next, we make the following changes:
#
-sS We're doing a SYN scan now, not a full connect

nmap -n -r -vv -sS -P0 -oN eth4-sS.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Now we try an ACK scan, using the -sA switch. This is a good way to
see if a firewall is stateful or not.

nmap -n -r -vv -sA -P0 -oN eth4-sA.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Perform a FIN scan, using -sF; this is a bit stealthier than -sS

nmap -n -r -vv -sF -P0 -oN eth4-sF.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Try a "Christmas Tree" scan; this sends packets with FIN, PSH, and
URG. Note that this probably won't show different port results than
the FIN scan, but we want to see how our firewall reacts to it; we’re
expecting to see it on the firewall’s logs.

nmap -n -r -vv -sX -P0 -oN eth4-sX.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Null scan, using -sN. As with -sX, we're mostly just testing the
firewall's reaction

nmap -n -r -vv -sN -P0 -oN eth4-sN.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

IP Protocol scan. Any non-response is viewed as an open port by nmap,
so this should try to tell us all protocols are allowed...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.151

nmap -n -r -vv -sO -P0 -oN eth4-sO.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Ping scan. This takes the -sP option; sends ACK's as well.
Note that the -P0 option wouldn't make sense here...

nmap -n -r -vv -sP -oN eth4-sP.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

UDP scan. Unreliable; like -sO, all non-rejects are assumed open.

nmap -n -r -vv -sU -P0 -oN eth4-sU.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

Now that we've completed our "generic" scans, we try some more
directed ones.
The -g option lets us specify a source port for our scans to come from.
We'll check HTTP, HTTPS, SMTP, SSH, PPTP, ICA, L2TP, DNS, syslog, IKE,
and NTP.
Lastly, note that these are pretending to be replies, so we want -sA
or -sU.

nmap -n -r -vv -sA -P0 -g 80 -oN eth4-sport80.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 443 -oN eth4-sport443.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 21 -oN eth4-sport21.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 25 -oN eth4-sport25.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 22 -oN eth4-sport22.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 1723 -oN eth4-sport1723.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 500 -oN eth4-sport500.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 1701 -oN eth4-sport1701.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 53 -oN eth4-sport53.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 514 -oN eth4-sport514.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sU -P0 -g 123 -oN eth4-sport123.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 1494 -oN eth4-sport1494.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

nmap -n -r -vv -sA -P0 -g 135 -oN eth4-sport135.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

The last scan we want to do of this subnet will be a slower, more
stealthy scan, to see if patience gives us anything extra.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.152

We do this by adding the -T Sneaky option, which waits 15 seconds
between scans.
This will take quite a while to run!

nmap -n -r -vv -sS -P0 -T Sneaky -oN eth4-sS-Sneaky.log \
 10.0.0.0/24,10.0.1.0/26,10.0.2.0/26,5.6.7.0/28 &&

That's it for the eth3 interface (we hope...)

External L2TP Interface Scan Results and Analysis:

No surprises here, either. UDP 500, 1701, and IP Protocol 50 are all we allow;
nmap shows all UDP and all protocols as open, since it doesn’t receive rejection
responses.

C. Our functionality check, as stated before, will simply be a matter of trying to
use each service on the “live” network. We will do this service by service,
following the list we compiled in our audit plan.

1. Citrix NFuse with Citrix Secure Gateway -- the IT Manager simply logged into
the NFuse Website over his home cable modem connection to ensure this
worked. All published applications launched successfully.

2. The L2TP over IPSec VPN was successfully logged into in the same manner,
followed by a successful (albeit painfully slow) Outlook synchronization.

3. SSH connections were successfully established with the SSH server in the
DMZ from both outside the office and inside the office; sessions were then
launched from there to successfully establish sessions inside the office, to other
servers in the DMZ (though obviously not related to firewall testing, it was still
important functionality to ensure), to outside the firewall, and to the firewall itself.

4. The www.giac.com Website was accessed from inside and outside the
firewall.

5. Web sites outside of the office were successfully accessed from the IT staff
and other office staff’s PC’s inside the office.

6. FTP sessions were established successfully from the IT staff’s PC’s, but not
from the other employees’ workstations.

7. E-mail was successfully sent and received.

8. The two syslog servers were checked to ensure they contained records from
all of the servers, particularly from servers not located on the same subnet. Both
servers had the same entries from the router, firewall, and L2TP server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.153

30 Nmap reports non-responses for these as open; our scans therefore reported all UDP and all IP protocols
as open

9. The Snort IDS systems were checked to ensure they were functioning. [Note
that this was done on the live network, not the test one which, of course, had no
Snort IDS systems.] The rules were tweaked a little bit in the hopes of reducing
false positives; we expect these systems to require a lot of care and feeding…

D. Our work was then checked for completeness, to ensure we had done all we
intended to do. We had.

3. Evaluating the Audit
E. The first, most obvious mistake we made was in our estimate for how long
the audit would take. Our scans took much longer than anticipated, particularly
the “Sneaky” scans. We should have anticipated that, since we knew we’d be
scanning at least 1554 ports (nmap’s default), separated by 15 seconds each.
Simple math brings that to a minimum of 23,310 seconds per scan, or 388.5
minutes -- nearly 6 and a half hours per ip address. In other words, we should
have realized our scans were going to take several weeks to complete.

Otherwise, things went pretty well.

Our compiled scans are summarized with the following tables. Note that unless
otherwise specified, ports are TCP; our scans reported all UDP as open on all
addresses, since our firewall prevents the ICMP that would normally notify our
scanner that the ports are unreachable. Likewise, nmap treats any IP protocol it
doesn’t receive an explicit denial from as open.

External Interface (eth0)
IP Address Expected Open Scan Results

5.6.7.2 (Firewall) None All filtered
5.6.7.7 (SNAT) None All filtered
5.6.7.8 (L2TP) UDP 500,1701; IP 50 All UDP, All protocols

open30

5.6.7.9 (Firewall) None All filtered
5.6.7.10 (Mail, Web) 25,80,443 25,80,443
5.6.7.11 (NFuse) 80,443 80,443
5.6.7.12 (CSG, SSH,
Syslog, NTP)

22,443; UDP 512, 123 25,443; all UDP open

10.0.0.21 (DNS, DC) None All filtered
10.0.1.2 (WWW) None All filtered
10.0.2.12 (L2TP) None All filtered

Next, we scanned the internal interface (eth1). From here, we’re trying to reach
the DMZ, the VPN, and the Internet. We expect openings to the DMZ only; we

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.154

aren’t supposed to have any direct access to the Internet, and the VPN should
only be allowing replies.

As expected, we were unable to reach the firewall itself or the VPN. We only
succeeded in reaching the services on the DMZ that we were supposed to be
able to reach.

Internal Interface (eth1)
IP Address Expected Open Scan Results

10.0.0.1 None All Filtered
10.0.1.1 (Firewall) None All Filtered
10.0.1.2 (WWW) 80,443 80,443
10.0.1.3 (DNS) UDP 53 All UDP open
10.0.1.6 (CSG) None All Filtered
10.0.1.7 (Squid Proxy) 21,80,443 21,80,443
10.0.1.8 (NTP, Syslog) UDP 123 All UDP open
10.0.1.9 (NFuse) None All Filtered
10.0.1.11 (SSH) 22 22
10.0.1.15 (SMTP) 25 25
10.0.1.17 (SUS, NAV) 21, 80 21, 80
10.0.1.28 (SQL) None All Filtered
10.0.2.1 (Firewall) None All Filtered
10.0.2.12 (L2TP) None All Filtered
5.6.7.1 (Router) None All Filtered

Next, we scanned the DMZ (eth2). We expect a lot more open here.

We were happy to see this also gave us the expected results.

DMZ Interface
IP Address Expected Open Scan Results

10.0.1.1 (Firewall) 22 22
10.0.0.1 (Firewall) None All Filtered
10.0.0.8 (Syslog) UDP 514 All UDP Open
10.0.0.15 (Exchange) 25 25
10.0.0.17 (File server, SUS) None All Filtered
10.0.0.21 (DC, DNS) UDP 53 All UDP Open
10.0.0.22 (DC, NAV) None All Filtered
10.0.0.23 (DC) None All Filtered
10.0.0.29 (Citrix MetaFrame) 443,1494 443,1494
10.0.0.30 (Citrix MetaFrame) 443,1494 443,1494
10.0.0.32/27 (IT PC’s) None All Filtered
10.0.0.128/26 (Staff PC’s) None All Filtered

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.155

5.6.7.1 (Router) 21, 22, 25, 80, 443,
1723; UDP 53, 123,
514; IP protocol 47

21, 22, 25, 80, 443,
1723; All UDP Open; All
Protocols Open

5.6.7.2 (Firewall) None All Filtered
10.0.2.1 (Firewall) None All Filtered
10.0.2.12 (L2TP) UDP 123, 514 All UDP Open

Happy with what we see here (remember, we expect our UDP & protocol scans
to report everything open), we move on to a summary of the internal L2TP VPN
interface (eth3).

Internal L2TP Interface
IP Address Expected Open Scan Results

10.0.2.1 (Firewall) None All Filtered
10.0.0.1 (Firewall) None All Filtered
10.0.0.8 (Syslog) UDP 514 All UDP Open
10.0.0.15 (Exchange) 88, 135, 139, 389,

445, 4444-6, 5555-
5655

88, 135, 139, 389, 445,
4444-6, 5555-5655 open

10.0.0.17 (File server, SUS) None None
10.0.0.21 (DC, DNS) 88, 135, 139, 389,

445, 5555-5655; UDP
53

88, 135, 139, 389, 445,
5555-5655 open; All UDP
Open

10.0.0.22 (DC, NAV) 21, 88, 135, 139,
389, 445, 5555-5655

21, 88, 135, 139, 389,
445, 5555-5655 open

10.0.0.23 (DC) 88, 135, 139, 389,
445, 5555-5655

88, 135, 139, 389, 445,
5555-5655 open

10.0.0.29 (Citrix MetaFrame) None All Filtered
10.0.0.30 (Citrix MetaFrame) None All Filtered
10.0.0.32/27 (IT PC’s) None All Filtered
10.0.0.128/26 (Staff PC’s) None All Filtered
10.0.1.1 (Firewall) None All Filtered
10.0.1.2 (WWW) 80,443 All Filtered
10.0.1.3 (DNS) UDP 53 All UDP open
10.0.1.6 (CSG) None All Filtered
10.0.1.7 (Squid Proxy) 21,80,443 All Filtered
10.0.1.8 (NTP, Syslog) UDP 123 All UDP open
10.0.1.9 (NFuse) None All Filtered
10.0.1.11 (SSH) 22 All Filtered
10.0.1.15 (SMTP) 25 All Filtered
10.0.1.17 (SUS, NAV) None All Filtered
10.0.1.28 (SQL) None All Filtered
5.6.7.12 None All Filtered
5.6.7.1 None All Filtered

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.156

Lastly, we have the scans of the interface connected to the external side of the
L2TP VPN server (eth4).

External L2TP Interface
IP Address Expected Open Scan Results

5.6.7.2 (Firewall) None All Filtered
5.6.7.1 (Router) UDP 500, 1701; IP

Protocol 50
All UDP Open; All
Protocols Open

10.0.2.1 (Firewall) None All Filtered
10.0.0.1 (Firewall) None All Filtered
10.0.0.8 (Syslog) None All Filtered
10.0.0.15 (Exchange) None All Filtered
10.0.0.17 (File server, SUS) None All Filtered
10.0.0.21 (DC, DNS) None All Filtered
10.0.0.22 (DC, NAV) None All Filtered
10.0.0.23 (DC) None All Filtered
10.0.0.29 (Citrix MetaFrame) None All Filtered
10.0.0.30 (Citrix MetaFrame) None All Filtered
10.0.0.32/27 (IT PC’s) None All Filtered
10.0.0.128/26 (Staff PC’s) None All Filtered
10.0.1.1 (Firewall) None All Filtered
10.0.1.2 (WWW) None All Filtered
10.0.1.3 (DNS) None All Filtered
10.0.1.6 (CSG) None All Filtered
10.0.1.7 (Squid Proxy) None All Filtered
10.0.1.8 (NTP, Syslog) None All Filtered
10.0.1.9 (NFuse) None All Filtered
10.0.1.11 (SSH) None All Filtered
10.0.1.15 (SMTP) None All Filtered
10.0.1.17 (SUS, NAV) None All Filtered
10.0.1.28 (SQL) None All Filtered

We see from these scan summaries that no traffic we want to allow is allowed;
our firewall is, indeed, effectively filtering our traffic as desired. [At least for TCP
connections; as stated previously, UDP and IP protocols are difficult to
impossible to accurately prove open or closed due to their connectionless
nature.]

This can also be shown with the following color-coded table; while this table
does not show ports, it does show which addresses can reach which others.
Color code follows.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.157

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.158

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.159

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.160

Color Explanations:
N/A

Established/Related Only
New traffic

Both New and Established
Filtered

Same Subnet, not Filtered by
Firewall

Because our firewall is filtering traffic accurately, and we could successfully use
all of desired services in part C above, we are happy to report that our firewall
has passed our audit.

F. This design could be improved upon in a couple of ways, without much
expense:

1. Replace the router with a more robust model. The Netopia R5300 is
performing adequately, but the cost of a new router (low 4 digits) with more
filtering capabilities, more memory, and a more trustworthy operating system is
minimal, and would certainly help us sleep better. [As stated earlier, this has
been budgeted for 2003.]

2. Eliminate the SSH openings in the firewall. There is truly no reason for
this, as IT staff could simply have access to SSH through Citrix NFuse. They
could then simply connect to Citrix NFuse, launch SSH, and manage servers as
needed in that manner; the only change in process would be the initial
connection to Citrix. Note that this also eliminates the need for installing and
maintaining SSH on the IT staff’s computers (inside the office as well as
outside, as they could obviously use Citrix inside the office as well.) [This
change is already planned, but because it will be a pilot for the new change
management procedures, and because changes to the firewall will require re-
doing this audit, closing the SSH holes won’t take place until next year.]

3. Eliminate the L2TP over IPSec VPN. This opening in the firewall is
also probably unnecessary. Roaming staff could open Outlook via connection to
the Citrix NFuse site, then manually copy any new messages (incoming or
outgoing). Though tedious, by eliminating the overhead of Outlook itself the
data transfer may actually be faster. This would ease ongoing maintenance
considerably, and significantly simplify the firewall’s rulesets. Plus, of course,
there would be one less opening. Changing staff habits, however, will require
significant push from upper management; because they don’t see a problem
with the VPN, this is not expected to change any time soon.

4. Get a larger pipe to the Internet, or a second connection as a backup.
GIAC Enterprises’ full T-1 line is sufficient for our current needs, but is
vulnerable to even simple Denial of Service attacks (see Assignment 4 below.)

5. Perform a full audit, rather than simply focusing on the firewall. GIAC
Enterprises has multiple single points of failure; the T-1 mentioned above is only
one of them. Ideally, there would be multiple Internet connections, multiple
routers, etc. A full audit would help point out those and other weaknesses.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.161

Assignment 4: Design under fire

We are now going to test the security of a different network. This network is
outlined below in Figure 50; the details for this network can be found at
http://www.giac.org/practical/Steve_Keifling_GCFW.doc.

Internet

Cisco 2610XM
Filter router

Cisco 3005 VPN
Concentrator

Remote Access
Network

58.1.1.16/28

Cisco
PIX 515E Firewall

External Network
58.1.1.0/28

Web Server
58.1.1.36

Partner machine
FTP server
58.1.1.38

App Server
58.1.1.37

External DNS
External Mail

NTP
TFTP

58.1.1.39

SNMP server
Syslog server

RADIUS
10.1.1.9

Internal DNS
Internal Mail

10.1.1.11

Backup server
10.1.1.10

Internal Workstations
10.1.1.128/25

Customer DB
LDAP

10.1.1.4

Fortunes DB
10.1.1.3

58.1.1.1

58.1.1.2

58.1.1.3

10.1.1.1

58.1.1.33
58.1.1.17

58.1.1.18

Internal Network
10.1.1.0/24

Partner/DMZ
Production Network

58.1.1.32/27

4.4.4.5

Figure 50

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.162

31 http://www.google.com
32 http://www.securitytracker.com

Overview

There will be three aspects to our attack. First, we will attack the firewall itself.
We will then subject the design to a Denial of Service attack. Lastly, we will try
to compromise an internal machine through the perimeter.

In the “real world,” all three of our attacks would follow the general outline
explained by McClure et al in Hacking Exposed: Network Security Secrets and
Solutions, Third Edition. The first step would be “footprinting,” which entails
determining basic information such as the domain names and ip addresses of
the network(s) involved, the general layout or structure of the network, etc. The
second step is “scanning,” which becomes a bit more risky; because we’re
actively sending traffic across the Internet to the target network, our activity may
be noticed. This step is required to determine more detailed information, such
as which ports are open and which operating systems in use. The lines
between this step and the next, which is in-depth “enumeration,” are blurred;
once we know what types of systems we’re dealing with, we then choose our
targets and try to discern which applications are running, what versions of those
applications are in use, etc. We would then research known weaknesses with
those applications to determine what sort of attack to implement.

For this exercise, we can skip much of this work; we’ve already been told where
the systems are, how the network is laid out, and what applications are running.
We are therefore able to focus on the attacks.

A. Attacking the firewall

The firewall we’ll be attacking is a Cisco PIX 515E, running Operating System
Release 6.2 and PIX Device Manager Release 2.0.

We begin by researching vulnerabilities for this firewall. A quick scan on
Google31 brings up a link to the enticing headline, “Cisco PIX Firewall Can Be
Crashed By Remote Users Scanning the SSH Port” located on the Security
Tracker32 site at http://www.securitytracker.com/alerts/2002/Jun/1004643.html.
The title of the article pretty much says it all: assuming the PIX hasn’t been
patched since July, taking the firewall off-line should be trivial if they’re using
SSH. Interestingly, this weakness is due to a previous patch; this may work to
our advantage, as buggy patches can discourage network administrators from
applying additional patches in the future. The Security Tracker site conveniently
provides a link to Cisco’s own page on the topic, located at
http://www.cisco.com/warp/public/707/SSH-scanning.shtml.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.163

33 http://www.cisco.com/warp/public/707/SSH-scanning.shtml#details

If we send an overly large packet to the SSH port (tcp 22), we will cause the PIX
firewall to “consume a large portion of the processor's instruction cycles,33”
effectively preventing it from doing anything else. This vulnerability may even
result in a reboot of the system.

However, further research shows this may not be as trivial as we’d hoped. The
headline gives the impression we could just tell nmap to scan port 22 with extra-
large packets; however, further reading gives us the impression we have to
actually attempt an exploit of the CRC32 exploit in SSH-1. While the original
buffer overflow, and the corresponding ability to run code of our own choice,
won’t succeed, the error appears to show up only during an attempted exploit.
The explanation of how to exploit this is at
http://packetstorm.decepticons.org/0102-exploits/ssh1.crc32.txt -- given our lack
of programming prowess, this could get tricky. We aren’t giving up yet, though;
we’ll try to find a pre-written exploit, since there’s certainly one or more out
there. We did find a lot of interesting stuff at
http://broken.blackroses.com/members/ppp/Hacking.htm - lots of BackOrifice
plugins, for example -- but not what we were actually looking for. We’ll move on
for now, though -- there’s no point killing ourselves trying to write a program to
exploit a hole if the whole isn’t even available. It’s also still possible we could
simply send a large packet, as we first thought; in any event, the worst that will
happen is our attempts will be noticed. Here’s the scan we have in mind:

nmap -n -vv -sT -P0 -p 22 --data_length 65535 -oN large-SSH.log 4.4.4.5

nmap -n -vv -sT -P0 -p 22 --data_length 722 -oN large-SSH.log 4.4.4.5

This uses the --data_length <number> option to set the packet size in bytes;
normal nmap TCP scans send a 40-byte packet. This increases packet size
simply by padding with 0’s, though, so we clearly can’t use this method to
exploit buffer overflows to by running code of our choice! We’re thinking about
trying the 65535 size simply because it’s a large number that may make any log
reviewers pause in confusion. This will likely be fragmented along the way,
however, and we don’t know how that would affect our desired outcome, so
we’ll also try a smaller one as well. Again, note that these are just guesses, but
both are large packets for a TCP SYN so if indeed all we really have to do is
send an overly large packet to the SSH port, this should do it.

However, the fact that a reboot may be required, or even take place on its own,
is enticing enough for us to pause before attempting to exploit this weakness.
This is because if we can find another exploit that gives us access to the firewall
or otherwise enables us to make changes to the ruleset, we may need a reboot
to implement our changes. If we forge ahead and try this first exploit now, we
will probably tip our hand, making further compromises much more difficult.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.164

34 http://www.insecure.org/nmap/
35 See http://online.securityfocus.com/archive/1/49973 for an in-depth overview of this tool
36 http://www.cert.org/advisories/CA-1999-17.html
37 http://www.cert.org/incident_notes/IN-99-07.html

So, we go back to our Google search for further research. However, we soon
come to the realization that the other PIX vulnerabilities we see have been
patched in Operating System Release 6.2. Instead, we focus our search for
vulnerabilities to System Release 6.2, and come across
http://www.securiteam.com/securitynews/5FP0P0A7FM.html, “Weak Cisco PIX
Enable Password Encryption Algorithm.” This site has a script for computing
PIX password hashes, which are based on the MD5 algorithm. So we could,
given the chance to log in via telnet or SSH, attempt to brute force the password.
The control this would give us is very tempting; we could do a lot more than just
crash the system.

Before we try to connect to the firewall, though, we need to check if telnet or
SSH are accessible. We do this with nmap:34

nmap -n -r -vv -sT -P0 -oN pix-check.log 4.4.4.5

We find no ports open whatsoever. This leads us to believe that any
maintenance must be taking place from inside the network only. This, in turn,
means we’d have to compromise an internal machine in order to compromise
the firewall; since that’s beyond the scope of our assignment, we’re out of luck.
We don’t have anything to run our password brute forcing script against, and
there’s nothing listening for SSH traffic for us to send a malformed packet to.
Our hopes of exploiting either of the two vulnerabilities we’ve found have been
dashed.

Result:
Our attack on the firewall failed.

B. Denial of Service Attack
We’ll try a denial of service attack next. The network we’re attacking is defined
as being connected to the Internet via a T1, so we’re in luck. This should be
fairly simple.

Our first step is to find a nice tool to do our dirty work, which will begin by
compromising some machines to be our “zombies.” We’ve decided to use Tribe
Flood Network 2000 (TFN2K35) after a quick glance at the CERT advisories on
Denial of Service36 and Distributed Denial of Service attacks37. There are, of
course, plenty of other tools available, but we find a certain pleasure in using the
same tool that Steve Keifling used in the network we’re assaulting.

TFN2K has two parts, a “master” that we operate and a daemon process

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.165

38 Mixter, 2002, http://1337.tsx.org/
39 See http://newdata.box.sk/2001/oct/TFN2k_Analysis-1.3.txt for more details on using the master & client

running on the agents (a.k.a. “zombies.”)

The first hurdle to overcome is acquiring the tool. (The hacker site we found
earlier doesn’t have any DoS tools on it at all.) Standard Google searches were
not very fruitful; many links we tried going to were no longer active. We
eventually found TFN2K at http://packetstorm.decepticons.org/distributed/ -- note
the mis-spelling of the word “deceptions.” We also could have just joined a
Usenet group; we wouldn’t have to be too particular, just look for one with
something along the lines of “hackerz” in the title. It shouldn’t take long to have
people offer us a copy. No need for that, though, as we’ve found it.

[Note that the site where we found the tool has a link to the program’s “home
page” at http://1337.tsx.org/ -- which says in part,

this site will offer ONLY information and tools to IMPROVE security, NOT TO
BREAK IT. Why? First, the distribution of 'malicious' proof-of-concept attacks is
unfortunately getting too controversial, and I don't see myself in the duty of
getting in the line of fire. Secondly, I'm trying to work with the security
community, not against it, and am not willing to provide anything for malicious
crackers, institutions, or simply bored teenagers with way too much time on their
hands.38]

After compiling the program, the next step is to infect at least 50 systems
connected to the Internet via cable modem or other fast connection. We do this
by comparing the ip addresses of vulnerable computers our randomized nmap
scans find with the network assignments of ISP’s that provide cable modem
and/or DSL service. (We used the whois query at http://www.geektools.com/cgi-
bin/proxy.cgi to look up a few choice ISP’s.)

Here’s our nmap scan:

nmap -vv -n -sS -O -oA vulnerable_hosts -T Sneaky <target network>

Once we had a nice supply of compromised machines, it was time to shut down
our targeted network.

We will target the mail server, since port 25 is open. Targeting Web servers on
port 80 is probably more common, but we aren’t conformists. We will use our
zombies to flood the mail server; we don’t even really need enough traffic to
overwhelm the mail server, though; we just need more than the T1 can handle.

Here is an abbreviated listing of the command options39:

TFN2K Client

[-P protocol]
[-S host/ip]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.166

[-f hostlist]
[-h hostname]
[-i target string]
[-p port]
<-c command ID>

This is pretty simple. First, we need a listing of our zombies for our script; we
put them into a file called “zombiefools.” We then decide how we want our
“master” to communicate with the “client” zombies; we’ll use ICMP, so it’s a little
more subtle. We want a SYN flood, which is a command ID of 5; we want it to
target tcp port 25, the victim’s mail server. We then use this Tribal Flood script:

% ./tfn -f zombiefools -P icmp -c 5 -p 25 -i smtp.giac.com

This command loads our list of zombie attackers (-f zombiefools), connects to
them via ICMP (-P icmp) and tells them to initiate a SYN flood (-c 5) on port 25 (-
25) of the target mail server (smtp.giac.com).

The outcome is just a matter of simple math. We’ll use a very conservative
estimate for our zombie hosts’ connection speeds, giving them an average of
125Kbps, or 0.125Mbps. We have 50 hosts; 50 times 0.125Mbps comes to
6.25Mbps. The target network is connected to the Internet via a T1, which can
handle 1.544Mbps. We’re flooding them with about 4 times the amount of
traffic they can handle.

Result:
Success! We’ve taken them off-line.

Countermeasure:
None, short of paying for either an enormous Internet connection, or a second
connection as backup. This emphasizes two important things:
1) Our own network is just as vulnerable to a distributed Denial of Service
attack.
2) Personal firewalls for the home user need to become standard. (We’re not
optimistic this will happen any time soon…)

C. Compromise a machine through the Perimeter
Our next task is to attempt to compromise a machine on our target network’s
perimeter, in the hopes of using it as a launching pad into the internal network.
While our efforts will be focused on the perimeter, our real long-range goal here
is the inside.

We have several options for how to go about this. We could, for example, start

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.167

40 ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/cert.org/CA-2001-33

by attempting to discover a valid username and password, probably by trying to
trick users into visiting a Web site we set up. Never underestimate the value of
the phone in such an endeavor, either; particularly with large companies, where
the average user may not know all the people in IT, a simple call requesting the
user’s name & password to “confirm the new equipment will work for you” may
be sufficient.

We are in a hurry, however, so we’ll start instead by searching for a remotely
exploitable vulnerability in one of the machines exposed to inbound traffic from
the Internet.

We know from our previous scans that HTTP, HTTPS, SMTP, and FTP are
open. We’ve already used the SMTP server for one attack, and attacking Web
servers is almost passé; indeed, we expect the Web server to be the one most
watched and patched. So, we’ll try to compromise the FTP server instead; it’s
hopefully a little further down the maintenance chain, so we may have a better
chance of catching it unpatched. If we can gain control of that, then we should
be able to glean usernames and passwords for use on the inside; since we
expect this server to be accessed primarily by IT staff and our victim’s partners,
we should get some juicy information here.

According to the documentation we have at hand, the FTP server is running wu-
ftpd version 2.6.2. So we start with a simple Google search, and quickly come
across http://www.kb.cert.org/vuls/id/886083, “WU-FTPD does not properly
handle file name globbing” and http://www.kb.cert.org/vuls/id/639760, “WU-
FTPD configured to use RFC 931 authentication running in debug mode
contains format string vulnerability.” We actually didn’t even really need to use
Google to find these, as they were both posted on the http://www.wu-ftp.org site
in November of 2001.40 Since they’re from nearly a year ago, we aren’t
surprised to see that they’ve already been patched. We were a little surprised,
however, that the link posted there for the Red Hat patch --
http://www.redhat.com/support/errata/RHSA-2001-147.html -- is for an lpd
vulnerability affecting Red Hat 6.2. Further searching revealed the accurate link,
ftp://updates.redhat.com/7.2/en/os/i386/wu-ftpd-2.6.1-20.i386.rpm -- but, as the
URL indicates, it’s for RH version 7.2. RH 7.3, which was released well after
this patch, already includes the fix.

We therefore can’t take advantage of this vulnerability; it doesn’t exist in the
server we’re targeting. So we keep looking, but fail to find any additional
security alerts for this version of ftp.

We then take a moment to search for any vulnerabilities in the Red Hat 7.3
kernel itself. Surprisingly, a search for “Red Hat” at www.kb.cert.org (the CERT
Coordination Center at the Carnegie Mellon Software Engineering Institute)
returned very few results, though it did lead us to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.168

41 Hacking Exposed, Third Edition, Stuart McClure et al, p. 333.
42 There’s a nice FTP “HOWTO” at http://www.ucc.ie/doc/other/howtoftp.html
43 http://www.giac.org/practical/Steve_Keifling_GCFW.doc, page 13.

http://rhn.redhat.com/errata/RHSA-2002-132.html -- a vulnerability that can lead
to privilege escalation. Naturally, that link includes a link to the patch, which we
presume would have been applied already per the state security policy -- but we
wouldn’t have been able to take advantage of the vulnerability without being able
to log on first anyway. We did find listings of a few remotely exploitable
vulnerabilities, such as OpenSSL and Ethereal -- but patches for those have
been released, and they don’t appear to be running anyway.

So we stopped, decided to think what we were missing -- and smacked
ourselves in the head. In our zeal to find the latest vulnerability, we skipped over
the most obvious, most basic first step in attacking an FTP server: attempting to
log on anonymously and see what we can do. Misconfigured security for FTP
servers is fairly common; as stated by McClure et al,

“Many FTP servers are abused by software pirates who store illegal booty
in hidden directories. If your network utilization triples in a day, it might be a
good indication that your systems are being used for moving the latest
‘warez.’”41

So we went back to basics, and attempted to log in to the FTP server.42 We
simply type: ftp ftp.giac.com and, when prompted for the username, enter
anonymous -- we’re hoping it will then ask us for our password, which would be
our e-mail address by convention (and out of courtesy, with the idea being the
server’s admin would be able to gauge who is using the server). Of course,
there’s no cross-checking here, so we could simply enter gbush@badguys.net if
we wanted.

We are stymied, however, by the server’s lack of anonymous FTP support; our
connection is denied. As stated in the paper, “…accounts are tightly controlled
and the login records monitored regularly.”43 This also means that our attempt
has probably been logged.

With no way to log into the server, and no remotely exploitable vulnerabilities,
our only recourse is to track down a valid username and password. There are
numerous ways to do this, varying from the decidedly low-tech (digging through
dumpsters) to setting up a mock FTP site, sending an e-mail with a link, and
hoping the confused recipients attempt to log in using their valid names and
passwords. We currently lack the time or resources for such a detailed
endeavor, however.

Result:
Our attempt to compromise an internal machine via the perimeter failed,
because our attempt to compromise the FTP server failed. We could find no

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.169

remotely exploitable vulnerabilities, and our attempts to log onto the server were
stymied. Moreover, our attempts were probably noticed.

Given additional time and resources, we could attempt to discover a valid
username and password, and then gain access with that.

Conclusions:
The only attack we succeeded at was a Denial of Service attack, which was
frighteningly easy. Our other attacks were foiled by effective implementation of
security.

This serves as a useful reminder of the importance of what we did in
Assignments 1 through 3.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

44 Note that Fourth Edition is currently in print

Bibliography

Books & other print materials

Blum, Richard, Open Source E-mail Security, Indianapolis: Sams Publishing,
Copyright 2002

McClure, Stuart; Scambray, Joel; and Kurtz, George, Hacking Exposed: Network
Security Secrets and Solutions, Third Edition, Berkeley: The McGraw-Hill
Companies, Copyright 2001

Minasi, Mark et al, Mastering Windows 2000 Server, Second Edition, Alameda:
SYBEX Inc., Copyright 199944

Stevens, Richard W., TCP/IP Illustrated, Volume 1: The Protocols, Upper
Saddle River: Addison-Wesley, Copyright 1994

Zwicky, Elizabeth D; Cooper, Simon; and Chapman, D. Brent, Building Internet
Firewalls, Second Edition, O’Reilly & Associates, Inc., Sebastopol: Copyright
2000

SANS Institute, “Track 2 - Firewalls, Perimeter Protection and VPN’s,” Version
2.2, 2002

On-line references

@Stake
http://www.atstake.com/research/tools/nc110.tgz - netcat

Beyond Security Lt.
mao & Thumann, Michael, “Weak Cisco PIX Enable Password Encryption
Algorithm,” June 21 2002,
http://www.securiteam.com/securitynews/5FP0P0A7FM.html

blackroses.com
http://broken.blackroses.com/members/ppp/Hacking.htm - listing of hacker
tools, with a heavy slant towards BackOrifice and chat. Download & use at your
own risk!

CD-Linux.org
2002, http://cd-linux.org/build-qs.htm - Project for helping people make CD-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.171

based Linux systems
Centergate Research Group, LLC
http://www.geektools.com/cgi-bin/proxy.cgi - excellent Web site for “whois”
searches, searching multiple servers at once

CERT/CC
http://www.cert.org/ -- Carnegie Mellon University’s CERT Coordination Center
http://www.cert.org/advisories/CA-1999-17.html - CERT advisory on Denial of
Service attacks
http://www.cert.org/incident_notes/IN-99-07.html - CERT advisory on Distributed
Denial of Service attacks
http://www.kb.cert.org/vuls/id/886083 - “WU-FTPD does not properly handle file
name globbing”
http://www.kb.cert.org/vuls/id/639760 - “WU-FTPD configured to use RFC 931
authentication running in debug mode contains format string vulnerability”
www.kb.cert.org - Knowledge Base of the CERT Coordination Center at the
Carnegie Mellon Software Engineering Institute

Cisco Systems, Inc.
http://www.cisco.com/warp/public/707/SSH-scanning.shtml - SSH scanning
vulnerability info from Cisco Systems

Citrix Systems, Inc.
http://www.citrix.com/products/metaframexp.asp - Information on Citrix
MetaFrame XP
http://hqextsrvsft01.citrix.com/cgi-
bin/webcgi.exe/,/?Session=4822373,U=1,ST=187,N=0005,K=1249,SXI=12,Cas
e=obj(13815) - How to get Citrix Secure Gateway and Nfuse to run on the same
server
http://hqextsrvsft01.citrix.com/cgi-
bin/webcgi.exe/,/?Session=4892759,U=1,ST=96,N=0005,K=29837,SXI=12,Cas
e=obj(4043), “NFuse Classic 1.7 Error: Blank page at redirect.asp after moving
web pages”

Counterpane Internet Security, Inc.
http://www.counterpane.com/blowfish.html - Bruce Schneire’s main Blowfish
site
http://www.counterpane.com/pptpv2-paper.html - “Cryptanalysis of Microsoft’s
PPTP Authentication Extensions (MS-CHAPv2)”

Elron Software
http://www.elronsoftware.com/productfamily/firewall.shtml - Elron Software’s
Firewall
http://www.elronsoftware.com/productfamily/msginspector.shtml - Elron
Software’s Message Inspector (e-mail monitoring)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.172

Global Information Assurance Certification (GIAC)
http://www.giac.org/practical/Steve_Keifling_GCFW.doc - Steve Keifling’s
GCFW paper

Google
http://www.google.com - excellent Web site for searching

Insecure.org
http://www.insecure.org/nmap/ - nmap

Internet Assigned Numbers Authority (IANA)
http://www.iana.org/assignments/ipv4-address-space - List of current IP address
assignments

Internet Engineering Task Force (IETF)
Townsley, W. et al, RFC 2661, “Layer 2 Tunneling Protocol” August 1999
http://www.ietf.org/rfc/rfc2661.txt -
Mockapetris, P. RFC 1035, “DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION,” November 1987 http://www.ietf.org/rfc/rfc1035.txt (the RFC
for DNS)

Linux Online Inc.
Fawcett, Tom. ”The Linux Boot Disk HOWTO,” v. 4.5 January 2002
http://www.linux.org/docs/ldp/howto/Bootdisk-HOWTO/cd-roms.html

Microsoft Corporation
Microsoft Knowledge Base article Q270836, “XCLN: Exchange 2000 Static Port
Mappings” August 7, 2002
http://support.microsoft.com/support/kb/articles/Q270/8/36.asp
Microsoft Knowledge Base article Q154596, “HOWTO: Configure RPC Dynamic
Port Allocation to Work with Firewall” August 6, 1996
http://support.microsoft.com/support/kb/articles/Q154/5/96.asp
Microsoft Knowledge Base article Q298369, “How to Configure a Global
Catalog Server to Use a Specific Port When Servicing MAPI Clients” May 7,
2001 http://support.microsoft.com/support/kb/articles/Q298/3/69.asp
Microsoft’s IIS Lockdown tool,
http://www.microsoft.com/downloads/release.asp?ReleaseID=33961&area=sea
rch&ordinal=2
Microsoft Knowledge Base article Q238131, “How to Disable Socket Pooling”
July 23, 1999
http://support.microsoft.com/support/kb/articles/Q238/1/31.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.173

Minasi.com
Minasi, Mark, Windows 2000/NT Newsletter archives Issue #16 August 2001,
“How I Mostly Avoided Code Red Problems,” August 2001
http://www.minasi.com/showdoc.asp?docname=nws0108.htm [NOTE: this site
requires free registration]

.mixter security
Mixter, 2002, http://1337.tsx.org/

National Institute of Standards and Technology (NIST)
http://csrc.nist.gov/itsec/guidance_W2Kpro.html - The CIS Gold Standard for
Windows 2000 Professional

Netfilter
www.netfilter.org - Home page for Netfilter
http://www.netfilter.org/documentation/index.html#whatis - The “What is
Netfilter” page
http://www.netfilter.org/download - Download site for the latest Netfilter/iptables
Andreasson, Oskar, “Iptables Tutorial 1.1.11,” 2001,
http://www.netfilter.org/documentation/tutorials/blueflux/iptables-
tutorial.html#AEN70 - kernel setup
Andreasson, Oskar, “Iptables Tutorial 1.1.11,” 2001,
http://www.netfilter.org/documentation/tutorials/blueflux/iptables-
tutorial.html#TABLES - explanation of tables
http://www.netfilter.org/documentation/FAQ/netfilter-faq-1.html#ss1.5 -
Information on Netfilter’s Patch-O-Matic
http://www.netfilter.org/documentation/pomlist/pom-
submitted.html#ip_conntrack_protocol_destroy - Details on the
IP_CONNTRACK_PROTOCOL_DESTROY module
http://www.netfilter.org/documentation/pomlist/pom-
submitted.html#ip_conntrack_protocol_unregister - Details on the
IP_CONNTRACK_PROTOCOL_UNREGISTER module

Netopia, Inc.
Features of the Netopia R5300 router http://www.netopia.com/en-
us/equipment/tech/fmw_features.html
Product Overview for the Netopia R5300 router, 2001,
http://www.netopia.com/equipment/pdf/spec/r5000.pdf
Netopia R5000 Series Routers, User Reference Guide, 2000,
http://www.netopia.com/equipment/pdf/manuals/r5000/leaseref.pdf
http://www.netopia.com/en-us/equipment/purchase/fmw_update.html -
Firmware update for the Netopia R5300
http://www.netopia.com/en-us/equipment/upgrades/411Feat.html - List of
changes in the latest firmware (4.11) for the R5300

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.174

New Order
Barlow, Jason & Thrower, Woody. “TFN2K - An Analysis,” Rev. 1.3, March 7,
2000 http://newdata.box.sk/2001/oct/TFN2k_Analysis-1.3.txt

OpenBSD
www.openssh.org - OpenSSH main page
http://www.openssh.org/portable.html - This page lists the different “ports” for
OpenSSH, as well as mirrors for downloading.
ftp://ftp.ca.openbsd.org/pub/OpenBSD/OpenSSH/portable/INSTALL - Installation
instructions for OpenSSH

Open Source Development Network (OSDN)
http://ntsyslog.sourceforge.net/ - NTSyslog, enabling Windows machines to
send their event log info to a centralized Syslog server

PacketStorm
http://packetstorm.decepticons.org/distributed/ - Distributed Denial of Service
tools, including Tribal Flood Network 2000.
http://packetstorm.decepticons.org/0102-exploits/ssh1.crc32.txt - how to exploit
the CRC32 vulnerability in SSH-1

Penton Technology Media
http://secure.duke.com/nt/SecAdmin/index.cfm?Code=sawi251xna - Windows &
.NET Magazine’s Security Advisor newsletter
Kruchov, Andrey, “Secure Web Server Installation on Win2K: Create a bastion
host IIS machine,” October 2001
http://www.secadministrator.com/articles/index.cfm?ArticleID=22365&pg=1
Minasi, Mark, Windows & .NET Magazine, “Roll Out Secure Servers,” June
2002, http://www.winnetmag.com/Articles/Index.cfm?ArticleID=24892

Postfix
ftp://ftp.cis.fed.gov/pub/postfix/index.html - Postfix Version 1.1, Patchlevel 11

Red Hat, Inc.
http://www.redhat.com/ - Red Hat Linux home page
RHSA-2001:147-09, “Remote exploit possible in lpd,” November 8, 2001
http://www.redhat.com/support/errata/RHSA-2001-147.html
ftp://updates.redhat.com/7.2/en/os/i386/wu-ftpd-2.6.1-20.i386.rpm - FTP patch
for Red Hat 7.2
RHSA-2002:132-14, “Updated util-linux package fixes password locking race,”
July 29, 2002, http://rhn.redhat.com/errata/RHSA-2002-132.html
The Official Red Hat Linux 7.3 Reference Guide, Red Hat Linux 7.3, 2002
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.175

RSA Security, Inc.
“RSA Security and Citrix Systems Provide Stronger Security for the Virtual
Workplace,” April 10, 2002,
http://www.rsasecurity.com/company/news/releases/pr.asp?doc_id=1264
“RSA Security Expands Licensing of its E-Security Software to Citrix,” May 4,
2000 http://www.rsasecurity.com/company/news/releases/pr.asp?doc_id=180

SecurityFocus Online
http://online.securityfocus.com/cgi-bin/sfonline/subscribe.pl - Bugtraq newsletter
Barlow, Jason “TFN2K - An Analysis,” Rev. 1.3, March 7, 2000
http://online.securityfocus.com/archive/1/49973

SecurityGlobal.net LLC
http://www.securitytracker.com - nice up-to-date listing of vulnerabilities
“Cisco PIX Firewall Can Be Crashed By Remote Users Scanning the SSH Port,”
June 27 2002, http://www.securitytracker.com/alerts/2002/Jun/1004643.html

Snort
www.snort.org - Snort Intrusion Detection System

Squid
http://www.squid-cache.org/ - Squid proxy

SurfControl PLC
http://www.surfcontrol.com/products/email/ - SurfControl’s E-mail Filter software

Symantec Corporation
http://enterprisesecurity.symantec.com/content/ProductJump.cfm?Product=155
&PID=12930860&EID=0 - Symantec Inc.’s Antivirus Corporate Edition
http://enterprisesecurity.symantec.com/content/ProductJump.cfm?Product=36&
PID=12930860&EID=0 - Symantec Inc.’s Desktop Firewall 2.0

SysAdm, Audit, Network, Security Institute (SANS)
CMP Media, 2002, SANS newsletters
http://www.sans.org/newlook/digests/SAC.htm
Otto, Brian C., The Easily Recoverable CD-ROM Booted Linux Internet Server: A
How-To,” January 21, 2002, http://rr.sans.org/linux/cdrom.php (NOTE: This site
requires free registration)

Tripwire, Inc.
www.tripwire.com - Home page for Tripwire software, providing notification if,
when, and how files change

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.176

University College, Cork
“How to Use FTP,” http://www.ucc.ie/doc/other/howtoftp.html

WU-FTPD Development Group
http://www.wu-ftpd.org - home page for FTP server

